
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Some modified stochastic global optimization algorithms with applicationsSome modified stochastic global optimization algorithms with applications

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© M. Montaz Ali

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Ali, M.. 2019. “Some Modified Stochastic Global Optimization Algorithms with Applications”. figshare.
https://hdl.handle.net/2134/13429.

https://lboro.figshare.com/


 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



LOUGHBOROUGH 
UNIVERSITY OF TECHNOLOGY 

LIBRARY 

(

AUTHOR/FILING TITLE 

y.\ !,... I {'vt. • M . 
---------------------~--------~---------------

ACCESSION/COPY NO. 

~'to, ()' ~:L '6 ----------------- ---- ---------- ----------- - - --- - --
VOL. NO. 

30 JUN 1995 
28 JUN 1996 

2 8 JUN 1996 
27 JUN 1597 

26JUN199 

f 4 JAN 2000 

CLASS MARK 

1111111111111 



/ 

/ 



Some Modified Stochastic Global Optimization 
Algorithms with Applications 

by 

M. Montaz Ali 

A Doctoral Thesis 

Submitted in Partial Fulfilment of the Requirements 

For the A w;u·d of Doctor of Philosophy 

of Loughborough University of Tedmology 

September 1994. 

Supervisor: Emeritus Professor C Storey, D.Sc., F.I.M.A. 

Department of Mathematical Sciences. 

© M MAli, 1994. 



Loughborough University 
of Techn0lo'lY Ubrary 

__ "'- __ •••••• d, •• 

~'" .'~ 

Date ~cjC._ 
Class 

Arx. C'kc '0 \ 5''1. "6 1 No. 



To : My parents and my daughter. 



Declaration 

I declare that I am responsible for the work submitted in this thesis, that the original 

work is my own except as specified in acknowledgements, and that neither the thesis nor 

the original work contained therein has been submitted to this or any other institution for 

a higher degTee. 

M M AIL 



Acknowledgements 

I would like to express my very sincere thanks to my supervisor Professor Colin Storey 

for his continual encouragement, guidance, comments and valuable supervision for the 

research in this thesis. I would like to acknowledge his enormous help in writing up this 

thesis. I am also obliged to him for introducing me to this important field of optimization. 

It is with pleasme that I acknowledge the contributions of Professor Roger Smith 

to Chapters 5 and 6. In addition I am gTateful for his valuable suggestions and the 

discussions we had regarding the importance and the demand for global optimization in 

many engineering fields, when I first arrived in Loughborough. 

I would like to thank my Director of Research Dr. A. C. Pugh for his constant help 

during my candiciature. I aL~o sincerely acknowledge all the assistance I obtained from Dr. 

J. J. Forster, Professor G. A. Evans and Professor .T. B. Griffiths. 

I would like to thank my wife Panna for her patience and understanding. I am 

thankfull to my teachers Mohammed Shahiclulla and Nurul Islam for their encouragements. 

I am also grateful to Dr. A. A. K. Mojumdar, who as my first teacher in operations research 

aroused and fostered my interest in research in general. 

I would like t.o t.hank Louise and Helen for helping me on the use of TEX. Finally, I 

wish to thank t.he Commonwealth Scholftl'ship Commission for sponsoring my st.udy. 



ABSTRACT 

Stochastic methods for global optimizat.ion problems with continuot1~ variables have 

been studied. Modifications ofthree different algorithms have been proposed. These are (1) 

Multilevel Single Linkage (MSL), (2) Simulated Annealing (SA) and (3) Cont.rolled Ran

dom Search (CRS). We propose a new topographical Multilevel Single Linkage (TMSL) 

algorithm as an extension of MSL. TMSL performs much better than MSL, especially in 

terms of number of function evaluations. A new aspiration based simulated annealing algo

rithm (ASA) has been derived which enhances the performance of SA by incorporating an 

aspirat.ion criterion. We have also proposed two new CRS algorithms, the CRS4 and CRS5 

algorithms, which improve the CRS algorithm both in terms of cpu time and the number 

of function evaluations. The usefulness of the Halt.on and the Hammersley quasi-random 

sequences in global optimization has been investigated. These sequences are frequently 

used in numerical integTation in the field of Bayesian statistics. A useful property of the 

quasi-random sequences is that they are evenly distributed and thus explore t.he search 

region more rapidly than pseudo-random numbers. 

Comparison of the modified algorithms with their unmodified versions is carried out on 

standard test problems but in addition a substantial part of the thesis consists of numerical 

investigations of 5 different practical global optimization problems. These problems are as 

follows: 

(1) A nonlinear continuous stilTed tank reactor problem. 

(2) A chemical reactor problem with a bifunctional catalyst. 

(3) A pig-liver likelihood function. 

(4) Application and derivation of semi-empirical many body interatomic potentials. 

(5) A optimal control problem involving a car suspension system. 

Critical comparisons of the modified and unmodified global optimization algorithms 

have been carried out. on these problems. The methods applied to these problems are 

compared from the points of view of reliability in finding the global optimum, cpu time 

and number of function evaluations. 
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CHAPTER 1 
Introduction 



1.1 Introduction 

With the advancement of science and technology, problems often arise in contexts such 

as control theory, physical modelling, engineering design, data analysis, etc., in which an 

objective function has to be optimized subject to a set of constraints. Here, without loss 

of generality, we restrict ourselves to minimization. Let I : n c lRn --+ lR be a real-valued 

objective function. A (weak) local minimizer ;r;' of I is a point such that there exists a 

neighbourhood B of ;c' with 

I(x') ::; f(x), Vx E B . (1.1) 

In general, however, for such problems, multiple minima may exist and they may also 

differ substantially. For problem~ with multiple minima one is interest.ed in finding the 

very best minimum. We rest.rict. 0UI' at.t.ent.ion to this class of problems of a global nature. 

The global minimization problem for a function f : n c lRn --+ lR is to find x' such t.hat 

f(x') ::; f(x), Vx En. (1.2) 

We assume that f is a nonlinear function and for different algorit.hms it. is assumed to have 

different smoothness properties. For instance, the interval arithmetic method (Hansen, 

1979) and density clustering (Rinnooy Kan and Timmer, 1987) require f to be twice 

continuously differentiable whereas controlled random search (Price, 1983) does not require 

any derivatives at all. We also assume that the feasible region n is given by a set of lower 

and upper bounds on each variable, i.e. 

n={X!±;::;Xi::;Xi, i=I, ... ,n}. 

In the general constrained global optimization problem the constraints usually con

sist of a set of equality or inequality constraints or a combination of both. Only a few 

methods have been developed to solve constrained problems. Levey and Gomez (1980) 

used a generalised tunneling method to deal with the constraints. Methods for constrained 

global optimization are also reported in Hoffman (1981) and Rosen (1981). Timmer (1984) 

adopted a penalty function approach. 

However, our main conceI'll in t.his thesis is to deal with problems which are 'essentially 

unconstrained', that is, the global minimum of f is at.tained in the interior of n. As 
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far as numerical calculation is concerned, the optimal solution is always regarded as an 

approximate solution. Thus a global optimization problem is considered to be solved if 

anyone of the following sets is identified. For some c > 0, 

where 

Ax(c) = {x E n I11 x-x' 11:::: c}, 

Af(c) = {x E n I1 f(x) - f(x*) I~ cl, 

A",(c) = {x E n I tP(f(x)) ~ c}, 

tP(f(x)) = m ({z E n l~~l ~ f(x)}) 

and m(.) is the Lebesgue measure. 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

Designing algorithms that can identify the best minimum is the subject of global op

timization and forms the main objective of our research. Although, there is a large variety 

of problems which involve minimization wit.h respect to continuous variables, there are also 

many problems of discrete optimization or even combinations of both. Discrete problems 

are widely known as GOmbinat.orial opt.imizat.ion problems because t.hey involve arrange

ments of objects, for inst.ance, chip placement in computer design, image processing, graph 

colouring, graph partitioning, travelling salesman problems etc. In the field of combinato

rial optimization mathematicians use the performance of algorithms to distinguish between 

'easy' and 'hard' problems. The travelling salesman problem is hard because no one has 

found an algorithm that computes the shortest tour of n cities in polynomial time. Despite 

the efforts of several generations of mathematicians and comput.er scientists, no one has 

found a complete solution. The problem of finding the global minimum for functions of 

continuous variables is also theoretically intractable. However, for the practical solution 

of problems, both (liscrete ami continuous, approximate algorithms are often considered. 

Our research in this thesis involves only global optimization of continuous flmctions. 

Local optimization problems can be solved with gTeater reliability than global ones 

and the nature of solutions can be characterized by the criteria of positive definiteness 

of the Hessian ami zero gTadient. Unfortunately, for the case of global optimization no 

such criteria exist in general. The aim of global optimization is to find the points in n for 

which the function attains its smallest value, the global minimum. The solution strategy 

often consists of a global stage and local stages. In the absence of a priori information 

all parts of the search region must be treated equally critically (the global stage). Of 

course, no significant. parts of n must. be neglected, unless one is willing to accept a 

considerable chance that the global minimum will be missed. When some information 

is accumulated some parts of the feasible region may be deemed more interesting than 

others and solutions in these parts iue then required (the local stage). However, if the 
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function has been evaluated at a finite number of points then it is still possible that its 

global minimum may differ from the best minimum function value found so far by an 

arbitrary amount. In general therefore, it is almost impossible to find a computationally 

efficient algorithm which will always find the global minimum. In practical optimization 

applications, the evaluation of I(x) is often very expensive computationally so that a large 

number of function evaluations would be the dominating expense. Therefore, there is 

always a trade-off between efficiency and reliability. So, in contrast to local optimization, 

most global optimization problems are practically impossible to solve. However, attempts 

have been made to construct algorithms that are more efficient than the most simple ones, 

such as pure random search or iterative use of local optimization from different starting 

pointsi but, so far, few algorithms for tackling global optimization have been developed, 

in comparison with the multitude of local optimization methods. Full details of existing 

global optimization algorithms can be found in Dixon and Szego (1978), Ratschek and 

Rokne (1988), Torn and Zilinskas (1989), Horst and 'I\IY (1990) and Floudas and Pardalos 

(1992). 

The known methorls for global optimization can be divided into the two categories, 

det.erminist.ic and st.ochastic. Det.E:'nninist.ic met.hods find global minima by an exhaust.ive 

search over the region of int.erest n. Therefore, most deterministic methods lose efficiency 

and reliability as the dimension of the problem increases. To guarantee success such 

methods unavoidably involve additional assumptions on I. For instance, many of them 

impose highly rest.rictive conditions on I such as sat.isfaction of a Lipschit.z condition with a 

known constant. Good account.s of deterministic met.hods are given in Rat.schek and Rokne 

(1988) and Horst and 'I\ty (1990). Deterministic methods do not involve any stochastic 

concepts. In the next section some deterministic methods are briefly discussed. 

1.2 Deterministic Methods 

Many approaches have been investigated for solving global optimization problems. For the 

general case where I can be any continuously differentiable nonlinear function, approaches 

that. have been developed include deflation (Goldstein and Price, 1971) and piecewise 

approximation (Shubert, 1972) methods. Feasible space-covering methods with guarant.eed 

convergence to the global minimum can be constructed if I satisfies some a priori conditions 

(Evtushenko, 1971). Examples of such conditions on I are bounds on the derivatives and 

t.he satisfaction of a Lipschitz condition. 

Another kind of deterministic met.hod is the trajectory method. This is a method of 

'enumeration-of-local-minirna' t.ype which is based on the observation that each minimum, 

including the global one, is known to be a st.ationary point. Since I is assumed to have 

a finite Ilttmber of stationary points, the global minimum could be found by locating 
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all stationary points, and comparing their function values. All trajectory methods are 

commonly known as generalized descent methods because they are based on modifications 

of the equation of local descent. In t.his context considerable at.t.ention has been paid to 

the trajectory methods due to Branin (1972) and Branin and Hoo (1972). Branin's idea 

is to introduce a dummy variable t and to consider points x = x(t) that form a curve, 

parameterized by t, connecting a given stationary point to another stationary point. If it 

is possible to follow this curve then one could go from one st.ationary point t.o another and 

hopefully find them all by continuing the process. 

How can such a curve x(t) be created? This problem is solved by defining a differential 

equation, where differentiation is with respect to t, such that its solution is a function x(t) 

with the desired property. To determine a differential equation which is suitable for this 

purpose, consider, for example, 

d[J(:r,(t)) ( ()) 
I + It[J X t = 0 , 
Lt 

(1. 7) 

where [J(x(t)) is the g;radient of I at :r, and It E [+1, -1]. The exact solution of (1.7) is 

[J(x(t)) = [J(:r(O))e1d • (1.8) 

Clearly, if It = -1, the trajectory x(t) satisfying (1.7) will tend to a stationary point with 

increasing t. If p, = + 1, then the trajectOl'y will move away from that stationary point. 

Further details of the trajectory method can be found in Branin and Hoo (1972). Branin 

and Hoo noted that 'the trajectory met.hod is not globally convergent in general, but may 

be in some instances. Moreover, not. every t.rajectory passes through all solution points, 

alt.hough some may. Bot.h of these limitations occur because of the existence of extraneous 

singularities of t.he basic different.ial equat.ions'. Thus practical application of Branin's 

method raises many numerical and theoretical difficulties. In Yamashita (1979) a method 

based on Branin (1972) is also developed for solving a nonlinear programming problem 

with equality constraints. 

A similar kind of trajectOl'y met.hod of 'enumerat.ion-of-local-minima' t.ype was pro

posed in Hassan (1982). This met.hodlocat.es a local minimum and computes the region 

of attraction of this minimum by a method described in White (1979). A point is then 

selected outside this region and the process continues until all minima are found. The 

system of equations involved in this method is given by 

j; = -\7I(x) . (1.10) 

The solutions of (1.10) are the orthogonal trajectories of I. The equilibrium points of (1.10) 

are the solutions of \7 f = 0 and hence are the stationary points of I. This method involves 

a special numerical integration of the partial differential equation of Zubov (Zubov, 1964) 

4 



for finding a Liapunov function and thereby the domain of attraction. Further details 

of the algorithm and some of its applications can be found in White (1979), Hassan and 

Storey (1981) and Hassan (1982). The major setback of this approach is that it appears 

to be only workable for the two variable case and more research is needed for possible 

extension to higher dimensions. 

However, the trajectory methods apply only under specific imposed criteria such as, 

for example, f must be twice continuously differentiable. For these reasons trajectory 

methods do not qualify as general purpose global optimizers. 

The tunneling method (Levy and Montalvo, 1985) is of 'improvement-of-local-minima' 

type. It is composed of a sequence of cycles, each cycle consisting of two phases: (a) a 

minimization phase having the purpose of lowering the current function value until a local 

minimizer is found; (b) a tunneling phase that has the purpose of finding a point x E n, 
other than the last minimizer, such that when x is employed as a starting point for the next 

minimization phase, the new stationary point will have a function value no greater than the 

previous minimum found. The major drawback of this algorithm is that it is difficult to be 

certain that the search for the global minimum has been sufficiently thorough. Therefore, 

the minimization problem of the tunneling phase virtually again becomes a problem of 

global nature. 

The 'filled function' method for global optimization is due to Renpu (1990). This 

method is also of 'improvement-of-local-minima' type. As with many other deterministic 

methods, it is assumed here that f has only a finite number of minimizers in n and each of 

them is isolated. V/henever a minimizer xi is known, a filled function can be constructed 

which determines a starting point for a local optimization of f(x) which will produce a 

lower minimizer xi than xi, or which recognizes that xi is already a global minimizer of 

f(x). For a particular minimizer x·, a typical filled function is given by 

1 Ilx - x'11 2 

p(x) = f() exp ( - 2 ) 
r+ x p 

(1.9) 

where rand p are user provided parameters. After constructing p(x) for a known minimizer 

x· it is minimized by a local minimization method starting from the vicinity of x' and 

then minimization of f(:r.) starts from the point so obtainec!. This will hopefully produce 

a better minimizer for f. The procedure updates the present best minimizer of f(x) and 

continues until no better minimizer can be achieved and ideally, the last local minimum 

in the sequence is the global minimizer. For an appropriate choice of parameters rand p, 

it can be shown that a method of local descent applied to ]I(x) will arrive at a point Xk+l 

starting from which a descent procedure applied to f will arrive at better local minimum 

xk+l (Le., with f(x k+1) < f(xk)), if sudl an improved local minimum exists. Unfortu

nately, appropriate values for the parameters are based on information about f and this 
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is not readily available. Therefore, the parameters T and p are updated repeatedly in the 

procedure. This adjustment of the parameters makes the method very inefficient. More

over, the adjustment does not guarantee that the appropriate values for the parameters 

will be obtained. Therefore, convergence to the global minimum can not be guaranteed. 

The interval arithmetic method for global optimization was first introduced by Hansen 

(1979). Ichida and Ft\iii (1979) also derived a method of similar nature. The method is used 

to find the global minimizers of a twice continuously differentiable function f using interval 

arithmetic. Interval arithmetic (Moore, 1966) plays a key role in this kind of method. In 
this method it is also assumed that f'(x) and f"(x) have finitely many zeros in n. It is 

an iterative method where in each iteration each interval is subdivided into subintervals. 

Using tests such as monotonicity, convexity etc., subintervals where the global solution 

can not exist are discarded and the interval of largest length is chosen from the remaining 

list of intervals and the process continues. The stopping criterion is fulfilled when the 

combined length of remaining sub intervals is sufficiently small. For recent work on the use 

of interval arithmetic algorithms in global optimization R.atschek and R.okne (1988) should 

be consulted. 

1.3 Stochastic Methods 

To overcome the inherent difficulties of deterministic algorithms, much research effort has 

been devoted to algorithms in which a stochastic element is introduced. Unlike determin

istic methods, stochastic methods depend on probabilistic events and in most stochastic 

methods, two phases can be usefully (listingushed, global and local. Stochastic techniques 

do not only play a role in the design and analysis of stochastic algorithms, but are also 

used to solve one of the basic problems in applying a stochastic method, which is when to 

stop. Most stochastic methods involve the evaluation of f in a random sample of points 

from n and subsequent manipulations of the sample. As a result, stochastic methods sac

rifice the possibility of an absolute guarantee of success. However, the probability that an 

element of Ax(c), Af(c) or A,,(c) is s'lmpled can be shown to approach one as the sample 

size increases (Solis and Wets, 1981). Tlms, such a global phase in which ultimately points 

are sampled in every subset of n with positive measure, gives rise to an asymptotic guar

antee that is essential for the reliability of the method. Stochastic methods, thus, have a 

probabilistic convergence guarantee. 

However, a method that contains only a global phase will be found lacking in efficiency. 

Although local improvement techniques cannot guarantee that the global minimum will 

be found, they are efficient, tools that should be exploited to find points with relatively 

small function values. Thus a local phase is incorporated to improve the efficiency of 

the method, Therefore, stochast.ic methods involve random sampling or a combination of 
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random sampling and local search. They can be applied in much less restrictive situations 

than deterministic methods and have sound theoretical properties uncler which global 

minima can be found with a probabilistic guarantee of success. Therefore, stochastic 

methods have an intuitive appeal because of their inherent merits over the deterministic 

ones. 

Some early stochastic methods were developed by Brooks (1958) and Bremermann 

(1970). These are simple random search algorithms. In general, stochastic methods are 

either 'two phase methods' or 'simulated annealing' type methods. Some well known two 

phase methods are: 

Clustering with distribution function (De Biase and F'rontini 1978). 

Search Clustering (Tcirn 1978). 

Controlled Random Search (Price 1983). 

Pure R<'lndom Sem'ch (Rinnooy Kan and Timmer 1984, 1987). 

Multistart (Rinnooy Kan and Timmer 1984, 1987). 

Multilevel Single Linkage (Rinnooy Kan and Timmer 1984, 1987, 1987a). 

Density, Single Linkage clustering (Rinnooy Kan and Timmer 1987). 

Most two phase methods are iterative, and fit into the following framework: 

• (Global phase): N points are drawn from a uniform distribution over n and the 

function is evaluated at these point.s. In this phase the search region n is explored. 

• (Local phase): A subset of sample points is selected and a local search procedure (F) 
is applied to each element of this subset. This phase searches for a better solution 

than the previous best. 

• A stopping rule decides whether to ret urn to the global phase or to stop. 

Later in this thesis many of the stochastic methods will be discussed in more detail 

but a brief general disc\L~sion of stochastic met.hods follows. Two phase methods such as 

pure random search (PRS) and multistart (MS) are very simple but inefficient. PRS is 

t.he simplest implementation of the Monte Carlo algorit.hm for global opt.imization. The 

main task of PRS is to find an improvement over the current function value by only 

random smnpling. Its limited practical usefulness is mainly due to the fact that most of 

the information gathered during the execution of the algorithm is lost, as no use is made 

of function values and of function structure. MS is, in some sense, on the opposite side of 

PRS with respect to t.he use of local informat.ion. In t.his algorithm a local search rout.ine is 

start.ed from each sampled point .. A st.opping mle for MS is derived based on the number 

of point.s sampled and t.he number of different. local minima found. 
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De Biase ancl Frontini (1978) describe a method based on random sampling of points 

in the re£,ion of interest n. Their first aim is to estimate a function 1/J(.), where 

1/JW = Pr {Random point x E n has j(x) ~~, ~ E 1R}, (1.11) 

or, alternatively, 1/J(~) is the normalised Lebesgue measure of the subset E(~) of n, where 

E(O = {x E n,j(x) ~ ~}. 

If 1/J(~) is known, then the minimum value of j in n may be obtained by setting 1/J(O = 

O. De Biase and Fwntini set out first to estimate 1/J(~) by a recursive spline technique, 

smoothing the data fOlmd by a sequential uniform random sampling both on n and on 

the expected range of function values. Sets of q random points and functions values at 

these points are generated iteratively and for each SUdl set (say, i-th set of q points) ~i are 

chosen from a uniform distribution on [jl, j"j where jl ami j" are the lowest and highest 

function values. For every ~i the frequency 1/J(~) (Le. m(E(~))) is evaluated by means of 

-0i = z;:., where 1Ii is the number of trial points in the i-th set of q points lying in the region 

E(~i)' Therefore, a pair of values (~i, -0i) is obtained for each set. This is repeated and 

spline approximations are used to fit 't/J(O to these results. This stage of the algorithm 

is terminated if a consistent fit is achieved and enough points are assumed to have been 

generated. The prerlicted minimum value of 1* can be obtained from these results, The 

second stage of the procedme is to £,TOUp the points generated in the first stage into clusters 

and carry out a local search for a local minimum within each cluster. 

Among the best performing methods for global optimization are those which mix local 

search procer\mes with the application of clustering techniques aimed at £,Touping together 

points in n belonging to the region of attraction of the same local minimum; the methods 

in this class try to identify the shape and location of the regions of attraction of local 

minima. A good review of ch1~tering methods can be found in Torn and Zilinskas (1989). 

The most commonly used clustering technique in the context of global optimization consists 

of partitioning the available observations into £,TOUpS, sequentially assi£,ning sample points 

to clusters £,Town around 'seed points' which can be local minimizers or points with low 

function values. 

The leaving out of unpromising points, which is known as 'reduction' or the 'concen

tration' of sample points are often lIsed in clustering methods. In reduction, the sample 

is reduced by eliminating a fixed percentage, say 1-, (0 < , < 1), of points with higher 

function values; in concentration, a few steps of a descent algorithm are taken from each 

sample point. The clustering method due to Torn (Torn, 1978) uses the latter type of 

strategy. In Torn's method, initially a set of points (global points) are drawn from n 
and then the concentration strateg,y is applied to these points. The next step consists of 
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clustering the points obtained by this concentration. The clusters are formed sequentially, 

and each cluster is initiated by a seed point, 8". This seed point is taken to be the point 

with the lowest function value from t.he unclust.ered sample points. St.art.ing from So a 

clust.er grows unt.il the point density of the subregion it forms is greater than the average 

density of unclustered points in O. The process continues until all points have been con

sidered. In the last phase of the algorit.hm a sample of points from each clust.er is chosen 

and again concentrat.ion and clustering proceed. The algorit.hm stops when two successive 

clusterings result in t.he same number of clust.ers. The algorithm has no special features 

to escape from local minima and t.o concentrate only on the global one. This causes the 

algorithm to perform mult.iple local searches unnecessarily, especially when the function 

has many local minima. Moreover, there is no criterion which indicates that the search for 

the global minimum has been thorough enough and thus finding the global minimum can 

not be guaranteed. 

Byrd, et. a!. (W92) described a new stochastic global optimization algorithm that. 

is oriented towards solving large scale problems. The algorithm incorporates some full

dimensional random sampling and local minimizations as in existing stochastic methods 

(Rinnooy Kan am! TirmnE'r, W87a), but. the keys to its success are t.wo new phases that 

concent.rat.e on selected small climensional subproblems of the overall problem. 

Recently, Torn and Viit.anen (1902) developed a new t.opographical clustering met.hod 

for global opt.imizat.ion. In t.his method a clust.er is formed on t.he basis of t.opographical 

informat.ion on t.he function amI only the clust.er cent.re is determined rat.her t.han iden

t.ifying t.he whole dust.er. This t.ype of clust.ering procedure does not use seed points but 

concent.rates on ident.ifying t.he clust.er centre. 

A different. approach was taken by Schagen (W80) who introduced an algorit.hm in 

which a st.ochastic int.erpolat.ing function is repeatedly opt.imized and reconst.ructed until an 

agreement is reached between the minimum of t.he interpolating function and the original 

objective funct.ion value at. t.hat. point; then the minimizer of t.he int.erpolating ftmction 

is t.aken as t.he global minimizer of t.he objective function. The stochastic interpolating 

function is a stationary stochastic mode!. However, finding the global minimum can not be 

guaranteed by optimizing such an interpolating function. Nonetheless a stochastic model 

may be appropriate if the original function is extremely expensive to evaluate. 

The simulated annealing algorithm was proposed by Kirkpatrick, et. a!. (1983). Meth

ods based on simulated annealing use it stochastic mechanism which allows the algorithm 

to escape from a local minimum. Although t.he simulat.ed annealing algorithm was init.ially 

designed for combinatorial optimizat.ion problems, several cont.inuous versions are current.ly 

available (Vanderbilt and Louie, 1984, Aluffi-Pentini et a!. 1985 and Bohachevsky et. a!. 

1986). More recently, Dekkers and Aarts (1991) derived a continuous simulated annealing 
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algorithm which is theoretically similar to discrete simulated annealing. For an extensive 

annotated bibliography on both discrete and continuous simulated annealing see Collins 

et. al. (1988). 

The variety of techniques that have been proposed is impressive, but, their relative 

merits have neither been analysed in a systematic manner nor properly investigated by 

computational experiment. In this thesis we have studied and attempted to improve some 

recent stochastic global optimization algorithms and in view of the practical significance 

of the global optimization problem these algorithms have been critically assessed. 

1.4 Outline of Thesis 

Global optimization is creating considerable attention and more research is going on to try 

to deal with this intractable problem. Although a definite statement about the superiority 

of stochastic methods over det,erministic ones is impossible to give, theoretical consideration 

as well as practical experience suggest that for problems of moderate to high dimension the 

use of stochastic techniques is perhaps the only feasible approach. We therefore consider 

those stochastic algorithms which perform well within this class of problem. 

Three types of global optimization algorithms, namely (1) the Multilevel Single 

Linkage Method, (2) Simulated Annealing and (3) Controlled Random Search are discussed 

in detail in the subsequent Chapters. In Chapter 2 the connection between t,he clustering 

and single linkage methods is illustrated and a new topographiml multilevel single linkage 

method is proposed. In Chapter 3 both discrete and continuous simulated annealing 

algorithms are reviewed. A brief theoretical background is also given. In the same Chapter 

a new aspiration based simulated annealing algorithm has been proposed together with 

a new adaptive polynomial-time cooling schedule. Chapter 4 deals with the controlled 

random search (CRS) algorithm (Price, 1983, 1987) and its modifications. We have 

proposed two new CHS algorithms ami have demonstrated their superiority over the 

original algorithms. 

Application of global optimization algorithms to real life problems and the critical 

comparison of these algorithms is an area where too little attention has been given. 

Therefore, our objective is to compare the effectiveness of some of the algorithms studied 

and described in previous sections in finding global minima for a number of real life 

problems. The problems we consider are from the fields of chemical engineering, material 

science, applied statistics and mathematical engineering. In Chapter 5 two problems 

from material science are investigated. A semi-empirical, short ranged many-body, 

interatomic potential for bce metal is derived and global optimization algorithms are 

used to calculate the minimum energ,y of 'Tersoff' potentials (Tersoff, 1988, 1988a) for 

Silicon (Si) and 'Tersoff-Iike' potentials (Smith, 1992) for Arsenic (As). In Chapter 6 an 

10 



optimal feedback controller for a realistic car suspension system is proposed. In Chapter 7 

global optimizat.ion algorit.hms toget.her with an it.erat.ive dynamic programming met.hod 

have been applied t.o t.wo optimal control problems with a multiplicit.y of solutions. Also 

in Chapter 7, a global maximum has been sought for a pig-liver likelihood function. 

Comparisons of numerical results are given for each problem. The performance of the 

different stochastic methods has been assessed from a critical comparison of the numerical 

result.s obtained for each problem. Finally, conclusions and comments are given in Chapter 

8. 

Most of t.he numerical work has been carried out on the HP9000/870 computer except 

the numerical work for the problems in Chapters 5 and 6 and for the second problem in 

Chapter 7, for these problems we have used a faster HP9000/750 computer. A quadratic 

programming procedure E04UCF from the NAG Library has been used as the local search 

for the problems in Chapters 5, 6 and 7. 
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CHAPTER 2 

Stochastic Methods: 
Clustering and Single Linkage 



2.1 Multistart and the Bayesian Stopping Rule 

The relative difficulty of global optimization in general is easy to understand and indeed, 

the global optimization problem as stated in (1.2) is inherently unsolvable because two 

crucial difficulties are encountered when an attempt is made to solve it. The first is that 

there exists no simple criterion according to which a point can be computed with a lower 

function value than the current best point. One feasible approach, however, is to seek such 

a point by applying a local search from a number of sample points. The second difficulty 

is that it will always remain uncertain whether or not. the global minimum has been found. 

Hence, it is inevitable to make assumptions (e.g., Lipschitz continuity) about the objective 

function f or to widen the scope of global optimization algorithms. 

A natural way out is a Bayesian approach in which the user is asked to specify a 

prior probability distribution on the unknown characteristics of f such as, for example, 

the exact number of local minima. Information gathered on f is then used to convert these 

probabilistic assumptions into a posterior distribution through Bayes Theorem (Boender, 

1984). This posterior distribution reflects the way in which the initial beliefs are affected 

by the outcome of the experiments. The above mentioned difficulties in global optimization 

can now be posed as statistical decision problems, i.e. one can take a decision whether 

or not global optimality has been achieved with respect to posterior knowledge and a 

prespecified loss function (Boender and Rinnooy Kan 1983, 1!J85, 1987). 

By far the most efficient methods for global optimization are based on starting a local 

optimization routine from points which are uniformly distributed over n (Timmer 1984 

and Rinnooy Kan and Timmer, 1987). The widely known multistart (MS) algorithm is 

the prototype of these methods. In MS points are sampled iteratively from a uniform 

distribution over n, a local minimization is performed from each of these points and the 

local minimum with the smallest func:tion value found in this way is a candidate value for 

/*. A stepwise description of MS is given below. 

The MS Algorithm 

Step 1 Let /*=+00 

Step 2 If stopping condition is satisfied then stop; otherwise generate a uni

form rand om :c in n 
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Step 3 Perform a local opt.imization starting from x let x be the local 

optimizer and f=f(x) 

Step 4 Let f*=min(f*,f) 

Step 5 Go to step 2 

The MS method is reliable in the sense that the probability that the global mini

mum will be discovered increases as the sample size increases. Irrespective of whether a 

global optimization method is deterministic or stochastic, it always aims for an appropriate 

. convergence guarantee. As with MS, all other stochastic methods aim for an asymptotic 

guarantee which will ensure convergence to the global minimum as the computational ef

fort becomes infinite. The existence of such asymptotic guarantees raises the question of 

an appropriate stopping rule. In practice stopping criteria are used to stop the algorithm 

when there is sufficient evidence that the global optimum has been detected; or that the 

'cost' connected with the search for a better estimate of the global minimum would be too 

high; or that some kind of 'resource' has been exhaust.ed, such as, for example, comput.er 

time or number of function evahmt.ions. Different algorithms however propose different 

stopping criteria and t.he st.opping condit.ion is part of the individual algorithm concerned. 

Of COlU'se, if the t.rue number of local minima is unknown, met.hods based on local search 

can never provide an absolut.e guarant.ee in a finite t.ime that the global optimum has 

been found: all t.hat can be assured is that the probability of this event approaches 1 as 

the sample size t.ends to infinity. Thus, there exists a need for stopping rules t.o deter

mine t.he sample size which corresponds t.o an optimal trade-off bet.ween reliability and 

computat.ional effort. 

Optimal Bayesian st.opping rules for MS have been derived by Boender and Rinnooy 

Kan (1987). They have also described a rigorous Bayesian framework for the development 

of these optimal stopping rules. Their construction is based purely on a st.at.istical analysis 

of the MS met.hod. A crucial observation about MS is that it.s out.come, in the form 

of a sequential sample of local minima, can be viewed as a sample from a generalized 

mult.inomial distribut.ion whose cells correspond t.o the local minima of J. Thus (Boender 

1984; Boender and Rinnooy Kan 1987) it turns out to be possible to develop a Bayesian 

estimate of t.he probability t.hat t.he next. local search will locate a new local minimum. A 

decision whet.her or not t.o cont.inue t.he search can be t.aken which is opt.imal with respect 

to a loss function which is based on a termination loss, if sampling is stopped before all local 

minima have been found and an execut.ion loss, which expresses t.he cost. of sampling and 

performing new local searches. Given the initial beliefs or prior distribution of unknown 

parameters, such et decision incorporates all information derived from the experiments, t.o 

weigh expected costs and benefits against each other in an optimal fashion. The~-efore, the 

optimal Bayesian st.opping rule is determined by specifying the cost.s and pot.ential benefits 
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of further experiments and weighing these against each other probabilistically. Several loss 

structures and corresponding stopping rules are described in Boender (1984) and Boender 

and Rinnooy Kan (1987). 

The region of attraction of a local minimizer x· for a particular local search method 

is defined as the set of points x from which the local search will converge to x·. If w 

different local minima have been found as the result of local searches started at each of N 

uniformly distributed points then Boender (1984) and Boender and Rinnooy Kan (1987) 

showed that a Bayesian estimate of the portion of n covered by the region of attraction of 

the local minimizers fOlmd so far is given by 

E(C) = (N-w-1)(N+w) 
N(N -1) 

(2.1) 

(the posterior expected value of the total volume of the observed regions of attraction) and 

a Bayesian estimate of the total number of local minimizers is given by 

E (T) = -:-::w-'-( N_-_1-,-) 
N-w-2 

(2.2) 

(the posterior expectation of the number of local minima). Here the total number of local 

searches N, must be greater than the number of distinct minima observed previously (Le 

N > w + 2). For most (N, w) pairs (2.2) will yield a non-integer estimate, although the 

true number of local minima is evidently an integer. However, it can be verified that the 

optimal integer Bayesian estimate under a quadratic loss function is a round-off of the 

non-integer estimate (Boender, 1984 ami Boemler and R.innooy Kan, 1987). Therefore, 

after the k-th iteration the algorithm is terminated if the following criterion is satisfied; 

E(T) :"0 w+O.5 (2.3) 

If the stopping criterion (2.3) is satisfied the estimated number of unobserved minima 

is equal to O. This may cause an algorithm to run for a long period of time, especially 

when the objective function has many local minima with very small regions of attraction. 

Therefore another stopping criterion may be to terminate the algorithm if the total relative 

volume of the observed regions of attraction exceeds a prescribed value v(O < 11 < 1), Le., 

stop if 

E(C) 2: 0.995. (2.4) 

However, condition (2.3) is widely recommended (Rinnooy Kan and Timmer, 1987a). 

These stopping criteria, based on MS, ,ne important as they can also be used by many 

other stochastic methods which use re(luced samples, such as Clustering and Multilevel 

Single Linkage. Because the above Bayesian stopping rules for MS depend only on the 
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number of points sampled and the number of distinct minima found by performing local 

searches from these points, they are not only applicable to MS, but to every method which, 

given a sample, results in the same set of minima as MS. In particular, these stopping rules 

are applicable to the methods in which exactly one local search is started in every region 

of attraction in which points have been sampled (Rinnooy Kan and Timmer 1987). The 

only adjustment in the application of the stopping rules to the methods based on reduced 

samples is that the total number of points considered in a particular iteration, say the 

k-th iteration, is 'YkN instead of kN. In reduced sample methods a value between 0.1 

and 0.2 is chosen typically for, so that P is only applied to sample points with relatively 

small function values. More precisely, a prespecified fraction 1-, of sample points, whose 

function values are relatively high is ignored. Thus, N in (2.1) and (2.2) is the total number 

of sample points but not the total number of local searches as in MS. 

If yt) is the i-th smallest function value in a sample of size kN obtained after k 

iterations, then all elements of the reduced sample are elements of 

(2.5) 

(Note that for ease of notation, integer round-up or round-down on ,kN is ignorerl here.) 

However, it is not very efficient to apply P even to every reduced sample point, Le. every 

point in L(yk'ykN)). Instearl, methods in which P is started exactly once in every region of 

attraction which contains at least one reduced sample point are sought. But the probability 

that a region of attraction contains a reduced sample point depends on ,. To analyze this 

situation, for any 'Y with 0 < , < 1, let y"{ E IR be such that 

",(. ) _ m({x E nlf(x):S y"{}) _ 
Of' y"{ - m(n) - , (2.6) 

Le., y"{ is the ,-qnantile of f. Since rP is a mono tonically increasing continuous function, 

there exists a unique value y"{ satisfying (2.6). If y"{ is known and the sample distribution 

is uniform then if P is applied to every sample point in L(y"{) the Bayesian analysis is still 

applicable. This is because the sample points whose function values exceed y"{ can simply 

be ignored and the Bayesian analysis obviously applies to the remaining points since they 

are still distributed according to the original uniform distribution over L(y"{). 

However, since y"{ is not known in advance, P cannot be applied to the sample points 

in L(y"{). Instead one aims for methods in which P is applied to points in the level set 

L(Yk"{kN)), such that all minima whose regions of attraction contain a reduced sample 

point are found. Since, the level above which the sample points are ignored depends on 

the sample, the cell probabilities of the multinomial distribution (Boender 1984) are no 

longer constant over time and the Bayesian analysis is no longer applicable. However this 
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effect can be ignored and the stopping rules applied to methods based on reduced samples 

(Rinnooy Kan and Timmer, 1987). 

MS is very inefficient because the same local minimum might be found more than 

once. Given a sample of size kN that has been drawn from a uniform distribution over 

n and given a set of stationary points X· (stationary points that are already known), a 

subset of the sample points must be determined to which P will be applied. To do so, one 

has to estimate the connected components (see next section) of the level set L(Vk'ykN»). A 

local search is then started once in each component that does not contain an element of 

X·. The rationale of this approach is that if P is applied to an element of a component of 

L(vk'ykN») , then P is known to converge to a local minimum in that connected component 

(Rinnooy Kan and Timmer 1987). 

How can the components of L(yk'YkN») be identified? The natural way to identify these 

components is to make use of cluster analysis. In fact an adaptation of MS was provided 

first by clustering methods. Various superior clustering variants of MS were proposed by 

Rinnooy Kan and Timmer (1987, 1987a). The aim of these clustering algorithms is to 

apply local search more efficiently, that is, to apply local search only once in every region 

of attraction. Among them the Multilevel Single Linkage (MSL) method is considered to 

be the most successful a(laptation (Timmer, 1984). MSL retains the theoretical properties 

of MS whilst attempting to eliminate its inefficiencies. Therefore, the number of local 

minima found by the variants of MS would be equal to the set of minima found by MS but 

at a much lower cost. In the following sections these clustering and single linkage variants 

of MS are discussed. 

2.2 Clustering Methods 

The idea used in clustering algorithll1~ is to create groups of mutually close points that 

correspond to the relevant regions of attraction, and to apply P no more than once in 

each of these regions. The methods in this class try to identify the shape and location 

of the regions of attraction. As a result of the reduction of the sample, only points with 

relatively low function values are left. Intuitively speaking, these points will form clusters 

that correspond to the components of L(yk'YkN)). A clustering technique is then introduced 

to attempt to identify each cluster. Clustering is a statistical method aiming at allocating 

individ uals ( sampled points) to one of several gTOUpS or clusters in such a way that eacll 

individual is more like individuals in its group than individuals outside its group. Grouping 

of sample points is done by means of some similarity measure (e.g, Euclidean distance) 

with respect to a threshold. Sample points are the data and the threshold is derived 

by applying statistical inference techniques in order to determine the accmate shape of 

clusters. Therefore, the most important issue in implementing any kind of clustering 
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technique is the choice of the threshold or critical distance, which is used to decide whether 

a point belongs to a certain cluster or not. The point around which a cluster grows is called 

its seed point. Local optimizers are often taken as seed points. In global optimization the 

clustering algorithms aim at forming clusters corresponding to each region of attraction and 

then P is started once in each cluster. To understand how far this objective can be achieved, 

we need the following additional definition. For y E JR, let L(y) = {x E n, If(x) < y} (Le 

the level above which the sample points are ignored). For any x E nand y ~ f(x), we 

define Lx(Y) to be the connected component (Dugundji 1966) of L(y) containing x. IfRx' 

is the region of attraction of the local minimizer x· then L/ (y) may contain a stationary 

point or stationary points other than x·. Therefore, the groups created by sample reduction 

(for any particular y) correspond to the connected components of L(y), and these do not 

necessarily correspond to the regions of attraction. We can clarify the possible impact of 

sample reduction by considering the one dimensional case in the following figure. 

f(x) 

Yk(YkN) 

x 

Figure 2.1 

By the reduction of the sample we only consider those points whose corresponding 

function values are below the horizontal line indicated. Here L(yk'ykN)) created only two 

connected components, namely the component containing xfi and that containing both xi 
and xi. These components do not correspond to the regions of attraction of xi and x5. 
Also notice that in the above figure local minima with a function value greater than yk'ykN) , 

such as xa and x4 will not be found, however this is not a serious drawback since we are 

interested in the global minimum. It is also possible that a component of L (yk'ykN)) may 

contain several minima, e.g. xi and :1:2, in which case methods based on clustering will 

find only one of these. We will see later how the MSL method can overcome this difficulty. 

After sample reduction, identification of the gmups that correspond to the components 

of L(yk"ykN)) is certainly a clustering problem, in which the objects are the reduced sample 

points and their characteristics are their locations and function values. Density amI single 

linkage clustering identify the comJlonents of L(yi'YkN)) and then P is started exactly once 

in each of these components. The pm:pose of an efficient clustering method is to invoke no 

more than one local search in each region of attraction. However, in global optimization, 
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there are several reasons for not using the ordinary clustering methods. The main reason is 

that there is more information about the problem than just the location and the function 

value of the reduced sample points. TIns extra information includes the fact that the 

reduced sample points are known to be a subset of a uniform sample and the fact that the 

groups searched for generally correspond to the components of a level set of a continuously 

differentiable function. 

The following argument indicates that this extra information should not be ignored. 

A major difficulty in ordinary clustering problems is to determine the number of clusters. 

The desired number of clusters is a matter of subjective judgment and often has to be 

specified in advance. In the specific clustering problem involved in global optimization, 

the clusters should correspond to the components of L(yi'YkN
)). Hence, the correct number 

of clusters is one of the most important outputs of the method, and can certainly not be 

fixed a priori. Therefore, the extra information should be used in determining the number 

of clusters. This is justifiec! in the sections below. In the next two sections we review 

the density clustering and the single linkage clustering methods. They differ only in the 

way points are added to the clusters and the termination criteria for the clusters. The 

description of the methods is given for a single iteration only. This is because any iteration 

does not use information from the previous iterations, apart from the set of local minima 

previously fotmd. 

2.2.1 Density Clustering (DC) 

In this clustering method (Rirmooy Kan and Timmer, 1987) a modification is proposed in 

which ellipsoidal-shaped clusters are g;rown instead of the usual spherical ones; the idea 

being to try to approximate best the level sets of the objective function near local minima. 

In this approach a cluster is initiated by a seed point, which is a local minimizer. An 

iterative scheme then starts to form the cluster. In the scheme subsets T; 'i = 0,1,2,. , , , 

of fl of stepwise increasing volume are consir!ered, where To is the seed point of a cluster 

and T;+l :::l T;, The formation of a cluster is 'terminated' if no points are added to it 

dtu'ing a step, (Note that step here is in the clustering iteration but not the iteration of 

the algorithm,) In fact, in DC, T()m's clustering method (T()m, 1978) is adjusted in three 

ways; the choice of seed points, the shape of the sets T; and the increase in size of these 

sets in each step. As mentioned above we will always describe only a single iteration (say 

the k-th) of the algorithm. 

In the clustering methods which are being discussed here, it is clearly advantageous 

to choose a local minimum as the seed point. Therefore, the local minima in X' are first 

used as seed points. Note t.hat a local minimizer is obtained first followed by t.he clustering 

procedure that starts from that minimizer. If all local minima found so far have been used 

as seed points but t.here are still reduced sample points t.hat have t.o be clustered, then a 
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local search is carried out from an unclustered sample point x with smallest function value. 

If the resulting local minimizer x' found, is a member of X· then x is added to the cluster 

initiated by x' and again a local search is started from a reduced sample point with lowest 

function value. If the minimum found is not ah'eady known then a new chL~ter is started 

with this as the seed point. 

Recall that, a cluster initiated with a local minimizer x' should correspond to the com

ponent Lx' (yi'YkN»). This suggests letting 11 correspond to Lx' (y) for stepwise increasing 

values of y. The actual sets Lx" (y) are hard to construct but if f is twice continuously 

differentiable, they can be approximated by the level sets iCy) around x' that are defined 

by the second order approximation j to f around x': 

- 1 T f(:r.) = f(x') + "2(x - x') H(x')(x - x') , (2.7) 

where H(x') is the Hessian of f at x*. Hence at step i, let Ti be the set {x E nl(x
x*)T H(x*)(x - x*) :S r';}, for some ri to be determined below, with ri < rHl, i = 1,2, ... 

The distances r; are derived by asymptotic considerations so that a cluster is ter

minated correctly. In other words the probability that the cluster terminates incorrectly 

should tend to 0 with increasing k. It remains to derive the rate at which ri should 

increase with i so as to ensure proper termination for the growth of a cluster. Unlike 

Torn's clustering DC exploits the fact that. the reduced sample is a subset of the original 

uniform distribution in finding the distances ri. Moreover, a cluster initiated by a local 

minimizer x' should not be terminated if there are still uncllL~tered reduced sample points 

in Lx' (yk'YkN»). The probability that a cluster is terminated in step i, is equal to the 

probability that the set 

Ai = {x E n I x E 11, x ~ 11-d (2.8) 

does not contain any reduced sample points. This termination would be incorrect if the 

component Lx* (yk'Y kN») still contained unclustered sample points. To determine the prob

ability (probability of erroneous termination) that there are still unclustered sample points 

in Lx' (yk'YkN») , an assumption is made that the sets L/(11) with f(x*) :S 11 :S yk'YkN
) can 

be properly approximated by ellipsoids so that Ti C Lx' (11k'Y
kN»). Note that this is often 

the case when 11 is very close to f(x'). If (Yk is the probability that a cluster is terminated 

incorrectly in step i, this implies that lYk is the probability that the none of the kN original 

sample points is located in Ai. A uniform sampling distribution gives 

( 
m(Ai))kN 

(Yk = 1- men) (2.9) 

From (2.9), meA;) and hence r; can be found by fixing Uk. If the error probability (Yk is 

taken to be (Y (typically a small number, say, 0.(5) then meA;) = m(n)(I- uw) and in 
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step i, the volume of the ellipsoid is increased to im(fl)(1 - o~). 
the ellipsoid (x - x*)T H(x*)(x - x*) ::; r; is equal to 

Since the volume of 

1 , 

r(1 + ~)(detH(x*W 
(2.10) 

it follows that at the i-th step we have to check if there is at least one reduced sample 

point which has not yet been clustered and belongs to T; with 

( 
n --L )l/n 

rj = 7r-
1

/
2 ir(1 + "2)(detH(x*))1/2m(fl)(I- ol<N) (2.11) 

If no points are found within this distance the clustering process terminates. Another way 

to construct r; is by choosing m(Ai) such that the probability Ok decreases with increasing 

k. Thus for some a > 0, if the measure of Ai is chosen as meA;) = m(fl) fTl%1:N. Then 

_ (1 a log kN)kN 
Ok - - -k;-'N;';-- (2.12) 

The value of rj with this ctk is given by 

(2.13) 

This critical distance is recommendecj and frequently used. In this clustering method the 

cluster is not determined first and then followed by location of the corresponding local 

minimum but a local minimizer x* is first located and then the reduced sample points in 

Lx· (Yk'YkN») are identified. This change of order does not interfere with a wish to start P 

in each component of the level set. For iteration k with w different minima in hand, the 

DC algorithm can be defined as follows: 

The DC Algorithm (kth iteration) 

Step 1 Determine the reduced sample by taking the ,kN points with the 

smallest function values. Set j := 1. 

Step 2 (Determine seed points). Set i := 1. If all reduced sample points 

have been assigned to a cluster, stop. If j ::; w, then choose the j-th local 

minimum in X* as the next seed point. If j > w, then apply P to the 

unclustered reduced sample point i: with the smallest function value. If 

x* E X* then assign :r. to the underlying cluster and repeat step 2. If x· is 

new it is the next seed point and x* is added to X*. 

Step 3 (Form cluster). Add all unc:1ustered reducecj siunple points which are 

within distance ri of the seed point x*, to the cluster initiated by x*. If no 
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point has been added to the cluster for a particular ri, then j := j + 1 and 

go to step 2, else set i = i + 1 and repeat Step 3. 

In this algorithm the shape of the cluster is assumed to be ellipsoidal, however, in practice, 

the set Lx· (V~"kN») can differ substantially from an ellipsoid and may take any shape. 

sample points 

* ykN 1---..... - LX2 (Yk ) 

Figure 2.2 

For a situation such as that shown in the two dimensional figure (2.2) it is clear that DC 

would not find two clusters that correspond to two different components of L(yk"kN»). 
Therefore what is needed from a satisfactory clustering method is that the shapes of the 

resulting clusters are not fixed. In other words, the shapes of the clusters should converge 

to the shapes of the actual sets Lx· (yk"kN»). Single Linkage Clustering satisfies such a 

property. 

2.2.2 Single Linkage Clustering (SLC) 

In this method clusters are not forced to form any specific geometrical shape but can 

approximate the set Lx· (Vk"kN») directly. The original single linkage method can be viewed 

as a hierarchical procedme that starts with partition into single element subsets and in 

each subsequent step merges any two subset.s E and E' whose minimal distance is less 

t.han a preset number. Aft.er every st.ep of t.his procedure t.here exists a scalar r > 0 such 

that the partition has the following properties: 

Every two elements belonging to different clust.ers are not. within the critical distance 

r. 

For every point x in a cluster there exists another point in the same cluster within 

distance r, provided that x is not the only element of the cluster. 

However, the SLC method described here is a non-hierarchical procedure which, for 

some critical distance rk, depending only on the number of sample points kN, produces 

clusters that satisfy the two above mentioned properties. In this SLC method, the clusters 
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are formed sequentially and each cluster is again initiated by a seed point. If C is a cluster 

and for any unclustered point x, 

d(x, C) = min IIx - xlii, 
x,EC 

(2.14) 

then x will be treated as member of C if d(x, C) is less than the critical distance Tk. 

The procedure is repeated until d(x, C) exceeds Tk. Obviously, the resulting clusters will 

indeed satisfy the above mentioned properties and also can have greatly varying geometrical 

shapes. The only condition for two points Xl and X2 to be in the same cluster, is that 

there is a sequence of points connecting them such that the distance between any two 

successive points in the sequence is less than Tk. This so-called 'chaining effect' is an 

obvious disadvantage of SLC in most applications. Because of it even if two points are 

arbitrarily far from each other they may be assigned to the same cluster. The situation 

can be visualized in the following two dimensional figure. 

x2 

• • • 
• • • 
• 
• 

• • • • ••• 
Figure 2.3 

• 
• 

Obviously in the above figure there are two clusters but because of the chaining effect the 

SLC method may combine them both into a single cluster. 

The critical distance Tk, is chosen to depend on kN only and to minimize the proba-

bilities of two possible means of failure of the method: 

The probability that a local search is started although the resulting minimum is known 

ah·eady. 

The probability that no local search is started in a component of L(Yk"kN») which 

contains reduced sample points (Rinnooy Kan and Timmer 1987). 

For a suitable choice of Tk it can be shown that the probability that a local search 

is started incorrectly, tends to 0 with increasing k. However, the probability that a local 
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search is started at a reduced sample point a is certainly smaller than the probability that 

there is no sample point z in 

Ba,r. = {x E n III x - all::; Tk} (2.15) 

with fez) < f(a), because a local search will not be started at a before z has been 

assigned to a cluster. Therefore, the probability that a local search is started incorrectly 

at a is bounded above by the probability that there is a sample point z in B",r. with 

fez) < f(a). This probability can be calculated as follows. For an arbitrary sample point 

a the probability that none of the remaining kN -1 points is in A",r. = {x E nlllx - all < 
Tk and f(x) < f(a)} is given by 

( 
m(A ))(kN-l) 

1- m(~)' . (2.16) 

But, if Tk tends to 0 with increasing k it can be proved that 

(2.17) 

with 0 < fJ < ! (R.innooy Kan and Timmer 1987). Hence for any sample point a, the 

probability that there is no sample point z in B",r. with fez) < f(a) is smaller than 

1 _ I.J n,T", 

( 
f.lm(B ) )(kN-l) 

men) (2.18) 

for sufficiently large k. Therefore, the probability that a local search is started incorrectly 

at a is bounded above by (2.18). It can also be shown that the above probabiiity (2.18) 

decreases with increasing k if 

-1/2 (r(l n) (A)alogkN)I/n 
Tk = 7r + - m " 2 kN 

(2.1!J) 

(R.innooy Kan and Timmer, 1!J87). Now, if the critical distance Tk given by (2.19) tends to 

o with increasing k, it can also be proved that in every component of L(yk'rkN
)) in which 

a point has been sampled, a local minimum will be found by SLC within a finite number 

of iterations with probability 1 (Rinnooy Kan and Timmer, 1987). Hence, the possible 

failures of the method will vanish with increasing k. 

The k-th iteration of SLC is as follows: 

The SLC Algorithm 

Step 1 Determine the reduced sample by taking the ,kN sample points with 

smallest function values. Let 111 be the number of elements in X·, set j := 1. 
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Step 2 (Determine seed points). If all reduced sample points have been 

assigned to a cluster; stop. 

If j ~ UI, then choose the j-th local minimum in X· as the next seed 

point; go to step 3. 

Otherwise, determine the point x from the remaining unclustered 

points which has the smallest function value. Apply P to x to find a 

minimizer x·, adjust UI and X· accordingly, if x· is new then take x· as 

the next seed point; otherwise, assign x to the cluster initiated by x· and 

repeat the process until a new local minimizer is found or no tmclustered 

point is left. 

Step 3 (Form cluster). Initiate a cluster using the seed point determined in 

step 2. Add reriuced sample points which are within the distance Tk from 

the cluster to that cluster, 'untilno more such points exist. Set j := j + 1, 

and go to step 2. 

The ultimate goal of the clustering methods deseribecl so far is to start P exactly 

once in every region of attraction that eontains a reduced sample point. The SLC method 

partitions the reduced sample points into clusters, such that each clth~ter eonesponds to a 

component of L(Vk"ykN)). Although we know that a region of attraction cannot intersect 

two different components of a level set, it is possible that a component of L(yk"YkN)) 

contains more than one region of attraction (see figure 2.1). Since only one local search 

is started in each cluster, it is therefore possible that a local minimum may not be found 

although its region of attraction contains a reduced sample point. In such a case both 

DC and SLC lack the important guarantee that MS can offer; if a point is located in a 

region of attraction then the local minimum of that region of attraction will be found. The 

function values of the sample points rlo not play any part in identifying the clusters in the 

DC and SLC methods. In the next section, we will see that these function values can be 

used explicitly in improving SLC. 
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2.3 Single Linkage Methods 

2.3.1 Multilevel Single Linkage (MSL) 

MSL is a modified version of the DC and SLC methods (Rinnooy Kan and Timmer 

1987,1987a) which can overcome some of the drawbacks that some of the other clustering 

methods have. As with most stochastic methods it has two phases (1) a global phase and 

(2) a local phase. In the global phase, the function is evaluated at a number of random 

sample points. In the local phase, sample points are scrutinized to perform local searches 

in order to yield a candidate global minimum. As a stochastic method it offers a proba

bilistic guarantee that the global minimum will be fOlmd, assuming only that the function 

is continuously differentiable. The ultimate aim of this method is to start local searches 

exactly once in every region of attraction that contains a reduced sample point. One way 

to achieve this goal is to divide the reduced Rample points into subsets, such that each 

subset coincides with the reduced sample points in a certain region of attraction. Former 

methods described in earlier sections subdivide the reduced sample points into clusters 

where each such cluster corresponds to a component of L(vtrkN». They do not use func

tion values to identify the clusters; function values are only used to calculate the reduced 

sample points. As a result the methods cannot distinguish between different regions of 

attraction which are located in the same component of L(:lJk'YkN». Function values can be 

of great importance for determination and separation of regions of attraction especially if 

one wishes to decide to which region of attraction a point x belongs. In the MSL method 

a Tk-descent sequence is considered. This is a sequence of sample points, such that lIIly 

two successive points are within a distance Tk of each other and the function values in the 

sequence are monotonically decreasing. The clustering idea can be viewed as follows: 

The MSL Clustering Algorithm 

Step 1 Initiate w different clusters using the w different local minima at 

hand as seed points. 

Step 2 Order the sample points, f(Xi) ~ f(Xi+l), 1 ~ i ~ kN - 1. Set 

i := 1. 

Step 3 Assign the sample point Xi to any cluster which contains a sample 

point within a distance Tk. If Xi is not assigned to lIIly cluster then P is 

applied to it to fincl another local minimum in order to start another cluster 

with this minimum. 

Step 4 If i := kN stop; el~e, set i := i + 1 and go to step 3. 

The MSL method therefore makes use of function values in deciding whether a local 

search will start at a sample point or not. It is also clear that for any sample point X the 

decision whether P will be applied to it or not does not depend on the structure of the 
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cluster but on whether another point z, such that f(x) < fez), is within distance Tk of x. 

Hence the concept of clustering can be omitted altogether to give an algorithm of which 

the k-th iteration is as follows: 

The MSL Algorithm 

Step 1 Increase the existing set (initially empty) of sample points by N 

points randomly distributed over O. Compute function values at these 

points. 

Step 2 Remove all sample points for which f is greater than some cut

off level (this reduction is optional). Order the sample points such that 

f(Xi) ::; f(Xi+l), 1::; i ::; kN - 1. For every i, start local minimization 

from the sample point Xi if it has not been used as a starting point at 

the previous iteration or if there is another sample point, or a previously 

detected local minimum,! within the critical distance Tk of Xi. 

Step 3 Decide whet.her to stop. If the stopping condition is sat.isfied regard 

the lowest minimum found as the global minimizer, otherwise go to step 1. 

A sample point ;r, is only linked to a point with smaller function value that is within a 

distance Tk. The pmctical and theoretical success of this method is because of the selection 

of 'start' points for local minimization. A local search is only started at a point Xi if there is 

no sample point Xj, with f(xj) < f(Xi), within distance Tk of Xi. But the critical distance 

in (2.19) has been derived under the same circumstances as in 8LC. Therefore, the same 

Tk is used here. With this critical distance the following strong theoretical properties of 

M8L can be established. 

If the critical distance n of M8L is determined by (2.19) with (Y > 0, and if X is an 

arbitrary sample point, then the probability that P is applied to X by M8L tends to 0 

with increasing k. If (T > 2, then the probability that a local search is applied by M8L in 

iteration k tends to 0 with increasing k. If (Y > 4, then, even if the sampling continues for 

ever, the total number of local searches ever started is finite with probability 1 (Timmer 

1984). 

To understand the superiority of M8L over 8LC, especially because of the use of 

function values, we eonsider a level set of a one variable function in the following figure. 
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Suppose that Xl ... ,X5 are reduced sample points and they are ordered according to as

cending function values. Both SLC and MSL will start. a local search from Xl (the lowest 

function value) and when the clustering process begins MSL and SLC will assign Xl to 

the cluster initiated by xL' the local minimum found by starting local search at Xl. SLC 

assigns all other points X2, . .. ,X5 to the same cluster t1llL~ missing the global minimizer 

x·. This occurs because of the so-called 'chaining' effect of SLC and this effect is because 

SLC does not use function values elm'ing the identification of a cluster. MSL however will 

assign X2 to the cluster which is initiated by xL, but when Xa is considered it is not possible 

to link Xa to xL' Xa to X2 or to link Xa to Xl, since Ixa - xLI> Tb Ixa - x21 > Tk and 

Ixa - xli> Tk. Therefore, P will again be applied to Xa and the global minimizer x· will 

be located. Since any two local minima will always be separated by a region with higher 

function values, MSL will locate every local minimum in a neighbourhood of which a point 

has been sampled, if Tk is small enough. 

Methods described so far in this Chapter use reduced sample points but a disadvantage 

of sample reduction is that. there is a probability that a point is eliminated, which, currently, 

is the only sample point in the region of attraction of the global minimum. In the next 

section we derive a method which does not use a reduced sample as in MSL. 

2.3.2 Topographical Multilevel Single Linkage (TMSL) 

The aim of the clustering methods (DC and SLC) and MSL is to apply local search more 

efficiently, that is to apply local search only once in every region of attraction. But MSL is 

known to be superior to the clustering methods. However, the critical distance in MSL is 

derived using asymptotic considerations. As a result there is a likelihood of selecting false 

starting points within a region of attraction or of the use of the critical distance cancelling 

out true starting points for local search. Moreover, reduction of the sample may exclude 
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points in a potential re/!,ion of attraction. The TMSL method is a new method, developed 

in an attempt to eliminate these drawbacks of MSL. 

The Topographical Algorithm (TA) introduced by Torn and Viitanen (1992) uses to

pographical information on the objective function in identifying basins of local minima from 

the centre of each of which a local search is started. The TA algorithm is a non-iterative 

clustering method, based on exploration of the search space. The 'graph minima' are con

structed by looking at the function values of some number 9 of nearest neighbour points 

for each point of a sample of size N. The aim of TA is to construct a topog;raphical g'Iaph 

and then start minimization from just one point in each identified basin. These basins are 

identified by topo/!,'Iaphical information on the objective function using a directed graph. 

The graph connects neighbouring points to each other by directed arcs pointing towards 

points with higher function values. Torn and Viitanen (1992) gave a full description of 

how a graph minimum or centre of a basin call be constructed. For our purpose we restrict 

ourselves to the following brief review. 

For each sample point from a sample of size N a reference list is constructed by ordering 

the points into nearest neighbour order. The list is further complemented by indicating if 

the reference is to a point with larger or smaller function value by giving the reference a 

plus or minus sign respectively. The N -reference lists constitute an N x (N - 1) matrix, 

the t-matrix of the objective function. The (N x g) submatrix obtained by considering 

only the 9 nearest neighbours is called the g-t-matrix. The corresponding /!,'Iaph where arcs 

are drawn to the reference points with plus sign is called the g+ -topo/!,mph. The minima 

in the /!,'Iaph are all those nodes with no incoming arcs. In Figure 2.5 a t-matrix and the 

corresponding 3+-topo/!,'Iaph of the function 

is shown. There are N = 5 points numbered 1-5. Looking at the 3-t-matrix we see that 

. point 4 has only positive references, Le., its 3 nearest neighbours have larger function 

values, and that no positive reference to point 4 exists, Le. no other point has point 4 as a 

point with larger function value among its 3 nearest neighbours. Choosing 9 = 2 there are 

two positive reference vectors, namely for points 4 and 5 but for point 4 there is a positive 

. reference to point 5 in the 2-t-matrix, which means that the only /!,'Iaph minimum also 

in the 2+-topogTaph is point 4. In the corresponding 1+-topogTaph there are two gTaph 

minima, namely point 4 and point 5. Therefore, for higher values of g, the number of 

/!,Taph minima will be less. In our implementation we make no distinction between positive 

reference points and /!,Taph minima amI call them all graph minima. Of course, the number 

of /!,Taph minima for a given f depends on the value of 9 and the size of N. 
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TA requires the region to be explored as uniformly as possible. The number of points 

needed to be sampled in order to cover the whole region depends however, on the size of 

the region. Torn and Viitanen (1002) used a fixed size of sample points (N=lOO). To 

distribute the points evenly throughout the search region they adopted a technique of dis

carding points by prefixing a threshold. When a new point is generated from the uniform 

distribution a check is made in order to see whether this point is within the threshold dis

tance of previously generated existing points. This expensive procedure, however, requires 

a large number of distances to be computed. For instance, for the Branin function (see 

appendix 2B) 1223 points were generated for singling out a sample size of 100. Torn and 

Viitanen (1092), however, gave a parallel version of TA to speed up the process. 

The stopping condition for the sampling phase of the algorithm is based on the in

formation that all parts of the search region have been explored. Once the sampling and 

construction of graph minima are completed, the algorithm terminates in an unrealistic 

manner leaving the users to start a number of local searches at their own discretion. For 

example, for the Branin function with the 3-nearest neighbour graph there are seven graph 

minima. Torn and Viitanen (1992) suggested starting local minimizations from the three 

best minima of this graph. But to make sure the search for global minima is thorough, one 

has to start seven local minimizations. For a smooth function it is likely that the graph will 

represent all local minima if the value of!J has been chosen properly and sample points are 

distributed evenly enough. But a badly scalecl function with peculiar regions of attraction 

would weaken this possibility. For a large value of !J TA could loose a potential graph 
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minimum. However, this can be compensated by increasing the value of N. Having a large 

N on the other hand could give rise to too many graph minima in a region of attraction. 

Therefore, for a general purpose algorithm a fixed value of 9 would be too restrictive to 

represent the appropriate number of local minima for any function. Moreover, it would be 

increasingly difficult to construct the exact graph minima of functions, especially when the 

dimensions of the functions increases. As an appropriate value of 9 is difficult to predefine 

for an arbitrary function, TA can not guarantee that the global minimum will be found. 

In principle, therefore, both MSL and TA cause errors of the following nature. 

• Type I Error, Local search will be repeated in some region of attraction. 

• Type II Error, Local search will not start in some region of attraction even if a sample 

point has been located in that region of attraction. 

Rinnooy Kan and Timmer (1987) argued that in MSL the above two types of error would 

not occur after a sufficiently large number of iterations. But clearly continuing the search 

for too large a number of iterations is wasteful. F\u:thermore, in MSL extended samples 

are considered and the resulting overhearls could also rise to a prohibitive level. The 

question therefore arises of whether these errors can be avoided in every iteration if we 

use topographical information on the underlying function in a sensible way. We, therefore, 

propose a new algorithm, TMSL, that uses MSL together with topographical information 

on the objective function. This adaptation of MSL will g11arantee that a local search will 

start at a point with a relatively low function value, thus making sample reduction no 

longer necessary. We, therefore, modify the MSL method in a way in which the strategy 

of reducing sample points is completely dropped. In contrast, a representative subset of 

sample points consisting of the graph minima is extracted first and then the critical distance 

criterion is applied to this subset. The TMSL method llses topographical information on 

the objective function, in particular the g-nem·est-neighbOlU: gTaph. The algorithm also 

uses evenly distributed points from a Halton sequence of uniform limiting density. We 

discuss the implementation of the algorithm and compare its performance with other well

known algorithms. The new algorithm performs much better (in some cases several times) 

than the MSL method in terms of number of function evaluations but is not quite so 

competitive with respect to cpu time. 

Quasi-random Sequences 

One of the major difficulties in globa.l optimization problems is to identify the region of 

attraction of a global minimum. As the location of this region of attraction is unknown, it 

is an essential part of any global optimization algorithm to explore the search region thor

oughly. Therefore, the sampling phase (global phase) of any algorithm aims at exploring 

the search region. In general, psemlo-random numbers are llsed for this purpose. 
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Pseudo-random numbers are independent realizations of a random variable. In con

trast, quasi-random sequences (Hammersley and Handscomb, 1964) do not approximate a 

set of independent realizations from a uniform distribution but tend, in general, to be much 

more evenly distributed than the pseudo-random sequences. In the context of numerical 

integration in Bayesian statistics, where quasi-random sequences are known to give efficient 

numerical integration rules, Hammersley suggested using the k-dimensional quasi-random 

sequence 

Xi = (N ~ l' <PPl (i), ... , ~Pn-l (i)) (i=I, ... ,N). (2.21) 

The Pi are pairwise coprime (usually they are chosen to be the first n -1 primes), and <pp (i) 
is the radical inverse function of i, obtained by writing i to base P and reflecting about 

the 'decimal' point. In Chapter 4 we will give further discussions on the Hammersley 

sequence where it is used in conjunction with the CRS algorithm. The first co-ordinate in 

this sequence depends on N. Thus Hammersley's sequence fails to qualify for an iterative 

algorithm. In the context of iterative global optimization algorithm, therefore, we argue 

that the Halton sequence (Shaw, 1988 and Halton, 1960) will explore the search region 

more evenly than pseudo-random sequences. The Halton sequence is given by 

(i=I, ... ,N). (2.22) 

Figure (2.6) shows a comparison of the first 128 points of a two-dimensional Halton se

quencet (with PI = 2 and P2 = 3) with 128 pseudo-ranclom points. The motivation for 

the Halton sequence also includes the fact that the sequence itself possesses the property 

of uniform liIniting density, .provided Pi are mutually prime. Furthermore, it is defined 

for arbitrary N, and is the initial segment of every Halton sequence with the same Pi 

(j = 1, ... ,n) but more than N points. 

1.0 " 

• , , 
1).1 )( 

.. . • 

"le " " 

• • 
• 

• 
. " • • • , . . 

• • • • 
• 

, , , 
, 

• 

, , , 

• • , 

, 

• 

'" )( "){ '( . , , , . , 
• , , . ' 

, ' .. 
, 

. , , 
, 

0.2 " 
• • , . 
• 

• • 

, 
• 

, , 
•• , • 

'-

• 

• .. 
, , • , • , 
• • • , • • 

0.0 O.t U OJ 0.4 0.5 01 0.7 01 O,D 1,0 

Figure 2.6(a) 128-point Halton sequence. 
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Figure 2.6(b) 128 pseudo-random points. 

t A PASCAL subroutine for generating a two-dimensional Halton sequence is given in 

appendix 2A. 
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Therefore, it is clear that the Halton sequence will explore the search region more rapidly 

than the pseudo-random numbers. Moreover, pseudo-random numbers can be generated 

in many different ways and they may vary considerably so the performance of any given 

algorithm depe~ds on the peculiarities of the random sample points at hand. The quasi

random sequences, however, do not have this drawback. 

The New Algorithm 

In MSL the decision to st.art a local search in the k-th iteration depends only on t.he 

threshold 

This threshold is derived using asymptotic considerations. A point is taken as the starting 

point for local optimization if there is no other sample point, within the critical distance 

Tk, with lower function value. This check is carried out for all reduced sample points. We 

argue that error type I can be reduced by using gTaph minima with a suitable value for 

9 instead of a reduced sample. Moreover, error II will tend to decrease as the number of 

iterations increases if the sample points are dependent on each other. Extended samples 

are not considered in TMSL because the sample points are dependent on each other and 

thus explore the search region more rapidly. The purpose of generating a comparatively 

large number of points and the sample reduction strategy in MSL is to make sure that 

A. The search region has been explored thoroughly so that points are 

drawn in every region of attraction 

B. A fract.ion of t.he point.s is discarded so t.hat only points with relatively 

low function values are left for scrut.iny. 

We, however, propose using the selection of gTaph minima instead of sample reduction, 

t.ogether with evenly dist.ributed sample point.s, to achieve conditions A and B above. 

Having found the gmph minima, a local search is then carried out from a subset of them. 

No attempt is made to find the complete topogmph of the function so the value of 9 is not 

so critical as it is in TA. Our experience shows however that a small value for 9 is normally 

to be recommended. We believe that this strategy is efficient because the number of graph 

minima depends on the choice of 9 aml the particular function at haml as opposed to an 

empirical fraction 'Y as in MSL. 

The basic principle of TA is to cover the search region with sample points as uniformly 

as possible. In our algorit.hm we therefore use t.he Halt.on sequence which is more evenly 

distributed than the pseudo-random numbers and has uniform limiting density. At the 

start of a new iteration we add all local minimizers found previously to t.he new set of sample 

point.s and then t.he construction of t.he gTaph minima takes place. In every successive 

iteration, therefore, local minima from previous iterations could become graph minima. In 
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principle, we use previous sample points in an implicit way by representing them by the 

local minima they produced. 

Because the Halton sequence is uniform asymptotically, many of the theoretical results 

for MSL apply aL<;o to TMSL. We now discuss the theoretical justification of the method. 

In the MSL method the critical distance has been derived from asymptotic considerations. 

Consequently, it is justifiable for our case as the Halton sequence is uniform asymptotically. 

For a particular gTaph minimum a, the probability that P is applied to a depends 

on whether there is a graph minimum Zg in Ba,Tk with f(zg) < f(a). Derivation of the 

critical distance is analogous to that given in the section 2.2.2 and so will not be given 

here. Briefly, however, if we adopt the idea of considering the extended sample points 

implicitly, then for an arbitrary sample point or a graph minimum a the probability that 

none of the remaining kN-1 points is in A..,Tk is given by 

1- n,Tk 
( 

meA ))(kN-l) 

men) . (2.23) 

We now prove that the probability that P is applied to an arbitrary gTaph minimum a 

tends to zero with increasing k. We have 

Pr{ P is applied to a} :::; Pr{,l3 a sample point Z E A",Tk} 

:::; Pr{,l3 a gTaph minimum Zg E Aa,Tk} 

( 
meA ))(kN-l) 

Hence Pr{ P is applied to a}:::; 1 - m (n)k 
:::; Pr{,tI a gTaph minimum Zy E A",Tk} . 

(2.24) 

Rinnooy Kan and Timmer (1987) have derived the critical distance from the consideration 

of the vanishing of the probability (2.23). It, follows from Rinnooy Kan and Timmer (1987) 

that if m(Aa,Tk) 2:: (/3a log kN) /kN (where <7, /3 and N are constants) then the probability 

(2.23) is O(k1-{3<7). Of course, the probability that P is applied to a is bounded above by 

the probability defined by (2.23). T~lerefore, we can arg'ue that if <7 > 2 am! ~ < /3 < ! 
the probability that P is applied to lL approaches zero with increasing k. Moreover, if nk 

is the number of local searches started, then for <7 > 4, it follows that 

00 

LPr[nk>Oj <00 (2.25) 
k=l 

It follows immediately from the Borel-Cantelli lemma that even if the sampling continues 

forever the total number of local searches is finite with probability 1. We now give a 

stepwise description of the algorithm for a typical iteration k with 1lJ different minima 

found previously. 
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The TMSL Algorithm 

Step 1. Generate N sample points fmm the Halton sequence over the search 

region n. Compute f at each point. Let M be the set of sample points 

plus the w minimizers found previously. 

Step 2. Construct a topogTaphical graph and find gTaph minima for these M 

points. 

Step 3. A gTaph minimum is a 'start' point for local search if it is greater 

than the critical distance Tk from any point with smaller f value and if it 

is not a previously obtained local minimizer. 

Step 4. Carry out a local search from each such point. If new local minima 

are found then update w accordingly. 

Step 5. Is the stopping condition (Boender and Rinnooy Kan, 1987) 
"'jiN 1) < 1 t·.fj I? vc t N t St 1 k -,"-2 _ W + 2" sa .IS ec .• es, s ,op. 0, go ,0 ,ep . 

Numerical Results 

In this section we compare our new algorithm numerically with other recent algorithms 

using the test functions taken from Dixon and Szego (1978), a set of commonly used 

functions in global optimization. The test functions are given in appendix 2B. We use 

the limited memory BFGS routine, from the NAG Library (version E04DGF) for local 

h 'th t I 11'1(,)1\ l()-IO 1 . tl ;]" t f f searc es WI , ,0 erance (I+lt(x I) < , w lere [} IS le gTaulen, 0 . 

Table 2.1 

Test 

Symbol Function 

BR Branin 

GP Goldstein and Price 

S5 Shekel5 

S7 Shekel7 

SlO ShekellO 

H3 Hartman3 

H6 Hartman6 

Choice of Parameters in TMSL 

Number of local 

minima (rn) 

3 (all same f*) 
4 (all different f*) 

5 " 

7 " 
10 " 
4 " 
4 " 

Dimension 

(n) 

2 

2 

4 

4 

4 

3 

6 

The main user supplied parameters for TMSL are N, the sample size, (1' in Tk and [) the 

number of nearest neighbour points in the topogmphs. We carried out an extensive series 

of tests to see the effects of varying these parameter in the algorithm. We cOILsidered; N = 

IOn, lO(n+ 1), 15n and 15(n+1) (where these were distinct), (1' = 2,4, [) = 2,3, ... ,N-1. 
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These parameter values were used for each of the 7 test functions described in Table 2.1. 

The full results are given in Table 2.2. In this Table the largest values of 9 for which the 

global minima were obtained are also given. We use the following notation: LS is the 

number of local searches performed, LM is the number of local minima found, FE is the 

total number of function evaluations, N is the sample size and cpu is the cpu time. 

After the construction of the set of graph minima, the critical distance, Tk, decides 

whether or not the local search procedure starts from a graph minimum. Since a is a 

factor in the critical distance its value, therefore, plays a part in deciding whether or not 

a local search should start. A higher value of a may prevent a local search starting at a 

particular graph minimum on the other hand a smaller value will attempt to invoke more 

local searches and in the limit. a --- 0 a local search will start at every graph minima. The 

effect of a is particularly noticeable in Table 2.2. It is clear that a = 4 is much better than 

a = 2 for smaller values of 9 but this effect falls off as 9 increases. The global optimlUn 

was reached for almost all values of 9 for all functions, except S7. The algorithm also 

failed to obtained the global minimum for S5 when N = 15(n + 1) and 9 ~ 7. However, 

as 9 increased towards N - 1 the number of function evaltlfltions decrease(i to a smallest 

value at which LS = LM = 1. For some values of N, as 9 approaches N - 1 the equality 

LS = LM = 2 held and remained static subsequently. Notice that this is not true for GP. 

However, as FE decreased the cpu time increased. Table 2.2 also shows that N = IOn is 

the best sample size for all test functions. We have also run the algorithm with values of N 

less than IOn, but for many values of 9 the algoritlun failed to obtain the global minima. 
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Tahle 2.2 
FUNCTION N a C[nt LS LM FE g 
BR IOn 2 0.14 4 3 94 2 

4 0.06 2 2 46 
2 0.15 4 3 94 3 
4 0.06 2 2 46 
2 0.13 4 3 94 4 
4 0.06 2 2 46 
2 0.11 2 2 46 5 
4 0.08 2 2 46 
2 0.14 2 2 46 6 
4 0.08 2 2 46 
2 0.09 2 2 46 7 
4 0.09 2 2 46 
2 0.10 2 2 46 8 
4 0.11 2 2 46 
11 11 11 11 11 11 

11 11 11 11 11 16 
2 0.12 1 1 34 17 
4 0.13 1 1 34 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
lO(n + 1) 2 0.16 5 3 106 2 

4 0.12 3 3 68 
2 0.14 5 3 101 3 
4 0.15 3 3 68 
2 0.15 4 3 81 4 
4 0.17 3 3 68 
2 0.18 4 3 81 5 
4 0.17 3 3 68 
2 0.18 4 3 81 6 
4 0.17 3 3 68 
2 0.19 3 2 69 7 
4 0.18 2 2 56 
2 0.24 3 2 69 8 
4 0.24 2 2 56 
2 0.24 2 2 56 9 
4 0.24 2 2 56 
11 11 11 11 11 11 

11 11 11 11 11 24 
2 0.41 1 1 44 25 
4 0.41 1 1 44 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
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15(n + 1) 2 0.50 7 4 213 2 
4 0.30 3 3 82 
2 0.39 3 3 82 3 
4 0.37 3 3 82 
2 0.52 3 3 82 5 
4 0.49 3 3 82 
2 0.62 3 3 82 7 
4 0.62 3 3 82 
2 0.84 3 3 82 11 
4 0.82 3 3 82 
2 0.88 2 2 70 12 
4 0.89 2 2 70 
11 11 11 11 11 11 

11 11 11 11 11 36 
2 1.76 1 1 59 37 
4 1.76 1 1 59 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
GP 10n 2 0.11 3 3 137 2 

4 0.06 1 1 53 
2 0.11 2 2 90 3 
4 0.06 1 1 53 
2 0.06 1 1 53 4 
4 0.06 1 1 53 
2 0.09 1 1 53 8 
4 0.08 1 1 53 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
1O(n+1) 2 0.14 3 1 134 2 

4 0.12 2 1 94 
2 0.18 2 2 103 3 
4 0.13 1 1 63 
2 0.16 2 1 103 4 
4 0.17 1 1 63 
2 0.20 2 1 103 6 
4 0.17 1 1 63 
2 0.20 1 1 63 8 
4 0.21 1 1 63 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
15(n + 1) 2 0.35 4 3 161 2 

4 0.23 2 3 113 
2 0.38 4 3 161 3 
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4 0.37 3 3 143 
2 0.42 3 2 131 4 
4 0.44 2 2 113 
2 0.56 1 1 58 6 
4 0.55 1 1 58 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
85 IOn 2 0.37 6 3 238 2 

4 0.30 3 2 143 
2 0.33 6 3 230 3 
4 0.29 3 2 136 
2 0.37 4 3 175 4 
4 0.33 2 1 112 
2 0.38 3 2 145 5 
4 0.36 2 1 116 
2 0.41 3 2 145 6 
4 0.41 2 1 116 
2 0.46 3 2 145 7 
4 0.45 2 1 116 
2 0.48 1 1 77 8 
4 0.48 1 1 77 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
lO(n + 1) 2 0.64 3 3 142 4 

4 0.62 2 2 113 
2 0.66 2 2 118 5 
4 0.70 1 1 89 
2 0.74 2 2 118 6 
4 0.74 1 1 89 
2 0.84 2 2 118 7 
4 0.82 1 1 89 
2 0.00 1 1 89 8 
4 0.00 1 1 89 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
15n 2 0.96 6 3 253 2 

4 0.77 2 2 127 
2 0.93 6 4 256 3 
4 0.70 2 2 123 
2 un 3 3 152 4 
4 0.97 2 2 123 
2 1.09 2 2 129 5 
4 1.08 1 1 100 
11 11 11 11 11 11 

11 11 11 11 11 10 
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2 1.96 1 1 100 11 
4 1.98 1 1 100 
11 11 11 11 " " 
11 11 11 11 " N-1 

15(n + 1) 2 2.20 5 2 244 4 
4 2.12 2 2 133 
2 2.18 4 2 211 5 
4 2.12 2 2 133 
2 2.38 4 2 205 6 
4 2.35 2 2 131 
2 2.70 2 1 127· 7 
4 2.66 1 1 98· 

S7 lOn 2 0.40 4 3 163 2 
4 0.36 2 2 98 
2 0.40 4 3 163 3 
4 0.37 3 3 127 
2 0.40 3 3 127 4 
4 0.35 3 3 127 
2 "0.42 2 2 98 5 
4 0.41 2 2 98 
11 11 11 11 11 " 
2 0.48 2 2 98 8 
4 0.49 2 2 98 
11 11 11 11 11 " 
11 11 11 11 11 38 
2 1.20 1 1 60· N-1 
4 1.21 1 1 60· 

lO(n + 1) 2 0.60 2 2 108 4 
4 0.58 2 2 108 
2 0.68 2 2 108 5 
4 0.69 2 2 108 
2 0.80 2 2 108 6 
4 0.75 2 2 108 
11 11 11 11 11 11 

11 11 11 11 11 47 
2 2.80 1 1 70· 48 
4 3.25 1 1 70· 

15n 2 0.85 5 4 222 2 
4 0.81 3 3 157 
2 0.85 5 4 222 3 
4 0.85 4 4 186 
2 1.04 2 2 118 4 
4 0.97 2 2 118 
2 1.20 3 3 146 5 
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4 1.12 2 2 118 
2 1.28 3 3 146 6 
4 1.27 2 2 118 
2 1.38 2 2 118 7 
4 1.27 2 2 118 
11 11 11 11 11 11 

11 11 11 11 11 57 
2 5.87 1 1 80' 58 
4 5.90 1 1 80' 

15(n + 1) 2 2.24 4 4 195 4 
4 1.54 2 2 133 
2 2.23 4 4 195 5 
4 2.14 3 3 161 
11 11 11 11 11 11 

11 11 11 11 11 7 
2 2.90 3 3 161 8 
4 2.91 3 3 161 
11 11 11 11 11 9 
2 3.65 2 2 133 10 
4 3.66 2 2 133 
11 11 11 11 11 11 

11 11 11 11 11 72 
2 13.20 1 1 95' 73 
4 13.20 1 1 95' 

810 IOn 2 0.33 4 3 165 2 
4 0.19 2 2 100 
2 0.33 4 3 165 3 
4 0.31 3 3 134 
2 0.36 3 3 134 4 
4 0.34 3 3 134 
2 0.40 2 2 100 5 
4 0.3[; 2 2 100 
11 11 11 11 11 11 

11 11 11 11 11 17 
2 0.94 1 1 79 18 
4; 0.96 1 1 79 
11 11 11 11 11 11 

11 11 11 11 11 N-l 
lO(n + 1) 2 0.63 3 3 141 4 

4 0.62 2 2 110 
2 0.72 2 2 110 5 
4 0.67 2 2 110 
11 11 11 11 11 11 

11 11 11 11 11 21 
2 2.02 1 1 89 22 
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4 2.03 1 1 89 
11 11 11 11 11 11 

11 11 11 11 11 N-l 
15n 2 0.96 5 4 221 2 

4 0.87 4 4 156 
2 0.89 4 3 185 3 
4 0.83 3 3 154 
2 1.02 3 3 151 4 
4 0.96 2 2 120 
2 1.09 2 2 120 5 
4 1.10 2 2 120 
11 11 11 11 11 11 

11 11 11 11 11 25 
2 4.01 1 1 99 26 
4 4.00 1 1 99 
11 11 11 11 11 11 

11 11 11 11 11 N-l 
15(n + 1) 2 2.38 4 3 194 4 

4 2.17 3 2 169 
2 2.25 3 2 169 5 
4 2.17 3 2 169 
2 2.50 3 2 169 G 
4 2.50 3 2 169 
2 2.80 2 2 135 7 
4 2.81 2 2 135 
11 11 11 11 11 11 

11 11 11 11 11 28 
2 8.71 1 1 114 29 
4 8.70 1 1 114 
11 11 11 11 11 11 

11 11 11 11 11 N-l 
H3 IOn 2 0.19 4 3 93 2 

4 0.15 2 1 GO 
2 0.19 4 3 93 3 
4 0.17 3 2 75 
2 0.19 3 2 75 4 
4 0.18 3 2 75 
11 11 11 11 11 11 

2 0.20 3 2 75 6 
4 0.18 3 2 75 
2 0.21 2 2 60 7 
4 0.21 2 2 60 
11 11 11 11 11 11 

11 11 11 11 11 11 
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2 0.29 1 1 45 12 
4 0.29 1 1 45 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
lO(n + 1) 2 0.35 5 3 121 3 

4 0.28 3 2 83 
2 0.33 4 3 103 4 
4 0.34 3 2 83 
2 0.36 3 2 83 5 
4 0.36 3 2 83 
11 11 11 11 11 11 

11 11 11 11 11 10 
2 0.60 1 1 53 11 
4 0.60 1 1 53 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
15n 2 0.42 7 3 166 2 

4 0.40 5 3 129 
2 0.40 5 3 126 3 
4 0.41 4 3 106 
2 0.47 5 3 126 4 
4 0.51 4 3 106 
2 D.55 4 2 108 5 
4 0.50 3 2 88 
2 D.55 3 2 88 6 
4 0.55 3 2 88 
11 11 11 11 11 11 

11 11 11 11 11 10 
2 0.79 2 2 73 11 
4 D.78 2 2 73 
2 0.89 2 2 73 12 
4 0.90 2 2 73 
2 0.95 1 1 58 13 
4 D.96 1 1 58 
11 11 11 11 11 11 

11 11 11 11 11 N-1 
15(n + 1) 2 1.17 6 3 161 3 

4 1.D4 5 3 141 
2 1.04 5 3 141 4 
4 1.D4 5 3 141 
2 1.10 5 3 141 5 
4 1.11 5 3 141 
2 1.27 3 2 103 6 
4 1.26 3 2 103 
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11 11 11 11 11 11 

11 11 11 11 11 15 
2 2.61 2 2 88 16 
4 2.60 2 2 88 
2 2.73 1 1 73 17 
4 2.73 1 1 73 
11 11 11 11 " 11 

11 11 11 11 11 N-l 
H6 lOn 2 2.87 13 2 414 2 

4 1.91 9 2 294 
2 0.87 6 2 213 3 
4 0.26 3 1 107 
2 1.09 5 2 179 4 
4 1.0 5 2 179 
2 1.39 3 2 127 6 
4 1.33 3 2 127 
11 " 11 11 " 11 

11 11 11 11 11 21 
2 3.33 2 2 106 22 
2 3.32 2 2 106 
11 11 11 11 11 11 

" " 11 11 11 53 
2 5.50 1 1 84 54 
4 5.51 1 1 84 
11 11 11 " 11 11 

11 11 11 11 11 N-l 
lO(n + 1) 2 2.0 4 2 161 6 

4 2.19 4 2 161 
2 2.43 4 2 161 7 
4 2.40 4 2 161 
11 11 11 11 11 11 

11 11 11 " 11 12 
2 3.60 3 2 137 13 
4 3.62 3 2 137 
11 11 11 11 11 11 

11 11 11 11 11 24 
2 5.93 2 2 116 25 
4 5.92 2 2 116 
11 11 11 11 11 11 

" 11 11 11 11 61 
2 9.94 1 1 94 62 
2 9.94 1 1 94 
11 11 11 11 11 " 
11 11 11 11 11 N-l 
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15n 2 8.61 15 2 502 2 
4 7.32 13 2 443 
2 2.81 10 2 349 3 
4 2.70 10 2 349 
2 3.40 7 2 270 4 
4 3.30 7 2 270 
2 3.61 5 2 215 5 
4 3.66 5 2 215 
2 4.79 5 2 215 6 
4 4.60 5 2 215 
2 4.62 4 2 181 7 
4 4.64 4 2 181 
11 11 11 11 11 11 

11 11 11 11 11 14 
2 8.57 3 2 157 15 
2 8.60 3 2 157 
11 11 11 11 11 11 

11 11 11 11 11 30 
2 15.27 2 2 136 31 
2 15.27 2 2 136 
11 11 11 11 11 11 

11 11 11 11 11 78 
2 26.20 1 1 114 79 
4 26.21 1 1 114 
11 11 11 11 11 11 

11 11 11 11 11 N-l 
15(n + 1) 2 5.78 6 2 245 6 

4 5.10 4 2 196 
2 5.5 5 2 221 7 
4 6.0 4 2 196 
2 8.21 4 2 196 8 
4 8.23 4 2 196 
11 11 11 11 11 11 

11 11 11 11 11 17 
2 15.99 3 2 172 18 
4 15.97 3 2 172 
11 11 11 11 11 11 

11 11 11 11 11 34 
2 26.38 2 2 151 35 
4 26.42 2 2 151 
11 11 11 11 11 11 

11 11 11 11 11 70 
11 11 1 1 11 11 

11 11 1 1 11 N-l 

• Local minimum found 
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From Table 2.2 it is clear that the general nature of the results is quite similar. Therefore, 

in Table 2.3 we summarize the interaction between 9 and N for S5. The results given here 

are the values of 9 for which the smallest number of function evaluations to satisfy the 

stopping conditions was achieved. 

Table 2.3 Summary of results showinl!; effect of 9 for different N on S5 

N 0' cpu LS LM FE 9 
75 2 2.70 2 1 127" 7 

4 2.66 1 1 98" 7 
60 2 1.96 1 1 100 11 

4 1.98 1 1 100 11 
50 2 0.90 1 1 90 8 

4 0.90 1 1 90 8 
40 2 0.48 1 1 77 8 

4 0.48 1 1 77 8 
30 2 n.22 2 2 lOO 7 

4 0.22 2 2 100 7 
20 2 n.ll 2 2 90 7 

4 0.11 2 2 90 7 

• indicates only a local minimum was 0 btainecl 

It was interesting therefore to see how the best value for 9 varied amongst the 7 test 

functions. Table 2.4 summarizes this effect for N = lOn. 

Table 2.4 Best [J f;r N - lOn 

9 n rn 

BR 17 2 3 

GP 5 2 4 

S5 8 4 5 

S7 38' 4 7 

SlO 22 4 10 

H3 12 3 4 

H6 54 6 4 

• This was the largest value for 9 to produce the global minimum. 

Clearly there is no obvious connection between the best value of 9 and the dimension, n, 

or the number of local minima, rn, but the nature of the function is important since for 

some functions to get the best value of!J it has to be increased until it is close to N - 1. 

When 9 = N -1, of course, the only gTaph minima are the point(s) with smallest function 

value(s). 
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In summary, the information on the use of user supplied parameters that was obtained 

from the numerical test function results was as follows. N = lOn was a reasonable sample 

size. (F = 4 was the best value to use for small values of 9 but as 9 increased there was little 

difference between (F = 2 and (F = 4. All values of 9 eventually produced global optima 

(except for values of 9 close to N -1 for S7) and the number of function evaluations required 

decreased as 9 increased but at the expense of extra cpu time. Choice of 9 would therefore 

seem to be dependent on the cost of computing the function values. Extrapolation of these 

suggestions must clearly be treated with caution since the test functions used are all well 

behaved mathematical functions with a relatively small number of local minima. 

Comparison of MSL and TMSL 

The major differences between MSL and TMSL lie in the use of the Halton sequence 

instead of a pseudo-random sequence and the use of the g-topogTaph rather than sample 

reduction. To judge the relative importance of these two changes we compared MSL with 

TMSL and also with MSLH, which is MSL with Halton instead of random sampling and 

with MSLG, which is MSL with the g-topogTaph replacing sample reduction. The results 

are summarised in Table 2.5 where IT represents the number of iterations. In Table 2.5 we 

have used N = 50 and the values of 9 and a for which the global minimum was obtained 

but with the smallest number of function evaluations and the best cpu time. 
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Table 2.5 
FE am LS LM (1 IT 

M8L 
BR 225 0.10 5 3 2 2 
GP 78 0.04 1 1 4 1 
85 197 0.08 2 2 4 2 
87 1705 2.00 21 7 2 4 
810 574 0.33 6 6 4 3 
H3 82 0.06 2 1 4 1 
H6 304 0.16 6 2 4 2 

M8LH 
BR 246 0.08 4 3 4 2 
GP 63 0.05 1 1 4 1 
85 90 0.04 1 1 4 1 
87 844 0.45 8 6 2 2 
810 960 0.83 8 8 4 4 
H3 78 0.05 2 1 4 1 
H6 254 0.12 5 2 4 2 

TMSL 'I 
BR 87 0.35 3 3 4 1 2 
GP 63 0.80 1 1 4 1 6 
85 90 0.85 1 1 4 1 6 
87 108 0.69 2 2 2 1 4 
810 110 0.64 2 2 4 1 4 
H3 93 0.84 3 3 4 1 6 
H6 123 1.20 3 2 4 1 10 

M8LG 
BR 110 0.65 4 3 4 1 4 
GP 132 0.66 3 3 4 1 4 
85 112 0.65 2 2 4 1 4 
87 113 0.69 2 2 4 1 4 
810 113 0.68 3 3 4 1 4 
H3 101 1.02 3 3 2 1 8 
H6 98 0.66 2 2 4 1 4 

To make the comparison more visual we have totalled the number of function evaluations 

and cpu time for all seven functions ill Table 2.6. 

Table 2.6 Comparison of M8L and TM8L 

FE cpu 

M8L 3165 2.77 

M8LH 2535 1.62 

M8LG 799 6.18 

TM8L 674 5.38 
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Clearly the dominating factor is the introduction of the g-topograph. The reduction 

in function evaluations by a factor of about 5 for TMSL is offset by it requiring about 

twice the cpu time. In the comparisons we tried to be as 'fair' as we possibly could to 

all four methods but fully realize the difficulties involved, particularly with respect to the 

stopping condition used. From Table 2.5 it is clear than MSL performed more iterations 

than TMSL. In fact TMSL stops after the first iteration. This is because MSL uses the 

reduced sample size in the stopping condition (~£#N;;l} :::; W + !) but TMSL does not 

(~'Jt~;;l} :::; w + !). Therefore we felt that it would be interesting to run TMSL with the 

total number (cumulative total) of graph minima instead of total sample points since the 

graph minima correspond to the reduced sample in MSL. So we ran the TMSL algorithm 

with the stopping condition G(~,:-ll :::; w+!, where G is the total number of graph minima 

up to the k-th iteration. Again we took N = 50 and ran TMSL for a moderate value of g, 

for example we uRed !J = 6. The results are shown in Table 2.7. 

Table 2.7 
FE cpu LS LM u IT 

BR 539 7.05 9 3 2 8 
539 7.05 9 3 4 8 

GP 772 7.98 10 3 2 9 
772 7.96 10 3 4 9 

S5 1049 15.63 7 4 2 17 
1049 15.56 7 4 4 17 

S7 1064 17.04 5 4 2 18 
1073 17.10 5 4 4 18 

SlO 2005 38.89 9 8 2 35 
1910 36.73 9 8 4 33 

H3 547 6.43 12 3 2 7 
530 6.35 11 3 4 7 

H6 483 4.51 9 2 2 5 
483 4.53 8 2 4 5 

From this Table it is clear that the number of iterations, the cpu time and the number of 

function evaluations are very high. However, if we compare the number of local minima 

found by TMSL with that of MSL in Table 2.5, we see that there is no significant difference 

between MSL and TMSL even though this time the number of function evaluations for 

TMSL is higher. However detailed analysis shows that in almost. all cases all local minima 

were obtained within the first few iterations and the rest of the iterations were continued 

to accumulate the total number of graph minima G to satisfy the stopping condition. 

We also compared TMSL with the cmrently available algorithms given in Table 2.8 

using the number of fundion evaluations as a basis for c:omparison and the results are 

shown in Table 2.9 where AVE is the average of the number of function evaluations of all 
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Vlethod 

) 

test functions for which the global minima were obtained. The results other than that 

for MSL and TMSL have been taken from the references listed in Table 2.8, the data for 

TMSL is N = IOn, 0' = 4 and 9 = 7 and the data for MSL is N = 100,,), = 0.2 and 0' = 2. 

Tahle 2.8 Listing of different methods 

Name 

Multistart (MS) 

Controlled Random Search (CRS1) 

Density Clustering 

Simulated Annealing (SA) 

Modified Controlled Random Search (CRS5) 

Modified Controlled Random Search (CRS4) 

Clustering with distribution function 

Aspiration based Simulated Annealing (ASA) 

Multilevel Single Linkage (MSL) 

Topographical Multilevel Single Linkage (TMSL) 

Reference 

Rinnooy Kan and Timmer (1984) 

Price (1978) 

Torn (1978) 

Dekkers and Aarts (1991) 

Ali and Storey (1995) 

Ali and Storey (1995) 

De Biase and Frontini (1978) 

Ali and Storey (1994a) 

Rlnnooy Kan and Timmer (1987a) 

Ali and Storey (1994) 

Table 2.9 Comparison of TMSL with 9 currently available methods 

Method GP BR S5 S7 SlO H3 H6 AVE 

A 4400 1600 6500 9300 11000 2500 6000 5900 

B 2500 1800 3800 4900 4400 2400 7600 3914 

C 2499 1558 3649 3606 3874 2584 3447 3031 

D 563 505 365- 558 797 1459 4648 1421 

E 402 346 1866 1719 1709 343 1321 1100 

F 436 279 1423 1238 1213 545 1581 959 

G 378 597 620 788 1160 732 807 726 

H 834 408 524 524 524 451 558 532 

I 307 206 576 334 1388 166 324 471 

J 53 46 98 116 100 60 127 85 

- Local minima found 

Conclusion 

A new global optimization algorithm based on MSL and topographical global opti-

mization, which seems to be robust and competitive with MSL has been developed. Clearly, 

most of the cpu time needed here is for the construction of graph minima and this could 

possibly be reduce(\ by a more efficient implementation. We can also anticipate an increase 

49 



in efficiency by using a more sophisticated implementation in general. There is clear ev

idence that gTeat care must be taken over the stopping condition for TMSL and MSL so 

that the algorithms do not continue needlessly after the global minima have been found. 
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CHAPTER 3 

Simulated Annealing (SA) 



3.1 Introduction 

Simulated Annealing is a stochastic optimization method, initially designed for discrete 

optimization especially in the field of combinatorial optimization. It is a Monte Carlo 

technique which corresponds to the simulation of the physical process of annealing, Le. 

the process of driving a physical system to a minimum energy configuration by means of 

a slow reduction of its temperature. The strong connection between statistical mechanics 

(behavior of particles in thermal equilibrium at a finite temperature) and combinatorial 

optimization helped people design the algorithm and so the historical background of the 

algorithm is an interesting one. SA is one of many heuristic approaches designed to give 

good, though not necessarily optimal, solutions, within a reasonable computing time. SA 

has also been extended to optimization problems for continuous variables. In this Chapter 

a new aspiration based SA algorithm for continuous variables is proposed. However, we 

first review the SA method in the following subsections. 

3.2 Historical Background 

Statistical mechanics is the central discipline of condensed matter physics where annealing 

is known as a thermal process for obtaining low energy states of a solid in a heat bath. First 

the solid is heated until it melts and then it is cooled by slowly lowering the temperature 

of the heat bath. This is done by the following scheme . 

• Increase the temperature to a value at which the solid melts . 

• Decrease the temperature until the particles form a regular pattern. 

In the liquid phase all particles of the solid arrange themselves randomly, in this phase 

the energy is at its highest. But the ground state of the solid, which corresponds to the 

minimum energy configuration, will have a particular structure, such as seen in a crystal. In 

practical contexts, low temperat ure is not a sufficient condition for finding ground states of 

solids. The ground state of a solid is obtained only if the initial temperature is sufficiently 

high and the cooling is done sufficiently slowly. Slow cooling is particularly important in 

such systems as spin glasses (Edwards, 1983) where the Hamiltonian+ has a large number 

of local minima. Starting off at a high temperature, the cooling phase of the annealing 

* The Hamiltonian is the internal energy function of a physical system. 
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process can be described as follows. At each temperature T, the solid is allowed to reach 

thermal equilibrium. At thermal equilibrium, the probability distribution of the states of 

the solid follows a Boltzmann distribution where the probability of the system being in a 

state i with energy E; at temperature T is given by 

Pr {X = i} = ZtT) exp(-E;/kBT) , (3.1) 

where X is the stochastic variable denoting the current state of the solid. The normalizing 

constant Z(T) is the partition function, which is defined as 

Z(T) = L.eXP(-Ek/kBT) , (3.2) 
k 

where kB is the Boltzmann constant and the Stun is over all possible configurations or 

energy states. Clearly as the temperature decreases, the Boltzmann distribution concen

trates on the states with the lowest energy and finally, when the temperature approaches 

zero, only the minimum energy states have a non-zero probability of occurance. Physical 

annealing, therefore, refers to the process of finding the low energ,y states of a solid by 

initially melting the substance, and then lowering the temperature slowly. An example 

would be producing a crystal from the molten substance. If the cooling is too rapid, the 

resulting solid will be frozen into a meta-stable state (locally optimal structures i.e. the 

resulting crystal will have many defects, or the substance may form a glass) rather than 

into the ground state (crystalline lattice structure). Therefore, cooling too quickly means 

that the disorder encountered at higher temperatures gets frozen in as the temperature is 

lowered, corresponding to the system sticking in a local minimum of the Hamiltonian. 

Physical annealing has been successfully modelled as a Monte Carlo simulation. 

Metropolis et at. (1953) proposed a method for computing the Bolt.zmann or equilibrium 

distribution of a set of particles in a heat bath using a computer simulation. They did this 

by generating on their computer a collection of particles with a random configuration and 

calculating the energy of the ensemble. In this method, a given state with energy El is 

compared to a state that is obtained by moving one of the particles of the state to another 

arbitrary location (Monte Carlo technique) by a small displacement. This new state, with 

energy E2, is accepted if E2 - El ~ 0, i.e., if the move brings the system into a state of 

lower energy. If E2 - El :::: 0, the new state is not rejected, but accepted with probability 

exp(-(E2 - Ed/kBT). So a move to a state of higher energy is accepted in a limited 

way. By repeating this process for a large enough number of iterations, Metropolis et 

at. (1953) showed that the Boltzmann distribution is approached at a given temperature. 

The acceptance rule defined above is known as the Metropolis criterion and the algorithm 

using it is known as Metropolis algorithm. Thus the Metropolis procedure from statistical 

52 



mechanics provides a generalization of iterative improvement in which uphill steps can also 

be incorporated in the search for a better solution or to escape from local minima. 

When annealing begins (with an arbitrary initial state) if the system is kept for a 

long time at a particular temperature, equilibrium will be attained. Hence for each value 

of T there is an equilibrium state that will be used as the initial state for the next re

duced value of T. Of course, during the solidification, T plays an important role, as it is 

normally decreased very smoothly and at each time the system is allowed to settle into a 

new equilibrium. Due to the Metropolis acceptance criterion, at high temperature large 

fluctuations of the internal energy will still be tolerated, whereas at the end of the cooling 

process, the value of the energy E will gradually stabilize (relative to T) because, as the 

temperature decreases, the probability that the system is in a lower energy state increases. 

Eventually, at the final temperature Tt, the system will freeze into one of the ground states 

with minimal energy. 

3.2.1 Simulation of Annealing in Optimization 

Kirkpatrick et al.(1!J83) introduced a useful analogy between the process of solidifying 

liquid up to equilibrium, and the properties exhibited by the convergence of combinato

rial optimization methods (Papadimitriou and Streiglitz, 1982). The SA algorithm was 

introduced for combinatorial optimization problems, through simulation of the physical 

process, by establishing a correspondence between the system's energy (E) and the cost 

function (f), and between the physical states and solutions (i). 

For the annealing temperature T, there is no specific analogue available in combina

torial optimization. In optimization, however, T is used as a control parameter and the 

perturbation mechanism of the particles in the physical system becomes the generation 

mechanism of solutions in the combinatorial optimization. In optimization, therefore, one 

usually attempts t.o simulate annealing by allowing equilibrium to be approached at a given 

value of the control parameter before lowering it by some small amount. In the context 

of optimization slow cooling meaI1~ that for each value of T a large number of transitions 

or trials has to be generated. A global optimization algorithm, therefore, can be viewed 

as a sequence of Metropolis algorithms evaluated at a sequence of decreasing values of the 

control parameter (T). Assuming that function minimization is required, in most conven

tional optimization methods, newly generated states are only accepted if the corresponding 

objective function value decreases. But presumably, it can be advantageous also to allow 

'up-hill climbing' under certain conditions. In the SA algorithm this provides a mechanism 

which enables the algorithm to avoid becoming trapped in a local minimum in its search 

for the global minimum. Hence, in the simulated annealing approach, a control parameter 

is defined which plays the same role as the physical temperature; and while lowering this 
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artificially introduced parameter T, the increments in the objective function which are still 

accepted become smaller and smaller. 

The original annealing algorithm as proposed by Kirkpatrick et al.(1983) is presented 

below. The algorithm consists of two loops. In the outer loop the temperature is gradually 

decreased until convergence is detected; in the inner loop a number of random 'moves' in 

the configuration space are proposed, until a second convergence criterion is satisfied. The 

moves are accepted or not according to the Metropolis criterion. 

The Basic SA Algorithm 

Compute the initial control parameter To and the initial configuration 

while stop criterion not satisfied do 

begin 

while no convergence do 

begin 

Generate move; calculate objective function 

if accept then update state and objective function 

end 

Update T 

end 

Simulated annealing thp.ory has recently lead to some general and powerful global 

optimization methods. As a result, the SA approach has been the subject of intensive 

study by mathematicians, statisticians, physicists and computer scientists, and it has also 

been applied to numerous areas. In nature it is a randomization algorithm and in any 

practical implementation it behaves as an approximation algorithm. To establish the 

convergence of the SA algorithm, or to implement it practically, certain quantities, like 

average energy, entropy etc. have to be addressed. These quantities for a combinatorial 

optimization problem are defined by analogy to certain microscopic averages in statistical 

mechanics. Therefore, some important features in the SA algorithm are described below. 

The equilibrium distribution 

After applying the Metropolis acceptance criterion for a sufficiently large number of tran

sitions at a fixed value of T, the SA algorithm finds a configuration i of a combinatorial 

optimization problem with a probability equal to 

(3.3) 
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where 

N{T) = Lexp{-h/kBT) (3.4) 
JEO 

denotes the normalization constant, Ji is the function value for state i and n is the state or 

configuration space i.e., the set of all states. The probability distribution (3.3) is called the 

stationary or equilibrium distribution and is the equivalent of the Boltzmann distribution 

(3.1). The normalization constant is the equivalent of the partition function (3.2). The 

existence of such a distribution is essential for the convergence of the SA algorithm. 

The relation between statistical physics and optimization of combinatorial problems 

can now be made more explicit: given a physical system in thermal equilibrium whose 

internal states are distributed according to (3.1) and a combinatorial optimization prob

lem whose configurations are distributed according to (3.3), the quantities, expected cost 

(average energy) at equilibrium, the variance in the cost at equilibrium and the entropy 

can be defined for optimization problems in a way similar to that for the physical system. 

Expected Cost (f) 

Theoretically (Kirkpatrick et aI., 1983), the expected mean value of the cost at equilibrium 

is given by 

(f) = 
d{lnN{T)) 
d{l/kBT) , 

where N{T) is defined by (3.4). This equation is clearly equivalent to 

(f) = L J,qj{T) , 
JEO 

(3.5) 

(3.6) 

where qj is given by (3.3). (It should be noted that in optimization problems, the Boltz

mann constant kB can be taken as unity.) 

Since in (3.6) the summation ranges over the entire search-space n the correct average 

therefore cannot be determined without searching the entire config1lration-space which is 

infeasible. Hence only an estimate can be supplied in any practical implementation of the 

SA algorithm. Therefore, an estimate such as; 

(3.7) 

can be used, where L is the number of solutions generated at a particular temperature. 

Cleru:'ly the average cost in (3.7) is an approximation to (f). 
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The Variance in Cost at equilibrium a 2 

The variance of the cost function at equilibrium is given by 

a2(T) = ~)fi(T) - (f(T)))2qi(T) (3.8) 
;EO 

and the numerical value of the standard deviation of the cost at equilibrium can be ap
proximated by the quantity 

L ~ 

aCT) = G ~)fi(T) -1(T))2) 2 • 

i=l 

(3.9) 

The entropy S 

In thermodynamics, the entropy is related to the average energy in the following way 

(Kirkpatrick et al., 1983): 
d8 1 d(f) 
dT=T dT (3.10) 

Alternatively, at equilibrium the entropy could be defined as (OUen and van Ginneken, 
1984) 

(3.11) 
iEn 

where qi is given by (3.3). The summation ranges over all configuration space. At high 

temperatures all states or solutions are accepted and are likely, so 8 becomes proportional 
to the logarithm of the total number of feasible states. This follows from; 

8 = - L: q, In( q;) , 
iEn 

= - ~ 1~lln (I~I) , 

1 
= L: -IOlln(IOI) , 

,En 

= In(IOI) , 

where 0 is assumed to be finite and 101 is the number of states in O. 
stationary distribution is given by (3.3) then 

lim 800 = In(IOI) 
T ..... oo 

(3.12) 

Therefore, if the 

(3.13) 

where 00l't is the set of global minima and 800 and 80 are the entropies corresponding to 

the highest and the lowest temperatures. We therefore remark that in physics, if there is 
only one gTound state, the entropy becomes zero, since 

lim 80 = In(l) = 0 . 
T ..... O 

(3.14) 
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A physical meaning can be attached to the entropy as defined above, it is a natural measure 

of the amount of disorder or information in a system. In the context of optimization it 

gives some measure for the SA algorithm of the number of states with an energy equal 

to or less than the presently obtained optimum. Thus the final entropy So could be used 

to see whether or not the global optimum has been found. Unfortunately, this quantity 

only provides a posteriori check and cannot be determined accurately. So in practice the 

relevance of S is questionable. 

Initial configuration 

As the SA algorithm is supposed to be independent of the choice of the starting config

uration in the search space (Kirkpatrick et al., 1983), it seems reasonable to select the 

starting point at random. No heuristic arguments should be taken into account to start 

from an appropriate guess, in the presumed neighbourhood of the global optimum, since 

no information whatsoever is available concerning the location of this optimum. In fact, 

one has to choose the initial temperature such that initially all proposed solutions are 

accepted. At the initial temperature, a number of random iteratioIlS (inner loop) will have 

to be made so that the initial configurat.ion becomes irrelevant. 

The acceptance criterion 

When annealing is started, a new state has to be selected in an appropriate way. When 

the new objective function is computed, the optimization algorithm has to decide whether 

to accept or reject this solution. As mentioned earlier the SA algorithm is based on the 

analogy with the cooling of liquid in statistical mechanics. Therefore the majority of the 

contributioIlS to SA theory adopt the same acceptance criterion as that originally suggested 

by Metropolis, et.al.,(1953) for the solidification process. Hence, a new state with an energy 

difference !::..f;j = Jj - Ji is only retained if the Boltzmann probability 

Aij(T) = min{l, exp( -!::..Jij/T)} (3.15) 

is greater than a randomly chosen real number in the interval (0,1). This approach relaxes 

the intriIlSic restriction to allow only 'down-hill' moves which is incorporated in methods 

based on iterative improvement. Therefore, function increases are now tolerated too, but 

with an exponentially decreasing probability which is a function of the difference between 

the new objective function value arid the current value. Hence in contrast to iterative im

provement or gradient methods, the SA technique does not suffer from a heavy dependence 

on a sufficiently accurate guess for the initial solution (configuration). In Greene (1984) 

and Greene and Supowit (1986), an alternative acceptance strategy has been proposed, 

which actually does not reject any attempted state at all. According to these authors, 

this approach is especially suited for temperatures in the vicinity of the final temperature, 
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Tf. Later in this Chapter we will, however, propose a new acceptance criterion for the SA 

algorithm for the continuous variable case. 

Cooling Schedule 

Typical annealing proceeds by starting the system at some high temperature. The system 

is then allowed to approach equilibrium, at which time the temperature is reduced, the 

system allowed to equilibrate again, and so on. The process is stopped at a temperature 

low enough that no more useful improvement can be expected. This protocol for cooling 

the system of particles (or solid) is known as the annealing or cooling schedule. In the 

context of optimization, the determination of the initial temperature, the rate at which 

the temperature is reduced, the number of iterations at each temperature and the criterion 

used for stopping is also known as the cooling schedule. In any implementation of the SA 

algorithm, a cooling schedule must be specified. The temperature parameter, T, is set 

to an initial value; this is generally relatively high, so that most trials are accepted and 

there is little chance of the algorithm being unable to move out of a local minimum in the 

early stages. A scheme is then required to reduce T through the course of the algorithm. 

Finally, a stopping criterion is required to terminate the algorithm. The choice of cooling 

schedule has an important bearing on the performance of the SA algorithm and will be 

further discussed later in this Chapter. 

3.2.2 Mathematical Modelling of the Discrete SA Algorithm 

SA can be viewed as an algorithm that continuously attempts to transform the current 

state into one of its neighbours. This mechanism is mathematically best described by 

means of a Markov chain. A Markov chain is a sequence of trials, where the probability of 

the outcome of a given trial depends only on the outcome of the previous trial. A Markov 

chain is therefore described by means of a set of conditional probabilities IJij(k). For each 

pair of outcomes (i,j), the probability IJij(k) is the probability that the outcome of the 

k-th trial is j, given that t.he outcome of the (k - 1)-th trial is i, i.e., 

liij(k) = Pr{X(k) = jlX(k - 1) = i} , (3.16) 

where X(k) is a st.ochastic variable denot.ing t.he outcome of the k-th t.rial. Moreover, if 

ai(k) denotes the probability of out.come i at the k-th trial, i.e., if 

lLi(k) = Pl'{X(k) = i} (3.17) 

then ai (k) is given by t.he following recursion: 

lLi(k) = L lLl(k - 1)Pli(k) . (3.18) 
lEO 
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If the conditional probabilities in (3.16) do not depend on k, the corresponding Markov 

chain is called homogeneous, otherwise it is called inhomogeneous. In the SA algorithm, a 

trial corresponds to a transition, and the set of outcomes is given by the finite set of states 

in n. Moreover, in the SA algorithm, the outcome of a trial depends only on the outcome 

of the previous trial. Consequently, we may use the concept of finite homogeneous Markov 

chains. The 1nl x 1nl matrix peT) whose elements are given by (3.16) for a fixed value of 

T, is called the transition matrix. 

The transition probabilities depend on the value of the control parameter T. Thus 

if T is kept constant, the corresponding Markov chain is homogeneous and its transition 

matrix P can be defined as: 

{ 

Yij(T)Aij(T), Vi f= j, 
Pij(T) = 1 - L:. ya (T)Ail (T), i = j 

l=lh'" 

(3.19) 

Le. each transition probability is defined as the product of the following two conditional 

probabilities: the generation probability Yij (T) of generating configuration j from config

uration i, and the acceptance probability A;j (T) of accepting configuration j, once it has 

been generated from i. The acceptance probability is given by (3.15). The generation 

probabilities are independent of the cont,rol parameters T and are uniform over the neigh

bourhood of the state i (transitions are implemented by choosing at random a neighbouring 

configuration j from the current configuration i). The corresponding matrices G (T) and 

A(T) are called the generation and acceptance matrix, respectively. The definitions of the 

generation and acceptance probabilities correspond to the original definitions of the SA 

algorithm and closely follow the physical analogy. Notice that the transition matrix P and 

generation matrix G are stochastic (a matrix M is stochastic if ffiij ;::: 0, for all i, j, and 

L:j ffiij = 1, for all i) but the acceptance matrix A is not. 

Algorithms based on a more general class of acceptance and generation probabilities 

are possible as was shown by Lundy and Mees (1986), Anily and Federgruen (1987) and 

Faigle and Schrader (1988), etc. Hence the following two formulations of SA can be 

pursued: 

• Inhomogeneous algorithms* described by a single inhomogeneous Markov chain. The 

value of T is decreased between consecutive transitions . 

• Homogeneous algorithms described by a sequence of homogeneous Markov chains. 

Each Markov chain is generated at a fixed value of T and T is decreased between 

consecutive Markov chains. 

* Not used in practice 
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SA algorithms find a global minimum if the following relation holds: 

lim Pr {X(k) E n01>t} = 1 . 
k .... oo 

(3.20) 

Essential to the convergence proof for a homogeneous algorithm is the existence of a unique 

stationary distribution. Such a distribution exists only under certain conditions on the 

Markov chains (Aarts and Korst, 1989) that can be associated with the algorithm. The 

stationary distribution is defined as the vector q whose i-th component is given by 

qi = lim Pr {X(k) = iIX(O) = j}, Vj . 
k .... oo 

If such a stationary distribution q exists we have, 

lim (Li(k) = lim Pr {X(k) = i} , 
k-tcx> k-+oo 

= kl.!..~LPr{X(k) =iIX(O) =j}Pr{X(O) =j}, 
j 

= qi L Pr {X (0) = j} = qi . 
j 

(3.21) 

(3.22) 

Thus, the stationary distribution is the probability distribution of the outcomes after an 

infinite number of trials. For the homogeneous algorithm equation (3.20) holds asymptot

ically provided: 

1. Each individual Markov chain is of infinite length. 

2. The following comlitions on the matrices A(T) and G(T) defining the 

homogeneous Markov chain hold ensuring that the stationary distribution 

q exists. 

(i) The Markov chains are irreducible (van Laarhoven and Aarts, 1987), 

Le, for all pairs of states (i, j) there is a positive probability of reaching j 

from i in a finite number of transitions or, 

Vi, j 3n,1 ::; n < 00 such that, Jl0 > 0 . (3.23) 

Thus, irreducibility of Markov chains establishes the fact that there is a 

path from. every local minimum to the global minimum. 

(ii) The Markov chains are aperiodic (van Laarhoven and Aarts, 1987), 

Le, for each state i E n, the gTeatest common divisor of all integers n 2': 1, 

such that 

(3.24) 

is equal to 1. This means that the probability of not leaving the state i in 

any finite number of steps is gTeater than zero. 
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As to establishing irreducibility, in the case of SA, the transition matrix P(T) is 

defined by (3.19) and for all pairs of states (i, j), the acceptance probability Aij (T) > ° for 

non-zero T (see 3.15), it is therefore sufficient to assume that the Markov chain induced 

by the generation matrix G(T) is irreducible itself (since IJij(T) = 9;j(T)Aij(T)), Le, 

Vi,j E 0 310,h, ... ,Ip E 0(10 = i, Ip = j), 

m.I'+1 (T) > 0, k = 0, 1, ... ,p - 1. 
(3.25) 

As regards aperiodicity, an irreducible Markov chain is aperiodic, if the following condition 

is satisfied (Romeo and Sangiovanni-Vincentelli, 1985), 

(3.26) 

Therefore under t.he above considerations the irreducibility and aperiodicity of a Markov 

chain can be shown t.o hold. More rigorous proofs and full discussions can be found in Aarts 

and Korst (1989). The convergence proof for SA remains tllichanged for any symmetric 

generation probability (Lundy and Mees, 1986), Le, when 

(3.27) 

3. 

limTt=O 
t-+oo 

(3.28) 

where t is t.he temperature counter. 

The asymptotic convergence proof for the homogeneous Markov chain requires that an 

infinite number of transitions be generated. Thus implementation of the algorithm requires 

generation of a sequence of infinitely long homogeneous Markov chains at. descending values 

of the control parameter T, which is impracticable. However it is possible to regard the 

SA algorithm as a sequence of homogeneous Markov chains of finite length, generated at 

descending values of the control parameter, so that the homogeneous Markov chains are 

combined into a single inhomogeneous Markov chain. In this way the infinite sequence of 

finitely long homogeneous Markov chains becomes a single inhomogeneous Markov chain of 

infinite length. Therefore, from a theoretical point of view, a simulated annealing algorithm 

can be modelled as an inhomogeneo\L~ Markov process. The conditions for convergence 

to the global minima, for the inhomogeneous algorithm, not only depend on the matrices 

G(Tt ) and A(Tt) but also impose restrictions on the way the current value of the control 

parameter, Tt, is changed into the next one, Tt+! (Van Laarhoven and Aarts, 1987). 

However, in this framework a rigOro\L~ analysis of the convergence behavior appears to be 

quite involved (Hajek, 1988; Chiang and Chow, 1988; Tsitsiklis, 1989). Therefore, we only 
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briefly mention that for the inhomogeneous algorit.hm, equation (3.20) holds asympt.ot.ically 

if: 

1. Certain conditions on the matrices A(Tt ) and G(Tt ) are satisfied (see 

Aarts and Korst, 1989). 

2. 

limTt=O. 
t-+oo 

(3.29) 

3. Under certain additional conditions on the matrix A(Tt), the rate of 

convergence of the sequence {Tt} is not fast.er than O([logt]-l). 

The theoretical results for the asymptotic convergence of SA modelled as an inho

mogeneous Markov chain do not require t.he stationary distribution t.o be achieved at any 

nonzero temperature (Aarts and Korst, 1989). In fact, there are quite general results about 
Markov chains (Anily and Federgruen, 1987) showing that if the inhomogeneous Markov 

chain defined by P(Tt} does converge, t.hen it.s limit distribution is ident.ical t.o q. Thus 

the annealing algorithms (homogeneous and inhomogeneous) will find t.he opt.imal solution 

with probability one, Le. 

lim Pr {X(k) E nOT't } = 1 
T! k-+oo 

(3.30) 
o 

In any implement.at.ion of t.he homogeneous algorit.hm, however, asympt.otic conver

gence can only be approximat.ed. Evidently, t.his is at. t.he cost. of t.he guarant.ee of obt.aining 
opt.imal solutions. In t.he homogeneous model of the SA algorithm one chooses a few (say, 

m) different t.emperat.ure levels, Tl ~ T2 ~ ... ~ T.n ~ 0, and runs a large number, say 

M, of it.erations at. each t.emperat.ure level Tt successively (the reasons will be explained 

in the next. section). In the next. section we describe in detail how t.he approximat.ion is 

carried out. 

3.2.3 Finite-time implementation of the SA algorithm 

The descript.ion of t.he SA algorithm in t.erms of t.he generation of Markov chains makes 

it. possible t.o analyze the asymptotic convergence of t.he algorithm. In practice, one is of 

course, mainly interested in the finite-time behavior of t.he algorit.hm, Le. in the behavior 

of SA as an approximation algorithm. In this section, we discuss the behaviour of the 

homogeneous algorithm in finite time on the basis of t.he notion of the cooling schedule. The 

parameters of the cooling schedule are chosen so as to imit.at.e the asympt.otic behaviour 

of the homogeneous algorit.lun in polynomial t.ime, t.hereby losing any guarantees with 

respect to the optimality of t.he solution retained by the algorithm. We do not. describe 

any approximations to t.he asymptotic behaviour of the inhomogeneous algorithm. Such 

approximations are not reported in the literature. 
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In any finite time implementation of the algorithm the number of transitions for each 

value Tt, must be finite and lim Tt = 0 can only be approximated by using a finite 
t ..... oo 

number of values for Tt. Because of these approximations, the algorithm is no longer 

guaranteed to find a global minimum with probability 1. Practical implementation of an 

annealing algorithm, therefore, requires Markov chains of finite length at a finite sequence 

of descending values of the control parameter. To implement the algorithm, therefore, 

one must define a cooling schedule (Van Laarhoven and Aarts, 1987; Aarts and Korst, 

1989) that governs the convergence of the algorithm. In this section we describe a cooling 

schedule proposed by Aarts and Van Laarhoven (1985, 1985a). Notice that the same 

cooling schedule is applicable for the continuous simulated annealing algorithm. 

Central in the construction of many cooling schedules is the concept of quasi

equilibrium. If Lt is the length of the t-th Markov chain and a(£, Tt) denotes the 

probability distribution of the solutions after £ transitions of the t-th Markov chain, then 

the homogeneous algorithm is said to be in quasi-equilibrium at Tt if a(Lt, Tt) is close to 

q(Tt ). The actual construction of a cooling schedule is usually based on the following 

arguments. 

• For T -+ 00, the stationary distribution is given by the uniform distribution on n, 
which follows directly from (3.3) and (3.4). Initially, quasi-equilibrium can therefore 

be achieved by choosing the initial value of T so that virtually all transitions are 

accepted. 

• The leng;th Lt of the t-th Markov chain and the decrement rule for Tt are related 

through the concept of quasi-equilibrium. If the decrement in Tt is large then it 

is necessary to attempt more transitions at the new value of THI to restore quasi

equilibrium at Tt+l . For given quasi-equilibrium at Tt, the larger the decrement in Tt, 

the larger the difference between q(Tt ) and q(Tt+!) and the longer it takes to establish 

quasi-equilibri urn at Tt+ I. Therefore, there is a trade-off between fast decrement in Tt 

and small values for Lt. Usually, one opts for small decrement in Tt to avoid extremely 

long chains. 

• A st.op criterion is usually based on the argument that execution of t.he algorithm 

can be terminated if the observed improvement in function value over a number of 

consecutive Markov chains is small. 

In this section we discuss briefly the schedule proposed by Aarts and Van Laarhoven 

(1985). This schedule is based on empirical rules rather than on a choice based on theory. 

We emphasize once more that this cooling schedule leads to polynomial-time execution 

of the algorithm on the one hand, but on the other hand precludes any guarantee for the 

proximity of the final configuration to a globally minimum one. We now give a full descrip

tion of a cooling schedule proposed by Aarts and Laarhoven (1985). The specifications of 

the set of parameters that constitutes the cooling schedule are as follows: 
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• An initial value To of the control parameter; 

• A decrement function for T; 

• A final value for T, i.e. a stopping criterion; 

• A finite length Lt, of each Markov chain. 

Initial value of the control parameter 

Based on the assumption of a Gaussian distribution of the state density function, the 

initial temperature can be equated with the standard deviation of this normal distribution, 

as suggested in White (1984). However, in Catthoor et al. (1988) it is argued that 

this assumption is not generally valid. A less restrictive approach is to require that the 

maximum possible energy-change is accepted with a sufficiently high probability at To 

(Otten and Ginneken, 1984). In Aarts and Laarhoven (1985) a strategy is proposed in 

which the initial temperature is assigned based on an experiment for the acceptance ratio. 

A starting value for To is updated until this ratio becomes acceptable. If no upper bound 

is available for the energy range, this approach is superior to other existing methods. The 

initial control parameter usually takes a very high value so as to accept almost all trial 

points, i.e. 

(3.31) 

for almost all cost-increasing transitions. This can be achieved by generating a number 

of trials and requiring that the initial acceptance ratio Xo = X(To) is close to 1, where 

X(T) is defined as the ratio between the number of accepted transitions and the number 

of proposed transitions. Suppose for a particular value T of the control parameter ml 

transitions have been generated for which (llfij < 0) and m2 for which (ll!;j > 0) and 

llf+ is the average increase in cost over the 1n2 transitions. Then the expected acceptance 

ratio X is approximately given by 

which can be rewritten as 

(3.32) 

We now assume that the value of T is To, which is determined as follows. Initially, To 

is set equal to zero. Next, the algorithm is executed for Cl fixed number of transitions, 

say mo, and after each transition (3.32), with X set to Xo(= 0.9), is used to update the 

current value of To. Numerical experiments indicate that fast convergence to Cl final value 

of To is obtained in this way (Aarts ami Korst, 1089). This final value is then taken as 
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the initial value of the control parameter. A PASCAL subroutine for generating the initial 

temperature is given in appendix 3A. 

Decrement of the control parameter 

The new value Tt+l is calculated from 

T: _ T: (1 Tt In(1 + 6))-1 
t+l - t + 3a(Tt) , (3.33) 

where a(Tt) denotes the standard deviation of the values of the cost function at the points 

in the Markov chain at Tt. The constant 6 is known as the distance parameter and 

detennines the rate of decrease of the control parameter. The numerical value of aCT) is 

calculated from (3.9). 

Final value of the control parameter 

The stopping criterion is based on the idea that the average function value j over a Markov 

chain decreases with Tt, so that j(Tt ) converges to the optimal solution as Tt --> O. The 

algorithm is terminated if 

(3.34) 

where j(To) is the mean value of f at the points found in the initial Markov chain, js(Tt) 

(see Simulated Annealing Procedure) is the smoothed value of j over a number of chains in 

order to reduce the fluctuations of j(Tt ) , and Cs is a small positive number. The numerical 

value of j(To) is found from (3.7). 

Length of the Markov chain (Lt) 

The length of the Markov chains is usually based on the intuitive argument that for each 

value Tt of the control parameter, a certain amount of computational effort should be 

spent to restore quasi-equilibrium. Therefore, a lninimum number of transitions should 

be accepted i.e., Lt is determined so that the number of acceptance transitions is at least 

'f/min, a fixed number. However, since transitions are accepted with decreasing probability, 

one would obtain Lt --> 00 for Tt --> O. Consequently, Lt is bounded above by some 

constant to avoid extremely long Markov chains for low values of Tt (Kirkpatrick, et. al., 

1983; Leong and Liu, 1985; Leong, et.al., 1985). The length of Markov chain determines 

whether the algorithm has explored the neighbourhood of a given point in all directions. 

For the optimization of continuous variables, Dekkers and Aarts (1991) suggested 

Lt = IOn, (3.35) 

where n is the dimension of f (for discrete optimization n may represent the problem size, 

e.g., the number of cities in the travelling salesman problem). Note that this choice leads 

to a chain length which is constant for a given problem. 
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Thus, a homogeneous SA algorithm can be viewed briefly as follows: 

• At a fixed temperature level Tt one has to perform nothing but a certain random walk 

on the collection of all possible configurations. 

• Certain parameters have to be chosen in such a way that it is more likely that a good 

configuration is obtained as t increases (Le. Tt decreases). In the limit the global 

optimal solution state will be reached with probability 1. 

The above cooling schedule leads to the following simulated annealing algorithm in pseudo

PASCAL. 

Procedure Simulated Annealing 

begin 

initialize a state i by random selection 

calculate initial temperature To by the procedure described earlier in this section. 

t := 0; (initialize the temperature change counter t) 

stopcriterion:=false; 

while stopcriterion=false do (outer loop begins) 

begin 

k := 0; (initialize repetition count.er for inner loop) 

L9 := 0; (init.ialize solution generation counter for inner loop) 

repeat until k = Lt; (inner loop begins) 

begin 

generate state j; (a neighbour of i) 

calculate t:.J;j := Ii - !i; (in moving from i to j) 

accept (t:.!ij, Tt); 

if accept=true then 

begin 

L9 := L9 + 1; (increase the number of acceptances by one) 

i := j; (make j the current. state) 

end; 

k := k + 1; (increase number of trial by one) 

end; (end of inner loop) 

!-("') . - ..L ",L 9 f .. 
.Lt .- Lg L.Ji=l t, 
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. <7(7;;) := (i. E~':1 (fi - Jm))2) t; 
'T' 'T' ( Tt In 1+6 )-1 
.J.t+l :=.J.t 1 + 3" T, ; 

if t = 0 then 

begin 

J.(Tt ) := J(Tt ) 

stopcriterion:=false 

end else 

begin 

1.(7;;) := O.75j(Tt) + O.25j(Tt _ 1); 

dj,(T,) ._ f,(Tt-.}-f.(T,l. 
flTt'- Tt_l Tt ' 

stopcriterion'=1 <if,(T,) -1L 1< c . • <IT, f(To) - .. 

end; 

t := t + 1; (increase the temperature change counter by one) 

end; (end of outer loop) 

end. 

function accept (.6.jij, Tt); 

begin 

if .6.jij :::; 0 then 

begin 

accept:=true; 

else 

ifexp(-.6.jij/Tt} > random (0,1) then 

end; 

accept:=true; 

else 

accept:=false; 

end; 

3.3.1 Annealing Algorithm for Continuous Optimization 

In combinatorial optimization the number of outcomes (states or solutions) can be very 

large but is finite. Unfortunately the number of outcomes for the continuous case is infinite. 
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If the annealing algorithm defined above is to work for the continuous case an appropriate 

transformation from discrete to continuous is needed. Application of SA to continuous 

functions has been addressed by a number of authors. The proposed approaches can be 

divided into the following two classes. 

In the first class, implementations of the algorithm are described that follow closely the 

original physical approach introduced by Kirkpatrick et al.(1983). For example Vanderbilt 

and Louie (1984) introduced the idea of a covariance matrix for controlling the transition 

probability. In particular, random points are generated which try to take into account the 

local structure of the objective function. Khachaturyan (1986) presents a method that is 

closely related to the physical system as described by Metropolis et al.(1953). Bohachevsky 

et al. (1986) present a simple and easy to implement SA algorithm in which the approach 

followed is basically that of a random direction method, in which, at each step, a random 

point is generated on the surface of a sphere centered on the current point with a prefixed 

radius. Kushner (1987) describes an appropriate method for cost functions, for which the 

values can only be sampled via a Monte Carlo method. 

In the second class of approadles, the annealing process is described by Langevin 

equations, and proven to converge to the set of global minima (Gidas, 1985; Geman and 

Hwang, 1986; Chiang, et al., 1987). The so-called Langevin equation in lRn takes the form 

dx(t) = -\7 f(x(t))dt + J2T(t)dw(t) (3.36) 

where \7 f is the gradient ofthe function f, T(t) the temperature at time t E [0, (0) and wet) 

is the standard Brownian motion in lRn. The equation (3.36) can be seen, from the point 

of view of stochastic optimization algorithms, as the law of motion of a point in lRn whose 

movement is subject to two different components: one is the tendency to follow down-hill 

trajectories along the direction of -\7f; the other is a random fluctuation whose amplitude 

is governed by the temperature parameter T(t). Aluffi-Pentini, et. al (1985) proposed the 

computation of global minima by following the paths of a system of stochastic differential 

equations. They use a time-dependent function for the acceptance criterion which tends 

to zero in a suitable way. The papers of Geman and Hwang (1986) and Chiang et. al. 

(1987) consider the same concept. A continuous path seeking a global minimum will, in 

general, be forced to 'climb hills', with a standard n-dimensional Brownian motion, as well 

as follow down-hill gradients. The Brownian motion is controlled by a time dependent 

factor, tending to zero as time goes to infinity. The convergence proof given by Geman 

and Hwang (1986) is based on the Langevin equations. 

However, it is clear that these methods are somewhat different from the original SA 

approach to discrete optimization. Recently Dekkers and Aarts (1991) gave an algorithm 

for the continuous problem whidl is a direct transformation from the original discrete to 
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the continuous case. The convergence proof is based on the equilibrium distribution of 

Markov chains. This method has proved to be a reliable annealing method for cont.inuous 

optimization. We, t.herefore, rest.rict ourself to this version of the simulat.ed annealing 

algorithm. For the continuous case we will denote points in n by x, y etc. 

As far as SA is concerned, a near optimum solution is often considered as the global 

solution (Dekkers and Aarts, 1991). A near minimal solution can be formalized in the 

following way. 

For e > 0, we call a point x E n near minimal if x E B(e) where B(e) = Ax(e) U A/(e) and 

Ax(e) and A/(e) are defined by (1.3) and (1.4) respectively, in Chapt.er 1. 

3.3.2 Mathematical Model of the Continuous Algorithm 

We now present a mat.hematical model of the homogeneous, simulated annealing algorithm 

for continuous optimization based on the ergodic theory of Markov chains. The following 

definitions are introduced by Dekkers and Aarts (1991). 

Definition 3.1 The transition probability of transforming x E n into a point y E C c n 
is the probability of generating and accepting a point in C if x rt C. Thus, if x is the 

current. point of t.he Markov chain, t.hen t.he probabilit.y t.hat an element. in C is t.he next 

point of the Markov chain is 

where 

and 

P(Clxj T) = {~leCIJXY(T)clY 
fyec l'xy(T)cly + (1- Jveol'xy(T)cly) 

for x rt C, 
for x E C, 

P(Clxj T) = Pr{X(k) E CIX(k - 1) = Xj T} . 

Not.e t.hat l'xy(T) is not a proper dist.ribution function since 

r l'xy(T)cly i' 1 . 
JyEo 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

Therefore, l'xy(T) is called the quasi-probabilit.y dist.ribut.ion function. The acceptance 

probabilit.y Axy(T) is similar t.o t.hat. of discrete opt.imization (Aarts and Korst, 1989). 

Definition 3.2 The probability that a point x E n is transformed into a point y E C c n 
in k trials is 

P (k)(CI . T) _ JyEC XII ' 

{ 

r p(k) (T)dy 
x, - . (k) k 

JyEc PXlI (T)dy + (1 - fyEfl PXlI(T)dy) 
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for x E C, 
(3.41) 



where 

p~"J(T) = 1 p~k,,-l)(T)p.y(T)dz + 11~~-1)(T)(1-1 py.(T)dz) 
.en .en 

+ (1-1 Pxz(T)dz)k-lpXy(T) . 
• en 

(3.42) 

Notice that p~"J (T) is the quasi-probability distribution function of transforming x into y 
in k trials, and is equal to the sum of three terms: 

The first term is the quasi probability distribution function of transforming x into z 

in k - 1 trials, and from z to y in the next trial generated over all z. 

The second term is the quasi probability distribution function of transforming x into 

y in k - 1 trials and then rejecting the k-th trial. 

The third term is the quasi probability distribution function of transforming x into y 

in one trial after k - 1 rejected trials from x. 

The aim of the continuous SA algorithm is achieved if it converges asymptotically to 

a point x E A/(e) (here we assume that A/(e) = fl o1,t) that is if 

lim Pr{X(k) E A/(e)} ~ 1 - e 
T !k-+= 

o 

(3.43) 

for all starting points X(O). The proof of asymptotic convergence is based on the con

vergence proof for the SA algorithm when applied to the discrete minimization problem 

(Dekkers and Aarts, H)91). Essential to the proof is the fact that under certain conditions 

there exists a unique stationary probability distribution function of a homogeneous Markov 

chain. 

Definition 3.3 A probability distribution function r(x, T) is stationary if 

and 

'ixen : r(x, T) = f r(y, T)pllx(T)dy + r(x, T) (1- f Pxy(T)dy) 
hen hen 

1 r(x, T)dx = 1 
xen 

Dekkers and Aarts (1991) have proved the following theorem. 

(3.44) 

(3.45) 

Theorem: Let l'xll(T) be given by Definition 3.1 and let fl be the only ergodic set not 

having any cyclically moving subsets for the Markov chain induced by P(Clx; T) (Definition 

3.1). F\lrthermore, let the following conditions be satisfied: 

(i) 

'i x,yen: !}Xll (T) = !}yx (T) . (3.46) 
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(ii) 9xy(T) is independent of T (and therefore can be written as 9xy). 

Then a unique stationary probability distribution function exists and is given by 

q(x, T) = exp( -(fx - fmin)/T)/N(T) , (3.47) 

where fmin is the minimum function value and 

N(T) = 1 exp(-(fy - fmin)/T)dy . 
yEn 

(3.48) 

Dekkers and Aarts (1991) also proved that the SA algorithm, for continuous minimization, 

modelled as a Markov chain with the transition probability (3.37) defined by (3.38) and 

(3.39), converges to the set of minimal points (Le. to Af(€)) of f ifthe following conditions 

are met: 

f is uniformly continuous. 

All minima are interior points of !1. 

The number of minima is finite. 

Axy(T) = min{l,exp(-(fy - fx)/T)}. 

The generation probability distribution function 9xy(T) is defined by 

(3.49) 

which means if the set C has positive measure then the probability that a point y E C 

will be generated from x E !1 is g;reater than zero. 

9xy(T) = 9yx(T). 

9xy(T) does not depend on T. 

However, these conditions are sufficient but not necessary. 

To implement SA on a function of continuous variables, the crucial factor is the choice 

of an appropriate neighbourhood structure, Le. the way in which a neighbour y of the 

current point x is defined. Thus the requirements are that the generation mechanism 

should satisfy (3.46) with 9xy being independent of T and 

VxEnVccn: m(C) > 0 => 1 9xy(T)dy> 0 , 
yEC 

where m( C) is the Lebesgue measure of the set C. The following two alternative generation 

mechanisms are discussed by Dekkers and Aarts (1991). 
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Alternative A. A uniform distribution on n, i.e. 

1 
9xy = m(n) . (3.50) 

Clearly, this alternative satisfies the above requirements. An obvious disadvantage of this 

choice is that no structural information about function values is used. Thls disadvantage 

can be circumvented by introducing an additional mechanism that uses descent directions. 

Alternative B. 

gxy = {L~(X), 
ffi(ITf. 

if w ~ to, 
if w < to, (3.51) 

where to is a fixed number in (0,1), and w a uniform random number on (0,1). LS(x) 

denotes a local search that generates a point y in a descent direction from x, thus Iy < Ix 
(y is not necessarily a local minimum). In this implementation, however, gxy # gyx' 

Nonetheless, it can be shown that the method still converges to a neighbourhood of the 

optimal solution (Dekkers and Aarts 1(91). 

3.4.1 The Aspiration based SA Algorithm (ASA) 

The SA algorithm sometimes accepts solutions which are worse than the current solution. 

It is therefore possible in any single SA run for the final solution to be worse than a solution 

found during the run. In fact, since the SA algorithm is a randomization device, which by 

means of an acceptance/rejection criterion allows some ascent steps during the optimization 

process, it is quite possible that at some fixed temperature level the procedure will visit 

the near global optimal solution but clue to the acceptance/rejection mechanism it (the 

procedure) will leave the best solution and arrive at a worse solution. In addition, since 

the algorithm is heavily dependent on the cooling schedule and an appropriate cooling 

schedule is very difficult to construct, the algorithm may never come back to the best 

solution it left during the course of a run. The SA procedure is completely memoryless, 

i.e., new solutions are accepted disregarding previously obtained intermediate results. The 

SA algorithm therefore has the following shortcomings: 

Simulated annealing does not use strategic decision rules which could be based on 

knowledge of the global problem structure. 

No learning procedure is incorporated to make effective use of information gained in 

previous iterations. 

An aspiration t based SA algorithm has been designed to take into account the above 

drawbacks by adapting the acceptance criterion in a suitable way. Let Xt be the starting 

t The concept of aspiration level was first introduced by Glover (1989) in his TABU 

search technique for combinatorial optimization. 
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solution of the t-th Markov chain and Xa the point obtained by carrying out a local search 

from Xt. We then define fa (Xt) as f(xa). The local descent procedure is not a complete local 

search but only a few steps of some appropriate descent local search. During the execution 

of the t-th Markov chain with length Lt, if a solution is generated whose function value is 

less than or equal to the aspiration value, then no more attempt is made to generate the 

next solution. In other words the inner loop stops, the aspiration value is updated and a 

new Markov chain begins. If a solution cannot be found whose function value is less than 

fa(xt) then the complete chain of length Lt is executed and the aspiration value is not 

updated at the begining of the next Markov chain. 

As far as simulated annealing for discrete optimization is concerned many researchers 

have considered alternative acceptance probabilities ( Romeo and Sangiovanni-Vincentelli, 

1985; Anily and Federgruen, 1987 and Faigle and Schrader, 1988). In all cases theoretical 

results regarding asymptotic convergence have been established. Rameo and Sangiovanni

Vincentelli provide some experimental evidence that an alternative acceptance scheme 

does not significantly alter the quality of solutions found. In reality, a system of cooling 

particles and an optimization problem are not same and therefore the simulation has to be 

adapted. In our modification of the SA algorithm we use an acceptance criterion which is 

independent of the current function value fx whenever flfxy is positive. This acceptance 

criterion is given by 

where 
A* (T) = {exp( - (fy - f,,)/T) 

xy 1 
if fy > fx :::: f" , 
otherwise, 

(3.52) 

(3.53) 

where fa is the ctll'I'ent aspiration value. In our implementation of ASA we use the gen

eration mechanism defined by Alternative B. We also use the same method as was used 

by Dekkers and Aarts (1991) to determine the initial temperature. A brief description of 

how the ASA algorithm works is introduced below. 

The initial temperature To is found by applying the original Metropolis acceptance 

criterion and using Alternative B as a solution generation scheme. Therefore, the initial 

temperature calculating scheme of ASA is the same as that of SA and the same To will be 

produced if we use exactly the same local search in Alternative B. A few local descent 

steps are then taken from a random stiLrting point. x" of the initiiLl Markov chain, the 

resulting solution gives the iLspiration viLlue iLne! then the initiiLl chain begins. The regularly 

updated aspiration value, allows \IS to have effective information on the objective function 

as the search proceeds. At the begining of each MiLrkov chain (say, the t-th Markov chain) 

the aspiration wlue is updiLted if required and the lengt.h, Lt, is then determined. The 

greater the difference between fx" the st.iLrting solution of the t-th Markov chiLin, and fa, 

the aspiration viLlue, the longer will be the CUITent Markov chain. Therefore, the aspiration 
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value In plays a part in determining the length of a particular chain in a way to be clarified 

later. An inner loop of ASA starts at Xt with the acceptance criterion defined by (3.52) 

and new trial solutions are then attempted. If the newly generated solution Iy is greater 

than the current solution Ix then it is clear from (3.52) and (3.53) that the acceptance 

probability, A~y (T) will be less than the Metropolis acceptance probability defined by 

(3.15) and consequently the transition probability, p~y(T), in ASA will satisfy 

(3.54) 

From (3.54) it is clear that the ASA procedure is more aggTessive than SA but this can be 

justified by the following arguments: 

At the start of an inner loop the higher the difference between the starting and as

piration solutions, the lower will be the transition probability for lower to higher 

solutions. This can be compensated by considering a proportionately lengthy Markov 

chain. Moreover we will see later that ASA may increase the temperature at some 

stage of the procedure. Therefore, the above considerations will balance the effect of 

aggressiveness of the search. 

No doubt SA proceeds in the right direction with the decreasing temperature as far 

as the global minimum is concerned but it cannot memorize the best solution found 

during the course of its search. ASA can safeguard the best solution and its aspiration 

value is a useful tool which can be used as a guide to the procedure. Moreover, it 

will not be reasonable to accept very high solutions if a solution is known (aspiration 

solution) whose function value is much lower than the current one. Therefore, an 

aggressive search can be justified. 

In ASA, the choice of Lt is not constant throughout the course of the algorithm, it can 

vary from short to long depending upon the present aspiration solution. If the inner loop 

starts with a particular Tt and a solution is reached whose function value is lower than the 

present aspiration value (tu) then at this point the aspiration level is updated, a new inner 

loop starts with TtH, and the process continues. For some iterations the number of trial 

solutions could be very small but this is not a drawback. In fact, Glover and Greenberg 

(1989) argue that there is little need for the SA algorithm to rely on a strong stabilizing 

effect over time. In other words, there is no need to consider very long Markov chains. In 

their implementation they also store details of the best solution found so far and consider 

this to be the final solution. These ideas are supported by Connolly's (1988) modification 

of SA, where having found a suitable fixed temperature, all the remaining iterations are 

carried out that temperature. In the final phase, a descent algorithm can be carried out 

from the best solution found at the earlier phases. 
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Central to the construction of ASA there is a mechanism for keeping track of the best 

solution during the course of the procedure. This mechanism can also send signals to the 

procedure to increase the temperature if required. The question, of course, arises whether 

it is possible to perform such modifications and, at the same time, keep the convergence 

properties of SA. We investigate the impact on the convergence of the modification of the 

acceptance criterion. Indeed, we will see that the basic theoretical ASA algorithm will 

converge to the optimal solution no more slowly than the algorithm described by Dekkers 

and Aarts (1991). 

3.4.2 Theoretical Investigation 

In the implementation of the SA algorithm for continuous variables Dekkers and Aarts 

(1991) suggested adopting the generation mechanism, Alternative B. But this generation 

mechanism implies that 9xy i 9yx. However, if X{k) and Y{k) are defined as the outcomes 

of the trials in the SA algorithm using Alternative A and Alternative B, respectively, 

then Dekkers and Aarts proved that 

> 

lim Pr{Y{k) E Af{e)} 
T l k->oo 

o 

lim Pr{X{k) E Af{e)} :::: 1 - e . 
T lk->oo 

o 

(3.55) 

Theorem 3.1 Let the random variables R{k) and Z{k) be defined as the outcomes of the 

trials using Alternative A and Alternative B respectively but with transition probability 

(3.54). Then 

lim Pr {Z{k) E Af{e)JT} :::: 
T l k->oo 

o 

lim Pr {Y{k) E Af{e)JT} > 1 - e (3.56) 
T l k->oo 

o 

Proof. Let 

PB{T) = Pr{X{k) E Af{e)JX{k -1) E Af{e)jT} (3.57) 

P B'{T) = Pr{R{k) E Af{e)JR{k - 1) E Af{e)j T} (3.58) 

PLS{T) = Pr{LS{Y{k - 1» E Af{e)JY{k - 1) if. Af{e)j T} (3.59) 

PLS'{T) = Pr{LS{Z{k - 1» E Af{e)JZ{k - 1) if. Af{e)j T} (3.60) 

Pr{Z{k) E Af{e)JZ{k - 1) E Af{e)j T} 

= to Pr{R{k) E Af{e)JR{k - 1) E Af{e)j T} 

+ (I - to) Pr{LS{Z{k - 1» E Af{e)JZ{k - 1) E Af{e)j T} 

= to Pr{R{k) E Af{e)JR{k - 1) E Af{e)j T} + (1- to) . 
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Similarly 
Pr{Y(k) E Af(€)IY(k - 1) E Af(€)j T} 

= to Pr{X(k) E Af(€)IX(k - 1) E Af(€)j T} + (1- to) . 

But, due to the effect of the acceptance criterion (3.52) 

Pr{R(k) E Af(€)IR(k - 1) E Af(€)j T} 

~ Pr{X(k) E Af(€)IX(k - 1) E Af(€)j T} . 
(3.61) 

Therefore, . 

(3.62) 

Again 

Pr{Z(k) E Af(€)IZ(k - 1) rt Af(€)j T} 

= to Pr{R(k) E Af(€)IR(k - 1) rt Af(€)j T} 

+ (1 - to) Pr{LS(Z(k - 1)) E Af(€)IZ(k - 1) rt Af(€)j T} 

= to m~~;)) + (1 - to) Pr{LS(Z(k - 1)) E Af(€)IZ(k - 1) rt Af(€)j T} . 

Similarly 

Pr{Y(k) E Af(€)IY(k - 1) rt Af(€)j T} 

= to m~~;)) + (1 - to) Pr{LS(Y(k - 1)) E Af(€)IY(k - 1) rt Af(€)j T} . 

Since PLS'(T) = PLS(T) we have 

to m~~;)) + (1- to)PLS(T) = to m~~;)) + (1- to)PLS'(T)) (3.63) 

Similarly 

Pr{Z(k) rt Af(€)IZ(k - 1) E Af(€)j T} 

= to Pr{R(k) rt Af(€)IR(k - 1) E Af(€)j T} 

+ (1 - to) Pr{LS(Z(k - 1)) rt Af(€)IZ(k - 1) E Af(€)j T} 

= to(1- Pr{R(k) E Af(€)IR(k -1) E Af(€)j T}) . 

Pr{Y(k) rt Af(€)IY(k - 1) E Af(€)j T} 

= to(1- Pr{X(k) E Af(€)IX(k - 1) E Af(E)j T}) . 

Using (3.61) we have 

to(1- PB'(T)) ~ t,,(I- PB(T)) 
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Pr{Z(k) ~ A,(tO)IZ(k -1) ~ A,(tO)jT} 

= to Pr{R(k) ~ A'(tO)lR(k - 1) ~ A'(€)j T} 

+ (1- to) Pr{LS(Z(k -1)) ~ A,(€)IZ(k - 1) ~ A'(€)j T} 

= to(l- m;:c~;))) + (1 - to)(l- Pr{LS(Z(k - 1)) E A,(€)IZ(k - 1) ~ A/(€)j T}) . 

Therefore 

Consequently using (3.57)-(3.60) 

E(waiting time of Z(k) in A,(€)IT) 
00 

= I> x Pr{V'O:5i<k: Z(i) E A/(€) and Z(k) ~ A,(f)IZ(O) E A/(€)jT} 
k=l 
00 

= L k[toP B'(T) + (1 - to)] (k-l) [to(l - P B'(T)] 
k=l 

00 

= to(l- PB'(T)) Lk[toPB'(T) + (1- to)] (k-l) 

k=l 

= to(l- PB'(T))[t
o
(l_ ;B'(T)]2 = [to(1- PB'(T)]-l 

E(waiting time of Z(k) in O\A/(€)IT) 

Similarly 

00 

= Lk x Pr{V'O:5i<k: Z(i) ~ A/(€) and Z(k) E A,(€)IZ(O) ~ A/(€)jT} 
k=l 

= ~ k [to(l - m;:c~~))) + (1 - to)(l- PLS'(T))t-
1 

[to m;:C~;)) 
+ (1 - to)(l - P LS'(T))] 

- [t m(A/(€)) + (1 _ t )PLS'(T)] 1 
- 0 m(O) 0 [t m(A,«» + (1 _ t )P LS'(T)] 2 

o m(n) 0 

= [to m~~t) + (1- to)PLS'(T)r
1 

. 

E(waiting time of R(k) ill Af(€) IT) 

= (1 - P B'(T))-l . 

E(waiting time of R(k) ill O\A,(f)IT) 
m(O) 

-
m(A/(f)) 
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Dekkers and Aarts (1991) proved that the SA algorithm for continuous variables converges 

to the optimal solution using the generation mechanism (3.51). In other words, they have 

proved that 

lim Pr{Y(k) E A,(e)IY(O) E nj T} ~ 1- e 
T !k ..... "" 

o 

If the ASA algorithm converges to the optimal solution then 

But (3.66) is defined by 

lim Pr{Z(k) E A,(e)IZ(O) E nj T} ~ 1- e 
T! k ..... "" 

o 

(3.66) 

E(waiting time of Z(k) in A,(e) IT) + E(waiting time of Z(k) in n\Af(€) IT) ~ 1- e 

[t,,(l- P B'(T»]-l '* > l-e 

E(waiting time of Z(k) in Af(e)IT) 

[t,,(l- PB'(T»]-l + [to mf:Mi)) + (1- to)PLS'(T)]-l -

Now using (3.64) 

[to(l- PB'(T»]-l ~ [to(1 - P B(T»tl 

1 < 1 
'* [to(1- PB'(T»]-l - [to(l- PB(T»]-l 

[t m(A,(_)) + (1- t )PLS(T)]-l [t ",(A,(_)) + (1- t )PLS(T)]-l 
o m(O) 0 0 m(n) 0 

'* [t,,(1 - P B'(T»]-l ::; [to(1 - P B(T»] 1 

[t m(A,(_)) + (1- t )PLS(T)]-l [t m(A,(_)) + (1- t )PLS(T)]-l 
o m(D) " 0 m(ll) 0 

'* 1 + [to(l- PB'(T»]-l ::; 1 + [to(l- PB(T»]-l 

[to(1- PB'(T»t1 + [to mf~t~)) + (1- to)PLS(T)]-l 

'* [to(1 - P B'(T»]-l . 

[to(1 - P B(T))]-l + [t" m;:6ii)) + (1 - to)P LS(T)]-l 

::; [t,,(1 - P B(T»] 1 

[t (1 - P B'(T»]-l '* 0 

[to(1- PB'(T»]-l + [to"'(:(lii)) + (1- to)PLS(T)]-l 

> [to (1 - P B(T»]-l 

- [to(1 - P B(T»]-l + [to '"(:(lij)) + (1- to)PLS(T)]-l 
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However by (3.63) 

Therefore 

So 

[t m(Af(e)) + (1- t )PLS(T)]-l 
o men) 0 

= [to m;:c~;)) + (1- to)PLS'(T)]-l 

[to(l- PB'(T))]-l > 

[to(1- P B'(T))]-l + [to m;:(B»)) + (1 - to)P LS'(T)]-l -

[to(l - P B(T))]-l 
-------.!:~~..:,..:~;..!.!..!-------- 2: 1 - e 
[to(1- PB(T))]-l + [to "';:~»)) + (1- to)PLS(T)]-l 

[to(1 - PB'(T))]-l 
-------.!.:~~..:..,.:~::;.,!-~------- 2: 1 - e 
[to(l- PB'(T))]-l + [t,:n!:(I!j}) + (1- to)PLS'(T)]-l 

This completes the proof of Theorem 3.1. 

3.4.3 An Adaptive Polynomial-time Cooling Schedule 

(3.67) 

In addition to the cooling schedule described in section 3.2.3, a number of cooling schedules 

have been reported in the literature (Otten and van Ginneken, 1984; Lam and Delosme, 

1986 and Huang and et al., 1986). However, there has always been an open question as 

to how fast the simulation should be 'cooled', i.e, the question of the length of Markov 

chains and how much the temperature may be decreased to achieve convergence to the 

global minimum. Different arguments have been addressed in different cooling schedules. 

In our proposed adaptive cooling schedule some of the annealing parameters proposed 

by Aarts and Van Laarhoven (1985) are changed. Suppose, at the start of a particular 

temperature level Tt the aspiration value is given by la. Adjustments are made to the 

annealing parameters in the following way. 

Length of the Markov chain (Lt) 

As mentioned above, lmtil now, no generally acceptable solution has been presented for 

the 'inner-loop criterion', which decides how many 'local move-iterations' are required at 

each temperature. The optimal value of this constant, which has to depend on the problem 

size, can not be determined in a rigorous way. Dekkers and Aarts (lm)!) have chosen the 

value to be 

M= IOn, (3.68) 

where n is the problem dimension. Rather than allowing M to depend on the problem 

dimension only it would be more sensible to link it with the topograph of I in some way 

to provide additional information to the procedure. Therefore, in our implementation, we 

determine the length of Markov chain in an adaptive way that depends on the starting 
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solution Ix .. for the t-th Markov chain and the value for I" of this Markov chain. 

we define 
L~ = M +Int[MF] , 

F = 1 - exp( -(Ix. - la» . 

In fact, 

(3.69) 

Clearly Lf is equal to M when Ix. = la and tends to 2M as Ix. - la tends to 00, i.e., 

L't E [M,2M]. 

Decrement of the control parameter 

In many implementations of the SA algorithm, the temperature is reduced by a small 

factor at each iteration. This temperature scale-factor is the ratio between the old and the 

new temperature. Usually a constant is applied, or one that switches between at most two 

values (Kirkpatrick et al., 1983; R.omeo et. al., 1984 and White, 1984), such as e.g. 0.95 

in the transition region (where the energy changes rapidly) and 0.8 or 0.85 elsewhere. In 

practice, however, it has to approximate unity only in the critical regions; or equivalently, 

when the specific heat, which is defined as the derivative of (f) with respect to T, becomes 

large, because this event signals a phase transition (Kirkpatrick et al., 1983) in physical 

annealing. In the context of optimization, therefore, when the function value drops by 

a significant amount at a particular temperature then the next temperature should not 

be reduced at all or it should only be reduced by a small amount. We assume that the 

function value drops by a large amount if it is less than I" at the current Markov chain. 

Dekkers and Aarts (1991) find the new temperature Tt+! by (3.33) where the distance 

parameter Ii determines the rate of decrease of the control parameter. Considering the 

different characteristics of physical annealing and global optimization we also decrease the 

temperature by (3.33) but our distance parameter Ii satisfies 

(3.70) 

where V is the number of iterations carried out so far in the current Markov chain and limin 

and limax are user supplied values (see later). Clearly Ii varies between its maximum and 

minimum values, if V is relatively small then the value of Ii is made smaller. Whether the 

aspiration criterion is satisfied or not the distance parameter Ii is calculated from above rule, 

therefore, the greater the number of trials the greater the decrement in temperature and in 

the limit if V = 2M then Ii = limax . We keep Dmin = 0.05 throughout the implementation 

of the ASA algorithm. However caution has to be taken when V is very small because, 

even if the temperature is higher, the number of acceptances will be smaller. Moreover, 

if the number of solutions generated at a high temperature is small and if they are close 

to each other then the standard deviation will be very small. Clearly if the standard 

deviation, a(Tt), in (3.33) is small then the next temperature will be reduced dramatically. 

Therefore, to safeguard a smooth temperature decrement we use Tt+! = 0.95Tt when the 
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number of acceptances::; n'l) where n" is a small positive integer. For all implementations 

we use na = 3. 

Final value of the control parameter (stopping criteria) 

The last problem to be solved is that of finding a criterion to terminate the annealing. 

An easy (but perhaps not very satisfactory) way consists in stopping when the objective 

function has not significantly changed over a reasonable number of temperature steps. 

Therefore in our implementation, conditions Cl and C2 given below are used: 

Cl: I dis(Tt) Tt I 
dTt f(To) < Cs , (3.71) 

C2: 1ft - fal ::; Cr , 

where Cs and Cr are small positive numbers and It is the final solution obtained in t-th 

Markov chain, at the end of which Cl is satisfied. Notice that the condition Cl is satisfied 

only if Tt is very small and no improved solution is found over a number of chains. For the 

termination of the ASA procedUl'e at the end of t-th Markov chain we check condition Cl 

and then C2. If condition Cl is satisfied but C2 is not then the algorithm starts again with 

the aspiration point as the starting point of the (t + l)-th Markov chain and the aspiration 

value is found by updating the old level. The temperatUl'e Tt+l is now increased by setting 

(3.72) 

where To is the initial temperature and J1. satisfies 0 < It < 1. (This is known as re

annealing (Ingber, 1989)). If we increase the temperature by the above rule, this may, of 

COUl'se, introduce cycling in the algorithm, especially when the aspiration point gets stuck 

on a local minimizer. However, this can be overcome using 

(3.73) 

where T~ is the initial temperature of the i-th re-annealing. Obviously, in the first re

annealing, T; = p.To. When the algorithm stops the aspiration solution is taken as the 

optimal solution. 
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The new aspiration based simulated annealing procedure is given below in pseudo

PASCAL. 

Procedure Aspiration Based Simulated Annealing 

begin 

initialize a point Xo by random selection 

calculate initial temperature To (see appendix 3A). 

t := OJ (initialize the temperature change counter t) 

stopcriterion:=falsej 

while stopcriterion=false do (outer loop begins) 

begin 

k := OJ (initialize repetition counter for irmer loop) 

L9 := OJ (initialize solution generation counter for inner loop) 

calculate f,,(xt) := LB(xt)j (Xt is the initial point of the t-th Markov chain) 

calculate Lt' := M + M x round (1 - exp( -(fXt - f,,)))j (M = IOn) 

aspiration-check:=falsej 

repeat until k = Lt or aspiration-checkj (inner loop begins) 

begin 

generate point Yj (a neighbour of Xj see appendix 3A) 

if fy :::: f .. then 

begin 

aspiration-check:=truej 

Lg:= Ly + 1j 

x := Yj (make Y the current point) 

f,,(x) := LB(x)j (x is now the init.ial point of next Markov chain) 

end 

else 

begin 

calculat.e f:"f::y := fy - faj (in moving from x to y) 

accept (f:"I::y, IX! I y, Tt)j 

if accept=true then 

begin 
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L9 := L9 + 1; (increase the number of acceptances by one) 

x := y; (make y the current point) 

end; 

end-, 
k := k + 1; (increase number of trials by one) 

end; (end of inner loop) 
- 1 L 
j(Tt ) := Lg L:i~1 jx; (average of accepted solutions at Tt) 

.1 

u{Tt ) := (ig L:f';1 (fx - j(Tt )) 2 ) 2; (standard deviation of accepted solutions) 

8 := c5"min + (omax - b'min) 2t; 
If Lg :s nu then Tt+! = O.95Tt else 

T; T; (1 Tt In(1+6))-1 
HI:= t + 3u(Tt ) ; 

if t = 0 then 

begin 

[.(Tt) := [(Tt) 

stopcriterion:=false 

end else 

begin 

[.(Tt ) := O.75j(Tt) + O.25f(Tt-I); 
<IT.(T,) ._ i,(Tt Il-f.(Ttl. 

dTt ,- Tt-l Tt ' 

C1:=1 dij(T,) -1L 1< e . 
,Tt f(To) - ., 

C2:=ift* - j"i < er 

if Cl and not C2 then 

begin 

Tt+! := ILTo; (see 3.73, ill this section) 

end 

stopcriterion:=C1 and C2; 

end; 

t := t + 1; (increase the temperature change COlmter by one) 

end; (end of outer loop) 

end. 
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function accept (Af::y, fx, fv, Tt)j 

begin 

endj 

if fy - fx ::; 0 then 

begin 

accept:=truej 

else 

if exp{ -Af::y/Tt) > random (0,1) then 

accept:=truej 

else 

accept:=falsej 

end· , 

3.4.4 Numerical Results and Discussion 

In our numerical comparison initial focus is made on the different parameters of ASA. 

Except for ti, which is allowed to vary between its maximum and minimum values, the 

values of the other parameters that are common to SA and ASA are kept the same as 

those suggested by Dekkers and Aarts (1991). Therefore for the cooling schedules of both 

SA and ASA we use the following common parameters: XO = 0.9, Cs = 10-4 and to = 0.75 

(Alternative B) but ti = 0.1 was chosen for the SA algorithm and Cr = 10-3 for ASA (see 

previous section). We found the initial temperature To for both ASA and SA by generating 

mo = IOn solutioIL~ (see Appendix 3A). For the generation mechanism, Alternative B, we 

use steepest descent in the early stages and limited memory BFGS (version E04DGF) from 

NAG (implemented for two iterations) in the later stages for the SA and ASA algorithms. 

If the current temperature level, Tt, falls below a certain fraction of the initial temperature, 

To, i.e. if Tt ::; 0.05To or Tt ::; 15, BFGS is implemented. 

Throughout a run of the ASA procedure the above mentioned BFGS routine is used 

for two iterations to find the successive aspiration solutions. We first examine the effect 

of the imposition of the condition C2. To do so we removed the condition C2 and ran the 

ASA procedure for timax = 0.2 tmtil Cl was met. The results obtained are given in Table 

3.1 under It =null. The effect was that the global minimum was obtained for all functions 

but GP, however when the condition C2 was put back the global minimum for GP was 

also obtained. 

The effect of It was also examined by running the program with It -

0.10, 0.15, 0.20, 0.25 and 0.30. For these values of It the global minima of all test functions 
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were found. In Table 3.1, t represents the temperature counter, R the number of re

annealings and Q represents the accuracy of the final solution which is measured as follows: 

the global minimum f* is found by conducting a local search from the vicinity of the 

global minimizer for each problem with the local search tolerance 10-10 and if the optimal 

solution found by SA is j* then Q = f. where both solutions have been taken up to 8 

decimal places. Table 3.1 shows that the greater the number of re-annealings the greater 

the number of function evaluations. Notice that re-annealing only occur for for GP. In 

this table the averages (AVE) are taken over the data for which the global minima were 

obtained. The results for GP for different values of p. are also given since re-annealings 

only occur for this function. 

Table 3.1 

FE cpu t To Tf R Q 

697 0.03 23 335.34 7.51£-5 - 99.99% BR p.=(null) 

1187 0.09 29 21815.39 5.58E-5 - (*) GP 

1746 0.20 24 10.87 5.57E-5 - 99.99% S5 

1748 0.26 24 11.16 5.57E-5 - 100% S7 

1748 0.26 24 11.25 5.57E-5 - 100% SlO 

920 0.19 25 5.42 1.56E-4 - 99.99% H3 

1681 0.44 23 4.77 4.88E-5 - 100% H6 

1423 0.23 24 AVE 

2394 0.15 57 21815.30 1.74E-1 3 100% GP /L=O.lO 

2544 0.11 62 21815.30 1.67E-1 3 100% GP p.=0.15 

2530 0.15 68 21815.30 4.05EO 2 100% GP /L=0.20 

2820 0.10 81 21815.30 8.32E-5 4 100% GP /L=0.25 

2832 0.33 73 21815.30 6.40EO 2 100% GP /L=0.30 

2626 0.17 68 AVE 

• Local minimum found. 

In essence, the choice of /L could provide ext.ra free(lom t.o deal with more difficult and 

complicated problems, especially when the desired initial temperature for a particular 

problem is not known. Of course changing the value of IL does not affect the results if 

re-annealing does not. occur. Fl'om Table 3.1 it is clear that the best result is obtained 

when p. = 0.1 and therefore in the rest of our numerical studies we take value of p. to be 

0.1. 

We now investigat.e t.he effect. of (\Ilax and t.he results are given in Table 3.2. Since in all 

implementations the initial temperature remains the same therefore it has been excluded 

in Table 3.2. 
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Tahle 3.2 
bmax = 0.3 

FE cpu t R Tf Q 
581 0.07 18 0 7.41E0 99.99% BR 
2406 0.10 57 3 1.27E-1 100% GP 
1122 0.16 16 0 3.88E-5 99.99% 85 
1142 0.17 16 0 3.88E-5 100% 87 
1147 0.19 16 0 3.88E-5 100% 810 
764 0.15 21 0 7.23E-2 99.99% H3 
708 0.19 13 0 7.35E-3 100% H6 
8870 1.03 157 Total 

bmax = 0.4 
528 0.03 18 0 1.28E-1 99.99% BR 
2086 0.13 48 4 2.76EO 100% GP 
1122 0.12 16 0 3.02E-5 100% 85 
1142 0.14 16 0 3.02E-5 100% 87 
1147 0.19 16 0 3.02E-5 99.99% 810 
750 0.13 19 0 1.17E-2 100% H3 
694 0.15 12 0 1. 22E-3 99.98% H6 
7469 0.89 145 Total 

limax = 0.5 
479 0.13 16 0 5.86E-5 99.99% BR 
1982 0.08 44 4 2.69E-4 100% GP 
779 0.10 16 0 2.88E-4 99.99% 85 
783 0.12 16 0 2.88E-4 100% 87 
1147 0.18 16 0 2.51E-5 100% 810 
728 0.17 19 0 6.49E-3 99.99% H3 
694 0.17 12 0 1.15E-3 100% H6 
6592 0.95 139 Total 

limax = 0.6 
453 0.03 14 0 2.38E-5 99.99% BR 
1430 0.05 33 3 1.07E-4 100% GP 
779 0.10 16 0 2.72E-4 100% 85 
783 0.13 16 0 2. 71E-4 100% 87 
783 0.13 16 0 2. 71E-4 99.99% 810 
772 0.12 19 0 1.93E-2 100% H3 
602 0.13 14 0 8.92E-3 100% H6 
5602 0.69 128 Total 
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limax = 0.7 
453 0.08 16 0 6.30EO 99.99% BR 
1508 0.09 35 3 6.33E-2 100% GP 
789 0.08 17 0 2.lOE-4 99.99% 85 
793 0.14 17 0 2.lOE-4 100% 87 
783 0.13 16 0 2.57E-4 100% 810 
607 0.09 19 0 1.59E-2 99.99% H3 
602 0.14 11 0 8.50E-3 100% H6 
5535 0.75 131 Total 

limax = 0.8 
383 0.10 16 0 2.39E-5 99.99% BR 
1602 0.06 35 3 5.73E-2 100% GP 
592 0.12 15 0 7.50E-1 100% 85 
596 0.09 15 0 7.50E-1 100% 87 
598 0.11 16 0 7.50E-1 100% 810 
607 0.09 19 0 1.48E-2 99.99% H3 
602 0.17 11 0 8.12E-3 100% H6 
4980 0.74 127 Total 

limax = 0.9 
498 0.14 17 0 2.19E-5 99.99% BR 
1673 0.08 35 3 5.24E-2 100% GP 
592 0.08 15 0 7.25E-1 100% 85 
596 0.09 15 0 7.25E-1 100% 87 
598 0.12 16 0 7.25E-1 100% 810 
607 0.11 19 0 1.38E-2 99.99% H3 
602 0.17 11 0 7.78E-3 99.99% H6 
5166 0.77 128 Total 

limax - 1 
447 0.07 12 0 5.61EO 99.99% BR 
1673 0.12 35 3 4.85E-2 100% GP 
592 0.09 15 0 7.01E-1 100% 85 
596 0.11 15 0 7.01E-1 100% 87 
598 0.11 16 0 7.01E-1 100% 810 
607 0.11 19 0 1.30E-2 99.99% H3 
754 0.18 12 0 8.26E-3 99.98% H6 
5267 0.70 124 Total 
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Analysis of Table 3.2 shows that in each case the global minimum is located without any 

difficulty. For all values of timax re-annealing occurs for GP. The total figures indicate that 

the best results are obtained when timax = 0.8. Table 3.2 also shows that for all values 

of timax the total cpu times are quite small and the global minima are obtained with high 

accuracy. So far, for the length of the Markov chain we have used, L~, given by (3.69). 

However, it would be interesting to see how ASA performs using the length of Markov 

chain defined by (3.68). We have therefore run ASA with tIllS length of Markov chain and 

studied the effect of timax and the results are shown in Table 3.3. Clearly the performance 

is much better for every value of timax considered (but see Chapter 5, Section 5.3). For 

all values of timax re-annealing occurs for GP and for timax = 0.7,0.9,1.0 re-annealing also 

occurs for H3. Once again the best value for omax is 0.8. 
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Tahle 3.3 
Omax = 0.3 

FE cpu t R Tt Q 
435 0.07 19 0 6.65E-5 99.99% BR 
1242 0.09 51 2 2.90EO ·100% GP 
719 0.08 19 0 3.57E-5 99.99% 85 
723 0.10 19 0 3.57E-5 100% 87 
723 0.12 19 0 3. 57E-5 100% 810 
556 0.10 19 0 5.16E-2 99.99% H3 
694 0.17 15 0 8.59E-3 100% H6 
5092 0.73 161 Total 

omax = 0.4 
347 0.04 15 0 5.84E-5 99.99% BR 
1282 0.09 51 2 1.83EO 100% GP 
719 0.07 19 0 3.03E-5 100% 85 
723 0.08 19 0 3.03E-5 100% 87 
723 0.13 19 0 3.03E-5 100% 810 
544 0.09 19 0 2.52E-2 99.99% H3 
694 0.17 15 0 8.08E-3 100% H6 
5032 0.67 157 Total 

omax = 0.5 
462 0.11 16 0 5.22E-5 99.99% BR 
1016 0.13 41 3 4.89E-5 100% GP 
589 0.05 15 0 9.85E-4 100% 85 
591 0.08 15 0 9.94E-4 99.99% 87 
591 0.11 15 0 9.95E-4 100% 810 
482 0.08 17 0 2.28E-2 99.99% H3 
730 0.16 18 0 5.19E-3 100% H6 
4461 0.72 137 Total 

omax = 0.6 
485 0.13 17 0 4.72E-5 99.99% BR 
947 0.08 36 3 4.78EO 100% GP 
524 0.06 14 0 4.49E-5 100% 85 
540 0.08 14 0 4.69E-4 100% 87 
560 0.09 14 0 4.64E-4 100% 810 
471 0.08 19 0 2.95E-2 99.99% H3 
808 0.26 18 0 4.93E-5 100% H6 
4335 0.78 132 Total 
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lirnax = 0.7 
424 0.12 15 0 5.49EO 99.99% BR 
976 0.07 37 3 3.65E-2 100% GP 
524 0.08 14 0 4.14E-5 100% 85 
524 0.09 14 0 4.33E-4 100% 87 
524 0.08 14 0 4.29E-5 100% 810 
475 0.08 19 1 2.64E-2 99.99% H3 
840 0.25 23 0 4.39E-l 100% H6 
4287 0.79 136 Total 

lirnax = 0.8 
408 0.09 19 0 4.71EO 99.99% BR 
734 0.12 32 3 3.64E-5 100% GP 
524 0.06 14 0 3.85E-5 100% 85 
524 0.09 14 0 4.03E-5 100% 87 
524 0.08 14 0 3.99E-5 100% 810 
451 0.06 16 1 2.41E-2 99.99% H3 
558 0.14 13 0 4.16E-l 100% H6 
3723 0.64 122 Total 

lirnax = 0.9 
405 0.08 19 0 3.97EO 99.99% BR 
834 0.11 32 3 3.64E-5 100% GP 
630 0.06 26 0 3.85E-4 100% 85 
645 0.07 26 0 4.03E-4 100% 87 
641 0.09 26 0 3.99E-4 100% 810 
478 0.08 16 1 2.41E-2 99.99% H3 
568 0.15 18 0 4.16E-l 99.99% H6 
4201 0.64 163 Total 

limax - 1 
397 0.09 15 0 3.44E-5 99.99% BR 
834 0.03 32 3 3.09E-5 100% GP 
630 0.05 26 0 7.84E-6 100% 85 
658 0.06 27 0 7.09E-6 100% 87 
641 0.08 26 0 7.84E-6 100% 810 
458 0.08 16 1 1,99E-5 99.99% H3 
599 0.22 15 0 7.82E-5 99.99% H6 
4217 0.61 157 Total 
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In our final comparison of ASA and SA we therefore use the results of Table 3.3 for 

8max = 0.8. We note that both ASA and SA determine the initial temperatures by gener-

ating IOn solutions and using the Metropolis acceptance probability and generation mech-

anism, Alternative B. Since we use the same local search in the generation mechanism of 

Alternative B, obviously the initial temperatures for both algorithms are the same. In 
Table 3.4, the results of comparing SA and ASA are shown. 

Tahle 3.4 

SA 

FE cpu t To Tf Q 
1088 0.05 42 335.34 5.24E-5 100% BR 

1102 0.09 49 21815.39 5.24E-5 (*) GP 

1120 0.10 26 10.87 3.49E-5 100% S5 

1122 0.12 26 11.16 3.49E-5 100% S7 

1179 0.12 27 11.25 3.49E-5 100% SlO 

1252 0.18 38 5.42 5.24E-5 99.99% H3 

1817 0.33 27 4.77 2.62E-5 100% H6 

1263 0.15 31 AVE 

ASA 

408 0.09 19 335.34 4.71EO 99.99% BR 

734 0.12 32 21815.39 3.64E-5 100% GP 
524 0.06 14 10.87 3.85E-5 100% S5 

524 0.09 14 11.16 4.03E-5 100% S7 

524 0.08 14 11.25 3.99E-5 100% SlO 

451 0.06 16 5.42 2.41E-2 99.99% H3 

558 0.14 13 4.77 4.16E-1 100% H6 

532 0.09 17 AVE 

* local minimum founel 

From Table 3.4 it is clear that the ASA algorithm performs much better than SA both in 

terms of cpu time and the number of function evaluations. Moreover, SA failed to locate 

the global minimum for GP. Finally, we compare our numerical results with other recent 

algorithms using the number of function evaluations as a basis for comparison and the 

results are shown in Table 3.5 where the results other than that for TMSL, MSL, ASA 

and SA have been taken from the references listed in Table 2.8 in the previous Chapter. 

The results in Table 3.5 show that the new ASA algorithm compares favourably with other 

algorithms except MSL and TMSL. 
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Table 3.5 

N tjmbf:r Qf flln!.:tiQn !::yalllations 

Method GP BR S5 S7 SlO H3 H6 AVE 

A 4400 1600 6500 9300 11000 2500 6000 5900 

B 2500 1800 3800 4900 4400 2400 7600 3914 

C 2499 1558 3649 3606 3874 2584 3447 3031 

D (SA) 1102" 1088 1120 1122 1179 1252 1817 1263 

E 402 346 1866 1719 1709 343 1321 1100 

F 436 279 1423 1238 1213 545 1581 959 

G 378 597 620 788 1160 732 807 726 

H (ASA) 834 408 524 524 524 451 558 532 

I 307 206 576 334 1388 166 324 471 

J 53 46 98 116 100 60 127 85 

" Local minima found 

From the final comparison it is clear that ASA is much better than not only SA but 

many other methods. For higher dimensional problems and for the problems with many 

local minima SA-type algorithms may be necessary because the amount of data that has to 

be stored while running the ASA is negligible and no complete local searches are needed. 

Moreover, if the dimension or the number of local minima is increased, this has no effect 

on the amount of data stored. Therefore, in many situations the ASA algorithm will be 

preferable since this method performs better than the original SA algorithm. However, 

further research may yield yet more efficient SA algorithms. 
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CHAPTER 4 

Controlled Random Search 
Algorithms (CRS) 



4.1 Introduction 

The stochastic methods described in earlier Chapters are often preferred to deterministic 

ones, because they are applicable to a wider class of functions, but they still require 

differentiability ofthe underlying function. Moreover, stochastic methods use local searches 

and therefore a local search procedure is needed. In practice, however, there are problems 

where analytical differentiation is not available and numerical differentiation may cause 

instability. Therefore, methods which do not use derivatives can be useful. Controlled 

random search (CRS) is a popular algorithm because it does not require any derivative 

evaluations, analytical or numerical. CRS (Price, 1977, 1983, 1987) is a 'direct search' 

technique and purely heuristic. A direct search method is a method which relies only on 

evaluating f(x) at a sequence of points x(i) E n (i = 1,2, ... ) and comparing values, in 

order to reach the optimal point x'. Direct search methods are, in general, less efficient 

than methods based on the use of local searches. A wide variety of direct search methods 

can be found in Torn and Zilinskas (1989). Recently Palosaari et.al. (1992) have developed 

a direct search algorithm for global optimization which is based on alternating sequences of 

uniformly distributed and concentrated random searches in the variable space. The search 

space is reduced so that the best values of the variables will be approximately in the centre 

of the reduced search range. The method can also deal with constrained problems. 

CRS is a kind of two phase method with few mathematical complexities and is appli

cable to a wide class of functions including nonsmooth and, to some extent, constrained 

functions. In the original version, CRS1, of CRS (Price, 1977) the search region n is sam

pled and then a simplex is formed from a subset of this sample. One of the points of the 

simplex is reflected in the centroid of the remaining points (as in Nelder and Mead, 1965) 

to obtain a new trial point and the process is then repeated until some stopping condition 

is met. Price enhanced the efficiency of CRS1 by a modification which he called the CRS2 

algorithm (Price, 1983) and in (Price, 1987), a further modification CRS3 was given. In 

CRS2 a more sophisticated use is made of the simplexes in obtaining new trial points and 

in CRS3 a Nelder and Mead-type local search is incorporated. 

In each of the CRS algorithms initially a set called the 'trial set', with a fixed number 

N of trial points and the corresponding function values are generated. The global phase 

always aims to select a new trial set. This new trial set is constructed by replacing the worst 

trial point in the original set by a promising one found in the local phase. The local phase 
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is a continuous iterative process in which a trial point, the 'new' point, is defined in terms 

of a configuration of n + 1 points, n being the dimension of the problem. As the algorithm 

proceeds the points in the trial set. t.end to cluster around the global minimum. Of course, 

the probability that the points ult.imately converge to the global minimum depends on 

the value of N, the complexity of the function and the way in which the trial points are 

chosen. However, practical numerical experience suggest.s that the CRS algorithms are 

slower than recent st.ochastic algorithms. To attempt to make the CRS algorithm more 

efficient we have devised t.wo new algorithms, CRS4 and CRS5. The CRS4 algorithm is 

non-gradient but CRS5 includes a gradient-based local search procedure. Details of the 

two new versions are discussed in this Chapter and numerical results and comparisons are 

given. Some concluding observations based on the new algorithms are also given. 

4.2 The CRS!, CRS2 and CRS3 Algorithms 

CRS is an appropriat.e heurist.ic method for global optimization because it demonstrat.es a 

'reasonably intelligent' pat.tern recognition capability. The principle features of CRSl, the 

first version of the algorithms, are given below. 

In the search region n a fixed number of point.s N is generated from a tmiform distri

bution. The N points ami corresponding function values are stored in an array A and the 

highest and the lowest funct.ion values are found and denot.ed by /I. and it respectively. 

At each iteration a new trial point, p, is det.ermined using a set of randomly chosen points 

from the N points currently held in A. The function value at p, fp is then compared 

with the greatest function value fh, if fT' < fh then h and fT. are replaced with p and fp 

respectively, but if fT' > fh then the point. p is discarded and a new trial point is chosen. 

At each iteration n + 1 distInct points, Rl, R2 , R3 , ... , Rn+l, are chosen at random from 

the N (N)> n) points in store and these constitute a simplex in n-space. The point Rn+! 
is arbitrarily taken as the pole of the simplex and the new trial point 11 is defined as the 

image point of the pole with respect to the centroid G, of the remaining n points so that 

p = 2G - Rn+!, where p, G and Rn+l represent position vectors. The points generated 

by this procedure are known as primary trial points. Without significantly reducing the 

effectiveness of the primary search, the efficiency of the procedure is increased by making 

use of secondary t.rial points defined by q = (G + Rn+!) /2. While the primary trial points 

are search oriented (p lies outside the chosen simplex), the secondary points are conducive 

to convergence (q lies within the simplex). At any stage in the optimization procedure if 

the percentage of successes, fT' < !h, in the total number of trials so far is below 50% then 

whenever a primary trial fails, the corresponding secondary point is chosen for the next 

trial. In this way the cumulative success rate tends to converge on a value around 50%, 
maintaining a reasonable balance between search and convergence. A stepwise description 

of the CRSl algorithm is as follows. 
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The eRSl Algorithm 

Step 1 Choose N points at random over n, evaluate the function values at 

these points and store the points and function values in an array A. 

Step 2 Find in A the worst point h with function value Ih and the best 

point l with function value it; if the stopping condition is satisfied, stop. 

(The stopping condition is that the absolute difference lA - Id should be 

less than a given tolerance.) 

Step 3a Choose randomly (n + 1) distinct points R1, R2, R3, ... , Rn+! from 

A. Take Rn+! as pole and find the centroid G of the remaining n points 

from 

Find the new trial point JI = 2G - Rn+!. If JI E n and satisfies the other 

constraints (if there are any) then evaluate 11>, If 11' < Ih, replace h in A 
by JI and go to step 2. Else if the success rate ?: 50% then go to step 3a, 

otherwise determine q = (G + Rn+!) /2. If q rt n go to step 3a, else go to 

step 3b. 

Step 3b If 1'1 < A then replace h in A by q and go to step 2 else go to step 

3a. 

The number of different ways in which (n + 1) points can be chosen from N is N Cn +! 

and because the choice of pole Rn+! is arbitrary the total number of equiprobable next 

trial points associated with the configuration of N stored points is (n + 1)N Cn+!' For 

CRS1, N=25n is recommended. It should be noted that the CRS1 algorithm will be much 

more efficient than pme random seardl if the probability of success at each iteration is 

sufficiently high. In fact this probability is expected to be much higher than pme random 

search because of its use of simplexes for new trial points. The disposition of the set of 

(n + 1)N Cn +1 points reflects a general trend in the current configuration and hence the 

random choice of any point from this set as the next trial point is likely to result in a more 

efficient search than a procedure based on pure random search. On the other hand the 

domain of the set is not restricted to the immediate neighbourhood of the configuration and 

this is conducive to exploration. The CRS1 procedure achieves a reasonable compromise 

between the conflicting requirements of thoroughness of search and convergence by defining 

the set of potential trial points in terms of the configuration of the N points of the current 

trial set. However, its efficiency can be enhanced by a modification of step 3 resulting in 

the CRS2 algorithm. The modification is given by 

Step 3 Choose at random n distinct points R2, R3, ... , Rn+1 excluding l, the 

lowest point. Let R1 = l. Determine the centroid G = (2:::1 Ri) / n of the 
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n points R 1, R3, ... ,Rn and compute the next trial point p = 2G - Rn+ 1. 

If pEn and fp < fh then replace h in A by p and go to step 2 else repeat 

step 3. 

In CRS2, because R1 is always the point I, n points·are chosen randomly from N-1 

points. Moreover, 1 can never be the pole of the simplex. Thus the number of trial points 

in CRS2 is nN - 1Cn • A suggested value for N in this case is lO(n+ 1). In general, CRS2 is 

much more efficient than CRS1 in terms of both convergence and efficiency (Price 1983). 

Clearly the greater the value of N the more thorough the search and the greater the 

probability of getting a global minimum. By contrast, increasing the value of N slows 

down convergence, so the choice of N is a matter of experience. However larger values for 

N are generally advocated. 

The stopping criterion for the CRS algorithms is defined in terms of the worst and 

the best points in the array A in such a way that when the N points are cl\h~tered around 

the global optimum, the algorithm stops. Typically If I - fhl < € is taken as the criterion. 

The value of € depends upon the problem in hand but usually a small number is preferred. 

In our implementation we have taken € = 10-4, that is, when the function values of all 

points in array A are identical to an accuracy of four decimal places. 

The CRS3 algorithm is a modified version of CRS2 which comprises CRS2 together 

with a non-gradient local search procedure (LOC), selected to preserve the nongradient 

feature of the CRS2 algorithm. An adaptation of the Nelder and Mead simplex algorithm 

is used for LOC. The number of initial sample points used for CRS3 is the same as for 

CRS2. The n+ 1 best points in A constit.ute a simplex in n-space and if the function values 

in A are arranged in descending order, LOC operates only on the smallest one-tenth of 

the array A. Therefore the data required by LOC is explicitly available within the CRS2 

database A. A stepwise description of LOC is given below. 

The procedure LOC 

StepL 1 Let UI be the worst point of the simplex of (n + 1) best points in 

A. Let G be the centroid of the other n points. Let s be the second worst 

point of the simplex. Compute three potential trial points, 

p = 2G - UI, 

q = (G + UI)/2, 

r = 4G - 3U1. 

StepL 2 If p fails to satisfy the c011straints, then go to StepL 4j else, evaluate 

the function at p. If fT' < fs> then go to StepL3j else, go to StepL4. 
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StepL 3 If r fails to satisfy the constraints, then accept p as the replacement 

point and go StepL5j else, evaluate the function at r. If Ir < I., then 

accept r as the replacement point and go to StepL 5j else, accept p as the 

replacement point and go to StepL5. 

StepL 4 If q fails to satisfy the constraints, then stopj else, evaluate the 

function value at q. If Iq < I., then accept q as the replacement point and 

go to StepL5j else, stop. 

StepLS Update the simplex by removing wand including the replacement 

point. Return to StepL1. 

The composite CRS3 algorithm begins with the CRS2 procedure and uses the ordered array 

A. The array A is rearranged according to descending order of function value whenever 

a new successful trial point is found. During the COlu'se of the CRS2 procedure if a trial 

point, p, is generated such that 11" is less than (n+ l)-th smallest function value in A then 

A is reordered and LOC is executed otherwise the CRS2 procedure continues. After the 

execution of LOC, the CRS2 procedure begins. The whole process continues until CRS2 

stops. We now give a stepwise description of the CRS3 algorithm. 

The CRS3 algorithm 

Step 1 Run CRS2 until either it satisfies 1/1. - Id < £, in which case stop, 

or it generates a new point, p, which falls within the bottom one-tenth of 

the ordered array A in which case go to step 2. 

Step 2 Run LOC until it stoPSj then return to step 1. 

Two features of CRS3 should be noted. Firstly, LOC operates only on one-tenth of 

A, and thus has only a slight effect on the global search performance of the CRS2 phase. 

Moreover, CRS2 involves the best point of A and if the best point is further improved 

by LOC each time it is executed then the CRS3 procedure becomes more conducive to 

convergence. Such effects tend to speed up the convergence of the algorithm and thus 

reduce, to some degree, the global search capability. If desired, it is easy to counter this 

effect by making the operation of LOC a probabilistic event or by not requiring that CRS2 

should invariably include the best point. 

Secondly, LOC can operate at any stage of the CRS3 procedure and so may be nm 

several times producing multiple local minima and thus slowing down the procedure. On 

the other hand, the advantage of LOC is that it can provide the user with useful information 

concerning the progress of the search. In addition, CRS3 can be modified easily so as to 

permit the interactive l1~er to switch LOC in or out as required allowing the use of LOC 

to be deferred until it is dear that the global search phase is nearing completion. 
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In Price (1987), it is shown that CRS3 performs better than CRS2 in terms of the 

number of function evaluations. To verify this, we implemented both algorithms and 

compared their performance on the same computer using the seven standard test problems 

for global optimization from Table 2.1 (see Chapter 2). For each test problem, the same 

series of four different random sequences was used. The performances of CRS2 and CRS3 

are compared in terms of cpu time and the munber of function evaluations required to 

achieve the stop criterion. The results are given in Table 4.1. This Table shows that the 

total~ of the minimum and average number of function evaluations (over the series of four 

trials) for CRS3 are slightly less than that of CRS2. However, in terms of cpu time CRS3 

is very much worse than CRS2. This is because the CRS3 procedure spends the bulk of its 

time in updating the ordered array A. The cpu time, however, could have been reduced 

significantly if we had picked out the highest point and only the (n + 1) best points from 

the set of N points in A instead of ordering the whole array whenever a successful trial 

point is found. 
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Tahle 4.1 

CRS2 CRS3 

FE cpu FE cpu 

Min 457 0.05 387 0.15 BR 

Av 559 0.057 434 0.18 

Max 658 0.07 558 0.24 

Min 408 0.03 476 0.23 GP 

Av 632 0.05 612 0.27 

Max 805 0.07 675 0.31 

Min 2817 0.47 2526 3.00 S5 

Av 3152 0.52 3075 3.14 

Max 3385 0.56 3925 3.30 

Min 2721 0.50 2339 2.70 S7 

Av 2891 0.52 3029 2.83 

Max 3019 0.53 3979 3.05 

Min 2690 0.54 2516 2.70 SlO 

Av 3186 0.62 3356 3.36 

Max 3866 0.75 4557 4.30 

Min 831 0.17 813 0.69 H3 

Av 909 0.18 917 0.75 

Max 989 0.20 1000 0.80 

Min 3251 1.19 2636 5.39 H6 

Av 4000 1.46 3839 6.48 

Max 4695 1.76 5457 8.70 

Min 13175 2.95 11693 14.86 Total 

Av 15329 3.40 15262 17.01 

Max 17417 3.94 20151 20.70 

The main difficulty with the CRS algorithms appears to lie in the slowing down of 

convergence as the region of the global minimum is approached. It would therefore be 

sensible to incorporate additional features so as to make the convergence more rapid as 

soon as this region is reached. Therefore, designing an algorithm which explores the search 

region in the early stages and makes rapid convergence when confidence is attained would 

be desirable. In the next section we propose a new version (CRS4) of the CRS algorithm 

which incorporates a periodic featme into the CRS2 algorithm. This additional featme 
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helps to allow the search to be more exploratory, to some degree, in the early stages and 

to become more aggressive in the later stages. In fact, we have attempted to remedy the 

above mentioned defect of the CRS algorithm by incorporating two new ideas into the 

algorithm. Firstly we use a Hammersley sequence (Shaw, 1988) rather than a uniform 

distribution to select the initial sample points and secondly, instead of carrying out local 

searches, we explore the region around the present best point using a beta distribution. 

These modifications result in the following new CRS4 algorithm. A PASCAL subroutine 

for generating a two-dimensional Hammersley sequence is given in appendix 4A. 

4.3 The CRS4 Algorithm 

The CRS4 algorithm retains the fundamental features of CRS2 whilst attempting to elim

inate some of its inefficiencies. CRS4 does not use any local search procedure as the CRS3 

algorithm does, but. uses CRS2 with two additional features so as to diversify the search 

in the early stages and to int.ensify it in the later stages. 

One of the important features of CRS is the choice of N and the way the trial set is 

generated over the search region. When choosing points at which to calculate the initial 

function values, the most important. conceI'll is that, in the absence of any prior informa

tion about where the global minimum might be located, the whole search region is ex

plored. One way of doing tllis is t.o choose the points to be randomly uniformly distributed 

throughout the region of interest and tills is the preferred method of Price. In practice, 

the initial points are chosen from a pseudo-ranclom sequence which closely approximates a 

set of independently distributed uniform random variables. One major drawback with this 

approach is that. pseudo-random points are not evenly distributed throughout the search 

region. A similar problem occurs in the field of Monte Carlo numerical integTation and 

has, to some extent., been overcome by t.he use of quasi-random sequences (Hammersley 

and Handscomb, 1964). These sequences do not. approximate a set. of independent realisa

tions from a uniform dist.ribution, t.ending, in general, t.o be much more evenly dist.ribut.ed. 

Figure 4 compares 50 point.s of a two-dimensional Hammersley sequence with 50 pseudo

random points. Shaw (1988) gives an overview of the quasi-random approach to numerical 

integTat.ion within the part.icular applicat.ion of Bayesian stat.ist.ics. 
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Figure 4(a} 50-point Hammersley sequence. Figure 4(b} 50 pseudo-random points. 

It would therefore seem Rensible, when an initial set of points is required in order to 

investigate the objective function throughout the search region, to use a quasi-random 

sequence. For tllis purpose, we advocate using a Hammersley sequence (see section 2.3.2 

in Chapter 2). These points are more evenly distributed than a set of points independently 

generated from a uniform distribution. We have made a comparison of using a Hammersley 

sequence to generate a set of points with using pseudo-random number for the same purpose 

ill two dimensions in Figure 4 and the difference is clearly evident. 

It would appear that the natural uneveness of pseudo-random points could cause rapid 

clustering around an arbitrary local minimum as soon as the search algorithm is initiated. 

Alternatively, the global nlinimum might lie in an area of the search region in which no 

initial points are generated. This is less likely to happen if we choose our initial points 

from a Hammersley sequence. A quasi-random sequence enables a much better initial 

exploration of the objective function throughout the whole search region. 

In the optinlization phase of the algorithm, unlike LOC in CRS3 which nlight force the 

system to a local minimulIl, whenever a new best point is found by the CRS2 procedure, 

we generate AI new points close to it. The purpose of this modification is to explore the 

region around a new minimum by generating a small (relative to N) lltllIlber of points 

in the area concerned. In order to achieve this we propose generating the coordinates of 

these M points independently from an appropriately scaled beta distribution. A helpful 

property of the beta distribution is that the points generated are restricted to the required 

search region. The beta distribution on (0,1) has probability density function given by 

(, ) _ r«(~ + (J) ,,<,<-1 ( , )!I-l 
cl.r. - r(n)r«(J)J, 1- ,r. , 0< x < 1, a,(J>O, (4.1) 

with mean <'<~f3 and variance ("'+lj)i(~+II+!)' Let 0 = "~II be the IIlean of the !3-distribution 

th tl ' ,,/1 - 0(1-0) I A - + {J TI £ - AD, d , en ,le vanance ("'+11)"("+11+1) - A+l' w lere - (r . lere ore n - u an 
(J = A(1 - 0). 
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We use the algorithm of Cheng (1978) for generating the j9-variates. For the i-th 

coordinate of the new point we choose the beta distribution with mean given by the i-th 

coordinate of the current best point I and standard deviation given by 

SD = 'YDIST, (4.2) 

where 
DIST = 11; - hjl , 

h = (hi, h2, ... ,hn ) 

and 'Y is a user supplied parameter. The values of ex and j9 are determined from the given 

mean and given standard deviation as follows: Let Ki = Xi - 1:i be the difference between 

the upper and lower limits on the i-th coordinate. The new coordinate point Xi is such 

that Xi = 1:i + KiTj3 where Tj3 is generated from standard j9-distribution on (0,1) with the 

scaled mean (}. = (Ii - 1:i) / Ki. Now, A = [K;(}s(1 - (}s)/SD 2] - 1 is found by setting 

(¥.) 2 = 9'2;f,l. Therefore we can write ex = A(}. and j9 = A(1 - (}s). 

Clearly, the calculated parameters ex and j9 for the beta distribution can take both 

positive and negative values but to get reasonable distributions we restrict them to values 

greater than or equal to one by 'clipping', Le., if ex < 1 then we set ex = 1 and if j9 < 
1 then j9 = 1. Notice that in the limiting case ex = j9 = 1, the j9-distribution is a 

uniform distribution. Hence, if the computed standard deviation is high we will merely be 

generating a realisation from a lmiform distribution. 

Early on in the routine, when the array of points is dispersed, the standard deviations 

will be reasonably large and so the effect of generation from the beta distribution will be 

to explore a wide area around each new best point. The major gain is made, however, at 

later stages of the routine. Here, generating extra points from the beta distribution forces 

the array to form a dense cluster around the best point more quickly, once the standard 

deviation becomes very small. A PASCAL subroutine for generating the j9-variates is given 

in appendix 4B. 

The CRS4 algorithm 

Step 1 Generate N quasi-random points from the Hammersley sequence 

over n, evaluate the corresponding function values and store the points 

with their function values in an array A. Find the best and worst points 

and function values, I, h, ft, j"" respectively in A .. 

Step 2 Choose randomly n (listinct points R2, R3, ... , Rn+l excluding I and 

set RI = I. Determine the centroid G of the n points Ri, i = 1,2, . .. , n, 
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and compute the next trial point p = 2G - Rn+!' 

Step 3 if 1J is in n then evaluate fp, if fp < fh go to step 4; else, return to 

step 2. 

Step 4 If fp > fz replace h by p in A, find h,fh in new A and go to step 6, 

otherwise replace h by p in A, find I, h, ft.!h in new A, go to step 5. 

Step 5 Choose a new trial point p = (Xl, X2, ••• , Xn) from an appropriately 

scaled ,B-distribution as follows. Each Xi, i = 1,2 ... , n, is found from the 

,B-distribution using Cheng's method (Cheng, 1978) with mean the i"h co

ordinate of the current best point I = (h, 12, ... , In) and standard deviation 

given by (4.2). Evaluate fp. If fp < fh replace h by p in A, find h, fh (and 

I, ft if fl' < It) in new A, go to step 6. Repeat this step M times. 

Step 6 If the stopping criterion is satisfied then stop, otherwise if step 6 is 

reached from step 5 go to step 5 but, if not, go to step 2. 

To investigate the effect of using the Hammersley sequence we have tested CRS4 

against CRS4 l which is just CRS4 with the initial N points determined pseudo-randomly. 

Preliminary numerical work suggested that ,,),=0.1 is a compromise between exploration 

at the initial stage and convergence in the later stages. Therefore, with this "),, we first 

investigate the effect of M on CRS4, by I'IInning the program several times with different 

values of M. The results are given in Table 4.2 amI indicate that the effect of increasing M 

is rather random but the number of function evaluations to satisfy the stopping condition 

does decrease as M increases with a slight indication that a reasonable value for M is 

about 3n. It is aL~o clear from the final comparison * on Table 4.2 that introducing the 

Hammersley sequence has the effect of making CRS4 only 6% better than CRS4 l in terms 

of the number of function evaluations but about. 15% better in terms of cpu time. On the 

other hand CRS4 is, on average, about 50% better than both CRS2 and CRS3 in terms of 

the number of function evaluations and about 89% and 46% better in terms of cpu time 

respectively and consequently the main effect of the new algorithm lies in introducing the 

,B-distribution. CRS4 is aL~o more robust than CRS4l in the sense that it never failed to 

find the global minima but CRS4 l failed to do so in 8 runs. 

* In the final comparison the data for CRS4 and CRS4 l is the average of averages over 

7 test functions. 
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Tahle 4.2 
CRS41 CR84 CR83 CR82 

M FE c12u FE c12u FE c12u FE c12u 
n 394 0.05 380 0.04 434 0.18 559 0.05 BR 
n+1 308 0.04 382 0.05 
n+2 430 0.05 279 0.04 
n+3 478 0.05 315 0.03 
3xn 537 0.06 316 0.05 
3xn+1 268 0.03 409 0.06 
Tot.al 2415 0.28 2081 0.27 
AVE 403 0.046 347 0.045 
n 429 0.05 530 0.05 612 0.27 632 0.05 GP 
n+1 351 0.04 532 0.06 
n+2 569 0.06 436 0.05 
n+3 357 0.04 398 0.04 
3xn 385 0.05 397 0.04 
3xn+1 339 0.04 358 0.05 
Tot.al 2430 0.28 2651 0.29 
AVE 405 0.046 442 0'(J48 
3 2088 0.41 2133 0.39 3075 3.14 3152 0.52 85 
n 1696- 0.32 1864 0.35 
n+1 1527 0.30 1529 0.30 
n+2 1132- 0.24 1686 0.32 
n+3 1591 0.32 1183 0.25 
2xn 1482 0.29 1423 0.29 
3xn 1182- 0.25 897 0.24 
3xn+1 1054 0.25 1212 0.28 
Tot.al 7742 1.57 11027 2.42 
AVE 1548 0.314 1401 0.302 
3 1835 0.36 1876 0.37 3020 2.83 2801 0.52 87 
n 1637 0.34 2034 0.41 
n+l 1066- 0.23 1683 0.35 
n+2 1486 0.31 1735 0.35 
n+3 1257 0.27 1408 0.30 
2xn 1320 0.28 1238 0.26 
3xn 911- 0.20 1205 0.31 
3xn+l 1080- 0.24 1031 0.24 
Tot.al 7535 1.56 12300 2.50 
AVE 1507 0.312 1540 0.323 
3 1920 0.41 2101 0.44 3356 3.36 3186 0.62 810 
n 1903 0.42 1760 0.38 
n+l 1615 0.35 1350 0.31 
n+2 1403 0.33 1384 0.31 
n+3 1608 0.34 003 0.24 
2xn 1240 0.20 1213 0.20 
3xn 1555 0.37 950 0.26 
3xn+1 1052 0.27 1265 0.32 
Tot.al 12476 2.78 11115 2.55 
AVE 1560 0.347 1380 0.318 
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CRS41 CRS4 CRS3 CRS2 
M FE c~u FE c~u FE cI2u FE cI2u 
n 565 0.13 646 0.14 917 0.75 909 0.18 H3 
n+1 556 0.13 634 0.14 
n+2 5D3 0.13 565 0.10 
2xn 517 0.13 545 0.12 
2n+1 524 0.12 441 0.11 
3xn 406 0.10 471 0.10 
3xn+1 43D 0.10 370 0.09 
Total 3600 0.84 3672 0.80 
AVE 514 0.120 525 0.114 
3 3418 1.36 3295 0.32 3839 6.48 4000 1.46 H6 
5 2378 0.97 2071 0.84 
n 2618 LlD 2116 0.83 
n+1 2917 Ll7 2203 0.92 
n+2 1697 0.73 1637 0.70 
2xn 1399' 0.2D 1581 0.67 
3xn 1100 0.50 13D5 0.57 
3xn+1 1346 0.60 1103 0.51 
Total 15474 6.43 15401 5.36 
AVE 2211 0.918 1925 0.670 

FC 
FE cpu 

CRS41 1164 0.30 
CRS4 1095 0.26 
CRS3 2180 2.43 
CRS2 2190 0.48 

, Local minimum found; FC : Final Comparison 

We therefore continued our computational experiments with the CRS4 algorithm with 

especial attention given to 'Y and M. This further investigation is based on the following 

criteria, diversification of search in the early stages and progTessive intensification of the 

search as the points move towards the global minimum. To fulfill these demands, we 

consider M as a variable whose value increases along with the improvement of the present 

best point. In other words, initially M is set to zero and if the CRS4 algorithm finds a trial 

point with function value better than the present best one stored in the current trial set, M 

is increased by one. M trial points are generated then from the beta distribution and so on 

until the algorithm stops. Numerical investigation is carried out with these variable values 

of M and the results are given in Table 4.3 in the column under CRS4. The robustness of 

the algorithm is also examined by choosing a set of values for 'Y. To see the effect on the 

results due to the changes in M, we also ran the CRS4 algorithm with only a fraction of 

M. For instance we ran the CRS4 algorithm generating 0.5M and 0.75M (rounded down) 

points from /3-distribution and the results are given in columns under CRS4t and CRS4* 

respectively in Table 4.3. In each case the global minimum was located without difficulty 

except that CR.s4 failed to locate the global minimum for S7 when 'Y = 0.15. Table 4.3 
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shows that varying 'Y has a considerable effect, with FE and cpu decreasing, in general, 

with 'Y. 

Tahle 4.3 
CR84 CRS4t CRS4* CR83 CR82 

'Y FE cpu FE cpu FE cpu FE cpu FE cpu 
0.15 342 0.05 466 0.05 458 0.06 434 0.18 559 0.05 BR 
0.12 389 0.04 434 0.05 330 0.04 
0.10 352 0.04 386 0.04 327 0.04 
0.07 265 0.04 323 0.04 498 0.05 
0.05 255 0.03 410 0.05 381 0.04 
0.15 426 0.04 396 0.05 434 0.05 612 0.27 632 0.05 GP 
0.12 510 0.05 445 0.05 384 0.03 
0.10 406 0.05 418 0.05 422 0.05 
0.07 461 0.05 405 0.05 494 0.05 
0.05 324 0.03 476 0.05 348 0.04 
0.15 1780 0.36 2023 0.38 2038 0.40 3075 3.14 3152 0.52 85 
0.12 1802 0.35 1974 0.36 1770 0.36 
0.10 1040 0.22 2015 0.38 1859 0.38 
0.07 1226 0.25 1886 0.35 1479 0.32 
0.05 1234 0.26 1671 0.32 1338 0.26 
0.15 2884" 0.52 1631 0.33 1468 0.29 329 2.83 2891 0.52 87 
0.12 1611 0.32 1881 0.37 1637 0.36 
0.10 1732 0.36 1593 0.33 1212 0.27 
0.07 1224 0.27 1588 0.33 1063 0.25 
0.05 1631 0.33 1368 0.29 1065 0.23 
0.15 1424 0.31 1230 0.30 1721 0.37 3356 3.36 3186 0.62 810 
0.12 2037 0.44 1965 0.41 1718 0.38 
0.10 1053 0.27 1542 0.37 1441 0.39 
0.07 1075 0.26 1582 0.35 1506 0.36 
0.05 1147 0.27 1834 0.41 1287 0.32 
0.15 601 0.13 695 0.15 613 0.15 917 0.75 909 (U8 H3 
0.12 655 0.14 642 0.14 597 0.14 
0.10 614 0.13 768 0.16 767 0.16 
0.07 706 0.15 719 0.15 590 0.13 
0.05 592 0.15 449 0.11 498 0.12 
0.15 3457 1.40 2269 0.90 2077 0.92 3839 6.48 4000 1.46 H6 
0.12 1770 0.78 1914 0.78 2042 0.87 
0.10 2376 0.98 2000 0.79 1627 0.72 
0.07 2357 1.01 2142 0.84 1729 0.76 
0.05 2260 0.97 1772 0.74 1664 0.73 

1150 0.30 1237 0.30 1113 0.28 AVE 

" Local minimum found 
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We summarise the results of Table 4.3 in Table 4.4 by taking the average number of 

function evaluations and cpu time on all test functions for different values of ,. 

Effect of , and variable M 

Table 4.4 

CRS4 CRS4t CRS4* CRS3 CRS2 

FE 

"( Total AVE Total AVE Total AVE AVE AVE 

0.15 8030 1338" 8710 1224 8809 1258 2180 2190 

0.12 8774 1253 9255 1322 8478 1211 

0.10 7573 1082 8722 1276 7655 1094 

0.07 7314 1045 8645 1235 7449 1064 

0.05 7443 1063 7980 1140 6581 940 

cpu , Total AVE Total AVE Total AVE AVE AVE 

0.15 2.29 0.38" 2.16 0.30 2.24 0.32 2.43 0.48 

0.12 2.12 0.30 2.16 0.30 2.18 0.31 

0.10 2.05 0.29 2.12 0.30 2.01 0.28 

0.07 2.03 0.29 2.11 0.30 1.92 0.27 

0.05 2.04 0.29 1.97 0.28 1.74 0.24 

" Average over 6 functions 

In this Table the ratio of the averages of FE and cpu for the best value of, to the worst are 

0.78 and 0.76; 0.86 and 0.91; 0.74 and 0.75 for CRS4, CRS4t and CRS4* respectively. The 

best result is for CRS4* when, = 0.05 and this is better (about 15%) than the average 

result for CRS4 with M fixed and, = 0.1. 

In summary we can readily conclude t.hat the introduction of the jJ-distribution has 

a greater effect than the Hammersley sequence but the combination of the two changes 

greatly improves the original CRS algorithm. 

The effect of the Hammersley sequence has also been investigated on CRS2 and CRS3 

and the results are compared in Table 4.5. The results in the columns under CRS2H and 

CRS3H are the results of CRS2 and CRS3 respectively using the Hammersley sequence. 

From the average results it is clear that the Hammersley sequence on its own does have 

some slight effect in improving CRS3 but on the contrary it has worsened CRS2. 
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Table 4 5 , . 

CRS3Il CRS3 CRS2Il CRS2 

FE cpu IFE cpu FE cpu WE cpu 

~87 0.20 ~34 0.18 400 0.06 559 0.05 BR 

~05 0.29 ~12 0.27 550· 0.07 ~32 0.05 GP 

3506 3.01 ~075 3.14 2985 0.51 3152 0.52 85 

4181 3.72 ~029 2.83 3032 0.56 2891 0.52 S7 

2559 3.17 3356 3.36 2876 0.57 3186 0.62 SlO 

902 0.67 ~17 0.75 1039 0.20 909 0.18 H3 

2780 5.61 ~839 6.48 3526 1.31 4000 1.46 iH6 

~160 2.38 2180 2.43 2309 0.53 2190 0.48 ~VE 

• Local minimum found 

So far we have shown that the CRS4 algorithm gives a significant improvement over 

the other CRS algorithms. Such an improvement of non-gradient global optimization 

algorithms should be very useful because of the simplicity and ease of use of these methods. 

There seems also to be an important need to devise an algorithm which incorporate a 

gradient based local search instead of the Nelder and Mead simplex algorithm as in CRS3. 
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4.4 The CRS5 Algorithm 

Although direct search-type algorithms for optimization have a role to play in certain sit

uations where derivatives are not available it is quite clear that the use of gradient type 

techniques are preferable, in general, even when the gTadients have to be computed numer

ically. Consequently we have also devised an algorithm, CRS5, that uses a Hammersley 

sequence to determine the initial sample but instead of a simplex-type local search as in 

CRS3 or the use of the J3-distribution as in CRS4, may (with a pre-set probability) use a 

gradient based local search when a new best point is detected. However, as in CRS3, this 

local search procedure has been implemented within the framework of the CRS2 algorithm 

in a suitable manner. The CRS3 algorithm operates LOC whenever CRS2 finds a trial 

point within the best (n + 1) points of the array A. CRS5 has been designed so that a 

local search is only started with a certain probability, whenever CRS2 locates a new best 

point. Therefore, the frequency of starting a local search in CRS5 is much less than that 

of LOC in CRS3 and therefore the global search capability of CRS5 is higher than that 

of CRS3. Moreover, LOC needs more function evaluations to improve the best point in 

CRS2 than a gradient based local search usually does. We now give a stepwise description 

of the CRS5 algorithm. 

Algorithm CRS5* 

Step 1 Generate N points from the Hammersley sequence. Evaluate the 

objective function I at each point x(i), i = 1, ... , N, and store points and 

corresponding function values in an array A. 

Step 2 Find h, !I'll, h E A. If stopping condition Ih - Ihl < € is satisfied 

then go to step 6, otherwise go to step 3. 

Step 3 Choose -randomly n distinct points R 2 , R3 , ••• , Rn +1 from A but 

excluding I, the point with lowest function value and set Rl = l. Compute 

l' = 2G - Rn+l 

where G is the centroid of R1, ••• ,Rn. If l' E n (and satisfies any other 

constraints present) evaluate IT" if IT' > !h then repeat step 3, else go to 

step 4. 

Step 4 If II' > Il replace h by JI and go to step 2, otherwise go to step 5. 

Step 5 Start a local search from p if 'UI < t, where 'UI is a random number 

in (0,1) and t is a preset number in (0, IJ, replace h by the point resulting 

* Steps 1, 2 and 3 are similar to those of the CRS2 algorithm 
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from the local search and go to step 2. If 111 ~ t replace h by 1) and go to 

step 2. 

Step 6 Carry out a final local search from the best point and then stop. 

The minimum from the final local search is taken as the global solution. 

The local search in step 5 is carried out for a small fixed number of iterations (normally 1 or 

2) and the local search in step 6 continues until a user supplied accuracy is achieved. The 

tolerance for the latter local search is 10-10• Clearly a higher number of iterations in step 

5 is conducive to convergence and therefore reduces the exploration phase of the algorithm. 

In step 5 we use the limited memory BFGS algorithm from the NAG Library (E04DGF) 

but in step 6 we use a different local search from NAG (E04UCF) for convenience in 

programming. 

The CRS5 algorithm will maintain a reasonable balance between the exploration of 

the search region and efficiency if t is chosen properly. If in step 2 of the CRS5 algorithm € 

is small enough this is an indication that the N points have already formed a cluster near 

the best point. Different aspects of the CRS5 algorithm have been examined, especially 

the value of E in step 2, the local search in step 5 and the value of t. Results are given in 

Table 4.6 (ITR in Tables 4.6 and 4.7 represents the number of iterations carried out by 
the local search in step 5). We also ran the CRS5 algorithm with the initial sample points 

generated from a pseudo-random sequence and the results are given in Table 4.7. 
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Tahle 4.6 
ITR-1 € = 1.5 x 10 2 

t -1.0 0.75 0.50 0.25 
FE cpu FE cpu FE cpu FE cpu 
382 0.04 445 0.07 385 0.06 385 0.06 BR 
480 0.08 555 0.10 442 0.08 411 0.06 GP 
2000 0.43 2000 0.41 2145 0.30 2486 0.48 85 
2463 0.48 2670 0.51 2027 0.43 2007 0.40 87 
2173 0.60 2230 0.55 2070 0.60 1912 0.49 810 
526 0.14 488 0.14 488 0.13 540 0.17 H3 
1781 0.76 1768 0.73 1748 0.77 1950 0.82 H6 
1402 0.36 1452 0.36 1329 0.35 1386 0.35 AVE 

ITR=2 € = 1.5 x 10 2 

384 0.05 345 0.05 442 0.07 442 0.07 BR 
390 0.06 301 0.06 363 0.06 422 0.06 GP 
2132 0.41 2005 0.35 1885' 0.40 2702 0.47 85 
2554 0.58 2253 0.51 2237 0.56 2231 0.46 87 
1086 0.48 1086 0.45 1086 0.40 2028 0.48 810 
466 0.00 533 0.12 487 0.15 565 0.12 H3 
2786 1.17 2786 1.12 2786 1.15 1947 0.85 H6 
1528 0.40 1471 0.38 1384 0.41 1477 0.36 AVE 

ITR=l € - 10 1 

305 0.07 361 0.06 346 0.07 346 0.07 BR 
448 0.06 467 0.05 402 0.05 396 0.07 GP 
1694 0.33 1694 0.37 1866 0.35 2105 0.40 85 
2155 0.40 2321 0.50 1710 0.30 1652 0.34 87 
1858 0.44 1845 0.40 1700 0.40 1652 0.39 810 
401 0.11 343 0.12 343 0.12 352 0.13 H3 
1281 0.61 1281 0.62 1321 0.57 1345 0.60 H6 
1163 0.30 1187 0.30 11()1 0.28 1134 0.29 AVE 

ITR=2 € - 10 1 

320 0.05 312 0.05 300 0.06 399 0.06 BR 
300 0.04 348 0.04 340 0.04 381 0.06 GP 
1804 0.38 1744 0.34 1600' 0.34 2286 0.43 85 
2274 0.40 1931 0.30 1862 0.40 2019 0.44 87 
1674 0.30 1814 0.36 1683 0.38 1704 0.45 810 
342 0.10 387 0.12 374 0.13 428 0.12 H3 
2143 0.07 2143 0.93 2143 0.91 1342 0.57 H6 
1265 0.35 1241 0.32 1135 0.32 1223 0.30 AVE 

, Local minimum found. 
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Tahle 4.7 
ITR=l lE = 1.5 x 10 2 

t =1.0 0.75 0.50 0.25 
FE cpu FE cpu FE cpu FE cpu 
242 0.04 238 0.04 240 0.05 296 0.05 BR 
521 0.06 521 0.0.08 503 0.08 414 0.07 GP 
2273· 0.48 2273· 0.48 1953 0.40 2076 0.42 S5 
1991 0.45 1991 0.39 1991 0.42 2092 0.44 S7 
1984 0.56 1834 0.48 1870 0.47 2025 0.46 S10 
552 0.19 449 0.13 449 0.13 486 0.15 H3 
1562 0.64 1796 0.74 1743 0.78 1948 0.80 H6 
1142 0.32 1138 0.31 1250 0.33 1334 0.34 AVE 

ITR=2 lE = 1.5 x 10 2 

329 0.05 299 0.05 2DD 0.05 316 0.06 BR 
463 0.05 464 0.07 489 0.07 426 0.06 GP 
2536 0.51 22D1 0.48 2339 0.50 2027 0.40 S5 
2306 0.45 3420 0.75 2211 0.42 2086 0.45 S7 
2184 0.52 2136 0.54 2136 0.52 2168 0.58 SlO 
452 0.15 484 0.17 485 0.16 424 0.12 H3 
1699 0.73 1699 0.73 1834 0.74 1834 0.71 H6 
1424 0.35 1542 0.40 1399 0.35 1326 0.34 AVE 

ITR=l lE - 10 1 

215 0.04 211 0.05 211 0.04 244 0.05 BR 
462 0.07 439 0.05 453 0.06 355 0.06 GP 
2045· 0.41 2045· 0.42 1713 0.38 1838 0.36 S5 
1728 0.40 1728 0.34 1730 0.37 1760 0.38 S7 
1661 0.43 1580 0.45 1596 0.44 1730 0.43 SlO 
409 0.17 350 0.10 444 0.18 345 0.12 H3 
1163 0.47 1233 0.53 1274 0.54 1398 0.59 H6 
940 0.26 924 0.25 1060 0.29 1096 0.28 AVE 

ITR=2 lE - 10 1 

247 0.05 256 0.04 256 0.04 261 0.04 BR 
433 0.06 430 0.05 380 0.06 360 0.05 GP 
2119 0.44 1963 0.39 1975 0.35 1827 0.34 85 
1970 0.40 1970 0.41 1899 0.40 1722 0.39 S7 
1848 0.40 1848 0.48 1848 0.50 1880 0.43 SlO 
368 0.10 358 0.11 365 0.09 312 0.12 H3 
1199 0.55 1199 0.54 1329 0.59 1329 0.58 H6 
1169 0.29 1146 0.29 1150 0.29 1099 0.28 AVE 

• Local minimum found. 
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Averaging the results in Tables 4.6 and 4.7 shows that for CRS5 the introduction of the 

Hammersley sequence makes the algorithm about 8% and about 6% worse with respect to 

FE and cpu time respectively than when pseudo-random points are used. The Tables also 

indicate that the best results were obtained for t = 0.50 with a single iteration in step 5 

when € = 10-1. It is also clear that if we increase the number of iterations (ITR) of local 

search in step 5, the number of function evaluations increases accordingly. Therefore, in 

the early stages of the CRS5 algorithm a single step steepest descent local search will be 

preferable. The stopping condition in step 2 is an important factor where a small € may 

cause unnecessary local searches to be carried out (leading to more function evaluations) 

in which case the final local search may not be necessary but a bigger € may weaken the 

global search capability. Hence a tradeoff has to be made. The proper choice of € therefore 

remains an open question. In any case if the best point is close enough to the global 

minimum then it is likely that the final local search in step 6 will find the global minimum 

with a prescribed accuracy. 

We now compru'e CRS4 and CRS5 in Table 4.8. The data for CRS5 have been taken 

from Table 4.7 for € = 10-1, t = 0.50 and ITR=1. 

Tahle 48 

CRS4 CRS5 

Test function cpu Function cpu 

Problems !Eva!. Time Eva!. Time 

BR ~16 0.04 211 0.04 

GP 3!J7 0.05 453 0.06 

S5 8!J7 0.24 1713 0.38 

S7 12!J5 0.23 1730 0.37 

SlO ~50 0.26 15!J6 0.44 

H3 ~71 0.10 444 0.18 

H6 13!J5 0.57 1274 0.54 

Total 5721 1.57 7421 2.01 

The results in Table 4.8 clearly show that CRS4 is superior to CRS5 both in terms of 

number of function evaluations and cpu time. 

Finally, we compru'ed our new algorithms with other recent algorithms using the num

ber of function evaluations as a basis amI the results are shown in Table 4.9. In this Table 

the methods representing A, B, C and G are noted in Table 2.3 in Chapter 2 and the 

results for these methods have been taken from the references listed in the same Table. 

The results for the rest of the methods including CRS4 amI CRS5 (Ali and Storey, 19!J5) 

have been found by implementing them on our own computer. From Table 4.9 it is clear 
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that the new algorithms are superior to many of the recent stochastic methods. They 

could also be preferable in many practical applications because they are simple and easily 

progTammable. 

Table 4.9 

N umher of function evaluations 

Method GP BR S5 S7 SlO H3 H6 AVE 

A 4400 1600 6500 9300 11000 2500 6000 5900 

B 2500 1800 3800 4900 4400 2400 7600 3914 

C 2499 1558 3649 3606 3874 2584 3447 3031 

CRS2 632 559 3152 2891 3186 909 4000 2190 

CRS3 612 434 3075 3029 3356 917 3839 2180 

D (SA) 1102- 1088 1120 1122 1179 1252 1817 1263 

CRS5 211 453 1713 1730 1596 444 1274 1060 

CRS4 316 397 897 1295 950 471 1395 817 

G 378 597 620 788 1160 732 807 726 

H (ASA) 834 408 524 524 524 451 558 532 

I (MSL) 307 206 576 334 1388 166 324 471 

J (TMSL) 53 46 98 116 100 60 127 86 

- Local minima found 

Since the global minima for the test functions, except BR and the Hartmann family, 

are known analytically numerical experiments were also carried out using the difference 

between the current best function value and the (exact) global minima in the stopping 

condition. Therefore, Ir - fel < € was used as the stopping condition where fe is the 

current best function value. The global minima Cf-) for BR, H3 and H6 are found by 

performing a local search from the vicinity of the global minimizer with local search tol

erance 10-1°. The test therefore imlicates up to how many decimal places the solution 

can be obtained by the CRS algorithms. Since step 6 in the CRS5 algorithm is used as a 

refinement step, inevitably in our implementations solutioIlS are obtained with a required 

accuracy and therefore we treat CR.s5 slightly differently. For CRS5 we use the above 

mentioned stopping condition in step 2 as the only stopping condition. The results are 

summarized in Table 4.10. 
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Tahle 4.10 

CR82 
10-2 10-3 10-4 10-5 10-6 10-7 10-8 +-€ 

..; ..; ..; ..; ..; ..; x BR 

..; ..; ..; ..; ..; ..; ..; GP 

..; x x x x x x 85 

..; x x x x x x S7 

..; x x x x x x SW 

..; ..; ..; ..; ..; ..; ..; H3 

..; ..; ..; ..; ..; ..; x H6 

CRS3 

..; ..; ..; ..; ..; ..; ..; BR 

..; ..; ..; ..; ..; ..; ..; GP 

..; x x x x x x S5 

..; x x x x x x S7 

..; x x x x x x SW 

J ..; ..; ..; ..; ..; ..; H3 
..; ..; ..; ..; ..; ..; x H6 

CRS4 

..; ..; ..; ..; ..; ..; ..; BR 

..; ..; ..; ..; ..; ..; ..; GP 

..; x x x x x x S5 

..; x x x x x x S7 

..; x x x x x x SW 

..; ..; J ..; ..; ..; ..; H3 

..; ..; ..; ..; ..; ..; ..; H6 

CR85 

..; ..; ..; ..; x x x BR 

..; ..; ..; x x x x GP 

..; x x x x x x 85 

..; x x x x x x S7 

..; x x x x x x SlO 

..; ..; ..; ..; ..; ..; ..; H3 

..; ..; ..; ..; ..; ..; x H6 

x Result not obtained; ..; Result obtained 
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From Table 4.10 it is clear that the CRS algorithms are not reliable as far as accuracy 

is concerned. The results are worst for the Shekel family for which all the CRS algorithms 

can find solutions only up to an accuracy of two decimal places but for the other test 

problem results are quite reasonable. No doubt, the non-gradient CRS algorithms are easy 

to implement but if these algorithms are used for problems for which a high accuracy is 

needed they may fail. The reason is that they stop when all points form a dense cluster 

rather than when some goal in terms of accuracy is attained. However, CRS5 may overcome 

this because its final solution depends on local search and therefore if a point is found in 

the region of attraction of the global minimum then the global minimum can be obtained 

up to a required accuracy. 

From Table 4.10 it is evident that high accuracy can not be obtained if the final local 

search is removed from CRS5. Therefore the question can be raised as to whether CRS4 

is better than CRS5 in terms of number of function evaluations and cpu time if a final 

local search is incorporated in CRS4 the same way as in CRS5. We therefore ran CRS4 

for 'Y = 0.1 and M = 3n with the stopping condition I/h - Id < 10-1 and with the final 

solution refined by the same local search with the same tolerance as was used for CRS5. 

The results are compared with the best results for CRS5 in Table 4.11. 
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Table 4.11 

CRS4 CRS5 

FE cpu FE cpu 

205 0.05 211 0.04 BR 

263 0.06 453 0.06 GP 

524 0.13 1713 0.38 S5 

821 0.23 1730 0.37 S7 

692 0.22 1596 0.44 SlO 

239 0.12 444 0.18 H3 

923 0.50 1274 0.54 H6 

3667 1.31 7421 2.01 Tot.al 

This Table shows that the CRS4 algorithm can be improved even further if a final local 

search is incorporated. The benefits are twofold. Firstly the number of function evaluations 

and cpu time are lessened and secondly the final solution is obtained with a prescribed 

accuracy. 

The CRS5 algorithm is designed so that a few steps of local search (not the final local 

search) are carried out with a preset probability. Since CRS5 differs from CRS3 only by 

the nature of the local search therefore we ran CRS3 with LOC executed with a certain 

probability. As in CRS5 we preset t E (0,1] and generate a random number w. If w ::; t 

then LOC is executed, otherwise not. Notice that t = 1 gives t.he original CRS3 algorithm. 

The results are given in Table 4.12. 

Table 4 12 

t 1 0.75 0.50 0.25 

Test ,Function cpu Function cpu Function cpu Function cpu 

Problems Eval. Time Eval. Time Eval. Time Eval. Time 

BR 558 0.24 528 0.23 410 0.19 492 0.20 

GP 675 0.28 438 0.17 434 0.16 640 0.30 

S5 3925 3.24 2864 3.32 3168 :1.32 3149 3.23 

S7 ~979 3.06 2376 2.68 2326 2.57 2562 2.76 

SlO ~557 4.31 4388 3.87 3718 3.75 2475' 2.87 

H3 p27 0.80 850 0.65 850 0.64 921 0.65 

H6 2636 5.64 5750 5.82 2913 5.20 5815 10.10 

AVE 2465 2.51 2456 2.39 1974 2.26 2263 2.87 

• local minimum found 
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The average results in above Table shows that the performance of CRS3 is improved by 

executing LOC with a preset probability. The best result is obtained if LOC is executed 

with probability ~. However, in comparison with the results of CRS5 in Table 4.11 it is 

clear that CRS5 is much better than CRS3. Therefore incorporation of a gradient based 

local search procedure has improved the CRS algorithm. 

4.5 Conclusion 

Modifications have been suggested to the original controlled random search method of 

Price and the resulting algorithms have been shown to be superior to the original algorithm. 

Both of the new algorithms, CRS4 and CRS5, are improved if a final aceurate local search 

is introduced. The effect of the modifications is to make the CRS approach much more 

competitive with the other algorithms tested, only MSL and TMSL having an overall 

superiority. This combined with the heuristic direct search nature of the new algorithms 

seem to suggest they have a useful part to play in global optimization. 
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CHAPTER 5 

Application of Global Optimization 
to some Problems in Material Science 



5.1 Introduction 
In this Chapter we describe the application of global optimization to two problems in 

materials science. The first problem is to calculate the minimum energy of small clusters 

of particles which interact through well-defined many-body interaction potentials. The 

second problem is the fitting of such interaction potentials to bulk crystal data. 

The first problem arose as a result of some work involving molecular dynamics (MD) 

to simulate the ejection of particles after a solid surface had been bombarded with energetic 

ions. Such a bombardment can be used together with mass spectrometry of the ejected 

particles to determine the composition of the surface; the secondary ion mass spectrometry 

(8IMS) technique. The mass spectra consist of single particles and ejected clusters. In any 

simulation of this process it is necessary that the interaction potentials give roughly the 

correct energetics and structure of these clusters. 

The second problem has arisen as a result of the success of many-body, semi-empirical, 

potential functions in modelling near equilibrium, bulk crystal properties. A parameter

isation of the potential is assumed which is based on physical considerations. The free 

parameters are then chosen using a least squares fit, to a large number of crystal proper

ties, by global optimization. This has been achieved for face-centered cubic and diamond 

lattice materials (Daw and Baskes, 1983, 1984; Tersoff, 1988, 1988a) but little work has 

been done on body centered cubic (bcc) materials. The approach adopted here fits the bcc 

crystal structure, as the preferred minimum energy configuration for tungsten, and also 

fits the dimer energetics and the elastic properties of crystalline tungsten. 

5.2 Investigation of small Cluster Energetics by 
Global Optimization 

Empirical many-body potentials are becoming an increasingly important means of investi

gating high and low energy processes in both metals and semiconductors. For example, the 

'embedded atom' potential has been used to investigate the molecular dynamics simulation 

(Garrison et al., 1988) of Rh{111} (Rhodium). While such potentials may be less accurate 

than those determined using ab initio methods, because of their relative simplicity, they 

are invaluable for use with MD simulations. 
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Many of these empirical many-body potentials have been designed with the bulk 

material properties in mind. For example, the Tersoff potentials (Tersoff 1988, 1988a) 

for Si (silicon), accurately fit the diamond lattice structure as the minimum potential 

configuration with the correct binding energy and lattice spacing. They also model the 

elastic properties with reasonable accuracy. However, the fitting procedure for the potential 

ignored the small cluster energetics. More recently developed potentials (Brenner 1990 and 

Smith 1992) have included small cluster properties in the fitting process and indeed in one 

case (Brenner, 1990), which develops a many-body C-H (carbon-hydrogen) potential, the 

energetics of a large number of small clusters have been accurately reproduced. 

Our purpose is to calculate the minimum energy of small clusters predicted by 'Tersoff' 

potentials for Si and 'Tersoff-Iike' potentials (Smith, 1992) for As (arsenic). The properties 

of small clusters predicted by these potentials are discussed in AIi and Smith (1993). When 

using MD simulations on Si, the resulting clusters must have the correct energetics or the 

calculated proportion of dimers and trimers energetics will be incorrect. It might seem 

natural to use MD to try to calculate these structures but this is not easy because the 

form of the potentials gives rise to a large number of local minima. We therefore use global 

optimisation algorithms to find the minimum energy. We have chosen up to six particles. 

We use the global optimization algorithms described in the earlier Chapters to see if they 

give comparable results and compare the performance of each method with respect to the 

number of function evaluations and cpu time. 

Problem Formulation 

Before we define the underlying function to be optimized we need to describe the following 

terms explicitly. 

The binding energy in the Tersoff formulation (sce, Tersoff 1988a) is written as a sum 

over atomic sites in the form 

(5.1) 

where rij is the distance between atoms i and j, Vn is a repulsive term, VA is an attractive 

term, fc(rij) is a switching function and Bij is a many-body term that depends on the 

positions of atoms i and j and the neighbours of atom i. More details of each of these 

quantities can be found in (Tersoff 1988; Brenner 1990; Smith 1992 and AIi and Smith 

1993). The term Bij is given by 

(5.2) 
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where nl and "y are known fitted parameters (Tersoff, 1988a). The term ~ij for atoms i 

and j is given by 

~ij = L !c(T'ik)g(Oijk) 
k#i}i 

where Oijk is the bond angle between bonds ij and ik and g is given by 

(5.3) 

(5.4) 

The quantities c, d and h which appear in (5.4) are also known fitted parameters. The 

terms Vn(T'ij) and VA(Tij) are given by 

Vn(T'ij) = Aexp[-AIT'ij] 

VA(T'ij) = Bexp[-A2T'ij] 
(5.5) 

where A, B, Al and A2 are given fitted constants. The switching function !c(T'ij) is given 

by 

{

IT" < R- D , 'tJ -

!c(T'ij) = ~ - ~ sin[7I'(T'ij - R)/(2D)] , R - D :s: Tij :s: R + D 
0, T'ij :::: R + D 

(5.6) 

Each of the parameters appearing in the above terms has three values representing two Si 

potentials, Si(B) and Si(C), given by Tersoff (1988, 1988a) and an As potential derived 

by Smith (1992). These values are given in Table 5.1. 

Each atom, say atom i, has its own potential energy, Ei, given by (5.1). The sum 

in (5.1) is taken over j, all neighbours of i. Therefore to determine the potential energy 

of a single particle one has to calculate (5.1) which involves the calculation of (5.2)-(5.6) 

for each neighbour of that particle. Notice that the energy of a partide depends upon the 

distances and angles subtended with respect to the other particles and therefore different 

particles have different energies. The objective function becomes the total energy for all 

atoms, i.e., 

(5.7) 

It is clear from (5.7) that! is a function of atomic coordinates. Therefore we consider 

the atomic positions in two and three dimensional space as variables. We describe more 

details of all variables involved in the next section. 
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Potential Parameters for Si(B), Si(C) and As 

Table 5.1 

As Si (B) Si (C) 

c 5.2731318 4.8381 1.0039 x 10-5 

d 0.75102662 2.0417 16.216 

h 0.15292354 0.0000 -0.59826 

n1 0.60879133 22.956 0.78734 

'Y 0.00748809 0.33675 1.0999 x 10-6 

>'1 6.739581257 3.2394 x CS; 2.4799 x CS; 

>'2 4.886847795 1.3258 x CS; 1.7322 x CS; 

A 10.45561332 3.2647E3 1. 8308E3 

B 14.41961332 9.5373E1 4.7118E2 

R 3.50/CAs 3.0/CS; 2.85/CS; 

D 0.15/CAs 0.20/CS; 0.15/CS; 

CAs = 5.6537/2, CS; = 5.4307/2 

Calculation of the Potential Minima 

In order to calculate the minimum potential energy for small numbers of particles, we first 

fix a particle at the origin and choose our second particle to lie on the positive x-axis. 

The third particle is chosen to lie in the x-y plane. Therefore the variables involving the 

third particle are radial distance of the position of the particle from origin and its polar 

angle. Since the position of the first particle is always fixed and the second particle is re

stricted to the positive x-axis, this gives a minimisation problem involving three variables 

for three particles (P3). For four particles (P4), a further three variables (the cartesian 

co-ordinates of the 4-th particle) are required to give a minimisation problem in six inde

pendent variables. Further particles (P5 and P6) are added to determine the energetics 

of small clusters. Therefore, for clusters of 4, 5 and 6 particles the number of dimensions 

become 6, 9 and 12 respectively. The physics involved in the problems imposes the fol

lowing restrictions on the variables. The first two variables are taken to lie in [0, 1.16] 

for Si and [0,1.30] for As. The third variable for all cases is taken to lie in, [0,7r], and 

all other variables are specified on [-1.5,1.5] for both Si and As. However, we invoke 

symmetry arguments to constrain the third coordinates of the fourth and fifth particles to 

be non-negative and non-positive respectively. We do not constrain the coordinates of the 

sixth particle, preferring instead to calculate all the symmetric structures (with respect 
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to the 6th particle) which are identical apart from rotational symmetry as a check on the 

accuracy of the calculation. 

To demonstrate the complex nature of the objective function for this problem we now 

give this function explicitly for four atoms i,j, k and I. Therefore, for P4, let Xl be the x

coordinate of the 2nd particle, X2 be the radial distance from the origin to the 3rd particle, 

X3 the angle the 3rd particle subtends with the x-axis, X4, Xs, X6 the coordinates of the 4th 

particle. Then 

and the E; are given by 

E; = 0.5 [fc(rij) [Vn(rij) - B;jVA(rij)] + fc(rik) [Vn(rik) - BikVA(rik)] + 

fc(ril) [Vn(r;l) - Bil VA (ril)]] 

= 0.5 [fc(r;j) [Ae-A1T,j - Be- A2T'j {I + l'n , (fc(rik)g«(}ijk) + fc(ril)g«(}ijl)t ' } -2~, ] 

+fc(rik) [Ae-A1T'k - Be-A2T'k {I + l'n , (fc(rij)g«(}ikj) + fc(r;l)g«(}ikl)t ' } -r.,] 
+ fc(ril) [Ae-A1Ti/ - Be- A2Ti/ {I + l'n , (fc(rij)g«(}ilj) + fc(rik)g«(}ilk))n , } -r.,] ] 

Ej = 0.5 [fC(rji) [Vn(rji) - Bji VA (rji)] + fchk) [Vn(rjk) - Bjk VAhk)] + 

fc(rjl) [Vn(rjl) - Bjl VA hI)]] 

= 0.5 [fC(rji) [Ae- A1Tj, - Be-A2Tj, {I + l'n , (fc(rjk)g«(}jik) + fc(rjl)g«(}jil)t ' } -:r;;,] 
+ fchk) [Ae-AITjk - Be-A2Tjk {I + l'n , (fc(rji)g«(}jki) + fc(rjl)g«(}jkl)t ' } - 2~, ] 

+fchl) [Ae- A1T;! - Be-A2T;! {l + I'n1 (fc(rjk)g«(}jlk) + fc(rji)g«(}jli)t ' } -r.,]] 
Ek = 0.5 [fC(rki) [Vn(rki) - BkiVA(rki)] + fc(rkj) [Vn(rkj) - BkjVAhj)] + 

fc(rkl) [Vnhd - BkIVAhl)]] 

= 0.5 [fC(rki) [Ae- A1Tk' - Be-A2Tk' {I + I'n1 (fc(rkj)g«(}kij) + fc(rkl)g«(}kil))n1} -r.,] 
+fc(rkj) [Ae- A1Tk; - Be-A2Tkj {l + I'n1 (fc(rki)g«(}kji) + fchl)9«(}kjl)t ' }-2~'] 

+fc(rkl) [Ae- A1Tk! - Be-A2Tk! {l + I'n1 (fc(rki)g«(}kli) + fc(rkj)g«(}klj)t ' } -r.,]] 
El = 0.5 [fC(rzi) [Vn(rli) - BliVA(rli)] + fc(rlj) [Vn(rlj) - BljVA(rzj)] + 

fc(rlk) [Vn(rlk) - Blk VA(rlk)]l 

= 0.5 [fc(rli ) [Ae-A1Th - Be-A2Th {I + l'n , (fc(rzj)g«(}lij) + fc(rzk)g«(}lik))n1} -r.,] 
+ fc( rlj) [Ae- A1 TIj - Be- A2T!j {I + l'n , (fc( rli)g( (}lji) + fc(rzk)g( (}ljk) t' } - 2~, ] 

+fc(rlk) [Ae-A1T!k - Be- A2T!k {I + l'n , (fc(rli)g«(}lki) + fc(rzj)g«(}lkj)t ' } -r., II 
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Hence in terms of the variables Xi, i = 1,2, ... ,6, 

f = 0.5 [fe(Ti j = xd [Ae-A,x, - Be-A2x, {1 + I'n, (Je(Tik = x2)(1 + c2 jd2 - c2 j[d2 

+(h - COSX3)2]) + fe(Til = y'(x~ + x§ + x~»(l + c2 jd2 - c2 j[d2 + (h-

X4 )2]) t' }-~l + fe(Tik) [Ae- A,X2 - Be-A2X2 {1+ 
y'(X~ + X~ + X~) 

"n, (Je(Tij) (1 + c2 jd2 - c2 j[d2 + (h - COSX3)2]) + fe(r;l) (1 + 2 jd2 - c2 j[d2 

+(h - X4 COSX3 + Xs sinx3 )2]) t' }-~l + fe(Til) [Ae-A' y(x~+x~+x~) 
y'(x~ + X~ + X~) 

_Be-A2y(X~+X;+x~){ 1 +I'n, (Je(Tij)(l + c2jd2 - c2j[d2 + (h-

y'( 2 X\ 2 )2]) + fe(Tik)(l + C2 jd2 - C
2 j[d2 + (h-

(X4 + X5 + X6 ) 

X4 COSX3 _ Xs sin X3 )2]) r' }- 2~, l] 
y'(x~ + X~ + X~) y'(x~ + X~ + X~) . 

+0.5 [fe(Tji) [Ae-A,X' - Be-A2X, {1 + I'n, (Jehk = y'(xt + x~ - 2XlX2 COSX3» 

(1 + c2 jd2 _ c2 j[d2 + (h _ , (Xl - X2 COSX3) )2]) 
y'(x~ + X~ - 2XlX2 cos X3) 

+ fchl = y'(Xl - X4)2 + X~ + X~» 

(1+ 2 jd2 - c2 j[d2 + (h - (Xl - X4) )2J)r' }-";'l + fe(r,k) 
y'((X4 - Xl)2 + x§ + x~) 

[Ae-A'y(X~+X~-2X1X2COSX3) _ Be-A2y(X~+X~-2X1X2COSX3){ 1 + I'n, (Je(Tji) 

(1 + c2 jd2 _ 2 j[d2 + (h _ (Xl - X2 COSX3) )2]) + fc(Tjl) (1 + c2 jd2 _ c2 j[d2 
y'(Xf + x~ - 2XlX2 COSX3) 

+(h _ (Xl- X4)(Xj - X2 COSX3) +X2X5sinx3 )2])r' }-:2~'l 
y'(xi + x~ - 2XjX2 COSX3)y'((X4 - Xj)2 + x~ + x~) 

+ fe(Tjz) [Ae- A, y(X4-X,J'+X~+x~) _ Be-A2y(x4-x,)2+x~+x~) 

{ 1 + I'n, (Je(Tjk) (1 + c2 j d2 - c2 j[d2 + (h -

(Xl - X4)(Xj - X2 COSX3) + X2 XS sin X3 )2]) + fehi)(1+ 
y'(xi + X~ - 2XjX2 COSX3)y'((X4 - xJ)2 + X§ + X~) 

c2jd2 _c2j[d2+(h_ (Xl-X4) )2J)r'}-2~'l] 
y'((X4 - Xl)2 + X§ + X~) 
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+0.5 [fc(rki ) [Ae- AlX2 - Be- A2X2 { 1 + ')'nl (Jchj )(1 + c2/d2 - c2/[d2 + (h 

_ (X2 COSX3 - xt) COSX3 + X2 sin2 
X3)2]) 

y(x~ + x~ - 2XIX2 COSX3) 

+fc(rkl = y(x~ +x~ + xg +x~ - 2X2X4COSX3 - 2x2x5sinx3»(1 +c
2
/d

2 

_c/[d2 + (h _ COSX3(X2 COSX3 - X4) +sinx3(x2sinx3 - X5) )2])f'}-2~'] 
y(x~ + x~ + xg + x~ - 2X2X4 cos X3 - 2X2X5 sin X3) 

+ fc(rkj) [Ae- Al y'(x~+X~-2XlX2 cos X3) _ Be-A2y'(X~+X~ -2XlX2 ccs X3) { 1 + ')'nl (Jc(rki) 

(1 + c2/d2 _ c2/[d2 + (h _ (X2 COSX3 - xt) COSX3 + X2 sin
2 

X3 )2]) 
y(xt + X~ - 2XIX2 COSX3) 

+ fc(rkl) (1 + c2/d2 - C /[d2 + (h-

(X4 - X2 COSX3)(XI - X2 COSX3) + X2 sinx3(X2 sin x3 - X5) )2])f' 
y(x~ + x~ - 2XIX2 COSX3)y((X~ + x~ + xg + x~ - 2X2X4 COSX3 - 2X2X5 sinx3) 

_ 1 

} 2n'J] + fc( rkl) [Ae-Al y'((x~+x~+x~+X~-2X2X4 cos X3 -2X2X5 sin X3) 

_Be-)..2.J((X~+X~+x~+x~-2x2X4 cosx3-2x2X5 sinx3) 

{ 1 + ')'nl (Jc(rki)(l + c2/d2 _ c2/[d2 + (h-

COSX3~2 COSX3 - X4) + sinX3(X2 SinX3 - X.5) )2]) + fc(rkj) (1 + c2/d2 _ c2/[d2+ 
y(X~ + X4 + xg + X~ - 2X2X4 cos X3 - 2X2X5 sm X3) 

(h _ (X4 - X2 COSX3)(XI - X2 COSX3) + X2 sinx3(X2 sinX3 - X5) )2 

y(Xr + X~ - 2XIX2 COSX3)y((X~ + X~ + xg + X~ - 2X2X4 COSX3 - 2X2X5 sinX3) 

])fl} -2~l]] 

+0.5 kc(rli ) [Ae-Aly'(X~+X~+x~) - Be-A2y'(X~+X~+x~) { 1 + ')'nl (Jc(rlj) (1 + C /~ 
2 2 2 

_ 2/[d2 (h _ X4 + X5 + X6 - X4XI )2]) 
C + 172 2 2 2 172 2 2 

V (Xl + X4 + X5 + X6 - 2XIX4) V (X4 + X5 + X6) 

+ fc(rzk) (1 + c
2
/d2 - c2/[d

2 + (h-
2 2+ 2 . 1 

X4 + X5 X6 - X2X4 COSX3 - X2 X5 SmX3 )2])f' }-2nl] 
y(X~ + X~ + xg + X~ - 2X2X4 cos X3 - 2X2X5 sinX3) y(x~ + xg + X~) 
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+ !c(nj) [Ae->-l V(X~+X~+X~+X~-2X1X4) _ Be->-2V(X~+X~+x~+x~-2xlX4) { 1 + , n, 

(fc(rli) (1 + c2/d2 - c2/[d2 + (h-
2 + 2 2 X4 Xs + X6 - X4Xl )2]) 

J(X~ + X~ + xg + X~ - 2XlX4) J(X~ + xg + X~) 
+ !c(nk)(1 + c2/d2 - c2/[d2 + (h-

(X4 - Xl)(X4 - X2 COSX3) + XS(XS - X2 sinX3) + X~ )2]) 

J(x~ + X~ + X§ + X~ - 2XlX4)J(X~ + X~ + X§ + X~ - 2X2X4 COSX3 - 2X2XS sinx3) 

r'} -*] 
+ !c(fLk) [Ae->'l v'(x~+x~+x~+x~ -2X2X4 cos X3 -2X2X5 sin xa) 

-Be->'2 y'(x~+x~+x~+x; -2X2X4 cos X3 -2X2X5 sin xa) 

{I + , nl (fc(rli) (1 + c2/d2 - c2/[d2 + (h-

X4(X4 -X2COSX3)+XS(Xs -x2sinx3)+x~ )2]) 

J(xj + xg + X~)J(x~ + x~ + xg + x~ - 2.'L'2X4 COSX3 - 2X2.'L'S sinx3) 

+ !c(nj)(1 + c2 /d2 
- c2 /[d2 + (h-

(X4 - X2 COSX3)(X4 - Xl) + XS(XS - X2 sinx3) + X~ )2 

J(x~ + X~ + xg + X~ - 2XlX4) J(x~ + xj + xg + x~ - 2X2X4 COS X3 - 2X2XS sin X3) 

])r'} -*]] . 

5.3 Numerical Considerations and Comparison Stud-
• les 

In this section we compare the performances of all the global optimization algorithms 

previously discussed. The purpose of the comparisons is to sec the merits of the modified 

algorithms over their original versions and to see which method is most efficient in finding 

the best local minimum. As far as the implementations of SA and ASA are concerned we 

invoked local search only for two iterations both in the generation mechanism Alternative 

B (see section 3.3.2 in Chapter 3) and to find the aspiration solution. The values of the 

common parameters of the SA and ASA algorithms were kept the same (see sections 3.2.3 

and 3.4.3 in Chapter 3) but we used bmin = 0.05, bmax = 0.8,na = 5,Er = 10-3 , J1 = 0.1 and 

the length of Markov chain defined by (3.69) for the implementation of the ASA algorithm. 

In the CRS5 algorithm only a single iteration of the local search (E04UCF) is used except 
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at the final stage where a complete local search is carried out. The tolerance for the local 

search was 10-5 in all implementations as no numerical difficulties were encountered for 

this tolerance. The tolerance for the CRS algorithms was € = 10-4 except that for CRS5 

we took € = 10-1 and t = 0.5 (see section 4.4 in Chapter 4). The value of N (the number 

of initial points) was taken as 1O(n + 1), where n is the dimension of the problem. In all 

applications of CRS4, we used 1=0.1 and 50%M (see section 4.3 in Chapter 4). We first 

examined the performance of the CRS algorithms for up to six particles for both Si and 

As and the results are given in Tables 5.2 and 5.3. 

Results of CRS for all Problems 

Table 5.2 

CRS2 CRS3 CRS4 CRS5 

FE cpu FE cpu FE cpu FE cpu 

1123 0.48 1094 0.76 755 0.34 808 0.39 P3 Si(B) 

4304 5.33 3724 6.26 2418 2.25 2967 2.64 P4 

11111 16.74 18348 38.72 3971 5.66 4321 6.72 P5 

37677 82.07 64067 244.97 44980 91.99 42134 87.17 P6 

54215 104.62 87233 290.71 52124 108.24 50230 94.92 Total 

998 0.26 1092 0.58 705 0.19 612 0.22 P3 Sire) 

9829 4.96 11446 16.48 7369 3.24 8521 3.50 P4 

58063 46.73 45173 82.00 12479 9.13 10362 8.90 P5 

182720 235.21 329089 1199.38 156916 311.48 175233 222.1 P6 

251610 287.16 386800 1298.44 177469 324.04 194728 234.72 Total 

952 0.42 1281 1.16 951 0.44 820 0.41 P3 As 

4075 3.92 5111 7.70 1694 1.62 2113 2.06 P4 

8877 15.58 43173 101.56 6130 9.55 9124 17.11 P5 

38381 101.52 67241 293.38 33192 85.48 30784 79.20 P6 

52285 121.44 116806 403.80 41967 97.09 42841 98.78 Total 

From the totals in Table 5.2 it is clear that CRS5 works surprisingly well especially in 

terms of cpu time. CRS4 and CRS5 are better than CRS2 and CRS3 with CRS4 better 

than CRS5 in terms of FE but the reverse holding in terms of cpu time. CRS3 is by far 

the worst of all four algorithms. It is interesting that Sire) is the most difficult problem. 
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Of course, Table 5.2 gives the value of FE and cpu obtained on satisfaction of the stopping 

condition but it is also important to consider the quality of the approximations to the 

global minimum found by the four algorithms. The values of f* are shown in Table 5.3. 

Best minima found by CRS for all Problems 

Table 5.3 

CRS2 CRS3 CRS4 CRS5 

f* f* f* f* 
-7.87 -7.87 -7.87 -7.87 P3 Si(E) 

-15.70 -15.70 -15.70 -15.70 P4 

-20.39 -20.31 -20.39 -15.70 P5 

-24.51 -24.51 -26.51 -24.51 P6 

-5.33 -5.33 -5.33 -5.33 P3 Si(e) 

-7.99 -7.99 -7.99 -7.99 P4 

-10.66 -11.30 -10.57 -10.57 P5 

-15.10 -15.19 -15.88 -15.10 P6 

-6.85 -6.85 -6.85 -6.85 P3 As 

-10.65 -10.65 -10.65 -10.65 P4 

-14.78 -14.78 -14.78 -14.78 P5 

-19.57 -19.57 -18.49 -16.51 P6 

The results here are remarkably uniform and perhaps the only real conclusion is that CRS5 

is the worst of the four algorithms for locating the smaller values for f* which, of course, 

are not known theoretically. 

We next tested the MSL and TMSL algorithms. The results for MSL and TMSL are 

given in Tables 5.4 and 5.5 respectively, where IT represents the number of iterations. To 

represent the complexity of the problem as far as the number of local minima is concerned 

we also give the number, LM, of local minima found. The true number of local minima 

for the problem is unknown but numerical experience suggests that it is quite high. We 

therefore fixed the number of iterations at 5 for MSL and TMSL. In other words, these 

algorithms were allowed to run for a maximum of five iterations only. In all implementa

tions of the MSL algorithm we used a sample of size 100 but varied 'Y and u. The results 

for TMSL in Table 5.5 were obtained by setting u equal to 4. However, different values 

for the number of nearest neighbours g and the number of sample points N were tested. 
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Results of MSL for all Problems 

Table 5.4 

'Y a r FE cpu LM IT 
0.1 2 -7.87 438 0.18 2 2 P3 Si (B) 
0.1 4 -7.87 438 0.18 2 2 
0.2 2 -7.87 259 0.14 2 1 
0.2 4 -7.87 210 0.17 2 1 
0.1 2 -15.70 6352 4.36 27 5 P4 
0.1 4 -15.70 5437 3.84 25 5 
0.2 2 -15.70 7516 5.37 25 5 
0.2 4 -15.70 5312 3.80 21 5 
0.1 2 -20.39 15415 14.70 66 5 P5 
0.1 4 -20.39 12954 11.94 55 5 
0.2 2 -20.39 18568 17.97 58 5 
0.2 4 -20.39 16082 15.53 49 5 
0.1 2 -24.51 18666 27.30 48 5 P6 
0.1 4 -24.51 19184 25.96 50 5 
0.2 2 -24.51 24216 32.73 65 5 
0.2 4 -24.51 23088 31.51 63 5 
0.1 2 -5.33 376 0.14 1 1 P3 Si (e) 
0.1 4 -5.33 159 0.19 1 1 
0.2 2 -5.33 376 0.17 1 1 
0.2 4 -5.33 159 0.05 1 1 
0.1 2 -7.99 5067 3.01 26 5 P4 
0.1 4 -7.99 3978 2.24 21 5 
0.2 2 -7.99 5217 3.18 29 5 
0.2 4 -7.99 3820 2.39 23 5 
0.1 2 -10.66 11975 8.46 64 5 P5 
0.1 4 -10.66 10023 7.12 51 5 
0.2 2 -10.66 9698 6.92 57 5 
0.2 4 -10.66 8202 6.10 48 5 
0.1 2 -13.24 14231 11.78 49 5 PG 
0.1 4 -13.24 14027 11.70 48 5 
0.2 2 -13.24 17355 14.54 69 5 
0.2 4 -13.24 17302 14.29 67 5 
0.1 2 -6.85 690 0.50 2 2 P3 As 
0.1 4 -6.85 151 0.08 1 1 
0.2 2 -6.85 970 0.44 3 2 
0.2 4 -6.85 151 0.10 1 1 
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, (J 1* FE cpu LM IT 
0.1 2 -10.65 8785 6.10 24 5 P4 
0.1 4 -10.65 7443 5.49 20 5 
0.2 2 -10.65 9173 6.44 25 5 
0.2 4 -10.65 7228 5.48 22 5 
0.1 2 -14.57 24431 25.05 61 5 P5 
0.1 4 -14.57 20170 20.84 52 5 
0.2 2 -14.57 25152 25.54 65 5 
0.2 4 -14.57 20340 20.60 54 5 
0.1 2 -18.35 35147 48.42 67 5 P6 
0.1 4 -18.35 39862 55.82 72 5 
0.2 2 -18.35 43917 61.27 81 5 
0.2 4 -18.35 37946 51.79 78 5 
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Results of TMSL for all Problems 

Table 5.5 
N g f* FE cpu LM IT 
IOn n-2 -7.87 212 0.14 3 1 P3 Si(B) 
IOn n-1 -7.87 212 0.18 3 1 
15n n-2 -7.87 227 0.26 2 1 
15n n -7.87 227 0.30 3 1 
10n n-2 -15.70 3369 5.66 11 5 P4 
IOn n-1 -15.70 2520 4.47 9 4 
15n n-2 -14.04 3784 14.34 21 5 
15n n -13.11 2896 16.27 17 5 
IOn n-2 -18.97 3702 15.04 12 4 P5 
IOn n-1 -18.97 3594 15.81 11 4 
15n n-2 -20.39 6653 55.91 23 5 
15n n -18.97 4962 60.58 18 5 
IOn n-2 -24.44 4579 20.43 9 2 P6 
IOn n-l -24.44 4139 22.54 8 2 
15n n-2 -25.53 13531 169.34 28 5 
15n n -24.44 5921 68.14 12 2 
IOn n-2 -5.33 254 0.15 1 1 P3 Si(C) 
IOn n-l -5.33 254 0.14 1 1 
15n n-2 -5.33 216 0.25 2 1 
15n n -5.33 269 0.30 1 1 
IOn n-2 -7.99 2557 4.88 14 5 P4 
IOn n-1 -7.99 1850 3.76 9 4 
15n n-2 -7.99 3723 13.61 24 5 
15n n -7.99 1606 2.82 5 1 
IOn n-2 -11.30 5198 18.84 20 5 P5 
IOn n-1 -11.30 4442 19.54 18 5 
15n n-2 -12.08 7858 57.21 29 5 
15n n -12.08 5542 61.11 22 5 
IOn n-2 -12.64 2612 10.10 5 1 P6 
IOn n-1 -12.64 2328 11.20 5 1 
15n n-2 -13.32 10212 165.30 31 5 
15n n -13.32 8944 78.47 24 5 
IOn n-2 -6.85 231 0.39 2 1 P3 As 
IOn n-1 -6.85 231 0.35 2 1 
15n n-2 -6.85 228 0.32 1 1 
15n n -6.85 228 0.52 3 1 
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N g r FE cpu LM IT 
IOn n-2 -10.65 4363 7.10 15 5 P4 
IOn n-1 -10.65 2347 3.78 8 3 
15n n-2 -10.65 5903 16.07 21 5 
15n n -10.65 1682 5.63 6 2 
IOn n-2 -14.35 6315 21.54 18 5 P5 
IOn n-1 -14.35 3648 12.77 9 3 
15n n-2 -14.35 7394 59.71 26 5 
15n n -14.35 1831 11.27 7 1 
IOn n-2 -15.62 4900 15.12 6 1 P6 
IOn n-1 -15.62 3878 14.51 5 1 
15n n-2 -15.62 11856 163.70 21 5 
15n n -15.62 6064 37.63 8 1 
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The Tables 5.4 and 5.5 show that the number of local minima found by MSL is much 

higher than that found by TMSL. In a total of 48 runs MSL continued up to 5 iterations 

in 36 runs and TMSL reached up to 5 iterations in 19 runs. Evidently the total number of 

function evaluations for MSL is much higher than that for TMSL. In the following Table 

5.6 we show the total number of function evaluations and cpu time obtained by MSL and 

TMSL. Each total here is taken for all three potentials, for P3, P4, P5 and P6 and for the 

particular values of 'Y and a shown in Table 5.6. 

Table 5.6 

MSL TMSL 

Total Total 

a FE cpu N g FE cpu Si(B)+Si(C)+As 

0.1 2 141573 150.00 IOn n-2 38292 119.39 P3+P4+P5+P6 

0.1 4 133826 145.40 IOn n-1 29443 109.05 

0.2 2 162417 174.71 15n n-2 71585 716.02 

0.2 4 139840 151.81 15n n 40172 343.04 

Table 5.6 shows that TMSL is much superior to MSL in terms of FE but is less so in terms 

of cpu. Table 5.7 compares the results in terms of the best local minima obtained by MSL 

and TMSL. 

133 



The Best Results for MSL and TMSL for all Problems 

Table 5.7 

MSL TMSL 

FE 1* LM cpu FE 1* LM cpu 

210 -7.87 2 0.17 212 -7.87 3 0.14 P3 Si(B) 

5312 -15.70 21 3.80 2520 -15.70 9 4.40 P4 

12954 -20.39 55 11.94 6653 -20.39 23 55.91 P5 

18666 -24.51 48 27.30 13531 -25.53 28 169.39 P6 

37142 126 43.21 22916 63 229.84 Total 

159 -5.33 1 0.14 254 -5.33 1 0.15 P3 Si (C) 

3820 -7.99 23 2.39 1606 -7.99 5 2.82 P4 

8202 -10.66 48 6.10 5542 -12.08 22 61.11 P5 

14027 -13.24 48 11.70 8944 -13.32 24 78.47 P6 

26208 120 20.:1:1 16:146 52 142.55 Total 

151 -6.85 2 0.08 228 -6.85 :I 0.52 P:I As 

7228 -10.65 22 5.48 1682 -10.65 6 5.6:1 P4 

20170 -14.57 52 20.84 18:11 -14.:15 7 11.27 P5 

:15147 -18.:15 67 25.05 :1878 -15.62 5 14.51 P6 

62696 14:1 51.45 7619 21 :11.9:1 Total 

There is little to choose between the two methods in terms of the quality of the minima 

found; TMSL does slightly better for Si(B)P6, Si(C)P5 and Si(C)P6 and MSL for AsP5 

and AsP6. The number of local minima found is much higher for MSL than for TMSL 

with a consequent high number of function evaluations for the former. The cpu time for 

TMSL, however, is much worse than that for MSL. In Table 5.8 we compare the results of 

the SA and ASA algorithms. 
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Results of SA and ASA for all Problems 

Table 5.8 

ASA SA 

FE cpu f* R t To FE cpu 1* t 

13992 5.23 -7.87 4 54 5556.20 13978 5.91 -7.87 62 P3 Si(B) 

27988 16.03 -15.70 1 31 7227.13 46458 49.30 -15.70 65 P4 

36417 35.87 -20.31 0 29 7052.22 112951 141.97 -20.31 81 P5 

151109 175.52 -25.98 3 64 10399.23 206166 315.71 -23.12 89 P6 

229506 232.65 379553 512.89 Total 

6073 2.69 -5.33 0 24 2760.72 12768 4.27 -4.95 62 P3 Sire) 

53485 20.49 -7.99 4 54 3583.92 56365 25.82 -7.91 81 P4 

113077 66.68 -10.14 4 67 35257.54 114438 85.13 -11.30 80 P5 

66274 47.63 -13.03 0 29 5120.84 272927 254.92 -10.57 90 P6 

238909 137.49 456498 370.14 Total 

20017 8.96 -6.85 4 68 1960.00 14938 6.56 -6.85 63 P3 As 

60994 50.97 -10.65 4 70 2514.15 52499 58.51 -10.65 53 P4 

34285 39.90 -14.78 0 32 2486.85 108406 149.74 -14.57 81 P5 

10462 149.67 -18.49 1 60 3698.28 205151 319.80 -18.49 89 P6 

125758 249.50 380994 534.61 Total 

The results in this Table clearly indicate that ASA is much superior to SA in terms of 

both FE and cpu and also in finding better values for 1*. 

The best results for all algorithms tested are compared in Table 5.9 and 5.10 with 

Table 5.9 giving FE and cpu values and Table 5.10 giving the best values for 1*. 
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Table 5.9 

CRS2 CRS3 CRS4 CRS5 ASA SA TMSL MSL 

1123 1094 755 808 13992 13978 212 210 P3 FE Si (B) 

4304 3724 2418 2967 27988 46458 2520 5312 P4 

11111 18348 3971 4321 36417 112951 3594 12954 P5 

37677 64067 44980 42134 151109 206166 4139 18666 P6 

54215 87233 52124 50230 229506 379553 10465 37142 Total 

0.48 0.76 0.34 0.39 5.23 5.91 0.14 0.17 P3 cpu 

5.33 6.26 2.25 0.64 16.03 49.30 4.40 3.80 P4 

16.74 38.72 5.66 6.72 35.87 141.97 15.81 11.94 P5 

82.07 244.97 91.99 87.17 175.52 315.71 22.54 27.30 P6 

104.62 290.71 108.24 94.92 232.65 512.89 42.89 43.21 Total 

998 1092 705 612 6073 12768 254 159 P3 FE Si (C) 

9829 11446 7369 8521 53485 56365 1606 3820 P4 

58063 45173 12479 10362 113077 114438 5542 8202 P5 

182720 329089 156916 175233 66274 272927 8944 14027 P6 

251610 386800 177469 194728 238909 456498 16346 26208 Total 

0.26 0.58 0.19 0.22 2.69 4.27 0.15 0.14 P3 cpu 

4.96 16.48 3.24 3.50 20.49 25.82 2.82 2.39 P4 

46.73 82.00 9.13 8.90 66.68 85.13 61.11 6.10 P5 

235.21 1199.38 311.48 222.10 47.63 254.92 78.47 11.70 P6 

287.16 1298.44 324.04 234.72 137.49 370.14 142.55 20.33 Total 

952 1281 951 820 20017 14938 228 151 P3 FE As 

4075 5111 1694 2113 60994 52499 1682 7228 P4 

8877 43173 6130 9124 34285 108406 1831 20170 P5 

38381 67241 33192 30784 10462 205151 3878 35147 P6 

52285 116806 41967 42841 125758 380994 7619 62696 Total. 

0.42 1.16 0.44 0.41 8.96 6.56 0.52 0.08 P3 cpu 

3.92 7.70 1.62 2.06 50.97 58.51 5.63 5.48 P4 

15.58 101.56 9.55 17.11 39.90 149.74 11.27 20.84 P5 

101.52 293.38 85.48 79.20 149.67 319.80 14.51 25.05 P6 

121.44 403.80 97.09 98.78 249.50 534.61 31.93 51.45 Total 

358110 590839 271560 287799 594173 1217045 34430 126046 G-T FE 
513.22 1992.95 529.37 408.84 619.64 1417.04 217.37 88.59 G-T cpu 

G-T: Grand Total 
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The best minima found 

Table 5.10 

CRS2 CRS3 CRS4 CRS5 ASA SA TMSL MSL 

Si(B) 

-7.87 -7.87 -7.87 -7.87 -7.87 -7.87 -7.87 -7.87 P3 

-15.70 -15.70 -15.70 -15.70 -15.70 -15.70 -15.70 -15.70 P4 

-20.39 -20.31 -20.39 -15.70 -20.31 -20.31 -18.97 -20.39 P5 

-24.51 -24.51 -26.51 -24.51 -25.98 -23.12 -24.44 -24.51 P6 

Si(C) 

-5.33 -5.33 -5.33 -5.33 -5.33 -4.95 -5.33 -5.33 P3 

-7.99 -7.99 -7.99 -7.99 -7.99 -7.91 -7.99 -7.99 P4 

-10.66 -11.30 -10.57 -10.57 -10.14 -11.30 -12.08 -10.66 P5 

-15.10 -15.19 -15.88 -15.10 -13.03 -10.57 -13.32 -13.24 P6 

As 

-6.85 -6.85 -6.85 -6.85 -6.85 -6.85 -6.85 -6.85 P3 

-10.65 -10.65 -10.65 -10.65 -10.65 -10.65 -10.65 -10.65 P4 

-14.78 -14.78 -14.78 -14.78 -14.78 -14.57 -14.35 -14.57 P5 

-19.57 -19.57 -18.49 -16.51 -18.49 -18.49 -15.62 -18.35 P6 

A critical comparison of the results in Table 5.9 shows that in terms of FE and cpu 

the algorithms can be listed in the following order of merit. 

FE cpu 

1 TMSL MSL 

2 MSL TMSL 

3 CRS4 CRS5 

4 CRS5 CRS2 

5 CRS2 CRS4 

6 CRS3 ASA 

7 ASA SA 

8 SA CRS3 
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5.4 A Short Ranged Many-Body Potential for Mod
elling bee Metal 

The energy and structure of defects such as vacancies and interstitials in metals at

tracts a considerable experimental and theoretical research effort from the physics and 

material science communities. There have been a number of theoretical approaches to 

calculating the energetics of such defects and one of the most popular has been the use of 

interatomic potential functions. These interatomic potentials can be determined from ab 

initio calculations or by empirical means. Semi-empirical pair potentials have been used 

to represent accurately the cohesive energy of fcc metals at the correct lattice spacing but 

have been found to be inappropriate for use in calculating energetics of defects because the 

elastic properties of the material were inaccurately represented. They also cannot be used 

for investigating the effects of chemically active impurities. To overcome these problems 

many-body approaches were adopted. Two of the most successful have been the poten

tials of the Finnis-Sinclair or embedded atom (Foiles, 1985) types. These potentials have 

been used with various degrees of success to study the propertics of surfaces, point defects 

and cracks. Many-body potentials have also been developed for semiconductor materials 

using the ideas of bond order and preferred angular directions. The approaches used were 

based on entirely different considerations than from those for metals but Brenner (Bren

ner, 1989) has shown that the embedded atom method for mctals and the Tersoff/ Abell 

(Tersoff, 1988) approach for covalent materials are mathematically equivalent. 

Most of the work for metals has been for the closed-packed fcc and hcp configurations. 

This is because under pair potential interactions a large collection of particles will always 

move to an energetically favourable distribution which is closed-packed. This is clearly 

inappropriate for bcc materials. We attempt to overcome this problem by fitting a short

ranged many-body potential whose functional form is designed to give the bcc structure as 

the preferred potential energy minimum. This potential description is aimed at ensuring 

that the bcc arrangement is favoured over the fcc, hcp and diamond structures. The 

potential description contains a number of free parameters which are optimized to fit the 

cohesive energy, elastic constants and the bulk modulus of bcc materials. Although a model 

of a crystal, based on pair-wise interaction, is insufficient to model a stable bcc lattice or 

fit the elastic constants of the material, our potential description is a modification of two 

particle interaction which takes account of the fact that the interaction must be affected by 

near neighbours. The Tersoff/ Abell approach considers the attractive term to be modified 

by the presence of near neighbours. The functional form of the many-body potential is, 

therefore, based on the Tersoff/ Abell approach where the many-body term is chosen to 

138 



<" 

give the bcc structure as the preferred minimum. This is described in more detail in the 

next section. 

The Model 

The bcc unit cell is shown in figure 5.1. The 'bond' angle is defined as the angle formed 

by any two atoms in the bcc cell with the central-most atom. 

k 

j~----~------~ 

/ 
/ 

/ 

/ 
/ 

/ 

I 
I 
l-----

Figure 5.1 

We label the central atom i and its distance from atom j is defined as Tij. The angle that is 

subtended by atoms j and k with atom i is named ()jik. Within the bec cell there are three 

values of ()jik, cos-1(i), cos-1(-t) and cos- 1 (-1), corresponding to Tjk=ao , Tjk=V2ao 

and Tjk=V3ao respectively. Here ao, the lattice constant, is the length of the 9 particle 

unit cell and Tik= V; ao. The three angles all satisfy the equation 

(5.8) 

The basic form of two-body interactions between atoms i and j is chosen to be similar to 

the 'Morse' potential, i.e., 
TT A -n2(3T" B -(3T" v ij = e 1-1 - e t1 (5.9) 

where A, B, n2 and {3 are fitting constants. This first order approximation to the interaction 

potential Vij between two particles has a singularity as Tij --> 0, a minimum value (dimer 

binding energy) at some fixed (equilibrium position) separation and Vij --> 0 as Tij --> 00. 

The many-body nature of the potential is taken into account by modifying the attractive 

part of the potential by multiplying B by a function which is chosen to make the second 
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term decrease in magnitude away from the bcc configuration. Thus the chosen form for 

the total potential energy of the central-most atom i is 

E = ~ L!c(Tij)(Ae-n2!3Ti; _ Be-!3(Ti;+o'lh+a2hl) 

Ni 
(5.10) 

where the sum is taken over all neighbours of i. For the bcc cell i has 8 neighbours situated 

at the eight corners of the cube, for fcc it has 12 neighbours and for the diamond cell it has 

5 neighbours. Notice that we are interested in calculating the energy of the central-most 

atom of the bcc cube with respect to its eight nearest neighbours. The switching function 

!c(Tij) has been chosen so that the potential drops to zero as Tij --> 00 from its equilibrium 

position. The chosen form is 

{ 

1, 
fc(Tij) = 1 + sin [7r(Tij - R - 3D)/(4D)], 

0, 

Too < R- D 
'J -

R - D :'S Tij :'S R + D 
Too> R+ D 

'J -

(5.11) 

The values of Rand D are chosen as 3.06A and o.lA respectively. The functions /J and 

h in (5.10) are given by 

h = L T;j!C(Tik) (Tjk - v'3ao)2(Tjk - hao)2(Tjk - ao)2/(1 + (Tik - ao)6), (5.13) 
k#i,j 

where p is a known parameter given by 

(5.14) 

and n3 is the number of remaining nearest neighbours of the centralmost atom when the 

pair (i, j) is considered. For bcc, fce and diamond lattices the value of n3 is 7, 11 and 4 

respectively. Thus the values of p for bcc, fcc and diamond lattices are 2.0,3.33 and 1.0 

respectively. Within the bcc cell Tij = Y{-ao for all j and Tjk = V2ao, v'3ao or aa, where aa 
is the lattice constant. Therefore the penalty functions /J and h vanish in the equilibrium 

configuration and increase as we move away from the bcc structure. At the equilibrium 

each pair (i,j) contributes the same energy. The parameters A, B, n2, {3, 0:1 and 0:2 must 

be chosen to fit the cohesive energy and other elastic properties of the material. This is 

achieved using least squares and global optimization. 
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The numerical calculations presented here, fit the data for tungsten. The free pa

rameters are optimized to fit the cohesive energy, elastic constants and the bulk modulus 

of bcc materials. The objective function we have chosen, consists of the sum of squares 

of the differences between the required and calculated quantities. The function implicitly 

depends on the free parameters and is given by 

where the symbols are defined as : 

Required cohesive energy, E = -8.90 eV , 

Required bulk modulus, BM = 1.86 eV/A3 , 

Required elastic constant, Cll = 3.12 eV/A3 , 

Required elastic shear constant, C11 = 0.94 eV/A3 

(5.15) 

and the 'dashed' terms represent the calculated values of the various material properties. 

To reduce the number of free parameters needed in the computation, we use the following 

arguments. The dimer energy for most metals is not known but the cohesive energy 

for some metals is known, for instance the cohesive energy for tungsten (W) is -8.90 

with cell length ao = 3.16469A. The model described above will give minimum energy 

when the penalty functions /J and fz are zero, that is, when the total potential is the 

sum of the individual pair potentials. We now use the additional assumption that the 

dimer energy = kcohesive energy. From the two body term 

(5.16) 

the equilibrium distance (r d) can be found by setting ~~ =0, giving 

rd = 1 In n2 A 
(n2 - 1)13 B 

(5.17) 

with the corresponding dimer binding energy 

(5.18) 

This implies that n2 must exceed 1 as 'V;l < O. Using (5.17) we can write 

-l3rd - _, - In "'ft e = e "2- 1 
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Again from (5.17) if we fix rd = fao we get 

Now (5.18) becomes 

A = ~e:f!.ao(n2-1)/3 . 
n2 

B (n2A) -"2
'
-

1 

Vd=-(1- n2) -
n2 B 

After substituting the value of A from (5.19) into (5.20) and setting 

(5.19) 

(5.20) 

Dimer Energy (Vd) = ~(Cohesive Energy at the equilibrium distance rd = V; ao), 

we get 
B = 1.1125n2 [e:f!.ao(n2-1)/3j ('2'-1) . 

(n2 - 1) 
(5.21) 

By fixing n2 and.8 in (5.21) values of A and B can be found from (5.19) and (5.21) making F 

a function of n2,.8, III and 112 only. However, preliminary numerical investigation suggests 

that .8 should be approximately 0.42 and n2 should be approximately 6.81. Taking these 

values for .8 and n2 and the corresponding values of A and B gives F as a function of III 

and 112 only and we have optimized F with respect to these parameters using all the global 

optimization algorithms taking [0, IF as the search region. The optimized values of the 

parameters are given in Table 5.11 and the calculated values of the elastic constants and 

bulk modulus are shown in Table 5.12. 

The optimized parameter values 

Table 5.11 

Parameter 

A 

B 

.8 

Bulk Modulus and Elastic Constants 

Values 

513.48133 

4.15243 

6.81547 

0.42267 

0.03082 

0.00490 

From the general theory of solid state physics, we know that the bulk modulus of a cubic 

solid is the energy requircd to produce a given deformation. From the relationship 

B lk M d I 
_C1:.:1_+,--=2_x_C1:c:2 u·,ouus= 

3 
(5.22) 
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it is clear that if we calculate the bulk modulus and the elastic constant Cn, the remaining 

elastic constant C12 can be found. The bulk modulus is given by 

(5.23) 

where Vp is the volume per particle (Ashcroft and Mermin, 1976). 

is similar to bulk modulus but the shear stress, 

The expression for Cn 

_ I' 2 [E(r/» - 2E(0) + E(-r/»] 
C44 - Im -1.2 3 

<p-+O If' ao 
(5.24) 

where r/> is the shearing angle (Ashcroft and Mermin, 1976) and E(r/» is the energy for the 

deformation due to r/>. 

Table 5.12 

Correct Calculated 

Value Value 

BM 1.866 eV/.Il3 BM' 1.853 eV/.Il3 

cn 3.126 eV/.Il3 cn 
, 

3.136 eV/.Il3 

C44 0.944 eV/.Il3 
C44 

, 
0.958 eV/.Il3 

The computations for the elastic constants and bulk modulus are carried out by fixing 

the central most atom at the origin and eight corners are chosen in the three dimensional 

space according to the lattice constant ao. A similar scheme was also implemented for the 

calculation of energies of fee and diamond lattices. For calculation of the bulk modulus 

the coordinates of the corner atoms are extended and contracted by a magnitude of 0.001. 

Similarly for C44 the x-coordinates of the top four atoms are extended and those of the 

bottom four are contracted and vice versa to form a small angle of magnitude r/> with the 

vertical axis. This deformation, however does not change the volume of the cube. 

Before going on to compare the relative merits of the algorithms we use the optimum 

values of the parameters (see Table 5.11) to test the model for different lattices. The 

comparison of the energetics is demonstrated in Table 5.13. 

Lattice 

bee 

fcc 

Diamond 

Minimum Energy 

Table 5.13 

Minimum Energy Separation (r d) 

-8.90eV 2.740A 

-8. 18geV 2.954A 

-4.45eV 2.740A 
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From Table 5.13 it is clear that proposed model for bcc has its energy lower than fcc and 

for the diamond lattice. Table 5.12 shows that the calculated elastic constants are in good 

agreement with their correct values. Consequently we can infer that the model is accept

able. In the next section we compare the numerical results obtained by all algorithms. 

Numerical Comparison of the Algorithms 

We have implemented all algorithms with the best of the user supplied parameters de

scribed earlier. We used N = 50 and a = 4 for both MSL and TMSL but we took 'Y = 0.2 

for MSL and 9 = 8 for TMSL. We took the local search tolerance as 10-4 for this problem. 

TMSL performed 2 local searches and MSL 3 but only the global minimum was found. We 

summarize the results of all algorithms in Table 5.14. 

Table 5.14 

CRS2 CRS3 CRS4 CRS5 ASA SA TMSL MSL 

FE 1327 1159 1083 1596 3582 3951 749 895 

cpu 9.96 12.68 8.03 11.32 28.42 31.73 6.21 6.37 

P* 1.7E-3 2.5E-3 1.9E-3 2.2E-4 1.5E-3 2.3E-3 1.5E-4 l.lE-4 

Table 5.14 shows that TMSL is the best algorithm with respect to function evaluations and 

cpu time and the CRS algorithms are better than the SA-type algorithms. It also shows 

that CRS4 performs better than the other CRS methods both in terms of the number of 

function evaluations and cpu time and ASA is superior to SA. 
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CHAPTER 6 

The Optimal Control of Vehicle 
Suspension Systems 



6.1 Introduction 

This Chapter describes a model of an active (computer-controlled) vehicle suspension 

system and a new non-linear controller design methodology is presented. Based on the 

principles of optimal control, it permits the use of more general cost functions than the 

standard linear optimal design techniques and hence increases the freedom of the designer. 

It implements the control with an optimal, non-linear feedback function. Having designed 

this non-linear, closed loop, feedback control, simulations of the suspension system are 

carried out. Feedback is optimized both with and without the imposition of constraints. 

Comparisons between the open loop, the unconstrained closed loop and the constrained 

systems are given. The global optimization algorithms discussed in previous Chapters are 

used to minimize the underlying cost function and their performances are compared. 

6.2 Design of Vehicle Suspension System 

The modelling of vehicle suspension systems and the design of suspension control 

strategies for the purpose of giving a 'smoother' ride is a problem that has attracted much 

interest over the years (Thompson, 1976; Friihauf, et ai, 1985 and Sharp and Crola, 1987). 

In the field of active (computer-controlled) suspension control strategy design, a number 

of suspension systems have been produced in recent years (Karnopp, 1983; Gordon, et ai, 

1990 and Gordon, et ai, 1991). To date most of the models (Thompson, 1984; Hac, 1985 

and Wilson, et ai, 1986) have used linear optimal control theory to solve the optimization 

problem. The linear optimal control approach, or LQG (linear quadratic Gaussian) as 

it is commonly known, assumes unconstrained actuation of the control which is likely to 

be undesirable. This approach leads to a linear feedback law and a closed loop system. 

Although this method provides an analytical solution with relatively low computational 

time, it places unsatisfactory limits on system performance, because the cost function must 

be a quadratic function of the state and control variables (Hac, 1987, Marsh, et ai, 1989 

and Gordon, et ai, 1990). Disadvantages of the use of a quadratic cost function are well 

explained in Marsh (1992). Hac (1987) introduced the idea of an adaptive linear strategy, 

but it is demonstrated in Gordon, et ai, (1990) that this approach could provide poor 

performance in some situations, such as when potholes are encountered. A more general 

non-linear methodology which does not restrict the designer to quadratic cost functions, 

allows greater freedom for the expression of performance requirements and is potentially 
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able to produce controllers which enable inherent adaptation of the characteristics of the 

vehicle. This fundamental advantage of a nonlinear methodology is likely to be more 

effectively demonstrated for an ideal active suspension system since this offers the greatest 

freedom of actuation. Our purpose therefore is to solve the problem for a non-linear 

feedback control in order to see how the performance characteristics might be improved 

by using a non-quadratic cost function. The motivation and justifications for such an 

approach are well-explained in Marsh (1992). Recently, Gordon et al. (1990) and Gordon 

et al. (1991) implemented a non-linear feedback control with a non-quadratic cost function, 

where the control is a fifth degree polynomial in the state variables, with 91 free parameters, 

which are the polynomial coefficients. The problem was formulated using Pontryagin's 

maximum principle and a fitting method used to find the polynomial coefficients, the 

numerical scheme however required that optimal open loop data be generated for 4000 

initial conditions which is computationally very expensive. A further drawback of their 

approach is that only an approximate method was used to solve the open loop problem. In 

addition, a controller design subject to realistic constraints on the system was not studied. 

We solve the open loop problem using a stable numerical method and design a nonlinear 

feedback control. A model of a car suspension system with realistic constraints is also 

examined. 

6.3 Unconstrained Problem Model and Optimization 

A quarter vehicle model is the simplest that can represent the dynamics of a suspension 

system and possesses particular advantages over more complex models (see, for example 

Sharp and Crolla 1987). This model is to be used to design and test the suspension system 

because of its simplicity and ability to model the most fundamental aspects of the system 

performance. The system is shown schematically in figure 6.1, which also defines the 

variables used in the description of the problem. The suspension system is controlled by 

a force generator situated between the wheel and the body. The state equations for the 

system are Newton's laws of motion, namely; 

:b = (ktXI - u)/m , 

X4 = u/M , 

(6.1) 

where x = (Xl, ... , X4) is a vector of state variables of the system and u(t) is the control 

input to the system. 
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• suspension 
x = deflection 2 

Tyre 
xl = de+nnatiOn 

............. 
x 4= body velocity 

............. 

x 3 = wheel velocity 

Tyre 
Spring 

Figure 6.1 

Typical values for the constants are M (body mass)=320 kg, m (wheel mass)=40 kg and 

kt (tyre stiffness)=2.0 x 105 N/m, (see, for example, Marsh, et aI, 1989). For given initial 

conditions the performance of thc system is assessed via a cost function, L( u, x), which 

is a function of both state variables and control. This is chosen to accumulate all the 

undesirable effects on the states caused by the disturbances and the costs of the control 

action into the a single function (Marsh, 1992). The cost function is then integrated over 

the time period to form the dynamic cost, I. Therefore, the dynamic cost functional to be 

minimized is 

t~·x 
I = la L(u,x) dt (6.2) 

with x(O) = Xa. L(x, u) is a positive definite function of the state variables and control 

inputs given by, 

(6.3) 
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where 

{ 

4000xf if IXll :::; 0.007 
Jl (Xl) = 98500xf - 13231xlI + 4.6305 if 0.007 :::; IXll :::; 0.009 

25000xf - 1.323 if IXll 2: 0.009 

{ 

500x~ if IX21 :::; 0.079 
J2(X2) = 385250x~ - 60790.51x21 + 2401.22475 if 0.079:::; IX21 :::; 0.081 

10000x~ - 60.7905 if IX21 2: 0.081 

(6.4) 

The distances are in metres and this will be· used as the unit of length subsequently. The 

cost functions Jl and J2 are quadratic splines chosen to have high values if the amplitude 

of the state disturbances is large. Their form is chosen to be approximately the same as 

that given by Gordon, et al, (1990) except that they are continuous with continuous first 

derivatives with respect to Xl and X2 respectively. The graphs of J l and h are shown 

below in Figure 6.2. 
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Figure 6.2(b) h(X2). 

The cost function is chosen to depend on Xl,X2 and X4 because (1) the tyre deformation, 

x!, should be kept small: (2) the work space between the body and the wheel should 

be kept constant; (3) the body acceleration should be as small as possible. This is a 

much more realistic cost function than that for the LQG model, which is a continuous 

quadratic function and cannot impose 11 high penalty for large amplitude disturbances. 

For the purpose of numerical calculation t max is taken to be 2 secs. This is approximately 

equal to the infinite time problem (see Marsh, 1992). The workspace between the body 

and the wheel is limi!ed by the design criterion. A typical workspace size is given by 

-0.1 :::; X2 :::; 0.1. The tyre deformation is also limited and typically lies in the range 

-0.025 :::; Xl :::; 0.025. The cost function L(x, u) has been c1mscn with these design criteria 

in mind and has a very large value if Xl and X2 lie outside these limits. For the system 

(6.1) with performance index (6.2) the open loop control is determined using Pontryagin's 

maximum principle (see, for example, Bryson and Ho, 1969). This gives the optimal control 

u(t) that minimizes (6.2). 
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6.3.1 Open Loop Optimization 

We apply Pontryagin's maximum principle to find the optimum open loop costs and 

controls for specified initial conditions. In the usual way by introducing a 5-th state 

variable, we can write 
Xs = JI(XJ) + h(X2) + x~ 

= JI(XJ) + h(X2) + n2/M2 , 

with X5 (0) = 0. This gives rise to the system 

X3 = (ktXl - n)/m , 

X4 = n/M , 

X5 = JI(Xl) + h(X2) + n2/M2 . 

Now, the problem becomes: minimize 

subject to (6.5) and x(O) = (xo,O). The Hamiltonian H of the system is 

where 

5 

H= LAdi' 
i=l 

. 8H 
Ai(t) = --8 i = 1, ... ,5 , 

Xi 

(6.5) 

(6.6) 

and A(t,) = (0,0,0,0,1). Here fi are right hand sides of the system (6.5) and A -

(AI, ... , A5) is the co-state vector. The co-state equations are therefore as follows: 

),l(t) = -A5 dh(XI) _ A3kt , 
dXI m 

), (t) = _A dh(X2) 
2 5 d ' X2 

),3(t) = Al - A2 , 
(6.7) 

),4(t) = A2 , 

),5(t) = 0. 

It is seen that the non-quadratic nature of the cost function causes the costate and state 

equations to be non-linear and hence yields a non-linear two point boundary value problem. 
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We solve this problem by the steepest descent approach (sce, for example, Rosenbrock and 

Storey, 1966). We define 
oH 

g(u) = oU 
2U>'5 >'4 >'3 

= M2 + M - ;;:; . 

(6.8) 

Given an approximation uo(t) to the optimal control then a better approximation, in the 

sense of taking a step along the path of steepest descent of the functional X5(tj), can be 

shown (Rosenbrock and Storey, 1966) to be 

Uj = U o - €g(u(t)) (6.9) 

where € determines the length of step taken. The line search along the negative gra

dient used a quadratic interpolation (see, for example, Rao, 1978) which does not use 

derivatives. Our numerical scheme proceeds as follows. The time interval is discretized as 

o = to, tj, ... , tn = 2. With an initial guess uo(t) at the control the state equations are 

integrated from 0 to 2 and the co-state equations are integrated from 2 to O. At each time 

stage of the integration the nominal control uo(t) is adjusted by the rule given in (6.9). The 

whole process is then repeated for the new control Uj (t) and the process continues until 

the convergence criterion is met. The stopping criterion was Ilg(u;)11 < 10-4
• We used an 

integration step h = 0.005 and solved the equations (6.5) and (6.7) using a Runge-Kutta 

4th order method (Sanchez, et. ai, 1988) with initial control uo(t) = 1.5. 

In practical control problems the open loop approach is very inefficient because the 

control is not an instantaneous function of the state variables. To determine u(t) requires 

that a series of differential equations be solved over the time interval (0, t max ) before the 

control u(t) can be determined and then applied. An attempt has been made here to 

design a feedback control to overcome the problem. There are many possible formats in 

which to express this feedback control (Marsh, 1992). Concern for simplicity leads us to 

consider the implementation of the control strategy via a continuous analytical feedback 

function to be known as the feedback law. This feedback law overcomes the computational 

problems of solving for u(t) by specifying the control u(t) to be a function of the state 

variables u(t) = U(x(t), k) which contains some free parameters k which are chosen so that 

u(t) gives optimal responses. Often u(t) is chosen as a low order polynomial (Marsh, 1992) 

in the state variables x. The unknown coefficients in the polynomial are the parameters k. 

The problem here requires that the controller performs the same operation, irrespective of 

whether the system is displaced from its equilibrium condition through positive or negative 

values. Clearly the controller should be an odd function of the state variables. We have 

therefore chosen U(x(t), k) as a 12 term polynomial, in the state variables, containing first 

and third degree terms only. Motivation for such a choice of the feedback function can be 
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found in Marsh (1992). For the car suspension problem a full state feedback requires a 

non-linear function U(x(t), k) of 4 independent variables (2 displacemcnts and 2 velocities). 

Therefore our chosen feedback is given by 

U(x(t), k) = klX2 + k2X3 + k3X4 + k4X~X3 + k5xIX2X3 + k6X~ 
+ k7X~X4 + kgX2X3x4 + k9X~X2 + k!Ox~ + kux5x4 + k12X~X3 

(6.10) 

The parameters k i in (6.10) are found by optimizing a combined cost which is the sum of 

the costs incurred due to several initial conditions evenly distributed throughout the state 

space. We have, in fact, selected four representative points x(O) in the space of initial 

conditions and call them the design sample. To enable the feedback law to give a good 

representation across the practically available region of the state space, the design sample 

needs to provide information over all areas of the state space. The size of the design sample 

must be curtailed however, due to the computational cost. But clearly more points could 

be chosen, if necessary, at the expense of increased computing cost. The chosen set of 

initial conditions Xo are 

(0.025,0.1,0,0,0), (-0.025,0.1,0,0,0), 

(0.01,0.04,0,0,0), (0.01, -0.04,0,0,0) . 
(6.11) 

Note that inclusion of the image points -Xo to distribute the initial conditions evenly in 

the state space will contribute the same cost as Xo and these are therefore not included 

here. However it will be shown, a posteriori, by simulations of the optimal feedback law 

that the values of the cost function calculated at other points do not differ significantly 

from the corresponding open loop values. 

6.3.2 Closed Loop Optimization 

Closed loop optimization implements the control (6.10) with chosen parameter values 

k = (kl, k2, k3, k4, ... , k12 ) as opposed to open loop which pre-calculates u(t) to minimize 

the cost. As a result the cost function depends implicitly on k. Closed loop optimization 

does not involve the co-state equations (6.7) and the new cost function is defined as follows: 

Cost function C= sum of the dynamic costs incurred by using each of the four initial 

conditions in 6.11 whilst implementing the feedback law with parameters assigned, i.e., 

4 

C = Lcostj 
j=l 

(6.12) 

where costj =cost with the j-th initial condition from 6.11. In order to determine the control 

u(t) we must determine the optimal parameter set k = (kr, k2, k3, k4, ... , k I2 ). This is done 

by using the global optimization algorithms described in earlier Chapters. However, it was 
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felt that to produce numerically reasonable values for k i the state variables should be 

normalized by dividing each by its maximum practically available value, thus: 

The corresponding new state equations become 

Yl = -100Y3 , 

Y2 = 25Y3 - lOY4 , 

Y3 = (0.025ktYl - u)/(2.5m) , 

Y4 =u/M, 

Y5 = Jl (Yd + h(Y2) + u2/M2 . 

The cost functions J l and h become 

{ 

2.5yf if IY11 ::; 0.28 
Jl (Yl) = 61.5625yf - 33.0751Y11 + 4.6305 if 0.28 ::; IY11 ::; 0.36 

15.625yf - 1.323 if IYII :::: 0.36 

{ 

5Y1 if IY21 ::; 0.79 
J2(Y2) = 3852.5y1- 6079.051Y21 + 2401.22475 if 0.79::; 1Y21 ::; 0.81 

100y~ - 60.7905 if 1Y21 :::: 0.81 

(6.13) 

(6.14) 

(6.15) 

Note that this transformation of the system does not affect the open loop cost at all 

and the same open loop control will be produced for a particular initial condition. The 

individual normalised costs, costj, are now found by solving the system (6.14) only with the 

normalised initial conditions of (6.11). We have found by extensive exploratory numerical 

work the following region of parameter (ki , i = 1,2, ... ,12) space within which the system 

is well defined. 

[0,2.0E3] x [0,2.0E3] x [-5.0E3, 1.0E2] x [-5.0E3, 5.0E3] x 

[-6.0E3,5.0E2] x [0, 1.5E3] x [-2.0E3,2.0E3] x [0,5.0E3]x 

[0, 1.5E3] x [-5.0E3,5.0E3] x [-5.0E3, 1.0E3] x 

[-5.0E3,1.5E3] 

The above region was therefore chosen as our search region for all the subsequent calcula

tions. Seven different local minima were found within the above region but each of these 

local minima have the same function value. The function C has a lowest value of 12.69. 

The seven individual local minimizers are given in Table 6.1 below. (Not all the local 

minima are found by all of the algorithms. The values in Table 6.1 are representative in 

those cases where more than one methods found the same local minima.) 
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Table 6.1 

Local minimizer 

i kl , k2 
1 k3 

1 
k4 

1 k5 
1 

k6 
1 e 1 

1 536.12 530.20 536.32 523.09 534.49 539.90 540.38 

2 539.70 621.23 520.11 601.54 596.21 541.69 576.11 

3 -2080.86 -2040.57 -2098.46 -1990.09 -2066.86 -2089.35 -2076.80 

4 3829.17 4080.68 3814.65 3660.40 3891.00 3921.36 3752.10 

5 170.05 486.76 239.91 83.42 257.45 383.22 187.48 

6 1301.01 1181.22 1282.58 1311.17 1286.93 1246.56 1244.62 

7 -1941.02 -1114.49 -1989.10 -1711.17 -1870.07 -1679.93 -1404.76 

8 4899.68 3768.93 4895.90 4878.77 4988.70 4120.65 3954.50 

9 1242.84 31.90 1499.89 407.16 1218.00 998.65 447.10 

10 3665.00 3286.64 3718.66 3261.95 3398.93 3841.81 3639.27 

11 -3574.96 -2385.87 -1414.28 -3466.25 -3607.44 -2154.98 -3399.40 

12 -47.73 -435.58 52.69 -194.85 -3275.65 129.79 1084.71 

A set of initial conditions is chosen from the state space at which to test a controller from 

Table 6.1. Since all sets of parameters in Table 6.1 give rise to the same optimal cost any 

set ki can be used in the feedback law. However, we have used the parameter set in column 

1 of Table 6.1 in the feedback law. These results are shown in Table 6.2 where lC stands 

for initial conditions and OLC and CLC stand for open and closed loop cost respectively. 

The Table shows that the agreement is quite good in all cases. 

Table 6.2 

lC OLC CLC 

(0.025,0.1,0,0) 9.51 9.67 

(-0.025,0.1,0,0) 2.23 2.36 

(0.01,0.04,0,0) 0.41 0.42 

(0.01,-0.04,0,0) 0.22 0.22 

(0.015,0.1,0,0) 6.61 6.75 

(0.015,0.05,0,0) 0.76 0.80 

(-0.015,0.05,0,0) 0.42 0.44 

(0.025,0.05,0,0) 1.53 1.60 

(0.025,-0.05,0,0) 0.88 0.95 

(-0.015,0.1,0,0) 2.15 2.30 

(0.02,0.09,0,0) 5.49 5.66 

(0.015,-0.08,0,0) 0.91 1.00 

(-0.025,0.08,0,0) 1.31 1.40 

A comparison of the difference between open and 

closed loop costs for a variety of initial conditions 
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Finally in the next section a constrained model is considered where the damping is 

subject to a delay. The problem is similar to the closed loop problem but has an extra 

state variable. This problem is also solved and the results compared with the open loop 

and unconstrained closed loop models described above. 

6.4 Constrained Model and Optimization 

The optimal feedback controller given above has been calculated for a system which 

is not constrained by limits on the forces and in which the controller acts with immediate 

effect to counteract any disturbances to the system. In practice, however, the suspension 

system is a spring-damper combination and the controller u(t) is constrained. The dis

turbances to the system are controlled by the damper situated between the body and the 

wheel while the spring acts as a support to the system. The total force therefore is the 

sum of the damper force Fd and the spring force ksX2, i.e., u(t) = Fd + ksX2' where the 

spring stiffness ks = 1.8 X 104 N fm. The damper force Fd is dynamically constrained and 

is dependent on the relative velocity between wheel and body. As the damper force Fd is 

constrained so is the total force u(t). The constrained system model has been derived in 

consultation with Dr. T. J. Gordon of the Department of Transport Technology, Lough

borough University. The model includes an extra state variable X6, known as the damper 

current of the system which satisfies 

dX6 1 Cl 
-d = -(Io - x6)(1 + -110 - x61) , 

t Cl C2 
(6.16) 

where 10 is known as the signal current and Cl and C2 are constants depending on the 

system in question. Typical values for Cl and C2 are 3 x 10-28 and 5 x 10-3 8 2 respectively. 

The signal current 10 and the damper current X6 always lie between 0 and 1. The damper 

force Fd is bounded by a maximum value when X6 = 0 and a minimum value when X6 = 1. 

There is a well defined relation between the damper force Fd, the relative velocity (X3 - X4) 

and the damper current. This relationship is given numerically in Table 6.3. We call this 

relationship the damper map Pm and it maps between the damper force and the damper 

current for a given relative velocity. 

Table 6.3 

Fd 

(X3 - X4) -1.5 -1.0 -0.5 -0.2 0.0 0.2 0.5 1.0 

current=O.O -2350 -1750 -1500 -800 0.0 900 1300 2400 

current=0.5 -2000 -1450 -550 -250 0.0 250 650 1350 

current=1.0 -1450 -900 -300 -200 0.0 200 350 800 

Relationship between the damper force, the damper current 

and the relative velocity across the damper 
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This mapping between Fd, (X3 - X4) and current is typical of a realistic automobile control 

problem and can be found for a real-life situation by system identification. (The data of 

Table 6.3 was supplied by Dr. T. J. Gordon.) Notice that for fixed values of (X3 - X4) 

and current, there is a unique value of the damper force Fd. The constrained closed loop 

optimization problem is the same as it was for the unconstrained closed loop optimization 

with the same cost function, the only difference is that the system now includes an extra 

state equation. Thus for the constrained system the new normalized state equations are 

YI = -100Y3 

Y2 = 25Y3 - lOY4 , 

Y3 = (0.025ktYI - u(t»f(2.5m) , 

Y4 = u(t)fM , 

Ys = h(Yl) + J2(V2) + U(t)2 fM2 , 

Y6 = ~(Jo - V6)(1 + cl lIo - v61) , 
Cl C2 

(6.17) 

where V6 = X6. The representative set of initial conditions is the same as that taken 

for the unconstrained system with the exception that the value of V6(0) was chosen as 

0.5, half way between the upper and lower bounds. To integrate the above system at 

each time step, i = 0,1, ... , n - 1, the control U(i)(t) is found from the state variables at 

the begining of the step with the assigned values of ki . Now the damper force is found 

from FJi) = uti) - ksX~i) and the signal current is found by inverse interpolation in Table 

6.3, Le., Iii) = p;;;l (X~i) - X~i), FJi)). If Iii) E (0,1) the integration step proceeds with 

uti) = FJi) + ksx~i)with a new damper force Fdi) = Pm (X~i) - X~i), V~i)). If however 

Iii) :::; 0, or :::: 1, it is fixed ('clipped') at 0 or 1 respectively and a new Fii)c is found by 

interpolation in Table 6.3, i.e., Fii)c = Pm (x~i) - x~i), 0 or 1). uti) is itself then found 

from u{i)e = Fdi)c + ksX~i) and again integration proceeds. Notice that the damper force 

must be obtained with the original (non-normalized) variables. 

The global optimization algorithms were used to calculate the optimi:;led parameters 

of the feedback law (6.10) for the constrained system. The global minimum was obtained 

at 13.95 and there were a number of local minima. The results are summarized in Table 

6.4. 
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Table 6.4 

Local minimi7,er 
~ kl , k2 

1 k3 
1 

k4 
1 k5 

1 k6 
1 

k7 , 
1 651.51 623.87 791.28 1490.98 1083.38 231.76 640.25 

2 1452.86 1310.18 1071.81 674.27 1182.76 607.44 1499.52 

3 -2023.49 -2072.60 -2143.48 -4799.13 -4537.21 -4937.39 -2003.49 

4 -4395.83 1640.91 -3389.28 -4420.82 1382.17 -4928.69 -4543.22 

5 -4456.98 -5259.94 -3518.50 -4752.03 -4739.95 -2181.32 -5750.17 

6 18.56 107.60 0.0025 303.97 897.98 1458.36 0.00 

7 -1732.77 -1209.61 -2000.00 -1945.80 -335.46 -1772.17 -2000.00 

8 4161.25 3285.16 2921.95 1500.55 4488.5 1447.26 5000.00 

9 1053.03 1061.18 213.70 503.21 422.36 361.51 1500.00 

10 -2532.61 -3959.59 -619.18 3821.33 -1058.33 1823.26 -3723.96 

11 -3643.94 -4369.33 -1702.10 -3138.17 -4573.44 -2962.64 -4948.54 

12 217.81 240.10 628.25 489.93 -1254.67 -3401.59 1287.83 

cost 13.95 13.96 13.96 14.11 14.06 14.09 13.95 

We have compared the performance of the two feedbacks represented by the param-

eters given in column 1 in Tables (6.1) and (6.4) on the constrained system. Table 6.5 

represents the comparison which shows that the constrained controller provides lower cost 

for almost all of the state space. In Table 6.5, CUP and CCP represent costs due to 

the optimized parameters for unconstrained and constrained feedback respectively on the 

constrained system. 
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Table 6.5 

rc CUP ccP 
(0.025,0.1,0,0,0,0.5) 9.91 9.89 

(-0.025,0.1,0,0,0,0.5) 3.09 2.99 

(0.01,0.04,0,0,0.5) 0.70 0.69 

(0.01,-0.04,0,0,0.5) 0.38 0.38 

(-0.01,0.04,0,0,0,0.5) 0.39 0.39 

(-0.01,-0.04,0,0,0,0.5) 0.68 0.67 

(-0.025,-0.1,0,0,0,0.5) 10.04 10.01 

(0.025,-0.1,0,0,0,0.5) 3.04 2.97 

(0.025,0.05,0,0,0,0.5) 2.29 2.26 

(-0.025,-0.05,0,0,0,0.5) 2.29 2.25 

(-0.025,0.05,0,0,0,0.5) 1.23 1.15 

(0.025,-0.05,0,0,0,0.5) 1.28 1.14 

(0.0125,0.1,0,0,0,0.5) 6.25 6.25 

(-0.0125,-0.1,0,0,0,0.5) 6.33 6.32 

(0.0125,-0.1,0,0,0,0.5 ) 2.90 2.80 

(-0.0125,0.1,0,0,0,0.5) 2.92 2.84 

(0.0125,0.05,0,0,0,0.5) 1.10 1.09 

(-0.0125,-0.05,0,0,0,0.5) 1.07 1.06 

(0.0125,-0.05,0,0,0,0.5) 0.61 0.60 

(-0.0125,0.05,0,0,0,0.5) 0.63 0.62 

(0.0225,0.09,0,0,0,0.5) 6.57 6.56 

(-0.0225,-0.09,0,0,0,0.5) 6.63 6.61 

(0.0225,-0.09,0,0,0,0.5) 2.26 2.21 

(-0.0225,0.09,0,0,0,0.5) 2.30 2.23 

(0.015,0.08,0,0,0,0.5) 2.95 2.94 

(-0.015,-0.08,0,0,0,0.5 ) 2.94 2.93 

(0.015,-0.08,0,0,0,0.5) 1.52 1.49 

(-0.015,0.08,0,0,0,0.5) 1.57 1.53 

(0.0,0.1,0,0,0,0.5) 3.92 3.76 

(0.0,-0.1,0,0,0,0.5) 3.95 3.75 

(0.025,0.0,0,0,0,0.5) 1.20 1.11 

(-0.025,0.0,0,0,0,0.5) 1.21 1.14 

(0.02,0.09,0,0,0,0.5} 5.90 5.88 

A comparison between the 'constrained' controller and the 

'unconstrained' controller on the constrained system 
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6.5 Implementation and Comparison of Algorithms 

In this section we discuss the numerical applications of the global optimization al-

gorithms described in the previous Chapters both to the unconstrained (UP) and to the 

constrained (CP) problems. We have implemented the algorithms with the values of the 

user defined parameters used in the previous Chapter, the only difference here is that the 

local search tolerance was 10-6 . All algorithms successfully located the global minima 

for both UP and CP. In Table 6.6 we first compare the results of the MSL and TMSL 

algorithms. The number of function evaluations, cpu times and the optimal values are 

used for comparison purposes. Preliminary runs showed that it was only necessary to run 

MSL and TMSL for one iteration. 

The Results of MSL and TMSL 

Table 6.6 

MSL TMSL 

N 

100 

100 

150 

150 

200 

200 

100 

100 

150 

150 

200 

200 

"Y 1* FE cpu a N g 1* FE cpu a 

0.2 12.69 8751 320.10 2 IOn n 12.69 4775 219.45 2 UP 

0.2 12.69 7291 278.32 4 IOn n 12.69 3921 189.94 4 

0.1 12.69 5211 179.71 2 15n n+1 12.69 3296 180.27 2 

0.1 12.69 4331 152.21 4 15n n+1 12.69 3624 189.59 4 

0.05 12.69 4265 148.34 2 IOn n+1 12.69 3834 145.46 2 

0.05 12.69 3117 122.87 4 IOn n+1 12.69 2991 137.32 4 

32966 1201.55 22441 1062.03 Total 

0.2 13.95 10209 472.49 2 IOn n 13.95 6075 379.30 2 CP 

0.2 13.95 9257 452.52 4 IOn n 13.95 5129 280.09 4 

0.1 13.95 6217 234.18 2 15n n+1 13.95 5896 285.17 2 

0.1 13.95 5801 229.68 4 15n n+1 13.95 5206 277.75 4 

0.05 13.95 5336 168.11 2 IOn n+1 13.95 4478 228.01 2 

0.05 13.95 4543, 159.74 4 IOn n+1 13,95 3924 183.20 4 

41363 1716.72 30708 1633.52 Total 

From the total figures in Table 6.6 it is clear that TMSL uses fewer function evaluations 

and less cpu time than MSL. It is also clear from this Table that for two iterations a = 4 

has always produced the best results for both algorithms. 

Since all eight algorithms successfully found the global minimum therefore in Table 

6.7 we compare them only in terms of cpu time and number of function evaluations. In 
Table 6.7, the data for MSL is N = 200, "y = 0.05 and a = 4. The data for TMSL is 

N = IOn, g = n + 1 and a = 4. 
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Table 6.7 

CRS2 CRS3 CRS4 CRS5 SA ASA MSL TMSL 

7072 6658 4341 3891 14942 13647 3117 2991 UP FE 

4241 5110 4079 3902 16240 15858 4543 3924 CP 

243.5 213.2 151.4 123.6 588.00 587.64 122.87 137.32 UP cpu 

220.0 245.9 214.5 178.3 702.20 663.98 159.74 183.20 CP 

The results indicate that CRS5 is the best algorithm with TMSL and MSL close runners 

up. The SA-type are the worse performing algorithms both in terms of number of function 

evaluations and cpu time, however, ASA has always exhibited superiority over SA. For UP 

some numerical difficulties were encountered. This is because for a few sets of parameters 

the dynamic cost for UP became very high and overflow occurred. When this happened we 

assumed the cost to be 1020 corresponding to that parameter sct. If at the i-th step of the 

Runge-Kutta method, the calculated cost exceeded 1020 , we assumed the final cost to be 

1020 . Notice that this does not happen for CP, because the signal current, ID corresponding 

to F:J. is always maintained within its bounds. 
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CHAPTER 7 

Application of Global Optimization 
Algorithms to some Problems in Control 

and Statistics 



7.1 Introduction 

In this Chapter we have used three more practical problems to examine the performances 
of the stochastic global optimization algorithms. Two of the problems are from optimal 
control and have arisen in the field of chemical engineering. These control problems have 

multiple local optima and the global optimum is sought. For these optimal control prob

lems, we also compare the results obtained from a special kind of dynamic programming 
implemented by Luus (1989). The third problem is a global optimization problem which 

has arisen in applied statistics. 

7.2 Comparative Studies and Discussion 

In this section we discuss the numerical results obtained and make a critical comparison of 

all algorithms used on the three problems. These results have been obtained by using the 
same user supplied parameters as were used in Chapters 5 and 6. For the implementation 

of all methods, on the control problems, we discretize the time interval so that the number 

of time steps becomes the number of variables, n, and the constant controls used for each 
time step become the variables. For both control problem~ we used a variable step and 

variable order Runge-Kutta routine, D02CAF, from the NAG library for integTation. The 
routine therefore lL~es constant control, u(i - 1), to integTate the system from time step 

ti-l to step ti, i = 1,2, ... , n. 

7.2.1 Tank Reactor Problem: 

This is a model of a nonlinear continuous stirred tank reactor which involves two 

different local minima. The problem was studied by Luus and Galli (1991). The equations 

describing the chemical reactor are: 

:h = -(2 + U)(Xl + 0.25) + (X2 + 0.5) exp ( 25xl ) , 
Xl + 2 

. ," ( 25xl ) X2 = 0.5 - X2 - (X2 + O.v) ex}> 
Xl + 2 

The controlu is unconstrained and the performance index is given by 

f = x3(0.78) . 
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The initial condition is x(O) = (0.09,0.09,0.0) and the interval of integ,Tation is 0 ~ t ~ 

0.78. It is required to compute the control variable u(t) which will minimize the perfor

mance index x3(0.78). The problem has a global minimum x3(0.78) = 0.13309 and a local 

minimum x3(0.78) = 0.24442. 

The first method we used was the CRS method. We began by checking the numerical 

accuracy by finding the number of munerical integration step lengths required to obtain a 

reasonable accuracy. The number of time steps (variables) taken were 3, 6 and 13. The 

results are given in Table 7.1. 

Tahle 7.1 

CRS2 CRS3 CRS4 CRS5 

FE f* FE f* FE f* FE f* P 

1260 0.172 1122 0.172 487 0.173 542 0.172 3 

2635 0.142 3918 0.142 1570 0.142 876 0.141 6 

12136 0.135 14905 0.136 8997 0.136 1342 0.245 13 

It is evident from Table 7.1 that for 13 time steps a reasonably good approximation for 

the global minimum is achieved, therefore, for comparison purpose we only tL~e results 

obtained for this number of time steps. We now compare the performance of the CRS 

algorithms in Table 7.2. 

Table 7.2 

FE f* cpu 

CRS2 12136 0.135 99.9 

CRS3 14005 0.136 156.6 

CRS4 8907 0.136 67.8 

CRS5 1342 0.245- 33.7 

- Local minimum 

This Table shows tlmt CRS5 could not find the global minimum and that the overall 

performance of CRS4 is mnch better than that of CRS2 and CRS3. 

In Table 7.3 the results for the MSL algorithm for some best runs are given. From 

Table 7.3 it is clear that MSL successfully found the global minimum for all values of its 

parameters. The local search tolerance used was 10-6 • 
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Table 7.3 

'Y (T N t FE LS LM cpu 

0.2 2 100 0.137 9613 18 2 229.47 

0.2 4 100 0.136 9613 18 2 229.47 

0.2 4 50 0.135 6900 10 2 147.32 

0.1 2 100 0.137 3760 8 2 97.89 

0.1 4 100 0.137 3760 8 2 97.89 

This Table shows that the best result was obtained when N = 100 and 'Y = 0.1 and that 

(j had little effect. The results for TMSL are shown in Table 7.4. For all values of 9 

the TMSL algorithm also successfully located a reasonable approximation to the global 

minimum but it produced worse results for values of 9 that were low compared with N. 

Table 7.4 

fI (j N r FE LS LM cpu 

n 2 50 0.148 832 1 1 16.38 

n 4 50 0.148 832 1 1 16.38 

n+1 2 50 0.148 832 1 1 16.38 

n+1 4 50 0.148 832 1 1 16.38 

6 2 lOO 0.155 1728 4 2 54.04 

6 4 100 0.155 1728 4 2 54.04 

n+1 2 100 0.148 882 1 1 27.57 

n+1 4 100 0.148 882 1 1 27.57 

If we compare the results of Table 7.3 and 7.4, we see that both TMSL and MSL located 

global minima with MSL the more accurate of the two. However, in terms of cpu time and 

the number of function evaluations TMSL is much better than MSL. 

We tried next the SA algorithm. In the solution generation mechanism, Alternative 

B (see section 3.3.2 in Chapter 3) Dekkers and Aarts (1991) suggested to = 0.75, however, 

to see the effect of to on this problem we examined several values of to. The results are 

given in Table 7.5. 

Table 7.5 

f* FE to cpu 

0.145 157931 0.75 2382.11 

0.173 129675 0.85 1853.93 

0.204 522g4 O.g5 639.1g 

0.204 21025 O.g9 211.52 

IG2 



From this Table it is clear that as the number of local searches decreases the number of 

function evaluations and cpu time (to satisfy the stopping condition) decrease but the 

accuracy of the solution falls off. to = 0.75 does seem a reasonable compromise. Finally 

we used the ASA algorithm with to = 0.75 and the best results of ASA together with the 

results of the other methods are summarized in Table 7.6. 

Final Comparison of the best Results found 

Table 7.6 

CRS2 CRS3 CRS4 CRS5 SA ASA MSL TMSLDP 

FE 12136 14905 8997 1342 157931 101357 6900 832 

cpu 99.9 156.6 67.8 33.7 2382.1 1380.9 147.3 16.3 44.7 

f* 0.135 0.136 0.136 0.245- 0.141 0.144 0.135 0.148 0.134 

- Local minimum 

From above results it is clear that the minimum number of function evaluations and the 

cpu time were obtained by TMSL but. in terms of the accuracy of the solution it is not 

quite so good as MSL and the CRS methods. The CRS5 met.hod failed t.o locate the 

global minimum and CRS4 was easily t.he best of t.he other successful CRS met.hods. The 

overall performance of ASA is better t.han SA but in terms of t.he accuracy the SA-type 

methods are worse than MSL and the CR.S methods. We also lL~ed the it.erative dynamic 

programming procedure, DP, (see Appendix 7 A) designed by Luus (1989). The result.s 

obt.ained are quite good, especially in terms of accuracy but. these result.s are decept.ive 

since t.o obtain them a lot of preliminary work is needed for t.he det.ermination of t.he 

appropriat.e values of the parameters involved (Luus, et. aI, 1991). 

7.2.2 Bifunctional Catalyst Reactor Problem: 

This is a difficult optimal control problem, with a multiplicity of local maxima, orig

inally discussed by Luus, et aI, (1991). A chemical reactor with a bifunct.ional catalyst is 

described by the following 7 differential equations: 

Xl = -kp:l 

X2 = klXl - (k2 + ka)X2 + k4X5 

X3 = k2X2 

j:4 = -kaX4 + k5 X5 

is = k3X2 + kaX4 - (k4 + ks + k8 + kO)X5 + k7X6 + klOX7 

xn = k8X5 - k7Xa 

j:7 = kOX5 - klQ:l':7 
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The initial condition is x(O) = (1,0,0,0,0,0,0), the integration interval is 0 ~ t ~ 2000, 

the rate constants are cubic functions of the catalyst blend u, given by 

i = 1,2, ... , 10, (7.4) 

where the constants Cij can be found in Luus, et al, (1991) and in Appendix 7B. It is 

required to compute u(t) so that x7(2000) is maximized for values of u satisfying the 

constraints 

0.60 ~ u ~ 0.90 . (7.5) 

The performance index to be optimized is given by 

f = x7(2000) . (7.6) 

For convenience we define 

(7.7) 

Luus et al showed, using recursive quadratic prog;ramming, that the problem has 25 local 

maxima and then went on to find the global maximum f* = 10.094 using iterative dynamic 

programming. In order to solve this optimal control problem, in all applications 10 time 

stages are used. Therefore, there are 10 equal sections each of length 200 and piecewise 

constant controls in each section u(O), u(l), ... , u(9) to maximize the performance index 

are sought. (Ten time stages were found to be sufficiently accurate by Luus, et al (1991)). 

In Table 7.7 we compare the CRS algorithms. 

Tahle 7.7 

FE f* cpu 

CRS2 210450 10.06* 401779 

CRS3 200330 9.97* 411623 

CRS4 -

CRS5 119373 10.05* 313210 

* Local maximum, - Results not available 

This Table shows the best results for the CRS algorithms which all failed to find the global 

maximum. However, both CRS2 and CRS5 found the second best local maximum and 

in terms of cpu time CRS5 is much more efficient than CRS2. For this problem CRS4 

completely failed to converge. 

We now compare the performances of the MSL and TMSL algorithms. The results of 

some best runs are given in Tables 7.S and 7.9. The local search tolerance was 10-7 . 
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Results of MSL 

Tahle 7.8 

'Y (J' N .f* FE LS LM cpu 

0.2 2 100 9.90' 7613 19 9 30112.50 

0.2 4 100 9.90' 6521 19 9 27106.10 

0.05 4 500 9.90' 11613 21 12 35495.30 

0.05 4 1000 10.05' 20759 43 17 46635.40 

0.02 2 2000 9.99' 10621 35 18 41758.40 

0.02 2 1200 9.99' 6529 22 14 27305.90 

0.02 2 1000 10.04' 5393 19 13 22386.70 

, Local maxima 

Clearly none of t.he runs for MSL could find t.he global maximum for t.his problem. However, 

t.he second best. minimum was obt.ained when 'Y = 0.05 and (J' = 4. The result.s for TMSL 

show that it. does obt.ain t.he global maximum 

Result.s of TMSL 

Tahle 7.9 

.'I (J' N f* FE LS LM cpu 

n 2 150 1O.og 5798 15 11 13882.0 

n 4 150 10.09 5798 15 11 13882.0 

7 2 175 lO.og 8915 23 12 21397.8 

7 4 175 10.00 8915 23 12 21397.8 

n 4 250 10.00 10336 26 15 25488.5 

7 2 200 lO.oo 10484 26 13 24899.9 

for all runs. Moreover, in t.erms of cpu t.ime and FE TMSL is much bet.t.er than MSL. 

To t.ry t.o make t.he comparison more fair we t.ook N = 150 and (J' = 2 for bot.h MSL and 

TMSL, 'Y ~ 0.2 for MSL and 9 = 6 for TMSL and ran bot.h algorit.hms and t.he results 

are shown in the Table 7.10. The result.s for MSL are t.he average of foUl' runs, 2 of which 

produced local maxima of 9.90 and 9.86 and t.he ot.her t.wo t.he correct. global maximum. 

MSL 

TMSL 

N 

150 

150 

FE 

11252 

6013 

Table 7.10 

cpu 

28676 

14361 

r 
10.094 (9.90,9.86) 

10.094 

This Table shows t.hat TMSL st.ill exhibits superiorit.y in bot.h FE and cpu time. 

We show t.he effect. of to on t.he SA algorit.hm, for t.his problem, in Table 7.11. 
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Table 7.11 

r FE to cpu 

9.641* 171543 0.75 414400 

9.027* 123900 0.85 296317 

7.895* 27890 0.95 92939 

9.645* 13618 0.99 38836 

* Local maximum 

Table 7.11 indicates that the effect of local search on accuracy is not so clear for this 

problem as it was for the first control problem. However the more local searches the 

greater the number of function evaluations and to = 0.75 still seems a reasonable value to 

use. 

The results of all methods are now summarized in Table 7.12. 

Final Comparison of Best Results Found 

Table 7.12 

CRS2 CRS3 CRS4 CRS5 SA ASA MSL 

FE 210450 

cpu 401779 

r 10.06* 

200339 

411623.5 

9.97* 
-

119373 171543 

313210.0 414400 
lO.OI)* 9.641* 

* Local maxima 

166317 20759 

391517 46635.4 

9.640* 10.05* 

TMSL DP 

5798 

13882.0 1622.3 

10.094 10.094 

From this Table it is clear that the minimum number of function evaluations and cpu time 

were obtained by TMSL. Moreover, TMSL was the only algorithm to successfully find 

the global maximum. MSL, CRS2 and CRS5 found the second best maximum MSL the 

number of function evaluations is very high for CRS2 and CRS5 with CRSI) the better of 

the two. Both SA and ASA produced the same maxima but in terms of FE and cpu time 

ASA is better than SA. Again we tried dynamic progrfllnming and it successfully found 

the global maximum with the best cpu time but much work was needed to determine the 

values of some parameters as in the previous problem. 

7.2.3 Pig-Liver Likelihood Function 

This example fIl'ises from a statistical analysis of the elimination rates of flowing sub

strates in pigs liver. The problem is to estimate the parameters of a model of steady-state 

elimination by the standard statistical procedure of maximum likelihood estimation. The 

full details of the mathematical model are given in Robinson, et al.(1983). Experimental 

measurements of elimination rate, Vij (for j-th experiment on the i-th pig-liver), on 5 pig 

livers, each measured under four or five different conditions are given in table 7.13. The 

statistical model fitted to this data has 12 parameters, only two of which are of interest, 
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the other 10 are nuisance parameters. This model was first investigated by Robinson, et 

al.,(1983), who considered a Bayesian approach to the problem, using uninformative priors, 

and obtained the marginal posterior densities of the two main parameters of interest by 

quadrature methods. The two important parameters of interest are the Michaelis constant 

for the enzyme-substrate interaction (km) and the coefficient of variation for the properties 

of the capillaries assumed to make up the liver (E2). The 10 nuisance parameters are, for 

each pig-liver i, the standard deviation ai of In Vij and the maximum elimination rate, 

Vrnax, , of the whole liver. 

Liver 1 

Liver 2 

Liver 3 

Liver 4 

Liver 5 

Table 7.13 

Experimental values of Vij 

0.00 

0.05 

0.26 

0.15 

0.16 

0.23 

0.11 

0.36 

0.21 

0.33 

0.23 

0.17 

0.55 

0.36 

0.67 

0.33 

0.24 

0.57 

0.41 

0.70 

0.38 

0.35 

0.41 

0.74 

Therefore, the log-likelihood function to be maximized can be written as 

5 

f(km , E2, a1, ... , as, v,nax" ... , v,naxu) = - 2)n;lnai + RU(2a;)) (7.8) 
i=l 

where ni is the number of experiments on the 'i-th pig-liver (see Schagen, 1986). The data 

is analyzed using Bayesian statistical techniques with normal errors assumed i.e. the error 

distribution of In Vij is assumed to be normal (Robinson, et al.,1983). Therefore, 

n, 
2 2 '" • 2 Ri (Vmax" km, E ) = ~ (In Vij - In Vij) (7.9) 

j=l 

where V;j=modeUed value for j-th experiment on the 'i-th pig-liver, based on km' E2, Vrnax, , 

etc and again ni is the number of experiments on the i-th pig-liver. The model values of 

V;j are found by solving the following non-linear equation 

(7.10) 

where, Cij, the logarithmic average of Ci amI Co> is given by 

(7.11) 
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F" Ct and Co are known constants whose values are given in Table 7.14. It is clear from 

(7.10) that v,j is no longer expressible explicitly and must be determined by numerical 

solution of (7.10) with nonzero e2• 

Table 7.14 

Experiment F 

2 1.03 C; 0.14 0.43 0.46 1.69 3.69 

Co 0.04 0.20 0.23 1.30 3.20 

4 0.94 C; 0.08 0.15 0.28 0.43 1.65 

Co 0.02 0.04 0.09 0.17 0.95 

6 0.96 Ci 0.36 0.63 2.63 26.5 

Co 0.09 0.26 1.92 26.0 

8 1.14 Ci 0.23 0.36 0.80 1.47 4.12 

Co 0.08 0.13 0.48 1.14 3.78 

9 1.22 C; 0.16 0.35 2.0 18.4 24.4 

Co 0.04 0.13 1.53 18.0 23.6 

Robinson, et al.,(1983) integrated out the nuisance parameters and found marginal 

posterior modes at km = 0.225 and E2 = 0.165. Schagen (1986) considered an alterna

tive, maximum likelihood, approach, finding a maximum likelihood value of 23.264 by 

optimizing the full 12 parameter likelihood function over [0,1]12. Schagen found that the 

maximtun likelihoofj estimates of these parameters of interest are somewhat different from 

the marginal posterior modes and means obtained by Robinson, et al.,(1983). The best 

maximum value he found was 23.983 in a reduced region where the ranges of variables 

taken were v'nax, E [0.1, 1J and (Ti, km' e2 E [0.5, IJ. Hence it would seem that nuisance pa

rameters have a considerable effect on the maximum likelihood estimates of the parameters 

of interest. We used our methods to check this conclusion by recalculating the maximum 

likelihood estimates. In fact we found that this 12-parameter-optimization problem has a 

global maximum value 59.84 with a number of local maxima. However, we used the region 

[0.03,1]12 as the region of optimization in all implementations. Schagen's results are given 

in table 7.15. Noticeably Schagen's estimates of the parameters of interest are significantly 

different from those of Robinson et al indicating that the nuisance parameters may have 

some influence on the estimates. 
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T<thle 7.15 

km = 0.186, f2 = 0.239, r = 23.983 

i (J'i ~naxi 

1 0.046 0.391 

2 0.448 0.367 

3 0.739 0.539 

4 0.440 0.416 

5 0.736 0.732 

All CRS algorithms have been applied to this problems and two different local maxima 

and the global maximum have been found. The result are given in Table 7.16. 

Tahle 7.16 

FE r cpu 

CRS2 42796 54.67' 212.6 

CRS3 272790 59.84 1350.3 

CRS4 11291 59.84 63.8 

CRS5 8367 59.84 57.0 

• Local maximum 

This Table shows tlmt CRS2 could not find the global maximum, CRS5 is much more 

efficient than the other methods and the over<l.1I performance of CRS4 is much better than 

that of CRS2 and CRS3. 

In the next Table we give the results of MSL for several runs. We took the local search 

tolerance for this problem as 10-5. 

Tahle 7.17 

'Y (J' N .f* FE LS LM cpu 

0.2 4 100 59.84 8847 14 1 45.60 

0.2 2 100 59.84 9531 15 1 47.87 

0.1 4 100 59.84 4443 7 1 22.85 

0.1 2 100 59.84 4443 7 1 23.15 

Table 7.17 shows t.hat the global minimum was obt.<tined for <tll runs and t.he best results 

were achieved for 'Y = 0.1 and (J' = 4. The results of TMSL for this problem are given 

in Table 7.18. As before TMSL successfully located t.he global minimum with fewer func

t.ion evaluat.ions and less cpu t.ime. Surprisingly however the effect. of 9 and (J' were not 

significant. 
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Table 7.18 

.'I (1' N r FE LS LM cpu 

n 2 100 59.84 2011 4 2 21.85 

n 4 100 59.84 2011 4 2 21.85 

n+l 2 100 59.84 2011 4 2 21.85 

n+l 4 100 59.84 2011 4 2 21.85 

Finally, we used the SA algorithm. The results are shown in Table 7.19. For all values of 

to the global minimum was obtained. Once again FE and cpu time decrease as to increases 

but the effect of to on accuracy is less marked than before with to = 0.85 being the best 

value. 

Tahle 7.19 

r FE to cpu 

59.80 268568 0.75 1396.56 

59.81 131222 0.85 686.74 

59.79 96634 0.95 502.31 

58.69 103321 0.99 511.49 

In Table 7.20 t.he result.s of all met.hods are summarized. This Table shows t.hat wit.hin 

t.he CRS algorit.hms CRS5 is t.he best. and in t.he overall comparison TMSL and SA are 

respect.ively t.he best. and the worse algorithms. 

CRS2 

FE 42796 

cpu 212.6 

f* 54.67" 

Final Comparison of Best Results found 

Tahle 7.20 

CRS3 CRS4 CRS5 SA ASA 

272790 11291 8367 268568 89265 

1350.3 63.8 57.0 1396.5 572.3 

59.84 59.84 59.84 59.80 59.84 

" Local maxima 

MSL TMSL 

4443 2011 

22.8 21.8 

59.84 59.84 

For this problem, the model values of V;j t.ogether with maximum likelihood est.imat.es 

are given in Table 7.21 and 7.22 re.spectively. The maximized likelihood value found is 

clearly superior to that found by Sclmgen's routine. The estimates of the parameters of 

interest k"" and (2 are more closely in agTeemellt with the estimates of Robinson et aI, 

indicating that int.egTating out the nuisance parameters does not have a significant effect 

on the values of these estimates. In our investigation of the problem, none of the local 

maxima found by Schagen was locat.ed. The only maxima found were 59.84, 54.67 and 

-23.025. The maximum 54.67 was located by CRS2 and that of -23.025 was located by 

TMSL. 
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Liver 1 

Liver 2 

Liver 3 

Liver 4 

Liver 5 

Tahle 7.21 

Model values (Vi j ) 

0.003 0.217 0.228 0.345 

0.058 0.1003 0.165 0.222 

0.2379 0.3655 0.548 0.598 

0.1612 0.2147 0.3313 0.3884 

0.1657 0.3193 0.6516 0.729 

Table 7.22 

km = 0.224, €2 = 0.168 1* = 59.84 

i (Ji Vrnaxi 

1 0.035 0.398 

2 0.091 0.428 

3 0.051 0.604 

4 0.06 0.457 

5 0.031 0.738 

0.374 

0.3362 

0.4328 

0.7312 

During the optimization, t.he model values Vij are found by solving (7.10) which is used 

in (7.9) t.o evaluate each function value defined by (7.8). However, the Vij have to be 

det.ermined by numerical solution of the t.ranscendental equat.ion (7.10). The dat.a needed 

in solving (7.10) are Cij and Pi. The values of Cij are given by (7.11). Therefore, the data 

values are available from Tables 7.13 and 7.14. A PASCAL function for t.he calculation 

of function values for t.he pig-liver function including a PASCAL subrout.ine for solving 

equat.ion (7.10) is given ill appexrlix 7C. 
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CHAPTER 8 

Conclusion 



8.1 Conclusion 

In this thesis some recent st,ochastic global optimization algorithms have been studied and 

modifications have been proposed. The modified algoritluns have been tested on some 

well-known test problems as well as on a number of practical problems. In this chapter we 

summarize our conclusions and briefly indicate some areas for future research. 

We have proposed a new algorithm, TMSL, which combines MSL with the topograph

ical global optimization algorithm. The main differences between MSL and TMSL are that 

instead of using pseudo-random numbers in sampling the search region, as in MSL, TMSL 

uses a Halton sequence for sampling and instead of using sample reduction to find the 

starting points for local searches, TMSL uses a topograph to find graph minima and then 

carries out local searches from a subset of these. The effects of the user supplied parame

ters for TMSL have been investigated and suggestions for their selection have been given. 

TMSL was found to be much superior to MSL in terms of the number of function eval

uations but not so competitive in terms of cpu time. This is because of the extra work 

required for finding the graph minima in the TMSL algorithm. We have found that a great 

advantage of TMSL is that it can avoid finding unnecessary local minima whose function 

values are higher than the global minimum value. 

The conventional SA algorithm cannot memorize the best solution during its execu

tion. In ASA we have introduced a self-regulatory mechanism so that the best solution is 

retained. This mechanism adapts the cooling schedule in such a way that the lengths of 

the Markov chains and the rate of decrement of the temperature can both vary. We have 

also incorporated a criterion in the stopping condition which may allow the temperature to 

increase its value to a certain level. The effects of this re-annealing have been investigated 

and we have found that this feature is an important attribute of the ASA algorithm. We 

have clearly demonstrated the mm'ked superiority of ASA over SA. 

The new CRS4 algorithm morlifies the CRS algorithm by introducing the Hammersley 

sequence for sampling and a periodic feature for generating a small number of points using 

a iJ-distribution whenever a best point is evolved through the CRS2 algorithm. We have 

also proposed the CRS5 algorithm which replaces a simplex-type local search in the CRS3 

algorithm with a gTadient-based local search. We have carried out various implementations 

of the CRS4 and CRS5 algorithms ami have found that in each case they are much superior 

to their original versions both in terms of cpu time and the number of function evaluations. 
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We have also investigated the accmacy of the final solution which has suggested that there 

is a need to incorporate a local search, as in CRS5, to refine the final solution of the 

non-gradient CRS algorithms. 

We have also judged the importance of the new algorithms on a number of practical 

problems. In our opinion a real conclusion is very difficult to draw without knowing a 

great deal about the problems. However om preliminary investigations have shown t~at for 

problems with a small to a moderate number of local minima TMSL is the best algorithm 

followed by MSL. Again this conclusion has to be considered with caution as one may 

encounter numerical difficulties for noisy functions. 

For problems with a large numbers of local minima, for example the problem con

sidered in Chapter 5, TMSL is still better than MSL. However, for this problem the 

performances of the CRS algorithms, especially the CRS4 algorithm, were satisfactory, 

especially in terms of accuracy of the final solutions. However, CRS4 always achieved an 

overall superiority over the rest of the CRS algorithms. Clearly the CRS algorithms may 

be preferable to TMSL and MSL for problems with many minima and problems which are 

discontinuous and/or extremely noisy. It is therefore clear that there are circumstances in 

which the CRS4 algorithm could have an important role to play. 

Additional difficulties with the MSL and TMSL algorithrns are that they have not only 

to perform multiple local searches but also they have to store all distinct local minima and 

minimizers obtained. This becomes expensive both in terms of cpu time and storage 

for problems with a large number of local minima. The CRS algorithms can partially 

overcome this drawback as CRS4 does not perform local searches at all and CRS5 only 

needs to perform a complete local search to refine the final solution. However the CRS 

algorithms are purely hemistic algorithms. For this reason the ASA algorithm, which is 

superior to SA, may be preferable, firstly because even at low temperatmes the algorithm 

remains exploratory and secondly the amount of data that has to be stored is small. In 

essence, therefore, ASA may be preferable for problerns where the user has little knowledge 

about their complexity. 

Research could be continued in several directions such as, the choice of user supplied 

parameters for TMSL and MSL especially for practical problems and the effect of different 

stopping conditions and their possible improvement. The stopping condition for the CRS 

algorithms also remains an important research area. Research could also be continued 

towards the derivation of a more appropriate cooling schedule for ASA. 

There is also a need to thoroughly investigate the practical problems we have consid

ered in this thesis and consider other practical problems to further test the algorithms. 

Finally, we claim that we have clearly shown that some of the best of the recent stochas

tic global optimization algorithms can be substantially improved even on very complex 

practical problems. 
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Appendix 2A 

program halton(input,output); 

const 
ndims=10; 
npoints=500; 

type 
float=longreal; 
mat=array[l .. npoints,l .. ndims] of float; 
vec=array[l .. ndims] of float; 

var 
posint = O .. maxint; 

npts, ndim, i, j, k 
p,prim: vec; 
xpt: mat; 
train :text; 

posint; 

procedure qrhal(var xpt 
var 

mat) : 

i, j, k 
r,f,g,h 

begin 

posint; 
float; 

for i:=l to ndim do 

end; 

begin 
r:=1!prim[i] ; 
for j:=l to npts do 

begin 

end; 

if j >1 then 
f:=1.0-xpt[j-1,i] 

else 
f : =1. O-p [i] ; 

g:=1.0; h:=r; 
while f-h <1.0L-3 do 

begin 
g:=h; h:=h*r; 

end; 
xpt[j,i] :=g+h-f; 

end; 

begin 
rewri te (train, 'halo dat') ; 

end. 

npts:=10; ndim:=2; prim[l] :=2; prim[2]:=3; 
p[l] :=0; p[2] :=0; 
qrhal(xpt); 
for i:=l to npts do 
begin 

for j:=l to ndim do 
write(train, xpt[i,j] :=14,' '); writeln(train); 

end; 
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Appendix 2B 

The following test functions were chosen from Dixon and Szeg6 (1978). 

GP (Goldstein and Price) 

f(XI, X2) =[ 1 + (Xl + X2 + 1)2(19 - 14x! + 3x~ - 14x2 + 6XIX2 + 3x~) 1 
[30 + (2XI - 3x2)2(18 - 32xI + 12x~ + 48x2 - 36x IX2 + 27xn 1 
n ={ x E R2 I -2 ::; Xi ::; 2, i = 1,2 }, x· = (0, -1), f(x·) = 3 

There are four local minima 

BR (Branin) 

f(Xt,X2) = a,(X2 - bx~ + CX! - d)2 + e(l - f) COS(XI) + e where CL = 1,b = 5.1/(411"2), 

C = 5/11", cl = 6,e = 10, f = 1/(811") 

n ={ X E R21-5::; Xl::; 10, and 0::; X2::; 15} 

x· = (-11",12.275); (11",2.275); (311",2.475), f(x·) = 5/(411"). 

There are no more minima. 

H3 and H6 (The Hartmann family) 

f(x) = - L:::~ Ci exp ( - L:j::'l CLij(X:j -1Iij)2) 

Table 2a 

H3 (n = 3 and m = 4) 

i (tij Ci 

1 3 10 30 1 0.3689 

2 0.1 10 35 1.2 0.4699 

3 3 10 30 3 0.1091 

4 0.1 10 35 3.2 0.038150 

Table 2b 

H6 (n = 6 and m = 4) 

~ lLi.i c~ 

Pi.1 

0.1170 0.2673 

0.4387 0.7470 

0.8732 0.5547 

0.5743 0.8828 

Pij 

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 

2 0.05 10 17 D.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 

3 3 3.5 1.7 10 17 8 3 0.2348 0.1451 0.3522 0.2883 0.3047 

4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 
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0.5886 

0.9991 

0.6650 

0.0381 



n = {x E Rn I 0 :::; Xi :::; 1, 1 :::; i :::; n}. These functions both have 4 local minima, 

Xloc ~ (pil,'" ,Pin), /(Xl oc ) ~ -Ci 

SS, S7 and S10 (The Shekel family) 

I(x) = - E:':l((x - a;)T(x - a;) + e;)-1 

with the dimension n=4, m=5,7,10 for 85, 87, 810, respectively, X = (x!, ... , xn)T and 

ai = (ail, .. " ain)T. 

i 

1 4 

2 1 

3 8 

4 6 

5 3 

6 2 

7 5 

8 8 

!) 6 

10 7 

Table 2c 

85, 87,810 

aij 

4 4 

1 1 

8 8 

6 6 

7 3 

!) 2 

5 3 

1 8 

2 6 

3.6 7 

Ci 

4 0.1 

1 0.2 

8 0.2 

6 0.4 

7 0.4 

!) 0.6 

3 0.3 

1 0.7 

2 0.5 

3.6 0.5 

n = {x E R4 10::; Xj :::; 10,1::; j :::; 4}. These functions have 5,7 and 10 local minima 

for 85, 87 and 810, respectively, Xloc "" (li, I(xlac ) "" lie .. for 1 ::; i ::; m. 
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Appendix 3A 

procedure heatup(var starttemp,fval:datatype; 
var x:vector); 

var 
ml,m2,m : integer; 
tdcml,tdcm2,advml,advm2 
w,tempnext,diffcost,bot 
i,j,k: integer; 

begin 
starttemp:=O.O; 
tempnext:=O.O; 
m:=O; 
ml :=0; 
m2:=0; 
tdcml: =0; 
tdcm2:=0; 
advml: =0; 
advm2:=0; 
fval:=obj(x); 
nits: =ni ts+l; 
repeat 

datatype; 
datatype; 

starttemp:=tempnext; 
moverslt:=allowmove(starttemp,diffcost,fval,x); 
if(moverslt=ACCEPT)then begin 

ml:=ml+1; 
tdcml:=tdcml+diffcost 

end else 
begin 

m2:=m2+1; 
tdcm2:=tdcm2+diffcost; 

end; 
if(m2>0) then 

advm2: =tdcm2/m2; 
if(ml>O) then 
advml : =tdcml/ml; 

if(moverslt<>REJECT)then m:=m+l; 
bot:=m2*Chi - (ml*(l-Chi)); 

if(bot>O) then 
tempnext:=advm2/ln(m2/bot); 

until (m1+m2)=10*ndim; 
T:=starttemp; 
To:=T; 

end; 

function allowmove(var temp, diffcost,fval 
var x: vector) : moverslttype; 

label 31; 
var 

w,prob,fp,fold,pp 
i,j,k: integer; 

datatype; 
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y: vector; 
flagl: boolean; 

begin 
fold:=fval; 
w:=random; 
if w<= 0.75 then begin 
w:=random; 
for k:=l to ndim do 
y[k] :=w*xlower[k]+(l-w)*xupper[k]; 
fp:=obj(y); 
nits:=nits+l; 

end 
else 
begin 

grad(x,g); 
31: for k:=l to ndim do y[k]:=x[k]-silon*g[k]; 

fp:=obj(y); 
nits:=nits+l; 
if fp>fold then begin 
silon:=0.5*silon; 
goto 31 end; 

end; 
diffcost:=fp-fold; 
if diffcost <= 0.0 then 
begin 

prob:=l; 
end 
else 

prob:=exp(-diffcost/temp); 
w:=random; 
if(w>prob) then 

allowmove:=REJECT 
else 
begin 

for k:=l to ndim do 
x [k] : =y [k] ; 
fval:=fp; 
if diffcost <=0 then 
allowmove:=ACCEPT 
else 
aIlowmove: =PROBABILISTIC 

end; 
end; 
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Appendix 4A 
program hammersley(input,output); 

const 
ndims=10; 
npoints=500; 

type 
float=longreal; 
mat=array[l .. npoints,l .. ndims] of float; 
vec=array[l .. ndims] of float; 

var 
posint = O .. maxint; 

npts, ndim, i, j, k 
p,prim: vec; 
xpt: mat; 
train :text; 

posint; 

procedure qrpham(var xpt 
var 

mat; prim 

i, j, k : 
r,f,g,h : 

begin 

posint; 
float; 

for i:=2 to ndim do 

end; 

begin 
r:=1!prim[i] ; 
for j:=l to npts do 

begin 

end; 

if j >1 then 
f:=1.0-xpt[j-1,i] 

else 
f:=1.0-p[i] ; 

g:=1.0; h:=r; 
while f-h <1.0L-15 do 

begin 
g:=h; h:=h*r; 

end; 
xpt [j ,i] : =g+h-f ; 
xpt[j,l] :=(j)/(npts+1) 

end; 

begin 
rewrite(train, 'ham.dat'); 

vec); 

nEts:=50; ndim:=2; prim[2]:=2; prim[3] :=3; 
p[l] :=0; p[2] :=0; 

end. 

qrpham(xpt,prim); 
for i:=l to npts do 
begin 

for j:=l to ndim do 
write (train, xpt[i,j] :=14,' '); writeln(train); 

end; 
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Appendix 4B 
function BETA(a1,b1,k1:1ongreal):longreal; 
var 

vl,v,w,r,s :longreal; 
:longreal; 
:longreal; 
:longreal; 
:0 .. 1 ; 

p 
u1,u2,z,t 
a,b 
accept 
gamma,beta1 
alpha 

:longreal; 
:longreal; 
: integer; ii ,jj 

function r~dom: longreal; external ftn77; 
begin 

alpha: =a1 +b1; 
if a1<b1 then a:=al else a:=bl; 
b:=alpha-a; 
betal:=sqrt«alpha-2)/«2*a*b)-alpha)); 
gamma:=a+(l/betal); 

accept:=O; 

end; 

repeat 
ul:=random; 
u2:=random; 
v:=beatl*ln(ul/ (l-ul)); 
w:=a*exp(v); 
r:=(gamma*v)-1.3862944; 
s:=a+r-w; 
z:=ul*ul*u2; 
if (s+2.609438»=(5*z) then accept:=l; 
if accept=O then begin 

t:=ln(z); 
if s>=t then accept:=l; 
end; 

if accept=O then begin 
if r+(alpha*ln(alpha/(b+w))»=t then accept:=l; 
end; 

until (accept=l); 
if a=al then vl:=(kl*w)!(b+w) else vl:=(kl*b)/(b+w); 
Beta:=vl; 
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Appendix TA 

Dynamic Programming 

Having the x-grid at each time stage, and the allowable values for the control at each 

stage, the DP procedure as outlined by Luus (1989) can be summarized as follows: 

Iterative dynamic programming algorithm 

1. Divide the time interval t, into P time stages, each of length L. 

2. Choose the number of x-grid points N,j and the number of allowable 

values M for the controll!. 

3. Choose the region r for the control values. 

4. By choosing Nd values of the control inside the allowable region, 

integrate (7.1) N d times to generate the x-grid at each time stage. 

5. Starting at the last time stage P, corresponding to t, - L, for each 

x-grid point integTate (7.1) from t, - L to t, for all the M allowable values 

of control. Choose the control that optimized the performance index and 

store the value of the control for use in step 6. 

6. Step back to stage P-1, corresponding to time t ,-2L, and integrate 

(7.1) from t,-2L to t,-L for each x-gTid point with the M allowable values 

of control. To continue integTation from t, - L to t, choose the control 

from step 5 that corresponds to the grid point nearest to the resulting x 

at t, - L. Compare the M values of the performance index and store the 

value of control that gives the maximum value. 

7. Continue the procedure until stage 1, corresponding to the initial 

time t = 0 is reached. Store the control policy that optimizes the perfor

mance index and store the corresponding x-trajectory. 

8. R.educe the region for allowable control values by a factor Cl; Le. 
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where j is the iteration index. Use the optimal x-trajectory from step 7 as 

the mid-point for the J';-gTid at each time stage, and use the optimal control 

policy from st.ep 7 as the midpoint for the allowable values for the control 

1L. 

9. Increment the iteration index j by 1 ane! go to st.ep 4. Continue 

the iteration for a specified number of iterations (say 20) and examine the 

results. 
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Appendix 7B 

Coefficients for the rate constants k; 

~ Cil C,2 C,3 Ci4 

1 O.2918487E-02 -O.8045787E-02 0.6749947E-02 -0. 1416647E-02 

2 0.9509977E+0l -O.3500994E+02 O.4283329E+02 -0. 1733333E+02 

3 0.2682093E+02 -0.9556079E+02 0.1130398E+03 -0.4429997E+02 

4 0.2087241E+03 -0.7198052E+03 0.8277466E+03 -0.3166655E+03 

5 0.1350005E+Ol -0.6850027E+Ol 0.1216671E+02 -0.6666689E+0l 

6 0.1921995E-Ol -0.7945320E-0l 0.1105666E+00 -0.5033333E-Ol 

7 0.1323596E+00 ·0.4696255E+00 0.5539323E+OO ·0.2166664E+OO 

8 0.7339981E+Ol -0. 2527328E+02 0.2993329E+02 -0.1199999E+02 

9 ·0.3950534E+00 0.1679353E+0l ·0. 1777829E+0l 0.4974987E+00 

10 ·0.250466E-04 0.1005854E-0l . ·0.1986696E-01 0.9833470E-02 
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Appendix 7C 

function pig(var x: datatype) : float; 

var zw.sum.v.e2.km.vmax: float; 
i.j.k: posint; 

begin 
zw := 1.0; km := x[i]; e2 := x[2]; 
for j := 1 to 5 do 
begin 

sum := 0.0; 
sigpig [j] : = abs (x [j +2]) ; 
vmax := x[j+7]; 
for i := 1 to numpig[j] do 
begin 

solve(v.vmax.e2.fpig[j].km.cval[i.j.l] .cval[i.j.2]); 
sum := sum + sqr(ln(vp~g[i.j])-ln(v)); 

end; 
zw:=zw*exp(-sum/(2*sqr(sigpig[j])))/(exp(numpig[j]* 

In(sigpig [j]))) ; 
end; 

if zw > 1.0e-20 then pig := -In(zw) 
else pig := 50.0; 

end; 
end; 

end; 

procedure solve(var v:float; vmax.e2.f.km.ci.co:float); 

var chat.fun.oldv.alpha: float; 
begin 

end; 

chat := (ci-co)/ln(ci/co); 
alpha := vmax/(km/chat+i); 
v := 0.5*vmax; 
repeat 

fun := l+(v/(f*km))/(exp«vmax-v)/(f*km))-l); 
fun := 1 - (e2*vmax/(2*f*km))/sqr(fun); 
oldv := v; 
v := 0.5*(oldv + alpha*fun); 

until abs(v-oldv) < 1.0e-6; 
if v < 0.03 then v := 0.03; 
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