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ABSTRACT

Stochastic methods for global optimization problems with continuous variables have
been studied. Modifications of three different algorithms have been proposed. These are (1)
Multilevel Single Linkage (MSL), (2) Simulated Annealing (SA) and (3) Controlled Ran-
dom Search (CRS). We propose a new topographical Multilevel Single Linkage (TMSL)
algorithm as an extension of MSL. TMSL performs much better than MSL, especially in
terms of number of function evaluations. A new aspiration based simulated annealing algo-
rithm {ASA) has been derived which enhances the performance of SA by incorporating an
aspiration criterion. We have also proposed two new CRS algorithms, the CRS4 and CRS5
algorithms, which improve the CRS algorithm both in terms of ¢pu time and the number
of function evaluations. The usefulness of the Halton and the Hammersley quasi-random
sequences in global optimization has been investigated. These sequences are frequently
used in numerical integration in the field of Bayesian statistics. A useful property of the
quasi-random sequences is that they are evenly distributed and thus explore the search

region more rapidly than pseudo-random numbers.

Comparison of the modified algorithins with their unmodified versions is carried out on
standard test problems but in addition a substantial part of the thesis consists of numerical
investigations of 5 different practical global optimization problems. These problems are as

follows:
(1) A nonlinear continuous stirred tank reactor problem.
(2) A chemical reactor problem with a bifunctional catalyst.
(3) A pig-liver likelihood function.
(4) Application and derivation of semi-empirical many body interatomic potentials.
(5) A optimal control problem involving a car suspension system. |

Critical comparisons of the modified and unmodified global optimization algorithms
have been carried out on these problems. The methods applied to these problems are
compared from the points of view of reliability in finding the global optimum, cpu time

and number of function evaluations.
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CHAPTER 1

Introduction



1.1 Introduction

With the advancement of science and technology, problems often arise in contexts such
as control theory, physical modelling, engineering design, data analysis, etc., in which an
objective function has to be optimized subject to a set of constraints. Here, without loss
of generality, we restrict ourselves to minimization. Let f: & C IR" — IR be a real-valued
objective function. A (weak) local minimizer z* of f is a point such that there exists a

neighbourhood B of x* with
f(@*) < f(x), VzeB. . (1.1)

In general, however, for such problems, multiple minima may exist and they may also
differ substantially. For problems with multiple minima one is interested in finding the
very best minimuim. We restrict our attention to this class of problems of a global nature.
The global minimization problem for a function f: Q C IR"® — R is to find x* such that

fla') < fl@), YzeQ. (1.2)

We assume that f is a nonlinear function and for ifferent algorithms it is assumed to have
different .smoothness properties. For instance, the interval arithmetic method (Hansen,
1979) and density clustering (Rinnooy Kan and Timmer, 1987) require f to be twice
continuously differentiable whereas controlled random search (Price, 1983) does not require
any derivatives at all. We also assume that the feasible region €2 is given by a set of lower

and upper bounds on each variable, i.e.

0= {z|z; 2, <F, 1=1,...,n}.

In the general constrained global optimization problem the constraints usually con-
sist of a set of equality or inequality constraints or a combination of both. Only a few
methods have been developed to solve constrained problems. Levey and Gomez (1980)
used a generalised tunneling method to deal with the constraints. Methods for constrained
global optimization are also reported in Hoffinan (1981) and Rosen (1981). Timmer (1984)
adopted a penalty function approach.

However, our main concern in this thesis is to deal with probleins which are ‘essentially

unconstrained’, that is, the global minimum of f is attained in the interior of ). As
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far as numerical calculation is concerned, the optimal solution is always regarded as an
approximate solution. Thus a global optimization problem is considered to be solved if
any one of the following sets is identified. For some ¢ > 0,

A ={ze||s-s"|<e} (1.3
Age) = e € Q|| (o) - f(a*) I< e}, (14)
Age) = {z € Q| $(f(@)) e}, (15)

where

oy m({ze ] £(z) < F@)
#(x) = T (0

and m(.) is the Lebesgue measure.

Designing algorithms that can identify the best minimum is the subject of global op-
timization and forms the main objective of our research. Although, there is a large variety
of problems which involve minimization with respect to continuous variables, there are also
many problems of discrete optimization or even combinations of both. Discrete problems
are widely known as combinatorial optimization problems because they involve arrange-
ments of objects, for instance, chip placement, in computer design, image processing, graph
colouring, graph partitioning, travelling salesman problems ete. In the field of combinato-
rial optimization mathematicians use the performance of algorithms to distinguish between
‘easy’ and ‘hard’ problems. The travelling salesman problem is hard because no one has
found an algorithm that computes the shortest tour of n cities in polynomnial time. Despite
the efforts of several penerations of mathematicians and computer scientists, no one has
found a complete solution. The problem of finding the global minimum for functions of
continuous variables is also theoretically intractable. However, for the practical solution
of problems, both discrete and continuous, approximate algorithms are often considered.
Our research in this thesis involves only global optimization of continuous functions.

Local optimization problems can be solved with greater reliability than global ones
and the nature of solutions can be characterized by the criteria of positive definiteness
of the Hessian and zero gradient. Unfortunately, for the case of global optimization no
such criteria exist in general. The aim of global optimization is to find the points in 2 for
which the function attains its smallest value, the global minimum. The solution strategy
often consists of a global stage and local stages. In the absence of a priori information
all parts of the search region must be treated equally critically (the global stage). Of
course, no significant parts of (2 must be neglected, unless one is willing to accept a
considerable chance that the global minimum will be missed. When some information
is accumulated some parts of the feasible region may be deemed more interesting than

others and solutions in these parts are then required (the local stage). However, if the
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function has been evaluated at a finite number of points then it is still possible that its
global minimum may differ from the best minimum function value found so far by an
arbitrary amount. In general therefore, it is almost impossible to find a computationally
efficient algorithm which will always find the global minimum. In practical optimization
applications, the evaluation of f(x) is often very expensive computationally so that a large
number of function evaluations would be the dominating expense. Therefore, there is
always a trade-off between efficiency and reliability. So, in contrast to local optimization,
most global optimization problems are practically impossible to solve. However, attempts
have been made to construct algorithms that are more efficient than the most simple ones,
such as pure random search or iterative use of local optimization from different starting
points; but, so far, few algorithms for tackling global optimization have been developed,
in comparison with the multitude of local optimization methods. Full details of existing
global optimization algorithms can be found in Dixon and Szegd (1978), Ratschek and
Rokne (1988), Torn and Zilinskas (1989), Horst and Tuy (1990} and Floudas and Pardalos
(1992).

The known methods for global optimization can be divided into the two categories,
deterministic and stochastic. Deterministic methods find global minima by an exhaustive -
search over the region of interest (2. Therefore, most deterministic methods lose efficiency
and. reliability as the «imension of the problem increases. To guarantee success such
methods unavoidably involve additional assumptions on f. For instance, many of them
impose highly restrictive conditions on f such as satisfaction of a Lipschitz condition with a
known constant. Good accounts of deterministic methods are given in Ratschek and Rokne
(1988) and Horst and Tuy (1990). Deterministic methods do not involve any stochastic
concepts. In the next section some deterministic methods are briefly discussed.

1.2 Deterministic Methods

Many approaches have been investigated for solving global optimization problems. For the
general case where f can be any continuously differentiable nonlinear function, approaches
that have been developed include deflation (Goldstein and Price, 1971) and piecewise
approximation (Shubert, 1972) methods. Feasible space-covering methods with guaranteed
convergence to the global minimum can be constructed if f satisfies some a priori conditions
(Evtushenko, 1971). Examples of such conditions on f are bounds on the derivatives and

the satisfaction of a Lipschitz condition.

Another kind of deterministic method is the trajectory method. This is a method of
‘enumeration-of-local-minima’ type which is based on the observation that each minimum,
including the global one, is known to be a stationary point. Since f is assumed to have

a finite number of stationary points, the global minimum could be found by locating
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all stationary points, and comparing their function values. All trajectory methods are
commonly known as generalized descent methods because they are based on modifications
of the equation of local descent. In this context considerable attention has been paid to
the trajectory methods due to Branin (1972) and Branin and Hoo (1972). Branin’s idea
is to introduce a dummy variable ¢ and to consider points x = xz(¢) that form a curve,
parameterized by ¢, connecting a given stationary point to another stationary point. If it
is possible to follow this curve then one could go from one stationary point to another and
hopefully find them all by continuing the process.

How can such a curve z(t) be created? This problem is solved by defining a differential
equation, where differentiation is with respect to ¢, such that its solution is a function x(t)
with the desired property. To determine a differential equation which is suitable for this
purpose, consider, for example,

5{(1(;%@ +ng(z(t)) =0, (1.7)

where g(x(t)) is the gradient of f at » and g € [4+1, —1]. The exact solution of (1.7) is

g(x(t)) = g(x(0))e! . (1.8)

Clearly, if 4 = ~1, the trajectory z(#) satisfying (1.7) will tend to a stationary point with
increasing ¢. If u = +1, then the trajectory will move away from that stationary point.
Further details of the trajectory method can be found in Branin and Hoo (1972). Branin
and Hoo noted that ‘the trajectory method is not globally convergent in general, but may
be in some instances. Moreover, not every trajectory passes through all solution points,
although some may. Both of these limitations occur because of the existence of extraneous
singularities of the basic differential equations’. Thus practical application of Branin’s
method raises many numerical and theoretical difficulties. In Yamashita (1979) a method
based on Branin (1972) is also developed for solving a nonlinear programming problem
with equality constraints.

A similar kind of trajectory method of ‘enumeration-of-local-minima’ type was pro-
posed in Hassan (1982). This method locates a local minimun and computes the region
of attraction of this minimum by a method described in White (1979). A point is then
selected outside this region and the process continues until all minima are found. The
system of equations involved in this method is given by

i =—Vf(z) . (1.10)

The solutions of (1.10) are the orthogonal trajectories of f. The equilibrium points of (1.10)
are the solutions of V f = 0 and hence are the stationary points of f. This method involves
a special numerical integration of the partial differential equation of Zubov (Zubov, 1964)
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for finding a Liapunov function and thereby the domain of attraction. Further details
of the algorithm and some of its applications can be found in White (1979), Hassan and
Storey (1981) and Hassan (1982). The major setback of this approach is that it appears
to be only workable for the two variable case and more research is needed for possible
extension to higher dimensions.

However, the trajectory methods apply only under specific imposed criteria such as,
for example, f must be twice continuously differentiable. For these reasons trajectory
methods do not qualify as general purpose global optimizers.

The tunneling method (Levy and Montalvo, 1985) is of ‘improvement-of-local-minima’
type. It is composed of a sequence of cycles, each cycle consisting of two phases: (a) a
minimization phase having the purpose of lowering the current function value until a local
minimizer is found; (b) a tunneling phase that has the purpose of finding a point z € €2,
other than the last minimizer, such that when z is employed as a starting point for the next
minimization phase, the new stationary point will have a function value no greater than the
previous minimum found. The major drawback of this algorithm is that it is difficult to be
certain that the search for the global minimum has been sufficiently thorough. Therefore,
the minimization problem of the tunneling phase virtually again becomes a problem of
global nature.

The ‘filled function’ method for global optimization is due to Renpu (1990). This
method is also of ‘improvement-of-local-minima’ type. As with many other deterministic
methods, it is assumed here that f has only a finite number of minimizers in 2 and each of
them is isolated. Whenever a minimizer =} is known, a filled function can be constructed
which determines a starting point for a local optimization of f(x) which will produce a
lower minimizer x3 than z], or which recognizes that z} is already a global minimizer of
f(z). For a particular minimizer x*, a typical filled function is given by

k|2
p(z) = Tlf(m)exp (- ”Lp—g-:l-) (1.9)

where r and p are user provided parameters. After constructing p(z) for a known minimizer
x* it is minimized by a local minimization method starting from the vicinity of z* and
then minimization of f(x) starts from the point so obtained. This will hopefully produce
a better minimizer for f. The procedure updates the present best minimizer of f(x) and
continues until no better minimizer can be achieved and ideally, the last local minimum
in the sequence is the global minimizer. For an appropriate choice of parameters » and p,
it can be shown that a method of local descent applied to p(x) will arrive at a point x4
starting from which a descent procedure applied to f will arrive at better local minimum
xpy, (e, with fzf, ) < f(z})), if such an improved local minimum exists. Unfortu-

nately, appropriate values for the parameters are based on information about f and this
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is not readily available. Therefore, the parameters r and p are updated repeatedly in the
procedure. This adjustinent of the parameters makes the method very ineflicient. More-
over, the adjustment does not guarantee that the appropriate values for the parameters

will be obtained. Therefore, convergence to the global minimum can not be guaranteed.

The interval arithmetic method for global optimization was first introduced by Hansen
(1979). Ichida and Fujii (1979) also derived a method of similar nature. The method is used
to find the global minimizers of a twice continuously differentiable function f using interval
arithmetic. Interval arithmetic (Moore, 1966) plays a key role in this kind of method. In
this method it is also assumed that f'(z) and f”(z) have finitely many zeros in Q. It is
an iterative method where in each iteration each interval is subdivided into subintervals.
Using tests such as monotonicity, convexity etc., subintervals where the global solution
can not exist are discarded and the interval of largest length is chosen from the remaining
list of intervals and the process continues. The stopping criterion is fulfilled when the
combined length of remaining subintervals is sufficiently small. For recent work on the use
of interval arithmetic algorithms in global optimization Ratschek and Rokne (1988) should
be consulted.

1.3 Stochastic Methods

To overcome the inherent difficulties of deterministic algorithms, much research effort has
been devoted to algorithms in which a stochastic element is introduced. Unlike determin-
istic methods, stochastic methods depend on probabilistic events and in most stochastic
methods, two phases can be usefully distingushed, global and local. Stochastic techniques
do not only play a role in the design and analysis of stochastic algorithms, but are also
used to solve one of the basic problems in applying a stochastic method, which is when to
stop. Most stochastic methods involve the evaluation of f in a random sample of points
from € and subsequent manipulations of the sample. As a result, stochastic methods sac-
rifice the possibility of an absolute guarantee of success. However, the probability that an
element of Az(e), As(e) or Ag(e) is sampled can be shown to approach one as the sample
size increases (Solis and Wets, 1981). Thus, such a global phase in which ultimately points
are sampled in every subset of  with positive measure, gives rise to an asymptotic guar-
antee that is essential for the reliability of the method. Stochastic methods, thus, have a

probabilistic convergence guarantee.

However, a method that contains only a global phase will be found lacking in efficiency.
Although local improvement techniques cannot guarantee that the global minimum will
be found, they are efficient tools that should be exploited to find points with relatively
small function values. Thus a local phase is incorporated to improve the efficiency of

the method. Therefore, stochastic methods involve random sampling or a combination of
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random sampling and local search. They can be applied in much less restrictive situations
than deterministic methods and have sound theoretical properties under which global
minima can be found with a probabilistic guarantee of success. Therefore, stochastic
methods have an intuitive appeal because of their inherent merits over the deterministic

ones.

Some early stochastic methods were developed by Brooks (1958) and Bremermann
(1970). These are simple random search algorithms. In general, stochastic methods are
either ‘two phase methods’ or ‘simnulated annealing’ type methods. Some well known two

phase methods are:

Clustering with distribution function (De Biase and Frontini 1978).
Search Clustering (Térn 1978).

Controlled Random Search {Price 1983).

Pure Random Search (Rinnooy Kan and Timmer 1984, 1087).

Multistart (Rinnooy Kan and Timmer 1984, 1987).

Multilevel Single Linkage (Rinnooy Kan and Timmer 1984, 1987, 1987a)}.
Density, Single Linkage clustering (I'{.innooy Kan and Timmer 1987).

Most two phase methods are iterative, and fit into the following framework:

¢ (Global phase): N points are drawn from a uniform distribution over £ and the

function is evaluated at these points. In this phase the search region ) is explored.

e (Local phase): A subset of sample points is selected and a local search procedure (P)
is applied to each element of this subset. This phase searches for a better solution

than the previous best.
e A stopping rule decides whether to return to the global phase or to stop.

Later in this thesis many of the stochastic methods will be discussed in more detail
but a brief general discussion of stochastic methods follows. Two phase methods such as
pure random search (PRS) and multistart (MS) are very simple but ineflicient. PRS is
the simplest implementation of the Monte Carlo algorithin for global optimization. The
main task of PRS is to find an improvement over the current function value by only
random sampling. Its limited practical usefulness is mainly due to the fact that most of
the information gathered during the execution of the algorithm is lost, as no use is made
of function values and of function structure. MS is, in some sense, on the opposite side of
PRS with respect to the use of local information. In this algorithm a local search routine is
started from each sampled point. A stopping rule for MS ig derived based on the number

of points sampled and the number of different local minima found.
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De Biase and Frontini (1978) describe a method based on random sampling of points
in the region of interest Q. Their first aim is to estimate a function ¥(.), where

¥(€) = Pr{Random point = € Q has f(z) <¢, €elR}, (1.11)
or, alternatively, 4/(£) is the normalised Lebesgue measure of the subset E(£) of Q, where

E@¢)={xeq, f(z) <€}

If 4(€) is known, then the minimum value of f in Q may be obtained by setting ¥(€) =
0. De Biase and Frontini set out first to estimnate ¥(€) by a recursive spline technique,
smoothing the data found by a sequential uniform random sampling both on © and on
the expected range of function values. Sets of ¢ random points and functions values at
these points are generated iteratively and for each such set (say, i-th set of ¢ points) &; are
chosen from a uniform distribution on {fi, f..] where f; and f,, are the lowest and highest
function values. For every &; the frequency ¥(¢) (i.e. m(E(£))) is evaluated by means of
P = z;—", where p; is the number of trial points in the i-th set of ¢ points lying in the region
E(&;). Therefore, a pair of values (&;, ;) is obtained for each set. This is repeated and
spline approximations are used to fit ¢¥(€) to these results. This stage of the algorithm
is terminated if a consistent fit is achieved and enough points are assumed to have been
generated. The predicted minimuin value of f* can be obtained from these results. The
second stage of the procedure is to group the points generated in the first stage into clusters
and carry out a local search for a local minimum within each cluster.

Among the best performing methods for global optimization are those which mix local
search procedures with the application of clustering techniques aimed at grouping together
points in £ belonging to the region of attraction of the same local minimum; the methods
in this class try to identify the shape and location of the regions of attraction of local
minima. A good review of clustering methods can be found in Térn and Zilinskas (1989).
The most commonly used clustering technique in the context of global optimization consists
of partitioning the available observations into groups, sequentially assigning sample points
to clusters grown around ‘seed points’ which can be local minimizers or points with low
function values.

The leaving out of unpromising points, which is known as ‘reduction’ or the ‘concen-
tration’ of sample points are often used in clustering methods. In reduction, the sample
is reduced by eliminating a fixed percentage, say 1 — v (0 < v < 1), of points with higher
function values; in concentration, a few steps of a descent algorithm are taken from each
“sample point. The clustering method due to Térn (Térn, 1978) uses the latter type of
strategy. In Toérn’s method, initially a set of points {global points) are drawn from

and then the concentration strategy is applied to these points. The next step consists of

8.



clustering the points obtained by this concentration. The clusters are formed sequentially,
and each cluster is initiated Dy a seed point, s,. This seed point is taken to be the point
with the lowest function value from the unclustered sample points. Starting from s, a
cluster grows until the point density of the subregion it forms is greater than the average
density of unclustered points in €2. The process continues until all points have been con-
sidered. In the last phase of the algorithm a sample of points from each cluster is chosen
and again concentration and clustering proceed. The algorithm stops when two successive
clusterings result in the same number of clusters. The algorithm has no special features
to escape from local minima and to concentrate only on the global one. This causes the
algorithm to perform multiple local searches unnecessarily, especially when the function
has many local minima. Moreover, there is no criterion which indicates that the search for
the global minimum has been thorough enough and thus finding the global minimum can

not be guaranteed.

Byrd, et. al. (1992) described a new stochastic global optimization algorithm that
is oriented towards solving large scale problems. The algorithm incorporates some full-
dimensional random sampling and local minimizations as in existing stochastic methods
(Rinnooy Kan and Timmer, 1987a), but the keys to its success are two new phases that
concentrate on selected small dimensional subproblems of the overall problem.

Recently, Térn and Viitanen (1992) developed a new topographical clustering method
for global optimization. In this method a cluster is formed on the basis of topographical
information on the function and only the cluster centre is determined rather than iden-
tifying the whole cluster. This type of clustering procedure does not use seed points but

concentrates on identifying the cluster centre.

A different approach was taken by Schagen (1980) who introduced an algorithm in
which a stochastic interpolating function is repeatedly optiinized and reconstructed until an
agreement is reached between the minimum of the interpolating function and the original
objective function value at that point; then the minimizer of the interpolating function
is taken as the global minimizer of the objective function. The stochastic interpolating
function is a stationary stochastic model. However, finding the global minimum can not, be
guaranteed by optimizing such an interpolating function. Nonetheless a stochastic model

may be appropriate if the original function is extremely expensive to evaluate.

The simulated annealing algoritlun was proposed by Kirkpatrick, et. al. (1983). Meth-
ods based on simulated annealing use a stochastic mechanism which allows the algorithm
to escape from a local minimum. Although the simulated annealing algorithm was initially
designed for combinatorial optimization problems, several continuous versions are currently
available (Vanderbilt and Loule, 1984, Aluffi-Pentini et al. 1985 and Bohachevsky et al.
1986). More recently, Dekkers and Aarts (1991) derived a continuous simulated annealing

9



algorithm which is theoretically similar to discrete simulated annealing. For an extensive
annotated bibliography on both discrete and continuous simulated annealing see Collins
et. al. (1988).

The variety of techniques that have been proposed is impressive, but their relative
merits have neither been analysed in a systematic manner nor properly investigated by
computational experiment. In this thesis we have studied and attempted to improve some
recent stochastic global optimization algorithms and in view of the practical significance
of the global optimization problem these algorithms have been critically assessed.

1.4 Outline of Thesis

Global optimization is creating considerable attention and more research is going on to try
to deal with this intractable problem. Although a definite statement about the superiority
of stochastic methods over deterministic ones is impaossible to give, theoretical consideration
as well as practical experience suggest that for problems of moderate to high dimension the
use of stochastic techniques is perhaps the only feasible approach. We therefore consider
those stochastic algorithms which perform well within this class of problem.

Three types of global optimization algorithms, namely (1) the Multilevel Single
Linkage Method, (2) Simulated Annealing ancl (3) Controlled Random Search are discussed
in detail in the subsequent Chapters. In Chapter 2 the connection between the clustering
and single linkage methods is illustrated and a new topographical multilevel single linkage
method is proposed. In Chapter 3 both discrete and continuous simulated annealing
algorithms are reviewed. A brief theoretical background is also given. In the same Chapter
a new aspiration based simulated annealing algorithm has been proposed together with
a new adaptive polynomial-time cooling schedule. Chapter 4 deals with the controlled
random search (CRS) algorithm (Price, 1983, 1987) and its modifications. We have
proposed two new CRS algorithms and have demonstrated their superiority over the

original algorithms.

Application of global optimization algorithms to real life problems and the critical
comparison of these algorithms is an area where too little attention has been given.
Therefore, our objective is to compare the effectiveness of some of the algorithms studied
and described in previous sections in finding global minima for a number of real life
problems. The problems we consider are from the fields of chemical engineering, material
science, applied statistics and mathematical engineering. In Chapter 5 two problems
from material science are investigated. A semi-empirical, short ranged many-body,
interatomic potential for bee metal is derived and global optimization algorithms are
used to calculate the minimum energy of “Tersoff’ potentials (Tersoff, 1988, 1988a} for
Silicon (8i) and ‘Tersoff-like’ potentials (Smith, 1992) for Arsenic (As). In Chapter 6 an
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optimal feedback controller for a realistic car suspension system is proposed. In Chapter 7
global optimization algorithms together with an iterative dynamic programining method
have been applied to two optimal control problems with a multiplicity of solutions. Also
in Chapter 7, a global maximum has been sought for a pig-liver likelihood function.
Comparisons of numerical results are given for each problem. The performance of the
different stochastic methods has been assessed from a critical comparison of the numerical

results obtained for each problem. Finally, conclusions and comments are given in Chapter
8. '

Most of the numerical work has been carried out on the HP9000/870 computer except
the numerical work for the problems in Chapters 5 and 6 and for the second problem in
Chapter 7, for these problems we have used a faster HP9000/750 computer. A quadratic
programming procedure EO4UCF from the NAG Library has been used as the local search
for the problems in Chapters 5, 6 and 7.
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CHAPTER 2

Stochastic Methods:
Clustering and Single Linkage



2.1 Multistart and the Bayesian Stopping Rule

The relative difficulty of global optimization in general is easy to understand and indeed,
the global optimization problem as stated in (1.2) is inherently unsolvable because two
crucial difficulties are encountered when an attempt is made to solve it. The first is that
there exists no simple criterion according to which a point can be computed with a lower
function value than the current best point. One feasible approach, however, is to seck such
a point by applying a local search from a number of sample points. The second difficulty
is that it will always remain uncertain whether or not the global minimum has been found.
Hence, it is inevitable to make assumptions (e.g., Lipschitz continuity) about the objective

function f or to widen the scope of global optimization algorithms.

A natural way out is a Bayesian approach in which the user is asked to specify a
prior probability distribution on the unknown characteristics of f such as, for example,
the exact number of local minima. Information gathered on f is then used to convert these
probabilistic assumptions into a posterior distribution through Bayes Theorem (Boender,
1984). This posterior distribution reflects the way in which the initial beliefs are affected
by the outcome of the experiments. The above mentioned difficulties in global optimization
can now be posed as statistical decision problems, i.e. one can take a decision whether
or not global optimality has been achieved with respect to posterior knowledge and a
prespecified loss function (Boender and Rinnooy Kan 1983, 1985, 1987).

By far the most efficient methods for global optimization are based on starting a local
optimization routine from points which are uniformly distributed over € (Timmer 1984
and Rinnooy Kan and Timmer, 1987). The widely known multistart (MS) algorithm is
the prototype of these methods. In MS points are sampled iteratively from a uniform
distribution over €1, a local minimization is performed from each of these points and the
local minimum with the smallest function value found in this way is a candidate value for

f*. A stepwise description of MS is given below.
The MS Algorithm
Step 1 Let f*=+o0

Step 2 If stopping condition is satisfied then stop; otherwise generate a uni-

form random z in
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Step 3 Perform a local optimization starting from z : let T be the local
optimizer and f=f(%)

Step 4 Let f*=min(f*,?)
Step 5 Go to step 2
The MS method is reliable in the sense that the probability that the global mini-

mum will be discovered increases as the sample size increases. Irrespective of whether a
global optimization method is deterministic or stochastic, it always aims for an appropriate
_convergence guarantee. As with MS, all other stochastic methods aim for an asymptotic
guarantee which will ensure convergence to the global minimum as the computational ef-
fort becomes infinite. The existence of such asymptotic guarantees raises the question of
an appropriate stopping rule. In practice stopping criteria are used to stop the algorithm
when there is sufficient evidence that the global optimum has been detected; or that the
‘cost’ connected with the search for a better estimate of the global minimum would be too
high; or that some kind of ‘resource’ has been exhausted, such as, for example, computer
time or number of function evaluations. Different algorithms however propose different
stopping criteria and the stopping condition is part of the individual algorithm concerned.
Of course, if the true number of local minima is unknown, methods based on local search
can never provide an absolute guarantee in a finite time that the global optimum has
been found: all that can be assured is that the probability of this event approaches 1 as
the sample size tends to infinity. Thus, there exists a need for stopping rules to deter-
" mine the sample size which corresponds to an optimal trade-off between reliability and

computational effort.

Optimal Bayesian stopping rules for MS have been derived by Boender and Rinnooy
Kan (1987). They have also described a rigorous Bayesian framework for the development
of these optimal stopping rules. Their construction is based purely on a statistical analysis
of the MS method. A crucial observation about MS is that its outcome, in the form
of a sequential sample of local minima, can be viewed as a sample from a generalized
multinomial distribution whose cells correspond to the local minima of f. Thus (Boender
1984; Boender and Rinnooy Kan 1987) it turns out to be possible to develop a Bayesian
estimate of the probability that the next local search will locate a new local minimum. A
decision whether or not to continue the search can be taken which is optimal with respect
to a loss function which is based on a termination loss, if sampling is stopped before all local
minima have been found and an execution loss, which expresses the cost of sampling and
performing new local searches. Given the initial beliefs or prior distribution of unknown
parameters, such a decision incorporates all information derived from the experiments, to
weigh expected costs and benefits against each other in an optimal fashion. Therefore, the

optimal Bayesian stopping rule is determined by specifying the costs and potential benefits
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of further experiments and weighing these against each other probabilistically. Several loss
structures and corresponding stopping rules are described in Boender (1984) and Boender
and Rinnooy Kan (1987).

The region of attraction of a local minimizer z* for a particular local search method
is defined as the set of points z from which the local search will converge to z*. If w
different local minima have been found as the result of local searches started at each of N
uniformly distributed points then Boender (1984) and Boender and Rinnooy Kan (1987).
showed that a Bayesian estimate of the portion of 2 covered by the region of attraction of
the local minimizers found so far is given by

'__ (N-—w=1)(N+w)
B N(N-1)

E(C) (2.1)
(the posterior expected value of the total volume of the observed regions of attraction) and
a Bayesian estimate of the total number of local minimizers is given by

w(N - 1)

E(T)=N—w—2

(2.2)
(the posterior expectation of the number of local minima). Here the total number of local
searches N, must be greater than the number of distinct minima observed previously (i.e
N > w+2). For most (N,w) pairs (2.2) will yield a non-integer estimate, although the
true number of local minima is evidently an integer. However, it can be verified that the
optimal integer Bayesian estimate under a quadratic loss function is a round-off of the
non-integer estimate (Boender, 1984 and Boender and Rinnooy Kan, 1987). Therefore,
after the k-th iteration the algorithm is terminated if the following criterion is satisfied,;

E(T) <w+05 (2.3)

If the stopping criterion (2.3) is satisfied the estimated number of unobserved minima
is equal to 0. This may cause an algorithm to run for a long period of time, especially
when the objective function has many local minima with very small regions of attraction.
Therefore another stopping criterion may be to terminate the algorithm if the total relative
volume of the observed regions of attraction exceeds a prescribed value v(0 < v < 1), i.e,
stop if ‘

E(C) > 0.995 . (2.4)

However, condition (2.3) is widely recommended (Rinnooy Kan and Timmer, 1987a).

These stopping criteria, based on MS, are important as they can also be used by many
other stochastic methods which use reduced samples, such as Clustering and Multilevel
Single Linkage. Because the above Bayesian stopping rules for MS depend only on the
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number of pointsrsampled and the number of distinct minima found by performing local
searches from these points, they are not, only applicable to MS, but to every method which,
given a sample, results in the same set of minima as MS. In particular, these stopping rules
are applicable to the methods in which exactly one local search is started in every region
of attraction in which points have been sampled (Rinnooy Kan and Timmer 1987). The
only adjustment in the application of the stopping rules to the methods based on reduced
samples is that the total number of points considered in a particular iteration, say the
k-th iteration, is 4k instead of kN. In reduced sample methods a value between 0.1
and 0.2 is chosen typically for v so that P is only applied to sample points with relatively
small function values. More precisely, a prespecified fraction 1 — v of sample points, whose
function values are relatively high is ignored. Thus, N in (2.1) and (2.2) is the total number
~of sample points but not the total number of local searches as in MS.

()

If y,' is the ¢-th smallest function value in a sample of size kN obtained after k

iterations, then all elements of the reduced sample are elements of
kN kN
Liy*™) = {z € Q| f(z) < ™"} (2.5)

(Note that for ease of notation, integer round-up or round-down on vkN is ignored here.)
However, it is not very efficient to apply P even to every reduced sample point, i.e. every
point in L(y,(]kN)). Instead, methods in which P is started exactly once in every region of
attraction which contains at least one reduced sample point are sought. But the probability
that a region of attraction contains a reduced sample point depends on . To analyze this

situation, for any v with 0 < v < 1, let y, € IR be such that

iz e Qlf(@) <p)) _
¢(yy) = m(Q) -

(2.6)

i.e., 9y is the y-quantile of f. Since ¢ is a monotonically increasing continuous function,
there exists a unique value y satisfying (2.6). If 3, is known and the sample distribution
is uniform then if P is applied to every sample point in L(y,) the Bayesian analysis is still
applicable. This is because the sample points whose function values exceed y., can simply
be ignored and the Bayesian analysis obviously applies to the remaining points since they

are still distributed according to the original uniform distribution over L{y.,).

However, since y is not known in advance, P cannot be applied to the sample points
in L{y,). Instead one aims for methods in which P is applied to points in the level set
L(y,(:kN)), such that all minima whose regions of attraction contain a reduced sample
point are found. Since, the level above which the sample points are ignored depends on |
the sample, the cell probabilities of the multinomial distribution (Boender 1984) are no

longer constant over time and the Bayesian analysis is no longer applicable. However this
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effect can be ignored and the stopping rules applied to methods based on reduced samples
(Rinnooy Kan and Timmer, 1987).

MS is very inefficient because the same local minimum might be found more than
once. Given a sample of size kN that has been drawn from a uniform distribution over
2 and given a set of stationary points X* (stationary points that are already known), a
subset of the sample points must be determined to which P will be applied. To do so, one
has to estimate the connected components (see next section) of the level set L(y,(c'ykN)). A
local search is then started once in each component that does not contain an element of
X*. The rationale of this approach is that if P is applied to an element of a component of
L(y,(]kN)) , then P is known to converge to a local minimum in that connected component
(Rinnooy Kan and Timmer 1987).

How can the components of L (:U;(:kN)) be identified? The natural way to identify these

components is to make use of cluster analysis. In fact an adaptation of MS was provided
first by clustering methods. Various superior clustering variants of MS were proposed by
Rinnooy Kan and Timmer (1987, 1987a). The aim of these clustering algorithms is to
apply local search more efficiently, that is, to apply local search only once in every region
of attraction. Among them the Multilevel Single Linkage (MSL) method is considered to
be the most successful adaptation (Timmer, 1984). MSL retains the theoretical properties
of MS whilst attempting to eliminate its inefficiencies. Therefore, the number of local
minima found by the variants of MS would be equal to the set of minima found by MS but.
at a much lower cost. In the following sections these clustering and single linkage variants
of MS are discussed.

2.2 Clustering Methods

The idea used in clustering algorithms is to create groups of mutually close points that
correspond to the relevant regions of attraction, and to apply P no more than once in
each of these regions. The methods in this class try to identify the shape and location
of the regions of attraction. As a result of the reduction of the sample, only points with
relatively low function values are left. Intuitively speaking, these points will form clusters
that correspond to the components of L('y,(ka) ) A clustering technique is then introduced
to attempt to identify each cluster. Clustering is a statistical method aiming at allocating
individuals (sampled points) to one of several groups or clusters in such a way that each
individual is more like individuals in its group than individuals outside its group. Grouping
of sample points is done by means of some similarity measure (e.g, Euclidean distance)
with respect to a threshold. Sample points are the data and the threshold is derived
by applying statistical inference techniques in order to determine the accurate shape of

clusters. Therefore, the most important issue in implementing any kind of clustering
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technique is the choice of the threshold or critical distance, which is used to decide whether
a point belongs to a certain cluster or not. The point around which a cluster grows is called
its seed point. Local optimizers are often taken as seed points. In global optimization the
clustering algorithms aim at forming clusters corresponding to each region of attraction and
then P is started once in each cluster. To understand how far this objective can be achieved,
we need the following additional definition. For y € IR, let L(y) = {x € Q,|f(x) < y} (i.e
the level above which the sample points are ignored). For any z € Q and y > f(z), we
define L (y) to be the connected component (Dugundji 1966) of L(y) containing z. If Ry«
is the region of attraction of the local minimizer z* then L.*(y) may contain a stationary
point or stationary points other than 2*. Therefore, the groups created by sample reduction
(for any particular y) correspond to the connected components of L{y), and these do not
necessarily correspond to the regions of attraction. We can clarify the possible impact of
sarhple reduction by considering the one dimensional case in the following figure.

Af(x)

| AYAVAN l 3, (TN
/

¥ * * ¥ »

xs X4 X3 x2 xl

Figure 2.1

By the reduction of the sample we only consider those points whose corresponding
function values are below the horizontal line indicated. Here L(y,(c7kN)) created only two
connected components, namely the component containing ¢ and that containing both xj
and z3. These components do not correspond to the regions of attraction of x] and z%.
Also notice that in the above figure local minima with a function value greater than y,(c"'kN),
such as 3 and xj will not be found, however this is not a serious drawback since we are

interested in the global minimum. It is also possible that a component of L(y,(:km)

may
contain several minima, e.g. x} and 23, in which case methods based on clustering will

find only one of these. We will see later how the MSL method can overcome this difficulty.

After sample reduction, identification of the groups that correspond to the components
of L(y,(;ykN)) is certainly a clustering problem, in which the objects are the reduced sample
points and their characteristics are their locations and function values. Density and single

J(c'yi'cN )) and then P is started exactly once

linkage clustering identify the components of L(y
in each of these components. The purpose of an efficient clustering method is to invoke no

more than one local search in each region of attraction. However, in global optimization,
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there are several reasons for not using the ordinary clustering methods. The main reason is
that there is more information about the problem than just the location and the function
value of the reduced sample points. This extra information includes the fact that the
reduced sample points are known to be a subset of a uniform sample and the fact that the
groups searched for generally correspond to the components of a level set of a continuously
differentiable function.

The following argument indicates that this extra information should not be ignored.
A major difficulty in ordinary clustering problems is to determine the number of clusters.
The desired number of clusters is a matter of subjective judgment and often has to be
specified in advance. In the specific clustering problem involved in global optimization,
the clusters should correspond to the components of L(y,(:kN)). Hence, the correct number
of clusters is one of the most important outputs of the method, and can certainly not be
fixed a priori. Therefore, the extra information should be used in determining the number
of clusters. This is justified in the sections below. In the next two sections we review
the density clustering and the single linkage clustering methods. They differ only in the
way points are added to the clusters and the termination criteria for the clusters. The
description of the methods is given for a single iteration only. This is because any iteration
does not use information from the previous iterations, apart from the set of local minima
previously found.

2.2.1 Density Clustering (DC)

In this clustering method (Rinnooy Kan and Timmer, 1987) a modification is proposed in
which ellipsoidal-shaped clusters are grown instead of the usual spherical ones; the idea
being to try to approximate best the level sets of the objective function near local minima.
In this approach a cluster is initiated by a seed point, which is a local minimizer. An
iterative scheme then starts to form the cluster. In the scheme subsets T; ¢ = (0,1, 2,...,
of 2 of stepwise increasing volume are considered, where T, is the seed point of a cluster
and T;411 D T;. The formation of a cluster is ‘terminated’ if no points are added to it
during a step. {Note that step here is in the clustering iteration but not the iteration of
the algorithm.) In fact, in DC, Térn's clustering method (Térn, 1978) is adjusted in three
ways; the choice of seed points, the shape of the sets T; and the increase in size of these
sets in each step. As mentioned above we will always describe only a single iteration (say
the k-th) of the algorithm.

In the clustering methods which are being discussed here, it is clearly advantageous
to choose a local minimum as the seed point. Therefore, the local minima in X* are first
used as seed points. Note that a local minimizer is obtained first followed by the clustering
procedure that starts from that minimizer. If all local minima found so far have been used
as seed points but there are still reduced sample points that have to be clustered, then a
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local search is carried out from an unclustered sample point & with smallest function value.
If the resulting local minimizer z* found, is a member of X* then Z is added to the cluster
initiated by z* and again a local search is started from a reduced sample point with lowest
function value. If the minimum found is not already known then a new cluster is started

with this as the seed point.

Recall that, a cluster initiated with a local minimizer z* should correspond to the com-
ponent, L.* (yg’km). This suggests letting T; correspond to L;* (y) for stepwise increasing
values of y. The actual sets L,*(y) are hard to construct but if f is twice continuously
differentiable, they can be approximated by the level sets L{y) around z* that are defined

by the second order approximation f to f around z*:
g - * 1 * * *
f) = £a") + 5o = o) THE ) @ =27, (2.7)

where H(z*) is the Hessian of f at z*. Hence at step i, let T} be the set {z € Q|(z —
z)TH(z*)(z — z*) < 72}, for some 7; to be determined below, with r; < rip1,i=1,2,...

The distances r; are derived by asymptotic considerations so that a cluster is ter-
minated correctly. In other words the probability that the cluster terminates incorrectly
should tend to 0 with increasing k. It remains to derive the rate at which r; should
increase with 4 so as to ensure proper termination for the growth of a cluster. Unlike
Torn's clustering DC exploits the fact that the reduced sample is a subset of the original
uniform distribution in finding the distances r;, Moreover, a cluster initiated by a local
minimizer z* should not be terminated if there are still unclustered reduced sample points
in L,* (y,(c’ykN)). The probability that a cluster is terminated in step i, is equal to the
probability that the set

Ai={zeQ|reT,z ¢ Timr} (2.8)

does not contain any reduced sample points. This termination would be incorrect if the

component L.* (y,(c"kN))

still contained unclustered sample points. To determine the prob-
ability (probability of erroneous termination) that there are still unclustered sample points
in L.* (;y,(c'ykN)), an assumption is made that the sets L,*(y) with f{z*) <y < y,(:kN) can
be properly approximated by ellipsoids so that T; C L;* (y,(c'ykN)). Note that this is often
the case when y is very close to f(z*). If oy is the probability that a cluster is terminated
incorrectly in step ¢, this implies that «y, is the probability that the none of the kN original

sample points is located in A;. A uniform sampling distribution gives

(2.9)

From (2.9), m(4;) and hence r; can be found by fixing ay. If the error probability ay, is
taken to be a (typically a small number, say, 0.05) then m(A;) = m(Q)(1 — aFlN’) and in
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step i, the volume of the ellipsoid is increased to im(Q2)(1 - aﬁlv). Since the volume of
the ellipsoid (z — z*)TH(z*)(z — z*) < r? is equal to
ﬂ'% rh

. ™ 2.10
D(1+ 2){detH(z*})? (210)

it follows that at the i-th step we have to check if there is at least one reduced sample
point which has not yet been clustered and belongs to T; with

re=n 2 (i0(1+ =) (det H(z")) /*m(9)(1 - aﬁv))” "

(2.11)
If no points are found within this distance the clustering process terminates. Another way
to construct r; is by choosing m(A;) such that the probability ay decreases with increasing
k. Thus for some o > 0, if the measure of A; is chosen as m(A;) = m(Q)”—l‘;jf—N Then

log kN kN
o = (1 — f—}fN—) . (212)
The value of r; with this oy is given by
vy e Py “\y1/2 glog kN \1/n
ri=m (zr(1+ 2 [detH (") *m(@) =5 ) . (2.13)

This critical distance is recommended and frequently used. In this clustering method the
cluster is not determined first and then followed by location of the corresponding local
minimum but a local minimizer z* is first located and then the reduced sample points in
L* (y,(:kN_)) are identified. This change of order does not interfere with a wish to start P
in each component of the level set. For iteration k& with w different minima in hand, the
DC algorithm can be defined as follows:

The DC Algorithm (k" iteration)

Step 1 Determine the reduced sample by taking the vkN points with the

smallest function values. Set §:=1.

Step 2 (Determine seed points). Set ¢ := 1. If all reduced sample points
have been assigned to a cluster, stop. If 7 < w, then choose the j-th local
minimum in X* as the next seed point. If § > w, then apply P to the
unclustered reduced sample point & with the smallest function value. If
x* € X* then assign ¥ to the underlying cluster and repeat step 2. If z* is

new it is the next seed point and z* is added to X*.

Step 3 (Form cluster). Add all unclustered reduced sample points which are
within distance r; of the seed point z*, to the cluster initiated by z*. If no
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point has been added to the cluster for a particular r;, then 7 := 7+ 1 and
go to step 2, else set ¢ =i+ 1 and repeat Step 3.

In this algorithm the shape of the cluster is assumed to be ellipsoidal, however, in practice,
the set L.* (’y,(;'kN)) can differ substantially from an ellipsoid and may take any shape.

sample points

*

M. Lxl*(kakN)

Figure 2.2

For a situation such as that shown in the two dimensional figure (2.2) it is clear that DC
would not find two clusters that correspond to two different components of L(y,g"’kN)).
Therefore what is needed from a satisfactory clustering method is that the shapes of the
resulting clusters are not fixed. In other words, the shapes of the clusters should converge
to the shapes of the actual sets L* (y,(:kN)). Single Linkage Clustering satisfies such a

property.
2.2.2 Single Linkage Clustering (SLC)

In this method clusters are not forced to form any specific geometrical shape but can
approximate the set L.* (y,(;’kN)) directly. The original single linkage method can be viewed
as a hierarchical procedure that starts with partition into single element subsets and in
each subsequent step merges any two subsets E and E' whose minimal distance is less
than a preset number. After every step of this procedure there exists a scalar r > 0 such

that the partition has the following properties:

Every two elements belonging to different clusters are not within the critical distance

r.

For every point x in a cluster there exists another point in the same cluster within

distance r, provided that x is not the only element of the cluster.

However, the SLC method described here is a non-hierarchical procedure which, for
some critical distance ry, depending only on the number of sample points kN, produces

clusters that satisfy the two above mentioned properties. In this SLC method, the clusters
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are formed sequentially and each cluster is again initiated by a seed point. If C is a cluster
and for any unclustered point z,

d(z,C) = mig flz — 21| , (2.14)

then = will be treated as member of C if d(z,C) is less than the critical distance r.
The procedure is repeated until d(z, C) exceeds ri. Obviously, the resulting clusters will
indeed satisfy the above mentioned properties and also can have greatly varying geometrical
shapes. The only condition for two points x; and x; to be in the same cluster, is that
there is a sequence of points connecting them such that the distance between any two
successive points in the sequence is less than rz. This so-called ‘chaining effect’ is an
obvious disadvantage of SLC in most applications. Because of it even if two points are
arbitrarily far from each other they may be assigned to the same cluster. The situation
can be visualized in the following two dimensional figure.
_ Xo

A

S|

Figure 2.3

Obviously in the above figure there are two clusters but because of the chaining effect the
SLC method may combine them both into a single cluster.

The critical distance 7y, is chosen to depend on kN only and to minimize the proba-
bilities of two possible means of failure of the method:

The probability that a local search is started although the resulting minimum is known
already.

The probability that no local search is started in a component of L(ygykN)) which
contains reduced sample points (Rinnooy Kan and Timmer 1987).

For a suitable choice of ry it can be shown that the probability that a local search
is started incorrectly, tends to 0 with increasing k. However, the probability that a local
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search is started at a reduced sample point a is certainly smaller than the probability that
there is no sample point z in

Buy, ={z€Q||x—all<r} (2.15)

with f(z) < f(a), because a local search will not be started at a before z has been
assigned to a cluster. Therefore, the probability that a local search is started incorrectly
at a is bounded above by the probability that there is a sample point z in B,,, with
f(z) < f(a). This probability can be calculated as follows. For an arbitrary sample point
a the probability that none of the remaining kN —1 points is in A, ,, = {x € Q|||:r —alf <
i and f(z) < f(a)} is given by

M Ag, )\ FN-1)
(1 e ) . (2.16)
But, if ri tends to 0 with increasing & it can be proved that
m{Aery)
s = .
m1(Bar) = (247

with 0 < 8 < 1 (Rinnooy Kan and Timmer 1987). Hence for any sample point a, the

Ll

probability that there is no sample point 2 in B, ,, with f(z) < f(a) is smaller than

(1 _ Bm(Be,r,) )(’cN—l)

o) (2.18)

for sufficiently large k. Therefore, the probability that a local search is started incorrectly
at a is bounded above by (2.18). It can also be shown that the above probability (2.18)

decreases with increasing & if

ologkN ) 1/n

e, =712 (1"(1 + %)m(ﬂ)_-k"]"\f_

(2.19)

(Rinnooy Kan and Timmer, 1987). Now, if the critical distance rx given by (2.19) tends to
0 with increasing k, it can also be proved that in every component, of L(y,(c'ykN)) in which
a point has been sampled, a local minimum will be found by SLC within a finite number
of iterations with probability 1 (Rinnooy Kan and Timmer, 1987). Hence, the possible

failures of the method will vanish with increasing k.
| The k-th iteration of SLC is as follows:
The SLC Algorithm
Step 1 Determine the reduced sample by taking the vk£N sample points with

smallest function values. Let w be the number of elements in X*, set j := 1.
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Step 2 (Determine seed points). If all reduced sample points have been
assigned to a cluster; stop.

If § < w, then choose the j-th local minimum in X* as the next seed
point; go to step 3.

Otherwise, determine the point Z from the remaining unclustered
points which has the smallest function value. Apply P to Z to find a
minimizer z*, adjust w and X* accordingly, if 2* is new then take z* as
the next seed point; otherwise, assign Z to the cluster initiated by z* and
repeat the process until a new local minimizer is found or no unclustered
point is left.

Step 3 '(Form cluster). Initiate a cluster using the seed point determined in
step 2. Add reduced sample points which are within the distance r from
the cluster to that cluster, until no more such points exist. Set j:=j + 1,
and go to step 2.

The ultimate goal of the clustering methods described so far is to start P exactly
once in every region of attraction that contains a reduced sample point. The SLC method
partitions the reduced sample points into clusters, such that each cluster corresponds to a
component of L(y,(:km). Although we know that a region of attraction cannot intersect
two different components of a level set, it is possible that a component of L(y,(c"’kN))
contains more than one region of attraction (see figure 2.1). Since only one local search
is started in each cluster, it is therefore possible that a local minimun may not be found
although its region of attraction contains a reduced sample point. In such a case both
DC and SLC lack the important guarantee that MS can offer; if a point is located in a
region of attraction then the local minimum of that region of attraction will be found. The
function values of the sample points do not play any part in identifying the clusters in the
DC and SLC methods. In the next section, we will see that these function values can be

used explicitly in improving SLC.
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2.3 Single Linkage Methods
2.3.1 Multilevel Single Linkage (MSL)

MSL is a modified version of the DC and SLC methods (Rinnooy Kan and Timmer
1987,1987a) which can overcome some of the drawbacks that some of the other clustering
methods have. As with most stochastic methods it has two phases (1) a global phase and
(2) a local phase. In the global phase, the function is evaluated at a number of random
sample points. In the local phase, sample points are scrutinized to perform local searches
in order to yield a candidate global minimum. As a stochastic method it offers a proba-
bilistic guarantee that the global minimum will be found, assuming only that the function
is continuously differentiable. The ultimate aim of this method is to start local searches
exactly once in every region of attraction that contains a reduced sample point. One way
to achieve this goal is to divide the reduced sample points into subsets, such that each
subset coincides with the reduced sample points in a certain region of attraction. Former
methods described in earlier sections subdivide the reduced sample points into clusters

where each such cluster corresponds to a component of L(yﬁ? kN))

. They do not use func-
tion values to identify the clusters; function values are only used to calculate the reduced
sample points. As a result the methods cannot distinguish between different regions of
attraction which are located in the same component of L(y,(:’kN)). Function values can be
of great importance for determination and separation of regions of attraction especially if
one wishes to decide to which region of attraction a point z belongs. In the MSL method
a ri-descent sequence is considered. This is a sequence of sample points, such that any
two successive points are within a distance ri of each other and the function values in the

sequence are monotonically decreasing. The clustering idea can be viewed as follows:
The MSL Clustering Algorithm

Step 1 Initiate w different clusters using the w different local minima at
hand as seed points.

Step 2 Order the sample points, f(z:) < f(xit1), 1 <i<EN—-1. Set
t:=1.

Step 3 Assign the sample point z; to any cluster which contains a sample
point within a distance ri. If x; is not assigned to any cluster then P is
applied to it to find another local minimum in order to start another cluster

with this minimum.
Step 4 If i := kN stop; else, set i :=¢ + 1 and go to step 3.

The MSL method therefore makes use of function values in deciding whether a local
search will start at a sample point or not. It is also clear that for any sample point = the
decision whether P will be applied to it or not does not depend on the structure of the
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cluster but on whether another point 2z, such that f(z) < f(z), is within distance ry, of x.
Hence the concept of clustering can be omitted altogether to give an algorithm of which

the k-th iteration is as follows: )
The MSL Algorithm

Step 1 Increase the existing set (initially empty) of sample points by N
points randomly distributed over 2. Compute function values at these

points.

Step 2 Remove all sample points for which f is greater than some cut-
off level (this reduction is optional). Order the sample points such that
flxy) < flxiv1), 1 < i < kN —1. For every i, start local minimization
from the sample point z; if it has not been used as a starting point at
the previous iteration or if there is another sample point, or a previously

detected local minimum, within the critical distance rx of z;.

Step 3 Decide whether to stop. If the stopping condition is satisfled regard

the lowest minimum found as the global minimizer, otherwise go to step 1.

A sample point x is only linked to a point with smaller function value that is within a
distance 7. The practical and theoretical sticcess of this method is because of the selection
of ‘start’ points for local minimization. A local search is only started at a point x; if there is
no sample point z;, with f(z;) < f(z;), within distance rx of z;. But the critical distance
in (2.19) has been derived under the same circumstances as in SLC. Therefore, the same
7 1s used here. With this critical distance the following strong theoretical properties of

MSL can be established.

If the critical distance ry of MSL is determined by (2.19) with ¢ > 0, and if z is an
arbitrary sample point, then the probability that P is applied to = by MSL tends to 0
with increasing k. If ¢ > 2, then the probability that a local search is applied by MSL in
iteration k tends to () with increasing k. If ¢ > 4, then, even if the sampling continues for

ever, the total number of local searches ever started is finite with probability 1 (Timmer

1984).

To understand the superiority of MSL over SLC, especially because of the use of

function values, we consider a level set of a one variable function in the following figure.
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Figure 2.4
Suppose that z...,z5 are reduced sample points and they are ordered according to as-

cending function values. Both SLC and MSL will start a local search from x; (the lowest
function value) and when the clustering process begins MSL and SLC will assign x; to
the cluster initiated by z7, the local minimum found by starting local search at z;. SLC
assigns all other points xa,...,%s to the same cluster thus missing the global minimizer
x*. This occurs because of the so-called ‘chaining’ effect of SL.C and this effect is because
SLC does not use function values during the identification of a cluster. MSL however will
assign g to the cluster which is initiated by x}, but when 23 is considered it is not, possible
to link z3 to z}, z3 to xo or to link z3 to x4, since |z3 — x}| > 7k, |23 — 22| > & and
lxg — 21| > r&. Therefore, P will again be applied to x3 and the global minimizer z* will
be located. Since any two local minima will always be separated by a region with higher
function values, MSL will locate every local minimum in a neighbourhood of which a point

has been sampled, if 74, is small enough.

Methods described so far in this Chapter use reduced sample points but a disadvantage
of sample reduction is that there is a probability that a point is eliminated, which, currently,
is the only sample point in the region of attraction of the global minimum. In the next

section we derive a method which does not use a reduced sample as in MSL.
2.3.2 Topographical Multilevel Single Linkage (TMSL)

The aim of the clustering methods (DC and SLC) and MSL is to apply local search more
efﬁéiéntly, that is to apply local search only once in every region of attraction. But MSL is
known to be superior to the clustering methods. However, the critical distance in MSL is
derived using asymptotic considerations. As a result there is a likelihood of selecting false
starting points within a region of attraction or of the use of the critical distance cancelling

out true starting points for local search. Moreover, reduction of the sample may exclude
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points in a potential region of attraction. The TMSL method is a new method, developed

in an attempt to eliminate these drawbacks of MSL.

The Topographical Algorithm (TA) introduced by Térn and Viitanen (1992) uses to-
pographical information on the objective function in identifying basins of local minima from
the centre of each of which a local search is started. The TA algorithm is a non-iterative
clustering method, based on exploration of the search space. The ‘graph minima’ are con-
structed by looking at the function values of some number g of nearest neighbour points
for each point of a sample of size N. The aim of TA is to construct a topographical graph
and then start minimization from just one point in each identified basin. These basins are
identified by topographical information on the objective function using a directed graph.
The graph connects neighbouring points to each other by directed arcs pointing towards
points with higher function values. Térn and Viitanen (1992) gave a full description of
how a graph minimum or centre of a basin can be constructed. For our purpose we restrict

ourselves to the following brief review.

For each sample point from a sample of size N a reference list is constructed by ordering
the points into nearest neighbour order. The list is further complemented by indicating if
the reference is to a point with larger or smaller function value by giving the reference a
plus or minus sign respectively. The N—reference lists constitute an N x (N — 1) matrix,
the t-matrix of the objective function. The (N x g¢) submatrix obtained by considering
ounly the g nearest neighbours is called the g-t-matrix. The corresponding graph where arcs
are drawn to the reference points with plus sign is called the g*-topograph. The minima
in the graph are all those nodes with no incoming arcs. In Figure 2.5 a t-matrix and the

corresponding 3*-topograph of the function
flxy,20) = 2% + 223 (2.20)

is shown. There are N = 5 points numbered 1-5. Looking at the 3-t-matrix we see that
_point 4 has only positive references, ie., its 3 nearest neighbours have larger function
values, and that no positive reference to point 4 exists, i.e. no other point has point 4 as a
point with larger function value among its 3 nearest neighbours. Choosing ¢ = 2 there are
two positive reference vectors, namely for points 4 and 5 but for point 4 there is a positive
~ reference to point 5 in the 2-f-matrix, which means that the only graph minimum also
in the 2*-topograph is point 4. In the corresponding 1*-topograph there are two graph
minima, namely point 4 and point 5. Therefore, for higher values of g, the number of
graph minima will be less. In our implementation we make no distinction between positive
reference points and graph minima and call them all graph minima. Of course, the number

of graph minima for a given f depends on the value of ¢ and the size of N.
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A t-matrix and its 3*-topograph
Figure 2.5

TA requires the region to be explored as uniformly as possible. The number of points
needed to be sampled in order to cover the whole region depends however, on the size of
the region. Térn and Viitanen (1992) used a fixed size of sample points (N=100). To
distribute the points evenly throughout the search region they adopted a technique of dis-
carding points by prefixing a threshold. When a new point is generated from the uniform
distribution a check is made in order to see whether this point is within the threshold dis-
tance of previously generated existing points. This expensive procedure, however, requires
a large number of distances to be computed. For instance, for the Branin function (see
appendix 2B) 1223 points were generated for singling out a sample size of 100. Térn and
Viitanen (1992), however, gave a parallel version of TA to speed up the process.

The stopping condition for the sampling phase of the algorithm is based on the in-
formation that all parts of the search region have been explored. Once the sampling and
construction of graph minima are completed, the algorithm terminates in an unrealistic
manner leaving the users to start a number of local searches at their own discretion. For
example, for the Branin function with the 3-nearest neighbour graph there are seven graph
minima. Térn and Viitanen (1992) suggested starting local minimizations from the three
best minima of this graph. But to make sure the search for global minima is thorough, one
has to start seven local minimizations. For a smooth function it is likely that the graph will
represent all local minima if the value of g has been chosen properly and sample points are
distributed evenly enough. But a badly scaled function with peculiar regions of attraction
would weaken this possibility. For a large value of ¢ TA could loose a potential graph
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minimum. However, this can be compensated by increasing the value of N. Having a large
N on the other hand could give rise to too many graph minima in a region of attraction.
Therefore, for a general purpose algorithm a fixed value of g would be too restrictive to
represent the appropriate number of local minima for any function. Moreover, it would be
increasingly difficult to construct the exact graph minima of functions, especially when the
dimensions of the functions increases. As an appropriate value of g is difficult to predefine
for an arbitrary function, TA can not guarantee that the global minimum will be found.

In principle, therefore, both MSL and TA cause errors of the following nature.
e Type I Error, Local search will be repeated in some region of attraction.

» Type Il Error, Local search will not start in some region of attraction even if a sample

point has been located in that region of attraction.

Rinnooy Kan and Timmer (1987) argued that in MSL the above two types of error would
not occur after a sufficiently large number of iterations. But clearly continuing the search
for too large a number of iterations is wasteful. Furthermore, in MSL extended samples
are considered and the resulting overheads could also rise to a prohibitive level. The
question therefore arises of whether these errors can be avoided in every iteration if we
use topographical information on the underlying function in a sensible way., We, therefore,
propose a new algorithm, TMSL, that uses MSL together with topographical information
on the objective function. This adaptation of MSL will guarantee that a local search will
start at a point with a relatively low function value, thus making sample reduction no
longer necessary. We, therefore, moclify the MSL method in a way in which the strategy
of reducing sample points is completely dropped. In contrast, a representative subset of
sample points consisting of the graph minima is extracted first and then the critical distance
criterion is applied to this subset. The TMSL method uses topographical information on
the objective function, in particular the g-nearest-neighbour graph. The algorithm also
uses evenly distributed points from a Halton sequence of uniform limiting density. We
discuss the implementation of the algorithin and compare its performance with other well-
known algorithms. The new algorithm performs much better (in some cases several times)
than the MSL method in terms of number of function evaluations but is not quite so
competitive with respect to cpu time.

Quasi-random Sequences

One of the major difficulties in global optimization problems is to identify the region of
attraction of a global minimum. As the location of this region of attraction is unknown, it
is an essential part of any global optimization algorithm to explore the search region thor-
oughly. Therefore, the sampling phase (global phase) of any algorithm aims at exploring

the search region. In general, pseudo-random numbers are used for this purpose.
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Pseudo-random numbers are independent realizations of a random variable. In con-
trast, quasi-random sequences (Hammersley and Handscomb, 1964) do not approximate a
set of independent realizations from a uniform distribution but tend, in general, to be much
more evenly distributed than the pseudo-random sequences. In the context of numerical
integration in Bayesian statistics, where quasi-random sequences are known to give efficient
numerical integration rules, Hammersley suggested using the k-dimensional quasi-random

sequence

Ty = (’N’%:qbpl(i):---sqi'?n-l(i)) (‘l:l,,N) (221)

The p; are pairwise coprime (usually they are chosen to be the first n—1 primes), and ¢,(i)
is the radical inverse function of i, obtained by writing ¢ to base p and reflecting about
the ‘decimal’ point. In Chapter 4 we will give further discussions on the Hammersley
sequence where it is used in conjunction with the CRS algorithm. The first co-ordinate in
this sequence depends on N. Thus Hammersley’s sequence fails to qualify for an iterative
algorithm. In the context of iterative global optimization algorithm, therefore, we argue
that the Halton sequence (Shaw, 1988 and Halton, 1960) will explore the search region
more evenly than pseudo-random sequences. The Halton sequence is given by

ry = (d’m(i):---aqbpn(i)) ) (i=1,...,N). _ - (2.22)

Figure (2.6) shows a comparison of the first 128 points of a two-dimensional Halton se-
quence’ (with p; = 2 and p» = 3) with 128 pseudo-random points. The motivation for
the Halton sequence also includes the fact that the sequence itself possesses the property
of uniform limiting density, provided p; are mutually prime. Furthermore, it is defined
for arbitrary N, and is the initial segment of every Halton sequence with the same p;
(j =1,...,n) but more than N points. '
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_Figure 2.6(a) 128-point Halton sequence. ~ Figure 2.6(b) 128 pseudo-random points.

T A PASCAL subroutine for generating a two-dimensional Halton sequence is given in

appendix 2A.
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Therefore, it is clear that the Halton sequence will explore the search region more rapidly
than the pseudo-random numbers. Moreover, pseudo-random numbers can be generated
in many different ways and they may vary considerably so the performance of any given
algorithm depends on the peculiarities of the random sample points at hand. The quasi-
random sequences, however, do not have this drawback.

The New Algorithm

In MSL the decision to start a local search in the k-th iteration depends only on the
threshold

logkN ) 1/n
kN )

This threshold is derived using asymptotic considerations. A point is taken as the starting

rp =n 12 (I‘ (1+ g—)m(Q)o

point for local optimization if there is no other sample point, within the critical distance
1), with lower function value. This check is carried out for all reduced sample points. We
argue that error type I can be reduced by using graph minima with a suitable value for
¢ instead of a reduced sample. Moreover, error II will tend to decrease as the number of
iterations increases if the sample points are dependent on each other. Extended samples
are not considered in TMSL because the sample points are dependent on each other and
thus explore the search region more rapidly. The purpose of generating a comparatively
large number of points and the sample reduction strategy in MSL is to make sure that

A. The search region has been explored thoroughly so that points are
drawn in every region of attraction

B. A fraction of the points is discarded so that only points with relatively
low function values are left for scrutiny.

We, however, propose using the selection of graph minima instead of sample reduction,
together with evenly distributed sample points, to achieve conditions A and B above.
Having found the graph minima, a local search is then carried out from a subset of them.
No attempt is made to find the complete topograph of the function so the value of g is not
so critical as it is in TA. Our experience shows however that a small value for ¢ is normally
to be recommended. We believe that this strategy is eflicient because the number of graph
minima depends on the choice of ¢ and the particular function at hand as opposed to an
empirical fraction « as in MSL.

The basic principle of TA is to cover the search region with sample points as uniformly
as possible. In our algorithm we therefore use the Halton sequence which is more evenly
distributed than the pseudo-random numbers and has uniform limiting density. At the
start of a new iteration we add all local minimizers found previously to the new set of sample
points and then the construction of the graph minima takes place. In every successive

iteration, therefore, local minima from previous iterations could become graph minima. In
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principle, we use previous sample points in an implicit way by representing them by the
local minima they produced.

Because the Halton sequence is uniform asymptotically, many of the theoretical results
for MSL apply also to TMSL. We now discuss the theoretical justification of the method.
In the MSL method the critical distance has been derived from asymptotic considerations.
Consequently, it is justifiable for our case as the Halton sequence is uniform asymptotically.

For a particular graph minimum a, the probability that P is applied to a depends
on whether there is a graph minimum z, in B, ,, with f(2,) < f(a). Derivation of the
critical distance is analogous to that given in the section 2.2.2 and so will not be given
here. Briefly, however, if we adopt the idea of considering the extended sample points
implicitly, then for an arbitrary sample point or a graph minimum « the probability that
none of the remaining kN-1 points is in A, ,, is given by

(i m(A,L,,,k))(kN—l) |

-0 (2.23)

We now prove that the probability that P is applied to an arbitrary graph minimum a
tends to zero with increasing k. We have

Pr{P is applied to a} < Pr{ A a sample point z € 4, }
(2.24)
< Pr{ A a graph minimum z, € A, }

m(Aary) ) (kN—1)
m(§2)
< Pr{ A a graph minimum 2, € A, } .

Hence Pr{P is applied to a} < (1 —

Rinnooy Kan and Timmer (1987) have derived the critical distance from the consideration
of the vanishing of the probability (2.23). It, follows from Rinnooy Kan and Timmer (1987)
that if m(Aa,) = (BologkN)/kN (where o, 3 and N are constants) then the probability
(2.23) is O(k*~P?). Of course, the probability that P is applied to a is bounded above by
the probability defined by (2.23). Therefore, we can argue that if o > 2 and L < g < 1
the probability that P is applied to a approaches zero with increasing k. Moreover, if ny
is the number of local searches started, then for o > 4, it follows that

00
ZPr [re > 0] < o0 (2.25)
k=1

It follows immediately from the Borel-Cantelli lemima that even if the sampling continues

forever the total number of local searches is finite with probability 1. We now give a

stepwise description of the algorithm for a typical iteration k with w different minima

found previously.
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The TMSL Algorithm

Step 1. Generate N sample points from the Halton sequence over the search
region §2. Compute f at each point. Let M be the set of sample points
plus the w minimizers found previously.

Step 2. Construct a topographical graph and find graph minima for these M
points.

Step 3. A graph minimum is a ‘start’ point for local search if it is greater
than the critical distance v from any point with smaller f value and if it

is not a previously obtained local minimizer.

Step 4. Carry out a local search from each such point. If new local minima
are found then update w accordingly.

Step 5. Is the stopping condition (Boender and Rinnooy Kan, 1987)
%ki\:_u—_l% <w+ % satisfied 7 Yes, stop. No, go to Step 1.

Numerical Results

In this section we compare our new algorithm numerically with other recent algorithms
using the test functions taken from Dixon and Szegd (1978), a set of commonly used
functions in global optimization. The test functions are given in appendix 2B. We use
the limited memory BFGS routine, from the NAG Library (version E04DGF) for local
searches with tolerance -(Tuf% < 10719 where g is the gradient of f.

Table 2.1
Test. Number of local Dimension
Symbol Function minima (m) (n)
BR Branin 3 (all same f*) 2
GP Goldstein and Price 4 (all different f*) 2
S5 Shekel’ 5 ” 4
37 Shekel7 7 " 4
S10 Shekell0 100 7 4
H3 Hartman3 4 " 3
HG Hartman6 4 " 6

Choice of Parameters in TMSL

The main user supplied parameters for TMSL are NV, the sample size, ¢ in ri and g the
number of nearest neighbour points in the topographs. We carried out an extensive series
of tests to see the effects of varying these parameter in the algorithim. We considered; N =
10n,10(n+ 1), 157 and 15(n+ 1) (where these were distinct), ¢ = 2,4, ¢=2,3,...,N—-1.
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These parameter values were used for each of the 7 test functions described in Table 2.1.
The full results are given in Table 2.2. In this Table the largest values of ¢ for which the
global minima were obtained are also given. We use the following notation : LS is the
number of local searches performed, LM is the number of local minima found, FE is the
total number of function evaluations, N is the sample size and cpu is the ¢pu time.

After the construction of the set of graph minima, the critical distance, rg, decides
whether or not the local search procedure starts from a graph minimum. Since ¢ is a
factor in the critical distance its value, therefore, plays a part in deciding whether or not
a local search should start. A higher value of ¢ may prevent a local search starting at a
particular graph minimum on the other hand a smaller value will attempt to invoke more
local searches and in the limit ¢ — 0 a local search will start at every graph minima. The
effect of ¢ is particularly noticeable in Table 2.2. It is clear that ¢ = 4 is much better than
o = 2 for smaller values of g but this effect falls off as g increases. The global optimum
was reached for almost all values of ¢ for all functions, except S7. The algorithm also
failed to obtained the global minimum for S5 when N = 15(n + 1) and g > 7. However,
as g increased towards N — 1 the number of function evaluations decreased to a smallest
value at which LS = LM = 1. For some values of N, as ¢ approaches N — 1 the equality
LS = LM = 2 held and remained static subsequently. Notice that this is not true for GP.
However, as FE decreased the cpu time increased. Table 2.2 also shows that N = 10n is
the best sample size for all test functions. We have also run the algorithm with values of N
less than 107, but for many values of ¢ the algorithin failed to obtain the global minima.



Table 2.2

FUNCTION N o cpu LS LM FE g
BR 10n 2 0.14 4 3 94 2
4 0.06 2 2 46
2 0.15 4 3 94 3
4 0.06 2 2 46
2 0.13 4 3 94 4
4 0.06 2 2 46
2 0.11 2 2 46 5
4 0.08 2 2 46 _
2 0.14 2 2 46 6
4 0.08 2 2 46
2 0.09 2 2 46 7
4 0.09 2 2 46
2 0.10 2 2 46 8
4 0.11 2 2 46
i fr i 1L L I
n H rr " I 16
2 0.12 1 1 34 17
4 0.13 1 1 3
144 H t t 1 1
1 f? f’ " 1 N — 1
10(n+1) 2 016 5 3 106 2
4 0.12 3 3 68
2 0.14 5 3 101 3
4 0.15 3 3 68
2 0.15 4. 3 81 4
4 0.17 3 3 68
2 0.18 4 3 81 5
4 0.17 3 3 68
2 (.18 4 3 81 6
4 0.17 3 3 68
2 0.19 3 2 69 7
-4 (.18 2 2 56
2 (0.24 3 2 69 8
4 (.24 2 2 56
2 0.24 2 2 56 9
4 0.24 2 2 56
" H I H 1) M
" i 7 Iy tr 24
2 0.41 1 1 44 25
4 0.41 1 1 44
" H {I I I 1
" H 1 I Ik N -1
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15(n+1) 2 050 7 4 213 2
4 030 3 3 82
2 039 3 3 8 3
4 037 3 3 82
2 052 3 3 82 5
4 049 3 3 82
2 062 3 3 82 7
4 062 3 3 82
2 08 3 3 82 11
4 08 3 3 82
2 08 2 2 70 12
4 08 2 2 70
1 H 1 H 1 H
1 H 1 [ 1 36
2 176 1 1 59 37
4 176 1 1 59
[ " i 1 1 H
1 H 1" 1 1 N — 1
GP  10m 2 011 3 3 137 2
4 006 1 1 53
2 011 2 2 90 3
4 006 1 1 53
2 006 1 1 53 4
4 006 1 1 53
2 009 1 1 53 8
4 008 1 1 53
1! i 1] 14 I 1)
" iz " " 1" N -1
0(n+1) 2 014 3 1 134 2
4 012 2 1 o4
2 018 2 2 103 3
4 013 1 1 63
2 016 2 1 103 4
4 017 1 1 63
2 020 2 1 103 6
4 017 1 1 63
2 020 1 1 63 8
4 021 1 1 63
11 1 I I’ I "
. I 14 i 15 13 N _ 1
15(n+1) 2 035 4 3 161 2
4 023 2 3 113
2 038 4 3 161 3
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4 037 3 3 143

2 042 3 2 131 4

4 044 2 2 113

2 05 1 1 58 6

4 055 1 1 58

" 14 " H r i

1 4 1 H 1 N — 1
10n 2 037 6 3 238 2

4 030 3 2 143

2 033 6 3 230 3

4 029 3 2 136

2 037 4 3 175 4

4 033 2 1 112

2 038 3 2 145 5

4 036 2 1 116

2 04 3 2 145 6

4 041 2 1 116

2 046 3 2 145 7

4 045 2 1 116

2 048 1 1 77 8

4 048 1 1 77

H t 1 H rr "

H 1 " 1) 1 N _ 1
10(n+1) 2 064 3 3 142 4

4 062 2 2 113

2 066 2 2 118 5

4 070 1 1 89

2 074 2 2 118 6

4 074 1 1 89

2 084 2 2 118 7

4 08 1 1 89

2 09 1 1 8 8

4 09 1 1 89

1 1 1 t 1 "

1 H 1t " I’ N — 1
157 2 09 6 3 253 2

4 o077 2 2 127

2 093 6 4 256 3

4 079 2 2 123

2 101 3 3 152 4

4 097 2 2 123

2 109 2 2 129 5

4 108 1 1 100

I " 1t 1 1 It

I H ft 1l H 10
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2 1.96 1 1 100 11
4 1.98 1 1 100
4 1 1 " H I
14 1 H " H N — 1

15(n+1) 2 220 5 2 244 4
4 2.12 2 2 133
2 2.18 4 2 211 o
4 2.12 2 2 133
2 2.38 4 2 205 6
4 2.35 2 2 131
2 2.70 2 1 127* 7
4 2.66 1 1 98*

S7 10n 2 0.40 4 3 163 2

4 .36 2 2 98
2 0.40 4 3 163 3
4 0.37 3 3 127
2 (.40 3 3 127 4
4 0.35 3 3 127
2 0.42 2 2 98 5
4 0.41 2 2 98
" 1 r 1 ‘ t 11
2 0.48 2 2 98 8
4 0.49 2 2 98
" 1 11 i H 1
H " " " 1 38
2 1.20 1 1 60* N-1
4 1.21 1 1 60*

10(n + 1) 2 0.60 2 2 108 4
4 0.58 2 2 108
2 0.68 2 2 108 5
4 0.69 2 2 108
2 0.80 2 2 108 6
4 0.75 2 2 108
14 1 1 1 1 1"
1 1 1" 1" " 47
2 2.80 1 1 70* 48
4 3.25 1 1 70"

15n 2 0.85 ) 4 222 2
4 0.81 3 3 157
2 0.85 ) 4 222 3
4 0.85 4 4 186
2 1.04 2 2 118 4
4 0.97 2 2 118
2 1.20 3 3 146 5
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4 1.12 2 2 118
2 1.28 3 3 146 6
4 1.27 2 2 118
2 1.38 2 2 118 7
4 1.27 2 2 118
” 1" 1 1 1" 1"
" 1" " 1 " 57
2 5.87 1 1 80* 58
4 5.90 1 1 80*
15(n+ 1) 2 2.24 4 4 195 4
4 1.54 2 2 133
2 2.23 4 4 195 5
4 2.14 3 3 161
noooon 7 1 1" 1
7 1" " ' " 7
2 2.90 3 3 161 8
4 2901 3 3 161
1 1" 1" 1" " o
2 3.65 2 2 133 10
4 3.66 2 2 133
" 1" 1" 1 " 11
" " 7 7 1" 79
2 13.20 1 1 95* 73
4 13.20 1 1 95*
S10.  10n 2 0.33 4 3 165 2
4 (.19 2 2 100
2 0.33 4 3 165 3
4 0.31 3 3 134
2 0.36 3 3 134 4
4 0.34 3 3 134
2 0.40 2 2 100 5
4 0.30 2 2 100
1 7 7 i " 7
" " 1" 1" 17 17
2 0.94 1 1 79 18
4 0.96 1 1 79
7 1" 1" ’ 7 7
" 7 1" 1 1 N—-1
10(n + 1) 2 0.63 3 3 141 4
4 0.62 2 2 110
2 0.72 2 2 110 5
4 0.67 2 2 110
1" " 1 7 1" 1
" 7 7 7 " 21
2 2.02 1 1 39 22

40



2.03 1 1 89
" 1 1 114 " 1
H H 1r 1 1) N _ 1
15n 2 0.96 5 4 221 2
4 0.87 4 4 156
2 0.89 4 3 185 3
4 0.83 3 3 154
2 1.02 3 3 151 4
4 0.96 2 2 120
2 1.09 2 2 120 5
4 1.10 2 2 120
" H 1" i 114 1
" 1 H 1 I 25
2 4.01 1 1 99 26
4 4.00 1 1 99
I H 1 I " H
) 1 t H £l 'l N _ 1
15(n+1) 2 238 4 3 194 4
4 2.17 3 2 169
2 2.25 3 2 169 ]
4 2.17 3 2 169
2 2.50 3 2 169 6
4 2.50 3 2 169
2 2.80 2 2 135 7
4 2.81 2 2 135
H 1 " i i 1
1 " H 11 1 28
2 8.71 1 1 114 29
4 8.70 1 1 114
1 1) 1 1 I 11
" 1" " " " N—-1
H3 10n 2 0.19 4 3 93 2
4 0.15 2 1 60
2 0.19 4 3 93 3
4 0.17 3 2 75
2 0.19 3 2 75 4
4 0.18 3 2 75
" I " 14 1 I
2 0.20 3 2 75 6
4 0.18 3 2 75
2 0.21 2 - 2 60 7
4 0.21 2 2 60
I H 1 i 1t "
1 t I 11 1 11
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From Table 2.2 it is clear that the general nature of the results is quite similar. Therefore,
in Table 2.3 we summarize the interaction between g and IV for $5. The results given here
are the values of ¢ for which the smallest number of function evaluations to satisfy the

stopping conditions was achieved.

Table 2.3 Summary of results showing effect of g for different N on S5

N o cpu LS LM FE g
75 2 2.70 2 1 127+ 7
4 2.66 1 1 08* 7
60 2 1.96 1 1 100 11
4 1.98 1 1 100 11
50 2 0.90 1 1 90 8
4 0.90 1 1 90 3
40 2 048 1 1 77 8
4 048 1 1 77 8
30 2 0.22 2 2 100 7
4 (.22 2 2 100) 7
20 2 0.11 2 2 90 7
4 (.11 2 2 90 7

* indicates only a local minimum was obtained

It was interesting therefore to see how the best value for ¢ varied amongst the 7 test
functions. Table 2.4 summarizes this effect for N = 10n.
Table 2.4 Best g for N = 10n

g n m
BR 17 2 3
GP 5 2 4
55 8 4 5
S7 38* 4 7
S10 22 4 10
H3 12 3 4
H6 54 6 4

* This was the largest value for ¢ to produce the global minimum.

Clearly there is no obvious connection between the best value of ¢ and the dimension, n,
or the number of local minima, m, but the nature of the function is important since for
some functions to get the best value of g it has to be increased until it is close to N — 1.
When g = N — 1, of course, the only graph minima are the point(s) with smallest function

value(s).



In summary, the information on the use of user supplied parameters that was obtained
from the numerical test function results was as follows. N = 10n was a reasonable sample
size. o = 4 was the best value to use for small values of g but as g increased there was little
difference between o = 2 and o = 4. All values of g eventually produced global optima
(except for values of g close to N—1 for S7) and the number of function evaluations required
decreased as g increased but at the expense of extra cpu time. Choice of g would therefore
seem to be dependent on the cost of computing the function values. Extrapolation of these
suggestions must clearly be treated with caution since the test functions used are all well
behaved mathematical functions with a relatively small number of local minima.

Comparison of MSL and TMSL

The major differences between MSL and TMSL lie in the use of the Halton sequence
instead of a pseudo-random sequence and the use of the g-topograph rather than sample
reduction. To judge the relative importance of these two changes we compared MSL with
TMSL and also with MSLH, which is MSL with Halton instead of random sampling and
with MSLG, which is MSL with the g-topograph replacing sample reduction. The results
are summarised in Table 2.5 where IT represents the number of iterations. In Table 2.5 we
have used N = 50 and the values of ¢ and & for which the global minimum was obtained
but with the smallest number of function evaluations and the best epu time.

46



Table 2.5

FE ot LS LM Jed IT
MSL
BR 225 0.10 5 3 2 2
GP 78 0.04 1 1 4 1
S5 197 0.08 2 2 4 2
S7 1705 2.00 21 7 2 4
S10 574 0.33 6 6 4 3
H3 82 0.06 2 1 4 1
H6 304 0.16 6 2 4 2
MSLH
BR 246 0.08 4 3 4 2
GP 63 0.05 1 1 4 1
S5 90 0.04 1 1 4 1
S7 844 0.45 8 6 2 2
S10 960 0.83 g 8 4 4
H3 78 0.05 2 1 4 1
H6 204 (.12 5 2 4 2
TMSL q
BR 87 0.35 3 3 4 1 2
GP 63 0.80 1 1 4 1 6
S5 90 .85 1 1 4 1 6
S7 108 (.69 2 2 2 1 4
S10 110 (.64 2 2 4 1 4
H3 93 .84 3 3 4 1 6
HE 123 1.20 3 2 4 1 10
MSLG
BR 110 0.65 4 3 4 1 4
GP 132 0.66 3 3 4 1 4
S5 112 0.65 2 2 4 1 4
S7 113 0.69 2 2 4 1 4
S10 113 0.68 3 3 4 1 4
H3 101 1.02 3 3 2 1 8
H6 08 .66 2 2 4 1 4

To make the comparison more visual we have totalled the number of function evaluations

and cpu time for all seven functions in Table 2.6.

Table 2.6 Comparison of MSL and TMSL
FE cpu
MSL 3165 2.77
MSLH 2535 1.62
MSLG 799 6.18
TMSL 674 5.38
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Clearly the dominating factor is the introduction of the g-topograph. The reduction
in function evaluations by a factor of about 5 for TMSL is offset by it requiring about
twice the cpu time. In the comparisons we tried to be as ‘fair’ as we possibly could to
all four methods but fully realize the difficulties involved, particularly with respect to the
stopping condition used. From Table 2.5 it is clear than MSL performed more iterations
than TMSL. In fact TMSL stops after the first iteration. This is because MSL uses the
reduced sample size in the stopping condition (% <w+ -;—) but TMS-L does not
( %}‘,’“_{VT"_Q < w+ 3). Therefore we felt that it would be interesting to run TMSL with the
total number (cumulative total) of graph minima instead of total sample points since the
graph minima correspond to the reduced sample in MSL. So we ran the TMSL algorithm
with the stopping condition %if:‘%_l% <w+ %, where G is the total number of graph minima
up to the k-th iteration. Again we took N = 50 and ran TMSL for a moderate value of g,
for example we used g = 6. The results are shown in Table 2.7.

Table 2.7

FE il LS LM o IT
BR 539 7.05 9 3 2 8
539 7.05 9 3 4 8
GP 772 7.98 10 3 2 9
772 7.96 10 3 4 9
Sh 1049 15.63 7 4 2 17
1049 15.56 7 4 4 17
S7 1064 17.04 5 4 2 18
1073 17.10 5 4 4 18
S10 2005 38.89 9 8 2 35
1910 36.73 9 8 4 33
H3 547 6.43 12 3 2 7
530 6.35 11 3 4 7
HG 483 4.51 3] 2 2 5
483 4.53 8 2 4 5

From this Table it is clear that the number of iterations, the ¢pu time and the number of
function evaluations are very high. However, if we compare the number of local minima
found by TMSL with that of MSL in Table 2.5, we see that there is no significant difference
between MSL and TMSL even though this time the number of function evaluations for
TMSL is higher. However detailed analysis shows that in almost all cases all local minima
were obtained within the first few iterations and the rest of the iterations were continued
to accumulate the total number of graph minima G to satisfy the stopping condition.

We also compared TMSL with the currently available algorithims given in Table 2.8
using the number of function evaluations as a basis for comparison and the results are

shown in Table 2.9 where AVE is the average of the number of function evaluations of all
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test functions for which the global minima were obtained. The results other than that
for MSL and TMSL have been taken from the references listed in Table 2.8, the data for

TMSL is N = 10n, ¢ = 4 and g = 7 and the data for MSL is N = 100,y = 0.2 and ¢ = 2.

Table 2.8 Listing of different methods

Method Name Reference
A Multistart (MS) Rinnooy Kan and Timmer (1984)
3 Controlled Random Search (CRS1) Price (1978)
> Density Clustering Torn (1978)
D Simulated Annealing (SA) Dekkers and Aarts (1991)
3 Modified Controlled Random Search (CRS5) Ali and Storey (1995)
2 Modified Controlled Random Search (CRS4) Ali and Storey (1995)
3 Clustering with distribution function De Biase and Frontini (1978)
Aspiration based Simulated Annealing (ASA) Ali and Storey (1994a)
Multilevel Single Linkage (MSL) Rinnooy Kan and Timmer (1987a)
I Topographical Multilevel Single Linkage (TMSL) Ali and Storey (1994)
Table 2.9 Comparison of TMSL with 9 currently available methods

Method GP BR S5 S7 S10 H3 H6 AVE

A 4400 1600 6500 9300 11000 2500 6000 5900

B 2500 1800 3800 4900 4400 2400 7600 3914

C 2499 1558 3649 3606 3874 2584 3447 3031

D 963 505 365* 558 797 1459 4648 1421

E 402 346 1866 1719 1709 343 1321 1100

F 436 279 1423 1238 1213 545 1581 959

G 378 697 620 788 1160 732 807 726

H 834 408 524 524 524 451 008 532

I 307 206 076 334 1388 166 324 471

J 53 46 98 116 100 60 127 85

* Local minima found
Conclusion

A new global optimization algorithm based on MSL and topographical global opti-

mization, which seems to be robust and competitive with MSL has been developed. Clearly;

most of the cpu time needed here is for the construction of graph minima and this could

possibly be reduced by a more efficient implementation, We can also anticipate an increase
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in efficiency by using a more sophisticated implementation in general. There is clear ev-
idence that great care must be taken over the stopping condition for TMSL and MSL so
that the algorithms do not continue needlessly after the global minima have been found.



CHAPTER 3

Simulated Annealing (SA)



3.1 Introduction

Simulated Annealing is a stochastic optimization method, initially designed for discrete
optimization especially in the field of combinatorial optimization. It is a Monte Carlo
technique which corresponds to the simulation of the physical process of annealing, i.e.
the process of driving a physical system to a minimum energy configuration by means of
a slow reduction of its temperature. The strong connection between statistical mechanics
(behavior of particles in thermal equilibrium at a finite temperature) and combinatorial
optimization helped people design the algorithm and so the historical background of the
algorithm is an interesting one. SA is one of many heuristic approaches designed to give
good, though not necessarily optimal, solutions, within a reasonable computing time. SA
has also been extended to optimization problems for continuous variables. In this Chapter
a new aspiration based SA algorithm for continuous variables is proposed. However, we

first review the SA method in the following subsections.

3.2 Historical Background

Statistical mechanics is the central discipline of condensed matter physics where annealing
is known as a thermal process for obtaining low energy states of a solid in a heat bath. First
the solid is heated until it melts and then it is cooled by slowly lowering the temperature
of the heat bath. This is done by the following scheme.

e Increase the temperature to a value at which the solid melts.
o Decrease the temperature until the particles form a regular pattern.

In the liquid phase all particles of the solid arrange themselves randomly, in this phase
the energy is at its highest. But the ground state of the solid, which corresponds to the
minimum energy configuration, will have a particular structure, such as seen in a crystal. In
practical contexts, low temperature is not a sufficient condition for finding ground states of
solids. The ground state of a solid is obtained only if the initial temperature is sufficiently
high and the cooling is done sufficiently slowly. Slow cooling is particularly important in
such systems as spin glasses (Edwards, 1983) where the Hamiltonian? has a large number
of local minima. Starting off at a high temperature, the cooling phase of the annealing

¥ The Hamiltonian is the internal energy function of a physical system.

e
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process can be described as follows. At each temperature T, the solid is allowed to reach
thermal equilibrium. At thermal equilibrium, the probability distribution of the states of
the solid follows a Boltzmann distribution where the probability of the system being in a
state ¢ with energy E; at temperature T is given by

) 1
Pr{X =i} = —Zmexp(—E,-/kBT) , (3.1)
where X is the stochastic variable denoting the current state of the solid. The normalizing
constant Z(T') is the partition function, which is defined as

Z(T) = exp(~Ex/ksT) , (3.2)
k

where kp is the Boltzmann constant and the sum is over all possible configurations or
energy states. Clearly as the temperature decreases, the Boltzmann distribution concen-
trates on the states with the lowest energy and finally, when the temperature approaches
zero, only the minimum energy states have a non-zero probability of occurance. Physical
annealing, therefore, refers to the process of finding the low energy states of a solid by
initially melting the substance, and then lowering the temperature slowly. An example
would be producing a crystal from the molten substance. If the cooling is too rapid, the
resulting solid will be frozen into a meta-stable state (locally optimal structures i.e. the
resulting crystal will have many defects, or the substance may form a glass) rather than
into the ground state (crystalline lattice structure). Therefore, cooling too quickly means
that the disorder encountered at higher temperatures gets frozen in as the temperature is
lowered, corresponding to the system sticking in a local minimum of the Hamiltonian.

Physical annealing has been successfully modelled as a Monte Carlo simulation.
Metropolis et al. (1953) proposed a method for computing the Boltzmann or equilibrium
distribution of a set of particles in a heat bath using a computer simulation. They did this
by generating on their computer a collection of particles with a random configuration and
calculating the energy of the ensemble. In this method, a given state with energy E; is
compared to a state that is obtained by moving one of the particles of the state to another
arbitrary location (Monte Carlo technique) by a small displacement. This new state, with
energy Ey, is accepted if B, — By < 0, i.e., if the move brings the system into a state of
lower energy. If £y — B > 0, the new state is not rejected, but accepted with probability
exp(—(Ey — E1)/kpT). So a move to a state of higher energy is accepted in a limited
way. By repeating this process for a large enough number of iterations, Metropolis et
al. (1953) showed that the Boltzmann distribution is approached at a given temperature.
The acceptance rule defined above is known as the Metropolis criterion and the algorithm
using it is known as Metropolis algorithm. Thus the Metropolis procedure from statistical
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mechanics provides a generalization of iterative improvement in which uphill steps can also
be incorporated in the search for a better solution or to escape from local minima.

When annealing begins (with an arbitrary initial state) if the system is kept for a
long time at a particular temperature, equilibrium will be attained. Hence for each value
of T' there is an equilibrium state that will be used as the initial state for the next re-
duced value of T. Of course, during the solidification, T plays an important role, as it is
normally decreased very smoothly and at each time the system is allowed to settle into a
new equilibrium. Due to the Metropolis acceptance criterion, at high temperature large
fluctuations of the internal energy will still be tolerated, whereas at the end of the cooling
process, the value of the energy E will gradually stabilize (relative to T) because, as the
temperature decreases, the probability that the system is in a lower energy state increases.
Eventually, at the final temperature T, the system will freeze into one of the ground states

with minimal energy.
3.2.1 Simulation of Annealing in Optimization

Kirkpatrick et al.(1983) introduced a useful analogy between the process of solidifying
liquid up to equilibrium, and the properties exhibited by the convergence of combinato-
rial optimization methods (Papadimitriou and Streiglitz, 1982). The SA algorithm was
introduced for combinatorial optimization problems, through simulation of the physical
process, by establishing a correspondence between the system’s energy (F) and the cost
function (f), and between the physical states and solutions (2).

For the annealing temperature T, there is no specific analogue available in combina-
torial optimization. In optimization, however, T is used as a control parameter and the
perturbation mechanism of the particles in the physical system becomes the generation
mechanism of solutions in the combinatorial optimization. In optimization, therefore, one
usually attempts to simulate annealing by allowing equilibrium to be approached at a given
value of the control parameter before lowering it by some small amount. In the context
of optimization slow cooling means that for each value of T a large number of transitions
or trials has to be generated. A global optimization algorithm, therefore, can be viewed
as a sequence of Metropolis algorithms evaluated at a sequence of decreasing values of the
control parameter (7). Assuming that function minimization is required, in most conven-
tional optimization methods, newly generated states are only accepted if the corresponding
objective function value decreases. But presumably, it can be advantageous also to allow
‘up-hill ¢limbing’ under certain conditions. In the SA algorithmn this provides a mechanism
which enables the algorithm to avoid becoming trapped in a local minimun in its search
for the global minimum. Hence, in the simulated annealing approach, a control parameter

is defined which plays the same role as the physical temperature; and while lowering this

"
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artificially introduced parameter T, the increments in the objective function which are still

accepted become smaller and smaller.

The original annealing algorithm as proposed by Kirkpatrick et al.(1983) is presented
below. The algorithin consists of two loops. In the outer loop the temperature is gradually
decreased until convergence is detected; in the inner loop a number of random ‘moves’ in
the configuration space are proposed, until a second convergence criterion is satisfied. The
moves are accepted or not according to the Metropolis criterion.

The Basic SA Algorithm
Compute the initial control parameter T, and the initial configuration
while stop criterion not satisfied do
begin
while no convergence do
begin
Generate move; calculate objective function
if accept then update state and objective function
end
Update T
end
Simulated annealing theory has recently lead to some general and powerful global
optimization methods. As a result, the SA approach has been the subject of intensive
study by mathematicians, statisticians, physicists and computer scientists, and it has also
been applied to numerous areas. In nature it is a randomization algorithm and in any
practical implementation it behaves as an approximation algorithm. To establish the
convergence of the SA algorithm, or to implement it practically, certain quantities, like
average energy, entropy etc. have to be addressed. These quantities for a combinatorial

optimization problem are defined by analogy to certain microscopic averages in statistical
mechanics. Therefore, some important features in the SA algorithm are described below.

The equilibrium distribution

After applying the Metropolis acceptance criterion for a sufficiently large number of tran-
sitions at a fixed value of T, the SA algorithm finds a configuration ¢ of a combinatorial

optimization problem with a probability equal to

a(T) = ﬁ exp(~fi/ksT) | (3.3)

"

54



where

N(T) =) exp(~f;/ksT) (34)

FEN

denotes the normalization constant, f; is the function value for state ¢ and 2 is the state or
configuration space i.e., the set of all states. The probability distribution (3.3) is called the
stationary or equilibrium distribution and is the equivalent of the Boltzmann distribution
(3.1). The normalization constant is the equivalent of the partition function (3.2). The
existence of such a distribution is essential for the convergence of the SA algorithm.

The relation between statistical physics and optimization of combinatorial problems
can now be made more explicit: given a physical system in thermal equilibrium whose
internal states are distributed according to (3.1) and a combinatorial optimization prob-
lem whose configurations are distributed according to (3.3), the quantities, expected cost
(average energy) at equilibrium, the variance in the cost at equilibrium and the entropy
can be defined for optimization problems in a way similar to that for the physical system.

Expected Cost (f)

Theoretically (Kirkpatrick et al., 1983), the expected mean value of the cost at equilibrium

is given b
08 y _ d(InN(T))

where N(T') is defined by (3.4). This equation is clearly equivalent to

(3.5)

= fiu@, (3.6)
JEQ
where ¢; is given by (3.3). (It should be noted that in optimization problems, the Boltz-
mann constant kp can be taken as unity.)

Since in (3.6) the summation ranges over the entire search-space €2 the correct average
therefore cannot be determined without searching the entire configuration-space which is
infeasible. Hence only an estimate can be supplied in any practical implementation of the
SA algorithm. Therefore, an estimate such as;

L
) =33 KD (37
1=}

can be used, where L is the number of solutions generated at a particular temperature.
Clearly the average cost in (3.7) is an approximation to (f).
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The Variance in Cost at equilibrium o?

The variance of the cost function at equilibrium is given by

X (T) = Y (filT) = (F(T))a:(T) (38)
i€l
and the numerical value of the standard deviation of the cost at equilibrium can be ap-
proximated by the quantity
1 & g\ 3
o(T) = (3 Y(h(T) - FT)?)" . (3.9)
=1

The entropy S

In thermodynamics, the entropy is related to the average energy in the following way

(Kirkpatrick et al., 1983): i ()
' 1
ToTar (3.10)
Alternatively, at equilibrium the entropy could be defined as (Otten and van Ginneken,
1984)
S=-> qiln(q:) (3.11)
i€
where ¢; is given by (3.3). The summation ranges over all configuration space. At high
temperatures all states or solutions are accepted and are likely, so S becomes proportional

to the logarithm of the total number of feasible states. This follows from;

S=- Zq.; In(q,) ,

iefl

_ AL
— 2! (,9,) ’ 5.12)
=S g,

i€N
= In(|©2]) ,
where {2 is assumed to be finite and |Q| is the number of states in Q. Therefore, if the
stationary distribution is given by (3.3) then

A S = In(|2])

| (3.13)
and r}m}) So = In(|Qop])

where Q,;: is the set of global minima and S and S, are the entropies corresponding to
the highest and the lowest temperatures. We therefore remark that in physics, if there is
only one ground state, the entropy becomes zero, since

J1"11'110 S,=In(1)=0. (3.14)
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A physical meaning can be attached to the entropy as defined above, it is a natural measure
of the amount of disorder or information in a system. In the context of optimization it
gives some measure for the SA algorithm of the number of states with an energy equal
to or less than the presently obtained optimum. Thus the final entropy S, could be used
to see whether or not the global optimum has been found. Unfortunately, this quantity
only provides a posteriori check and cannot be determined accurately. So in practice the
relevance of S is questionable.

Initia! configuration

As the SA algorithm is supposed to be independent of the choice of the starting config-
uration in the search space (Kirkpatrick et al,, 1983), it seems reasonable to select the
starting point at random. No heuristic arguments should be taken into account to start
from an appropriate guess, in the presumed neighbourhood of the global optimum, since
no information whatsoever is available concerning the location of this optimum. In fact,
one has to choose the initial temperature such that initially all proposed solutions are
accepted. At the initial temperature, a number of random iterations (inner loop) will have

to be made so that the initial configuration becomes irrelevant.
The acceptance criterion

When annealing is started, a new state has to be selected in an appropriate way. When
the new objective function is computed, the optimization algorithm has to decide whether
to accept or reject this solution. As mentioned earlier the SA algorithm is based on the
analogy with the cooling of liquid in statistical mechanics. Therefore the majority of the
contributions to SA theory adopt the same acceptance criterion as that originally suggested
by Metropolis, et.al.,(1953) for the solidification process. Hence, a new state with an enerpgy

difference Afi; = f; — fi is only retained if the Boltzmann probability
Ayj(T) = min{1,exp(~Afi;/T)} (3.15)

is greater than a randomly chosen real number in the interval (0,1). This approach relaxes
the intrinsic restriction to allow only ‘down-hill’ moves which is incorporated in methods
based on iterative improvement. Therefore, function increases are now tolerated too, but
with an exponentially decreasing probability which is a function of the difference between
the new objective function value arid the current value. Hence in contrast to iterative im-
provement or gradient methods, the SA technique does not suffer from a heavy dependence
on a sufficiently accurate guess for the initial solution (configuration). In Greene (1984)
and Greene and Supowit (1986), an alternative acceptance strategy has been proposed,
which actually does not reject any attempted state at all. According to these authors,
this approach is especially suited for temperatures in the vicinity of the final temperature,

e
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Ty. Later in this Chapter we will, however, propose a new acceptance criterion for the SA
algorithm for the continuous variable case.

Cooling Schedule

Typical annealing proceeds by starting the system at some high temperature. The system
is then allowed to approach equilibrium, at which time the temperature is reduced, the
system allowed to equilibrate again, and so on. The process is stopped at a temperature
low enough that no more useful improvement can be expected. This protocol for cooling
the system of particles (or solid) is known as the annealing or cooling schedule. In the
context of optimization, the determination of the initial temperature, the rate at which
the temperature is reduced, the number of iterations at each temperature and the criterion
used for stopping is also known as the cooling schedule. In any implementation of the SA
algorithm, a cooling schedule must be specified. The temperature parameter, T, is set
to an initial value; this is generally relatively high, so that most trials are accepted and
there is little chance of the algorithm being unable to move out of a local minimum in the
early stages. A scheme is then required to reduce T' through the course of the algorithm.
Finally, a stopping criterion is required to terminate the algorithm. The choice of cooling
schedule has an important bearing on the performance of the SA algorithm and will be
further discussed later in this Chapter.

3.2.2 Mathematical Modelling of the Discrete SA Algorithm

SA can be viewed as an algorithm that continuously attempts to transform the current
state into one of its neighbours. This mechanism is mathematically best described by
means of a Markov chain. A Markov chain is a sequence of trials, where the probability of
the outcome of a given trial depends only on the outcome of the previous trial. A Markov
chain is therefore described by means of a set of conditional probabilities p;; (k). For each
pair of outcomes (4, 7), the probability p;;(k) is the probability that the outcome of the
k-th trial is j, given that the outcome of the (k — 1)-th trial is 4, i.e.,

pis (K) = Pe{X (k) = j1X (k- 1) = i} , (3.16)

where X (k} is a stochastic variable denoting the outcome of the k-th trial. Moreover, if
a;(k) denotes the probability of outcome ¢ at the k-th trial, i.e., if

ai(k) = Pr{X (k) = i} (3.17)
then a;(k) is given by the following recursion:

a;(k) = (k- Dpuk) . | (3.18)
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If the conditional probabilities in (3.16) do not depend on k, the corresponding Markov
chain is called homogeneous, otherwise it is called inhomogeneous. In the SA algorithm, a
trial corresponds to a transition, and the set of outcomes is given by the finite set of states
in Q. Moreover, in the SA algorithm, the outcome of a trial depends only on the outcome
of the previous trial. Consequently, we may use the concept of finite homogeneous Markov
chains. The [©}] % [Q] matrix P(T) whose elements are given by (3.16) for a fixed value of
T, is called the transition matrix.

The transition probabilities depend on the value of the control parameter T. Thus
if T is kept constant, the corresponding Markov chain is homogeneous and its transition

matrix P can be defined as:

95 (T) Az (T), Vi # 4,
pii(T)=q 1= > ga(T)Aua(T), i=j (3.19)
I=1,1#i

i.e. each transition probability is defined as the product of the following two conditional
probabilities: the generation probability ¢:;{(T") of generating configuration j from config-
uration £, and the acceptance probability A;;(7T") of accepting configuration j, once it has
been generated from i. The acceptance probability is given by (3.15). The generation
probabilities are independent of the control parameters T' and are uniform over the neigh-
bourhood of the state ¢ (transitions are implemented by choosing at random a neighbouring
configuration j from the current configuration ). The corresponding matrices G(T') and
A(T) are called the generation and acceptance matrix, respectively. The definitions of the
generation and acceptance probabilities correspond to the original definitions of the SA
algorithm and closely follow the physical analogy. Notice that the transition matrix P and
generation matrix G are stochastic (a matrix M is stochastic if m;; > 0, for all ¢, 7, and

22 mi; =1, for all 4) but the acceptance matrix A is not.

Algorithms based on a more general class of acceptance and generation probabilities
are possible as was shown by Lundy and Mees (1986), Anily and Federgruen (1987) and
Faigle and Schrader (1988), etc. Hence the following two formulations of SA can be

pursued:

¢ Inhomogeneous algorithms* described by a single inhomogeneous Markov chain. The

value of T is decreased between consecutive transitions.

e Homogeneous algorithms described by a sequence of homogeneous Markov chains.
Each Markov chain is generated at a fixed value of T' and T is decreased between

consecutive Markov chains.

* Not used in practice



SA algorithms find a global minimum if the following relation holds:

Essential to the convergence proof for a homogeneous algorithm is the existence of a unique
stationary distribution. Such a distribution exists only under certain conditions on the
Markov chains (Aarts and Korst, 1989) that can be associated with the algorithm. The
stationary distribution is defined as the vector q whose i-th component is given by

¢ = lim Pr{X(k) = i|X(0) = j}, Vi . (3.21)
If such a stationary distribution q exists we have,
Jim os(8) = Jim Pe{X () =i}

= Jim 3" P {X(k) =i1X(©@ =} Pr {X(0) = 5} ,

=6 Pr{XO) =i} =0

(3.22)

Thus, the stationary distribution is the probability distribution of the outcomes after an
infinite number of trials. For the homogeneous algorithin equation (3.20) holds asymptot-
ically provided:

1. Each individual Markov chain is of infinite length.

2. The following conditions on the matrices A(T) and G(T) defining the
homogeneous Markov chain hold ensuring that the stationary distribution
q exists.

(1) The Markov chains are irreducible (van Laarhoven and Aarts, 1987),
i.e, for all pairs of states (i, j) there is a positive probability of reaching j
from ¢ in a finite number of transitions or,

Vi, j 3n,1 £ n < oo such that, pi; > 0. (3.23)

Thus, irreducibility of Markov chains establishes the fact that there is a
path from every local minimum to the global minimum.

(i) The Markov chains are aperiodic (van Laarhoven and Aarts, 1987),
i.e, for each state ¢ € Q, the greatest common divisor of all integers n > 1,
such that

>0 (3.24)

is equal to 1. This means that the probability of not leaving the state i in
any finite number of steps is greater than zero.
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As to establishing irreducibility, in the case of SA, the transition matrix P(T) is
defined by (3.19) and for all pairs of states (4, j), the acceptance probability A;;(T") > 0 for
non-zero T (see 3.15), it is therefore sufficient to assume that the Markov chain induced
by the generation matrix G(T') is irreducible itself (since p;;(T) = g:;(T)A:;(T)), i.e,

Vi, j€Q3l,,h,...,l, e Q, =1, I, =),

(3.25)
Qlklk,,_l(T) > O,k = 0, 1,. R 1.

As regards aperiodicity, an irreducible Markov chain is aperiodie, if the following condition
is satisfied (Romeo and Sangiovanni-Vincentelli, 1985),

YT >0 3ir € Q: pirir(T) > 0. (3.26)

Therefore under the above considerations the irreducibility and aperiodicity of a Markov
chain can be shown to hold. More rigorous proofs and full discussions can be found in Aarts
and Korst (1989). The convergence proof for SA remains unchanged for any symmetric
generation probability (Lundy and Mees, 1986), i.e, when |

9i(T) = g;:(T) . (3.27)
3. .
Jim T, =0 (3.28)

where t is the temperature counter.

The asymptotic convergence proof for the homogeneous Markov chain requires that an
infinite number of transitions be generated. Thus implementation of the algorithm requires
generation of a sequence of infinitely long homogeneous Markov chains at descending values
of the control parameter T, which is impracticable. However it is possible to regard the
SA algorithm as a sequence of homogeneous Markov chains of finite length, generated at
descending values of the control parameter, so that the homogeneous Markov chains are
combined into a single inhomogeneous Markov chain. In this way the infinite sequence of
finitely long homogeneous Markov chains becomes a single inhomogeneous Markov chain of
infinite length. Therefore, from a theoretical point of view, a simulated annealing algérithm
can be modelled as an inhomogeneous Markov process. The conditions for convergence
to the global minima, for the inhomogeneous algorithm, not only depend on the matrices
G(T:) and A(T:) but also impose restrictions on the way the current value of the control
parameter, Ti, is changed into the next one, Ti;y (Van Laarhoven and Aarts, 1987).
However, in this framework a rigorous analysis of the convergence behavior appears to be
quite involved (Hajek, 1988; Chiang and Chow, 1988; Tsitsiklis, 1989). Therefore, we only
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briefly mention that for the inhomogeneous algorithm, equation (3.20) holds asymptotically
if:
1. Certain conditions on the matrices A(T3) and G(T3) are satisfied (see
Aarts and Korst, 1989).

2.
lim T; =0. (3.29)
t— 00

3. Under certain additional conditions on the matrix A(T3), the rate of

convergence of the sequence {T;} is not faster than O([log#]™!).

The theoretical results for the asymptotic convergence of SA modelled as an inho-
mogeneous Markov chain do not require the stationary distribution to be achieved at any
nonzero temperature (Aarts and Korst, 1989). In fact, there are quite general results about
Markov chains (Anily and Federgruen, 1987) showing that if the inhomogeneous Markov
chain defined by P(T;) does converge, then its limit distribution is identical to q. Thus
the annealing algorithms (homogeneous and inhomogeneous) will find the optimal solution
with probability one, i.e.

lim Pr {X(k) € Qop b =1 (3.30)

T | k—oo
o

In any implementation of the homogeneous algorithm, however, asymptotic conver-
gence can only be approximated. Evidently, this is at the cost of the guarantee of obtaining
optimal solutions. In the homogeneous model of the SA algorithm one chooses a few (say,
m) different temperature levels, T} 2 T2 > ... 2 T,, = 0, and runs a large number, say
M, of iterations at each temperature level T} successively (the reasons will be explained

in the next section). In the next section we describe in detail how the approximation is
carried out.

3.2.3 Finite-time implementation of the SA algorithm

The description of the SA algorithm in terms of the generation of Markov chains makes
it possible to analyze the asymptotic convergence of the algorithm. In practice, one is of
course, mainly interested in the finite-time behavior of the algorithm, i.e. in the behavior
of SA as an approximation algorithm. In this section, we discuss the behaviour of the
homogeneous algorithm in finite time on the basis of the notion of the cooling schedule. The
parameters of the cooling schedule are chosen so as to imitate the asymptotic behaviour
of the homogeneous algorithm in polynomial time, thereby losing any guarantees with
respect to the optimality of the solution retained by the algorithm. We do not describe
any approximations to the asymptotic behaviour of the inhomogeneous algorithm. Such
approximations are not reported in the literature.
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In any finite time implementation of the algorithm the number of transitions for each
value T3, must be finite and 1:1_1’I(r)1° T; = 0 can only be approximated by using a finite
number of values for T;. Because of these approximations, the algorithm is no longer
guaranteed to find a global minimum with probability 1. Practical implementation of an
annealing algorithm, therefore, requires Markov chains of finite length at a finite sequence
of descending values of the control parameter. To implement the algorithm, therefore,
one must define a cooling schedule (Van Laarhoven and Aarts, 1987; Aarts and Korst,
1989) that governs the convergence of the algorithm. In this section we describe a cooling
schedule proposed by Aarts and Van Laarhoven (1985, 1985a). Notice that the same
cooling schedule is applicable for the continuous simulated annealing algorithm.

Central in the construction of many cooling schedules is the concept of quasi-
equilibrium. If L; is the length of the ¢-th Markov chain and a(f4,7;) denotes the
probability distribution of the solutions after £ transitions of the ¢-th Markov chain, then
the homogeneous algorithm is said to be in quasi-equilibrium at T} if a(L;,T3) is close to
q(T:). The actual construction of a cooling schedule is usually based on the following
argurnents.

¢ For T — oo, the stationary distribution is given by the uniform distribution on 2,
which follows directly from (3.3) and (3.4). Initially, quasi-equilibrium can therefore
be achieved by choosing the initial value of T' so that virtually all transitions are
accepted. '

e The length L; of the t-th Markov chain and the decrement rule for T are related
through the concept of quasi-equilibrium. If the decrement in T; is large then it
is riecessary to attempt more transitions at the new value of T34 to restore quasi-
equilibrium at T; 3. For given (j11asi-eq11ilibri11m at T3, the larger the decrement in T3,
the larger the difference between ¢(T;) and ¢(T341) and the longer it takes to establish
quasi-equilibrium at T3y3. Therefore, there is a trade-off between fast decrement in T}
and small values for L;. Usually, one opts for small decrement in T} to avoid extremely
long chains.

¢ A stop criterion is usually based on the argument that execution of the algorithm
can be terminated if the observed improvement in function value over a number of
consecutive Markov chains is small.

In this section we discuss briefly the schedule proposed by Aarts and Van Laarhoven
(1985). This schedule is based on empirical rules rather than on a choice based on theory.
We emphasize once more that this cooling schedule leads to polynomial-time execution
of the algorithm on the one hand, but on the other hand precludes any guarantee for the
proximity of the final configuration to a globally minimum one. We now give a full descrip-
tion of a cooling schedule proposed by Aarts and Laarhoven (1985). The specifications of
the set of parameters that constitutes the cooling schedule are as follows:
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¢ An initial value T, of the control parameter;

¢ A decrement function for T

¢ A final value for T, i.e. a stopping criterion;

o A finite length L;, of each Markov chain.
Initial value of the control parameter

Based on the assumption of a Gaussian distribution of the state density function, the
initial temperature can be equated with the standard deviation of this normal distribution,
as suggested in White (1984). However, in Catthoor et al. (1988) it is argued that
this assumption is not generally valid. A less restrictive approach is to require that the
maximum possible energy-change is accepted with a sufficiently high probability at T,
(Otten and Ginneken, 1984). In Aarts and Laarhoven (1985) a strategy is proposed in
which the initial temperature is assigned based on an experiment for the acceptance ratio.
A starting value for T, is updated until this ratio becomes acceptable. If no upper bound
is available for the energy range, this approach is superior to other existing methods. The
initial control parameter usually takes a very high value so as to accept almost all trial
points, i.e.

exp(—Afy/To) = 1, (3.31)

for almost all cost-increasing transitions. This can be achieved by generating a number
of trials and requiring that the initial acceptance ratio x, = x(T,) is close to 1, where
x{T) is defined as the ratio between the number of accepted transitions and the number
of proposed transitions. Suppose for a particular value T of the control parameter my
transitions have been generated for which (Af;; < 0) and my for which (Af;; > 0) and
AFT is the average increase in cost over the my transitions. Then the expected acceptance
ratio  is approximately given by

y m1 + mgexp(—Af+/T)

L]

mi +ma
which can be rewritten as
_ my -1
T=Aft (ln o — (1 = X)ml) . (3.32)

We now assume that the value of T is T, which is determined as follows. Initially, T,
is set equal to zero. Next, the algorithm is executed for a fixed number of transitions,
say mn,, and after each transition (3.32), with x set to x.(= 0.9), is used to update the
current value of T,,. Numerical experiments indicate that fast convergence to a final value

of T, is obtained in this way (Aarts and Korst, 1989). This final value is then taken as
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the initial value of the control parameter. A PASCAL subroutine for generating the initial
temperature is given in appendix 3A. )

Decrement of the control parameter

The new value 7}41 is calculated from

T, In(1 + 5)) -1

Ti1 =T,
i+l t (1+ 30_(1-‘2)

(3.33)

where o(T;) denotes the standard deviation of the values of the cost function at the points
in the Markov chain at T;. The constant é§ is known as the distance parameter and
determines the rate of decrease of the control parameter. The numerical value of o(T) is
calculated from (3.9).

Final value of the control parameter

The stopping criterion is based on the idea that the average function value f over a Markov
chain decreases with T}, so that f(T}) converges to the optimal solution as T, — 0. The
algorithm is terminated if

[ df L] (Tt) Tt |
(ng f(To)

where f(T,) is the mean value of f at the points found in the initial Markov chain, f,(T})

Ea s (3.34)

(see Simulated Annealing Procedure) is the smoothed value of f over a number of chains in
order to reduce the fluctuations of f(Ti), and e, is a small positive number. The numerical
value of f(T) is found from (3.7).

Length of the Markov chain (L;)

The length of the Markov chains is usually based on the intuitive argument that for each
value T; of the control parameter, a certain amount of computational effort should be
spent to restore quasi-equilibrium. Therefore, a minimmum number of transitions should
be accepted i.e., L; is determined so that the number of acceptance transitions is at least
Nmin, & fixed number. However, since transitions are accepted with decreasing probability,
one would obtain Ly — oo for 73 — 0. Consequently, Ly is bounded above by some
constant to avoid extremely long Markov chains for low values of Ty (Kirkpatrick, et. al.,
1983; Leong and Liu, 1985; Leong, et.al., 1985). The length of Markov chain determines
whether the algorithm has explored the neighbourhood of a given point in all directions.
For the optimization of continuous variables, Dekkers and Aarts (1991) suggested

Lt = 10n y (335)

where n is the dimension of f (for discrete optimization n may represent the problem size,
e.g., the number of cities in the travelling salesman problem). Note that this choice leads
to a chain length which is constant for a given problem.
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Thus, a homogeneous SA algorithm can be viewed briefly as follows:

e At a fixed temperature level T; one has to perform nothing but a certain random walk
on the collection of all possible configurations.

¢ Certain parameters have to be chosen in such a way that it is more likely that a good
configuration is obtained as ¢ increases (i.e. T; decreases). In the limit the global
optimal solution state will be reached with probability 1.

The above cooling schedule leads to the following simulated annealing algorithm in pseudo-
PASCAL.

Procedure Simulated Annealing
begin _
initialize a state ¢ by random selection
calculate initial temperature T, by the procedure described earlier in this section.
t := 0; (initialize the temperature change counter t)
stopcriterion:=false;
while stopcriterion=false do (outer loop begins)
begin
k := 0; (initialize repetition counter for inner loop)
L, := 0; (initialize solution generation counter for inner loop)
repeat until & = L;; (inner loop begins)
begin
generate state 7; (a neighbour of )
calculate Af;; := f; — fi; (in moving from ¢ to j)
accept (Afi;, Tt);
if accept=true then
begin
Ly = L, + 1; (increase the number of acceptances by one)
i := j; (make j the current state)
end;
k := k + 1; (increase number of trial by one}
end; (end of inner loop) |
Ty = £ ¥ i
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o(T) 1= (& S - FEP)
Tor:=T 1+ %};{r&l)“l;
if t=0 then
begin
J-Es(Tt) = f(Tt)
stopcriterion:=false
end else
begin

Fo(Ty) == 075 F(T3) + 0.25F(Ti—1);

df(Ty) ._ fulTem1)—Fe(T3).
dTy T Te—3—T% !

stopcriterion:=| ﬂj—é?lﬁ%j

< €s

end;

t :=t+ 1; (increase the temperature change counter by one)
ehd; (end of outer loop)

end.

function accept (A fi;, T3);
begin
if Afi;; <0 then
begin
accept:=true;
else
if exp(—Afi;/Tt) > random (0,1) then
accept:=true;
else
accept:=false;
end;

end;
3.3.1 Annealing Algorithm for Continuous Optimization

In combinatorial optimization the number of outcomes (states or solutions) can be very
large but is finite. Unfortunately the number of outcomes for the continuous case is infinite.

67



If the annealing algorithm defined above is to work for the continuous case an appropriate
transformation from discrete to continuous is needed. Application of SA to continuous
functions has been addressed by a number of authors. The proposed approaches can be
divided into the following two classes.

In the first class, implementations of the algorithm are described that follow closely the
original physical approach introduced by Kirkpatrick et al.(1983). For example Vanderbilt
and Louie (1984) introduced the idea of a covariance matrix for controlling the transition
probability. In particular, random points are generated which try to take into account the
local structure of the objective function. Khachaturyan (1986) presents a method that is
closely related to the physical system as described by Metropolis et al.(1953). Bohachevsky
et al. (1986) present a simple and easy to implement, SA algorithm in which the approach
followed is basically that of a random direction method, in which, at each step, a random
point is generated on the surface of a sphere centered on the current point with a prefixed
radius. Kushner (1987) describes an appropriate method for cost functions, for which the
values can only be sampled via a Monte Carlo method.

In the second class of approaches, the annealing process is described by Langevin
equations, and proven to converge to the set of global minima (Gidas, 1985; Geman and
Hwang, 1986; Chiang, et al., 1987). The so-called Langevin equation in R™ takes the form

dz(t) = ~Vf(@())dt + /2T dw(t) (3.36)

where Vf is the gradient of the function f, T(t) the temperature at time t € [0, 00) and w(t)
is the standard Brownian motion in IR". The equation (3.36) can be seen, from the point
of view of stochastic optimization algorithms, as the law of motion of a point in IR® whose
movement is subject to two different components: one is the tendency to follow down-hill
trajectories along the direction of —V f; the other is a random fluctuation whose amplitude
is governed by the temperature parameter T(¢). Aluffi-Pentini, et. al (1985) proposed the
computation of global minima by following the paths of a system of stochastic differential
equations. They use a time-dependent function for the acceptance criterion which tends
to zero in a suitable way. The papers of Geman and Hwang (1986) and Chiang et. al.
(1987) consider the same concept. A continuous path seeking a global minimum will, in
general, be forced to ‘climb hills’, with a standard n-dimensional Brownian motion, as well
as follow down-hill gradients. The Brownian motion is controlled by a time dependent
factor, tending to zero as time goes to infinity. The convergence proof given by Geman
and Hwang {1986) is based on the Langevin equations.

However, it is clear that these methods are somewhat different from the original SA
approach to discrete optimization. Recently Dekkers and Aarts (1991) gave an algorithm

for the continuous problem which is a direct transformation from the original discrete to
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the continuous case. The convergence proof is based on the equilibrium distribution of
Markov chains. This method has proved to be a reliable annealing method for continuous
optimization. We, therefore, restrict ourself to this version of the simulated annealing
algorithm. For the continuous case we will denote points in Q by z,y etc.

As far as SA is concerned, a near optimum solution is often considered as the global
solution (Dekkers and Aarts, 1991). A near minimal solution can be formalized in the
following way.

For € > 0, we call a point z € £ near minimal if € B(e) where B(e) = A;(e) U As(€) and
Ag(€) and Ag(e) are defined by (1.3) and (1.4) respectively, in Chapter 1.

3.3.2 Mathematical Model of the Continuous Algorithm

We now present a mathematical model of the homogeneous, simulated annealing algorithm
for continuous optimization based on the ergodic theory of Markov chains. The following
definitions are introduced by Dekkers and Aarts (1991).

Definition 3.1 The transition probability of transforming x € Q into a point y € C C Q
is the probability of generating and accepting a point in C if z ¢ C. Thus, if x is the
current point of the Markov chain, then the probability that an element in C is the next
point of the Markov chain is

J coPoy(T)dy forx g C,
P(Cla; T) = "¥<¢ 3.37
(Cla; T) { JyecPey(Tdy + (1 = [ cq Pey(T)dy) for z € C, (3.37)
where
Pry(T) = GeyAry(T) , (3.38)
and
P(Clz; Ty =Pr{X(k) e C|X(k—-1)=x;T} . (3.39)
Note that pg(T") is not a proper distribution function since
/ Pay(T)dy £ 1. (3.40)
yen

Therefore, pyy(T) is called the quasi-probability distribution function. The acceptance
probability A, (T) is similar to that of discrete optimization (Aarts and Korst, 1989).

Definition 3.2 The probability that a point z €  is transformed into a point y € C C 2
in k trials is

k
fyGC’ P:(ry) (T)dy for z & C,

" (3.41)
Jec P (T)dy + (1~ [ cqpay(T)dy)" forz e C,

PO (Cla; T) = {
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where

BTy = (k—1) )(k=1) - -
W@ = [ IO+ @ [ peD)ie)

zeQ} zE€

(3.42)
+ (1 - l/;enpmz(T)dz)k_lpmy(T) .

Notice that IJ;(,;’;)(T) is the quasi-probability distribution function of transforming x into y
in k trials, and is equal to the sum of three terms:

The first term is the quasi probability distribution function of transforming x into 2
in § — 1 trials, and from 2 to y in the next trial generated over all z.

The second term is the quasi probability distribution function of transforming z into
¥ in k — 1 trials and then rejecting the k-th trial.

The third term is the quasi probability distribution function of transforming x into y
in one trial after £ — 1 rejected trials from z.

The aim of the continuous SA algorithm is achieved if it converges asymptotically to
a point x € As(e) (here we assume that A¢(e) = ;) that is if

Veso TlilI}cl Pr{X (k)€ As(e)} > 1—¢ (3.43)

0

for all starting points X(0). The proof of asymptotic convergence is based on the con-
vergence proof for the SA algorithm when applied to the discrete minimization problem
(Dekkers and Aarts, 1991). Essential to the proof is the fact that under certain conditions
there exists a unique stationary probability distribution function of a homogeneous Markov
chain.

Definition 3.3 A probability distribution function r(z, T) is stationary if

Veeq :7m(x,T) =/

yeN

(¥, T)pyz(T)dy + {2, T) (1 — /

Pay(T)dy) (3.44)
y€Ell

and

f r(z, T)dz = 1 (3.45)
z€0)

Dekkers and Aarts (1991) have proved the following theorem.

Theorem: Let p,, (T) be given by Definition 3.1 and let Q be the only ergodic set not
having any cyclically moving subsets for the Markov chain induced by P(C|x; T) (Definition
3.1). Furthermore, let the following conditions be satisfied:
(@)
Veyen : gay(T) = gyu(T) . (3.46)
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(i} 92y4(T) is independent of T' (and therefore can be written as g.,).

Then a unique stationary probability distribution function exists and is given by

¢(z,T) = exp(~(fz — fmin)/T)/N(T) , (3.47)

where fini, is the minimum function value and
NT) = [ ep(=(fy = Fmin /T (3.48)
y€

Dekkers and Aarts (1991) also proved that the SA algorithm, for continuous minimization,
modelled as a Markov chain with the transition probability (3.37) defined by (3.38) and
(3.39), converges to the set of minimal points (i.e. to Af(e)) of f if the following conditions
are met:

f is uniformly continuous.

All minima are interior points of Q.

The number of minima is finite.

Ary(T) = min{1, exp(=(fy — £z)/T)}.

The generation probability distribution function g,y (T) is defined by

VaeaVocn: m(C)> 0= [ g (T)iy>0 (3.49)
e

which means if the set C has positive measure then the probability that a point y € C
will be generated from x € {2 is greater than zero.

9zy(T) = gy (T)-
9zy(T) does not depend on T
However, these conditions are sufficient but not necessary.

To implement SA on a function of continuous variables, the crucial factor is the choice
of an appropriate neighbourhood structure, i.e. the way in which a neighbour y of the
current point z is defined. Thus the requirements are that the generation mechanism

should satisfy (3.46) with g,, being independent of T and
VeeaVeoca ! m(C) >0= [ gmy(T)dy >0,
yeC

where m(C) is the Lebesgue measure of the set C. The following two alternative generation
mechanisms are discussed by Dekkers and Aarts (1991).
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Alternative A. A uniform distribution on £, i.e.

1

Gzy = m(Q) (3.50)

Clearly, this alternative satisfies the above requirements. An obvious disadvantage of this
choice is that no structural information about function values is used. This disadvantage
can be circumvented by introducing an additional mechanism that uses descent directions.

Alternative B.

(3.51)

zy

LS(z), fw>t,,
= { oy Hw<t,
where ¢, is a fixed number in (0,1), and w a uniform random number on (0,1}. LS(z)
denotes a local search that generates a point y in a descent direction from =z, thus f, < f,
(y is not necessarily a local minimum). In this implementation, however, gz;, # gya-
Nonetheless, it can be shown that the method still converges to a neighbourhood of the
optimal solution (Dekkers and Aarts 1991).

3.4.1 The Aspiration based SA Algorithm (ASA)

The SA algorithm sometimes accepts solutions which are worse than the current solution.
It is therefore possible in any single SA run for the final solution to be worse than a solution
found during the run. In fact, since the SA algorithm is a randomization device, which by
means of an acceptance/rejection criterion allows some ascent steps during the optimization
process, it is quite possible that at some fixed temperature level the procedure will visit
the near global optimal solution but due to the acceptance/rejection mechanism it (the
procedure) will leave the best solution and arrive at a worse solution. In addition, since
the algorithm is heavily dependent on the cooling schedule and an appropriate cooling
schedule is very difficult to construct, the algorithm may never come back to the best
solution it left during the course of a run. The SA procedure is completely memoryless,
i.e., new solutions are accepted disregarding previously obtained intermediate results. The
SA algorithm therefore has the following shortcomings:

Simulated annealing does not use strategic decision rules which could be based on
knowledge of the global problem structure.

No learning procedure is incorporated to make effective use of information gained in
previous iterations.

An aspira,tion1L based SA algorithm has been designed to take into account the above
drawbacks by adapting the acceptance criterion in a suitable way. Let x; be the starting

 The concept of aspiration level was first introduced by Glover (1989) in his TABU
search technique for combinatorial optimization.
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solution of the {-th Markov chain and z, the point obtained by carrying out a local search
from z;. We then define f,(z:) as f(z.). The local descent procedure is not a complete local
search but only a few steps of some appropriate descent local search. During the execution
of the t-th Markov chain with length L, if a solution is generated whose function value is
less than or equal to the aspiration value, then no more attempt is made to generate the
next solution. In other words the inner loop stops, the aspiration value is updated and a
new Markov chain begins. If a solution cannot be found whose function value is less than
fa(z:) then the complete chain of length L. is executed and the aspiration value is not
updated at the begining of the next Markov chain.

As far as simulated annealing for discrete optimization is concerned many researchers
have considered alternative acceptance probabilities { Romeo and Sangiovanni-Vincentelli,
1985; Anily and Federgruen, 1987 and Faigle and Schrader, 1988). In all cases theoretical
results regarding asymptotic convergence have been established. Romeo and Sangiovanni-
Vincentelli provide some experimental evidence that an alternative acceptance scheme
does not significantly alter the quality of solutions found. In reality, a system of cooling
particles and an optimization problem are not same and therefore the simulation has to be
adapted. In our modification of the SA algorithm we use an acceptance criterion which is
independent of the current function value f, whenever A f., is positive. This acceptance
criterion is given by

Az, (T) = min(1, 47, (1)) , (3.52)
where (= (fy—F)IT) it fy> fu 2§
* — JEXPL —\Jy — Ja L fy>Jz 2 Ja
4ay(T) = { 1 otherwise , (3.53)

where f, is the current aspiration value. In our implementation of ASA we use the gen-
eration mechanism defined by Alternative B. We also use the same method as was used
by Dekkers and Aarts (1991) to determine the initial temperature. A brief description of
how the ASA algorithm works is introduced below.

The initial temperature T, is found by applying the original Metropolis acceptance
criterion and using Alternative B as a solution generation scheme. Therefore, the initial
temperature calculating scheme of ASA is the same as that of SA and the same T, will be
produced if we use exactly the same local search in Alternative B. A few local descent
steps are then taken from a random starting point z, of the initial Markov chain, the
resulting solution gives the aspiration value and then the initial chain begins. The regularly
updated aspiration value, allows us to have effective information on the objective function
as the search proceeds. At the begining of each Markov chain (say, the t-th Markov chain)
the aspiration value is updated if required and the length, L;, is then determined. The
greater the difference between f,, the starting solution of the ¢-th Markov chain, and fo,
the aspiration value, the longer will be the current Markov chain. Therefore, the aspiration
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value f, plays a part in determining the length of a particular chain in a way to be clarified
later. An inner loop of ASA starts at z; with the acceptance criterion defined by (3.52)
and new trial solutions are then attempted. If the newly generated solution f, is greater
than the current solution f; then it is clear from (3.52) and (3.53) that the acceptance
probability, A2, (T') will be less than the Metropolis acceptance probability defined by
(3.15) and consequently the transition probability, pg, (T), in ASA will satisfy

Pzy(T) = gzy » Agy(T) < pzy(T) (3.54)

From (3.54) it is clear that the ASA procedure is more aggressive than SA but this can be
justified by the following arguments:

At the start of an inner loop the higher the difference between the starting and as-
piration solutions, the lower will be the transition probability for lower to higher
solutions. This can be compensated by considering a proportionately lengthy Markov
chain. Moreover we will see later that ASA may increase the temperature at some
stage of the procedure. Therefore, the above considerations will balance the effect of
aggressiveness of the search.

No doubt SA proceeds in the right direction with the decreasing temperature as far
as the global minimum is concerned but it cannot memorize the best solution found
during the course of its search. ASA can safeguard the best solution and its aspiration
value is a useful tool which can be used as a guide to the procedure. Moreover, it
will not be reasonable to accept very high solutions if a solution is known (aspiration
solution) whose function value is much lower than the current one. Therefore, an
aggressive search can be justified.

In ASA, the choice of L; is not constant throughout the course of the algorithm, it can
vary from short to long depending upon the present aspiration solution. If the inner loop
starts with a particular T; and a solution is reached whose function value is lower than the
present aspiration value (f,) then at this point the aspiration level is updated, a new inner
loop starts with T4, and the process continues. For some iterations the number of trial
solutions could be very small but this is not a drawback. In fact, Glover and Greenberg
(1989) argue that there is little need for the SA algorithm to rely on a strong stabilizing
effect over time. In other words, there is no need to consider very long Markov chains. In
their implementation they also store details of the best solution found so far and consider
this to be the final solution. These ideas are supported by Connolly’s (1988) modification
of SA, where having found a suitable fixed temperature, all the remaining iterations are
carried out that temperature. In the final phase, a descent algorithm can be carried out

from the best solution found at the earlier phases.
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Central to the construction of ASA there is a mechanism for keeping track of the best
solution during the course of the procedure. This mechanism can also send signals to the
procedure to increase the temperature if required. The question, of course, arises whether
it is possible to perform such modifications and, at the same time, keep the convergence
properties of SA. We investigate the impact on the convergence of the modification of the
acceptance criterion. Indeed, we will see that the basic theoretical ASA algorithm will
converge to the optimal solution no more slowly than the algorithm described by Dekkers
and Aarts (1991).

3.4.2 Theoretical Investigation

In the implementation of the SA algorithm for continuous variables Dekkers and Aarts
(1991) suggested adopting the generation mechanism, Alternative B. But this generation
mechanism implies that gz, # gyz. However, if X (k) and Y (k) are defined as the outcomes
of the trials in the SA algorithm using Alternative A and Alternative B, respectively,
then Dekkers and Aarts proved that

Yeso Thll}‘cl—#oo Pr{Y(k) € As(e)}
1)
> Tlir’rcl_moPr{X(k) €As(e)} 21—c.

0

(3.55)

Theorem 3.1 Let the random variables R(k) and Z(k) be defined as the outcomes of the
trials using Alternative A and Alternative B respectively but with transition probability
(3.54). Then

Veso: lim  Pr{Z(k) € Ag(e)|T} > Tliﬂl Pr{Y(k) € As(e)|T} > 1—¢ (3.56)

Tk :
Proof. Let |
PB(T) = Pr{X (k) € Ap(e)|X(k — 1) € As(e); T} (3.57)
PB/(T) = Pr{R(K) € Af(e)|R(k — 1) € A7(e); T} (3.58)
PLS(T)=Pr{LS(Y (k- 1)) € As(e)IY (k—1) & As(e); T} (3.59)
PLS(T) =Pr{LS(Z(k - 1)) € As(e)|Z(k — 1} & As(e); T} (3.60)

Pr{Z(k) € As(€)|Z(k - 1) € As(e); T}

=t, Pr{R(k) € Ag(e)|R(k — 1) € As(e); T}

+(1—t,) Pr{LS(Z(k - 1)) € A;(e)|Z(k — 1) € A;(e); T}
— 4, Pr{R(k) € As()|R(k— 1) € A;(e); T} + (1 —£.) .
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Similarly
PH{Y (k) € A;(IY (k1) € As(e); T)

=t Pr{X (k) € As(e)|X(k— 1) € Ap(e); T} + (1 - ¢t,) .

But, due to the effect of the acceptance criterion (3.52)

Pr{R(k) € As(IR(k — 1) € A;(e); T}

(3.61)
> Pr{X(k) € Ag(e)| X (k — 1) € As(); T} .

Therefore,
toPB (T) 4+ (1 =t,) > t,PB(T)+(1—-1t,) . (3.62)

Again

Pr{Z(k) € As(e)|Z(k — 1) & A;(e); T}
=t, Pr{R(k) € As(e)|R(k — 1) & As(e); T}

+ (1 ~to) Pr{LS(Z(k — 1)) € Ape)|Z(k — 1) & As(e); T}

m(Ag(e)) + (1 = ta) Pr{LS(Z(k — 1)) € Ap(e)|Z(k ~ 1) & As(e); T} .

= o)

Similarly
Pr{Y(k) € As(e)IY(k— 1) & Ay(e); T}

= to% +(1-t)Pr{LS(Y(k—1)) € Ap(e}]Y(k — 1) & As(e); T} .

Since PLS'(T) = PLS(T) we have

m(Ay(e))

omm)44memaﬂ=um““m+a—nﬁmﬂm) (3.6

g Q)

Pr{Z(k) ¢ Af(©)|Z(k - 1) € A;(e); T}

= t, Pr{R(K) & A(|R(k ~ 1) € As(e); T}

+ (1 - to) Pr{LS(Z(k - 1)) & Af()|Z(k — 1) € As(e); T}
= to(1 - Pr{R(k) € A;(JIR(k - 1) € A;(); T}) .

Similarly

Pr{Y(k) € As(e)]Y(k - 1) € Af(e); T}
= to(1 ~ Pr{X(k) € A X(k ~ 1) € Ag(e);T})
Using (3.61) we have
to(1 — PB'(T)) <t,(1— PB(T)) (3.64)
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Pr{Z(k) ¢ As(e)|Z(k —1) & Af(e); T}
= t, Pr{R(k) & As()|R(k — 1) & As(e); T}
+ (1 —to) Pr{LS(Z(k — 1)) & A (e)|Z(k — 1) & Af(e); T}

=t,(1- T—(i‘-f-@) + (1= t,)(1 - Pr{LS(Z(k — 1)) € Ap(e)|Z(k — 1) & As(); T}) .

m(£2)
Therefore
to(1- m(%(;)))+(1—t.,)(1-PSL(T)) = to(1-%)+(1-to)(1-PSL'(T)) (3.65)

Consequently using (3.57)-(3.60)
E(waiting time of Z(k) in As(e)|T)

f:k x Pr{Vo<i<k : Z(3) € Ay(e) and Z(k) & As(€)|Z(0) € Af(e); T}
k=

8|-

k[toPB'(T) + (1 — t.)] “ P [to(1 - PB(T)]
k

Il
e

=t,(1— PB(T)) f:k[toPB'(T) +(1—t)]* Y
k=1
1

= to(l - PB’(T)) [to(l _ PB’(T)P = [to(l

- PB/(T)]™

E(waiting time of Z(k) in Q\A;(¢)|T)

= ik x Pr{Vocick : Z(i) & Ag(e) and Z(k) € As(€)|Z(0) & As(e); T}

k=1

= Z k[t A();}(;))) + (1 —t)(1 = PLS'(TH]* [to mf:f‘(’;](;))

+ (1 —to)(1 — PLS'(T))]

_ o mAe) : 1
= miay  + =)L (7)) [t 284D 1 (1 - £,) PLS"(T)])

_ [to% +(1—t)PLS'(T)] " .

Similarly
E(waiting time of R(k) in As(e)|T)

=(1-PB'(T))™ L.
E(waiting time of R(k) in Q\As(€)|T)
_ m(@)
m{Ag(e))
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Dekkers and Aarts (1991) proved that the SA algorithm for continuous variables converges
to the optimal solution using the generation mechanism (3.51). In other words, they have
proved that

Veso: Tlix}cl_’m Pr{Y (k) € Ay(e)]Y(0) e 4T} > 1—¢
[to(1 = PB(T))] !

7 fto(l = PRI + o PAH + (1 - 1,) PLS(T)]

If the ASA algorithm converges to the optimal solution then

Veso Tlill}cl Pr{Z(k) € A;(e)|Z(0) e T} >1—¢ (3.66)

o

But (3.66) is defined by

E(waiting time of Z(k) in Ay(e)|T)
E(waiting time of Z(k) in A;(e)|T) + E(waiting time of Z(k) in Q\ Ay (f)|T)
tol1 = PB(T))|* .-
T - PB4 2D 4 (1 1) PLST)

Now using (3.64)

[to(1~ PB(T))] 7! > [to(1 — PB(T))] ™
1 1
* G = PB@)T = (- PBID)L

| [T + (1~ ) PLS(DI™_ [to™ (5 + (1~ ) PLS(T)]

(t.(1 - PB/(T))] ! - [to(1 — PB(T))]~*
1 [to 2D + (1 — £,) PLS(T)] ! <14 [to 22 + (1 ¢,) PLS(T)]
[to(1 — PB(T))] - [to(1 — PB(T))]

| (- PBO)I T+ [to ™8 4 (1 - t,) PLS(T)]
[t.(1 - PB/(T))]1
L o1 = PBI) + [to ™D + (1 - t,)PLS(T)|
= [t.(1 - PB(T))]

. [to(1 = PB/(T))]~?

[to(1 — PB/(T)} + [t ™4 + (1 - t,)PLS(T)]
S [to(1 = PB(T))]
" [te(1 = PBI)] ™! + [ta ™05 + (1 — ) PLS(T)]
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However by (3.63)

[to%)@ +(1—to)PLS(T)] ™

m(A;(e))

_ 1 ¢y —1
iyt (1= to)PLS(T))

= [to

Therefore
[t.(1 - PB'(T))] !

(1~ PBAT))] 1 + 10224 4 (1 —£,)PLS(D)[ L~

[to(1 - PB(T))]*
[to(1 — PB(T)]! + [to ™58 + (1 — t,) PLS(T)]

>1-—c¢
-1

So 1 - PB(T))!
[to(1 — PB(T))] >1—¢ (3.67)

[to(1 — PB/(T))]=1 + [t, 284D + (1 — £,) PLS/(T)| ! ~

This completes the proof of Theorem 3.1.
3.4.3 An Adaptive Polynomial-time Cooling Schedule

In addition to the cooling schedule described in section 3.2.3, a number of cooling schedules
have been reported in the literature (Otten and van Ginneken, 1984; Lam and Delosine,
1986 and Huang and et al., 1986). However, there has always been an open question as
to how fast the simulation should be ‘cooled’, i.e, the question of the length of Markov
chains and how much the temperature may be decreased to achieve convergence to the
global minimum. Different arguments have been addressed in different cooling schedules.
In our proposed adaptive cooling schedule some of the annealing parameters proposed
by Aarts and Van Laarhoven (1985) are changed. Suppose, at the start of a particular
temperature level T} the aspiration value is given by f,. Adjustments are made to the
annealing parameters in the following way.

Length of the Markov chain (L)

As mentioned above, until now, no generally acceptable solution has been presented for
the ‘inner-loop criterion’, which decides how many ‘local move-iterations’ are required at
each temperature. The optimal value of this constant, which has to depend on the problem
size, can not be determined in a rigorous way. Dekkers and Aarts (1991) have chosen the
value to be

M =10n, (3.68)

where n is the problem dimension. Rather than allowing M to depend on the problem
dimension only it would be more sensible to link it with the topograph of f in some way
to provide additional information to the procedure. Therefore, in our implementation, we

determine the length of Markov chain in an adaptive way that depends on the starting
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solution f,,, for the t-th Markov chain and the value for f, of this Markov chain. In fact,

we define
L} = M+Int[MF] ,

F=1-exp(—(fz. — fa)) -
Clearly L¢ is equal to M when f;, = f, and tends to 2M as f,, — fa tends to oo, ie,
L¢ € [M,2M).

(3.69)

Decrement of the control parameter

In many implementations of the SA algorithm, the temperature is reduced by a small
factor at each iteration. This temperature scale-factor is the ratio between the old and the
new temperature. Usually a constant is applied, or one that switches between at most two
values (Kirkpatrick et al., 1983; Romeo et al., 1984 and White, 1984), such as e.g. 0.95
in the transition region (where the energy changes rapidly) and 0.8 or 0.85 elsewhere. In
practice, however, it has to approximate unity only in the critical regions; or equivalently,
when the specific heat, which is defined as the derivative of (f) with respect to T, becomes
large, because this event signals a phase transition (Kirkpatrick et al., 1983) in physical
annealing. In the context of optimization, therefore, when the function value drops by
a significant amount at a particular temperature then the next temperature should not
be reduced at all or it should only be reduced by a small amount. We assume that the
function value drops by a large amount if it is less than f, at the current Markov chain.
Dekkers and Aarts (1991) find the new temperature T341 by (3.33) where the distance
parameter § determines the rate of decrease of the control parameter. Considering the
different characteristics of physical annealing and global optimization we also decrease the
temperature by (3.33) but our distance parameter & satisfies

‘ Vv ‘
§ = ‘Smin + (‘smax - 5min)m ) (370)

where V is the number of iterations carried out so far in the current Markov chain and émin
and é,ax are user supplied values (see later). Clearly é varies between its maximum and
minimum values, if V' is relatively small then the value of é is made smaller. Whether the
aspiration criterion is satisfied or not the distance parameter é is calculated from above rule,
therefore, the greater the number of trials the greater the decrement in temperature and in
the limit if V = 2M then 6 = dpmax. We keep épin = 0.05 throughout the implementation
of the ASA algorithm. However caution has to be taken when V is very small because,
even if the temperature is higher, the number of acceptances will be smaller. Moreover,
if the number of solutions generated at a high temperature is small and if they are close
to each other then the standard deviation will be very small. Clearly if the standard
deviation, o(T%), in (3.33) is small then the next temperature will be reduced dramatically.
Therefore, to safeguard a smooth temperature decrement we use 7341 = 0.95T; when the
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number of acceptances £ n,, where n, is a small positive integer. For all implementations

we use n, = 3.
Final value of the control parameter (stopping criteria)

The last problem to be solved is that of finding a criterion to terminate the annealing.
An easy (but perhaps not very satisfactory) way consists in stopping when the objective
function has not significantly changed over a reasonable number of temperature steps.
Therefore in our implementation, conditions C1 and C2 given below are used:

. df(T) T
ot =g Ty <o (3.71)
C2: If:_fﬂlse'ra

where ¢, and €, are small positive numbers and f; is the final solution obtained in ¢-th
Markov chain, at the end of which C1 is satisfied. Notice that the condition Cl1 is satisfied
only if T} is very small and no improved solution is found over a number of chains. For the
termination of the ASA procedure at the end of t-th Markov chain we check condition C1
and then C2. If condition C1 is satisfied but C2 is not then the algorithm starts again with
the aspiration point as the starting point of the (£+ 1)-th Markov chain and the aspiration
value is found by updating the old level. The temperature T} is now increased by setting

Tt+1 = [LTO 3 (372)

where T, is the initial temperature and p satisfies 0 < g < 1. (This is known as re-
annealing {(Ingber, 1989})). If we increase the temperature by the above rule, this may, of
course, introduce cycling in the algorithm, especially when the aspiration point gets stuck
on a local minimizer. However, this can be overcome using

M =Ty, (3.73)

where T¢ is the initial temperature of the i-th re-annealing. Obviously, in the first re-
annealing, T! = uT,. When the algorithm stops the aspiration solution is taken as the

optimal solution.
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The new aspiration based simulated annealing procedure is given below in pseudo-
PASCAL.

Procedure Aspiration Based Simulated Annealing
begin
initialize a point x, by random selection
calculate initial temperature T, (see appendix 3A).
t .= (); (initialize the temperature change counter ¢)
stopcriterion:=false;
while stopcriterion=false do {outer loop begins)
begin

k := 0; (initialize repetition counter for inner loop)

L, := 0; (initialize solution generation counter for inner loop)
calculate f,(z:) := LS(x¢); (x: is the initial point of the t-th Markov chain)
calculate Ly := M + M X round (1 — exp(—(fz, ~ fo))); (M = 10n)
aspiration-check:=false;
repeat until k = L or aspiration-check; (inner loop begins)
begin

generate point ¥; (a neighbour of x; see appendix 3A)
if f, < f. then
begin
aspiration-check:=true;
Ly:i=Ly+1;
z :=y; (make y the current point)
fa{z) := LS(z); (z is now the initial point of next Markov chain)
end
else
begin
calculate Af7 := fy — fu; (in moving from x to y)
accept (Af7y, fe, fun To);
if accept=true then

begin
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L, := Ly + 1; (increase the number of acceptances by one)
z :=1; (make y tlhe current point)
end;
end;
k := k + 1; (increase number of trials by one)
end; (end of inner loop)

f(T) = 31; Ef;l fz; (average of accepted solutions at T})

o(Ty) == (LLQ E;’gl (f= — F(TY) ) ; (standard deviation of accepted solutions)
6= 6min + (&nax - min)m;

If L, <n, then T;11 =0. 95Tf, else

Tif1=T; (1 + Ln(lid) )

3o (Te)
if ¢t =20 then
begin
fo(Ty) == f(T?)
stopcriterion:=false
end else
begin

Fo(Ty) == 0.75F(Ty) + 0.25F (Tp-1);

df—s(m o fa(Tt—l)_fs(Tt).
dTg : Tee1—T% !

. — ‘l.fs T
Cli=| Sl T

C2:=(f} - ful <&
if C1 and not C2 then

begin
Ti+1 = uTp; (see 3.73, in this section)
end
stopcriterion:=Cl1 and C2;
end;
t :=t + 1; (increase the temperature change counter by one)
end; (end of outer.loop)

end.
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function accept (A Fzys o Fur Te);
begin
if fy — fz <0 then

begin
accept:=true;
else
if exp(—Afg,/T:) > random (0,1) then

accept:=true;

else

accept:=false;
end;

end;
3.4.4 Numerical Results and Discussion

In our numerical comparison initial focus is made on the different parameters of ASA.
Except for 4, which is allowed to vary between its maximum and minimum values, the
values of the other parameters that are common to SA and ASA are kept the same as
those suggested by Dekkers and Aarts (1991). Therefore for the cooling schedules of both
SA and ASA we use the following common parameters: x, = 0.9, £, = 10~* and t¢ = 0.75
(Alternative B) but § = 0.1 was chosen for the SA algorithm and &, = 102 for ASA’ (see
previous section}). We found the initial temperature T, for both ASA and SA by generating
m, = 10n solutions (see Appendix 3A). For the generation mechanism, Alternative B, we
use steepest descent in the early stages and limited memory BFGS (version E0O4DGF) from
NAG (implemented for two iterations) in the later stages for the SA and ASA algorithms.
If the current temperature level, T3, falls below a certain fraction of the initial temperature,
T,, i.e. if Ty < 0.05T, or T; < 15, BFGS is implemented.

Throughout a run of the ASA procedure the above mentioned BFGS routine is used
for two iterations to find the successive aspiration solutions. We first examine the effect
of the imposition of the condition C2. To do so we removed the condition C2 and ran the
ASA procedure for dmax = 0.2 until C1 was met. The results obtained are given in Table

- 3.1 under ¢ =null. The effect was that the global minimum was obtained for all functions
but GP, however when the condition C2 was put back the global minimum for GP was
also obtained.

The effect of g was also examined by running the program with p =
0.10, 0.15, 0.20, 0.25 and 0.30. For these values of p the global minima of all test functions
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were found. In Table 3.1, f represents the temperature counter, R the number of re-
annealings and Q represents the accuracy of the final solution which is measured as follows:
the global minimum f* is found by conducting a local search from the vicinity of the
global minimizer for each problem with the local search tolerance 1071 and if the optimal
solution found by SA is f* then Q = ‘F where both solutions have been taken up to 8
decimal places. Table 3.1 shows that the greater the number of re-annealings the greater
the number of function evaluations. Notice that re-annealing only occur for for GP. In
this table the averages (AVE) are taken over the data for which the global minima were
obtained. The results for GP for different values of 4 are also given since re-annealings
only occur for this function.

Table 3.1
FE cpu t T, Ty R Q
697 003 23 33534 7.51E-5 - 99.99% BR p=(null)
1187 0.09 29 21815.39 5.58E-5 - (¥*) GP

1746 0.20 24 10.87 5.57E-5 - 99.99% S5
1748 0.26 24 11.16 5.57E-5 - 100%  S7

1748 0.26 24 11.25 5.57E-5 - 100%  S10

920 0.19 25 5.42 1.66E-4 - 99.99% H3

1681 0.44 23 4.77 4.88E-5 - 100% H6

1423 0.23 24 AVE

2394 0.15 57 2181539 1.74E-1 3 1:00% GP pu=0.10
2544 0.11 62 2181539 1.67E-1 3 100% GP u=015
2539 0.15 68 21816.39 4.06E0 2 100% GP u=0.20
2820 0.10 81 2181539 8.32E-5 4 100% GP pu=0.25
2832 0.33 73 21815.3% 6.40E0 2 100% GP 4=0.30
2626 0.17 68 AVE

* Local minimum found.

In essence, the choice of jt could provide extra freedom to deal with more difficult and
complicated problems, especially when the desired initial temperature for a particular
problem ig not known. Of course changing the value of u does not affect the results if
re-annealing does not occur. From Table 3.1 it is clear that the best result is obtained
when ¢ = 0.1 and therefore in the rest of our numerical studies we take value of u to be
0.1.

We now investigate the effect of é,,ax and the results are given in Table 3.2. Since in all
implementations the initial temperature remains the same therefore it has been excluded
in Table 3.2.



Table 3.2

lrt'mmc =0.3
FE cpu t R Ty Q
581 0.07 18 0O 741E0 99.99% BR
2406 0.10 57 3 1.27E-1 100% GP
1122 0.16 16 0O 3.88E-5 99.99% S5
1142 0.17 16 0 3.88E-5 100%  S7
1147 019 16 O 3.88E-6 100% S10
764 015 21 O 7.23E-2 99.99% H3
708 019 13 O 7.35E-3 100%  H6
8870 1.03 157 Total
Omax = 0.4
528 0.03 18 0 1.28E-1 99.99% BR
2086 0.13 48 4 2.76E0 100% GP
1122 0.12 16 0O 3.02E-5 100% S5
1142 0.14 16 0O 3.02E-5 100% S7
1147 0.19 16 O 3.02E-5 99.99% S10
750 013 19 0 1.17E-2  100% H3
694 015 12 O 1.22E-3 99.98% H6
7469 0.89 145 Total
6max = (.5
479 013 16 0O 5.86E-5 99.99% BR
1982 0.08 44 4 2.69E-4 100% GP
779 010 16 O 2.88E-4 99.99% S5
783 012 16 O 2.88E-4 100% S7
1147 .18 16 O 2.51E-6 100%  Si0
728 017 19 O 6.49E-3 99.99% H3
694 017 12 0O 1.15E-3 100%  H6
6592 0.95 139 Total
5mz\x = 0.6
453 003 14 0 2.38E-6 99.99% BR
1430 0.05 33 3 1.07E-4 100% GP
779 010 16 0 2.72E-4 100% S5
783 013 16 O 2.71E-4 100%  S7
73 013 16 0 2.71E-4 99.99% S10
772 012 19 0 1.93E-2  100% H3
602 013 14 0 8.92E-3 100% H6
5602 0.69 128 Total
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6max = 0-7

453 008 16 0O 6.30E0 99.99% BR
1508 0.0 35 3 6.33E-2 100% GP
789 008 17 0O 2.10E-4 99.99% S5
793 014 17 O 2.10E-4 100%  S7
783 013 16 O 2.5TE-4 100% 510
607 009 19 O 1.59E-2 99.99% H3
602 014 11 O 8.50E-3 100% H6
5635 0.75 131 Total
Smax = 0.8
383 010 16 O 2.39E-5 99.99% BR
1602 006 35 3 5.73E-2 100% GP
892 012 15 O 7.500E-1 100% S5
596 009 15 O 7.50E-1 100%  S7
998 011 16 O 7.50E-1 100% 510
607 009 19 @ 1.48E-2 99.99% H3
602 017 11 O 8.12E-3 100% H6
4980 0.74 127 Total
b-max =0.9
498 014 17 0O 2.19E-5 99.99% BR
1673 0.08 35 3 5.24E-2 100%  GP
592 0.08 15 O 7.26E-1 100% S5
506  0.09 15 O 7.25E-1 100% S7
598 012 16 O 7.25E-1- 100% S10
607 011 19 0O 1.38E-2 99.99% H3
602 0.17 11 0 7.78E-3 99.99% H6
5166 0.77 128 Total
Omax = 1
447 007 12 0O 5.61E0 99.99% BR
1673 0.12 35 3 4.85E-2 100% GP
592 009 15 O 7.01E-1 100% S5
296 011 15 O 7.01E-1 100%  S7
598 0.11 16 O 7.01E-1 100% S10
607 011 19 0 1.30E-2 99.99% H3
754 018 12 0 8.26E-3 09.98% H6
5267 0.70 124 Total
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Analysis of Table 3.2 shows that in each case the global minimum is located without any
difficulty. For all values of é,,,x re-annealing occurs for GP. The total figures indicate that
the best results are obtained when émax = 0.8. Table 3.2 also shows that for all values
of dmax the total cpu times are quite small and the global minima are obtained with high
accuracy. So far, for the length of the Markov chain we have used, L§, given by (3.69).
However, it would be interesting to see how ASA performs using the length of Markov
chain defined by (3.68). We have therefore run ASA with this length of Markov chain and
studied the effect of dmax and the results are shown in Table 3.3. Clearly the performance
is much better for every value of éyax considered (but see Chapter 5, Section 5.3). For
all values of dpnax re-annealing occurs for GP and for 8pax = 0.7,0.9, 1.0 re-annealing also
occurs for H3. Once again the best value for éinax is 0.8.
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Table 3.3

Omax = 0.3
FE cpu t R Ty Q
435 0.07 19 0 6.65E-5 99.99% BR
1242 0.09 51 2 2.90E0 '100% GP
719 008 19 0 3.57E-5 99.99% S5
723 010 19 O 3.57E-5 100%  S7
723 012 19 O 3.57E-5 100% S10
656 010 19 O 5.16E-2 99.99% H3
694 017 15 0 8.59E-3 100%  H6
5092 0.73 161 Total
‘smax =04
347 004 15 0 6.84E-5 99.99% BR
1282 0.09 51 2 1.83E0 100% GP
719 007 19 0 3.03E-5 100% Sb
723 008 19 ¢ 3.03E-5 100%  S7
723 0.13 19 O 3.03E-5 100% S10
944 0.09 19 © 2.52E-2 99.99% H3
694 0.17 16 0O 8.08E-3 100%  H6
5032 0.67 157 Total
Onax = 0.5
462 011 16 O 5.22E-5 99.99% BR
1016 0.13 41 3 4.89E-5 100% GP
589 005 16 O 9.85E-4 100% S5
591 008 15 O 9.94E-4 99.99% 87
591 011 15 0O 9.95E-4 100%  S10
482 008 17 0 2.28E-2 99.99% H3
730 016 18 O 5.19E-3 100% H6
4461 0.72 137 Total
6max =0.6
485 013 17 0 4.72E-5 99.99% BR
947 0.08 36 3 4.78E0 100%  GP
524 0.06 14 0 4.49E-5 100% S5
540 008 14 O 4.69E-4 100%  S7
560 009 14 0 4.64E-4 100% S10
471 0.08 19 0 2.95E-2 99.99% H3
808 (.26 18 O 4.93E-5 100%  H6
4335 0.78 132 Total
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611’12\3{ == 0- 7

424 012 15 O 549E0 99.99% BR
976 007 37 3 3.65E-2 100% GP
524 008 14 O 4.14E-5 100% S5
524 0.09 14 O 4.33E-4 100% S7
524 0.08 14 0 429E-5 100%  S10
47 008 19 1 2.64E-2 99.99% H3
840 0256 23 0 4.39E-1 100% H6
4287 0.79 136 Total
Omax = 0.8
408 009 19 0 471E0 99.99% BR
734 012 32 3 3.64E-5 100% GP
524 006 14 0O 3.85E-5 100% S5
524 009 14 O 4.03E-5 100% S7
524 0.08 14 O 3.99E-5 100% S10
451 006 16 1 2.41E-2 99.99% H3
568 0.14 13 0 4.16E-1 100% H6
3723 0.64 122 Total
Omax = 0.9
405 0.08 19 0O 3.97E0 99.99% BR
834 0.11 32 3 3.64E-5 100% GP
630 006 26 0 3.85E-4 100% S5
645 007 26 0 4.03E-4 100% S7
641 009 26 0 3.99E-4 100% S10
478 008 16 1 2.41E-2 99.99% H3
568 0.15 18 0 4.16E-1 99.99% H6
4201 0.64 163 Total
bmax 1
397 009 15 0 3.44E-5 99.99% BR
834 003 32 3 3.09E-5 100%  GP
630 005 26 0O 7.84E-6 100% S5
608 006 27 O 7.09E-6 100%  S7
641 0.08 26 O 7.84E-6 100%  S10
458 008 16 1 1.99E-5 99.99% H3
509 0.22 16 O 7.82E-5 99.99% H6
4217 0.61 157 Total
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In our final comparison of ASA and SA we therefore use the results of Table 3.3 for
Smax = 0.8. We note that both ASA and SA determine the initial temperatures by gener-
ating 10n solutions and using the Metropolis acceptance probability and generation mech-
anism, Alternative B. Since we use the same local search in the generation mechanism of
Alternative B, obviously the initial temperatures for both algorithms are the same. In
Table 3.4, the results of comparing SA and ASA are shown.

Table 34
SA
FE cpu t T Ty Q
1088 0.05 42 33534  5.24E-5 100% BR
1102 0.09 49 21815.39 5.24E-5 (*) GP

1120 0.10 26 10.87 3.49E-5 100% S5
1122 0.12 26 11.16 3.49E-5 100%  S7

1179 012 27 11.25 3.49E-5 100%  S10
1252 0.18 38 5.42 5.24E-5 99.99% H3
1817 0.33 27 4.77 2.62E-5 100% H6
1263 0.15 31 AVE

ASA
408 0.09 19 335.34 4.71E0 99.99% BR
734 0.12 32 21815.39 3.64E-5 100%  GP
524 0.06 14 10.87 3.85E-6 100% S5
524 0.09 14 11.16 4.03E-5 100%  S7
524 0.08 14 11.25 3.99E-5 100%  S10

[}

451 0.06 16 5.42 2.41E-2 99.99% H3
558 0.14 13 4.77 4.16E-1 100%  H6
532  0.09 17 AVE

* local minimum found

From Table 3.4 it is clear that the ASA algorithm performs much better than SA both in
terms of cpu time and the number of function evaluations. Moreover, SA failed to locate
the global minimum for GP. Finally, we compare our numerical results with other recent
algorithms using the number of function evaluations as a basis for comparison and the
results are shown in Table 3.5 where the results other than that for TMSL, MSL, ASA
and SA have been taken from the references listed in Table 2.8 in the previous Chapter.
The results in Table 3.5 show that the new ASA algorithm compares favourably with other
algorithms except MSL and TMSL.
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Table 3.5
Number of function evaluations
Method GP BR S5 ST S10 H3 H6 AVE

A 4400 1600 6500 9300 11000 2500 6000 5900
B 2500 1800 3800 4900 4400 2400 7600 3914
C 2499 1558 3649 3606 3874 2584 3447 3031
D (SA) 1102* 1088 1120 1122 1179 1252 1817 1263
E 402 346 1866 1719 1709 343 1321 1100
F 436 279 1423 1238 1213 545 1581 959
G 378 597 620 788 1160 732 807 726
H (ASA) 834 408 524 524 524 451 558 532
I 307 206 576 334 1388 166 324 471
J 53 46 98 116 100 60 127 85

* Local minima found

From the final comparison it is clear that ASA is much better than not only SA but
many other methods. For higher dimensional problems and for the problems with many
local minima SA-type algorithms may be necessary because the amount of data that has to
be stored while running the ASA is negligible and no complete local searches are needed.
Moreover, if the dimension or the number of local minima is increased, this has no effect
on the amount of data stored. Therefore, in many situations the ASA algorithm will be
preferable since this method performs better than the original SA algorithm. However,

further research may yield yet more efficient SA algorithms.
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CHAPTER 4

Controlled Random Search
Algorithms (CRS)



4.1 Introduction

The stochastic methods described in earlier Chapters are often preferred to deterministic
ones, because they are applicable to a wider class of functions, but they still require
differentiability of the underlying function. Moreover, stochastic methods use local searches
and therefore a local search procedure is needed. In practice, however, there are problems
where analytical differentiation is not available and numerical differentiation may cause
instability. Therefore, methods which do not use derivatives can be useful. Controlled
random search (CRS) is a popular algorithm because it does not require any derivative
evaluations, analytical or numerical. CRS (Price, 1977, 1983, 1987) is a ‘direct search’
technique and purely heuristic. A direct search method is a method which relies only on
evaluating f(z) at a sequence of points z® € Q (i = 1,2,...) and comparing values, in
order to reach the optimal point z*. Direct search methods are, in general, less efficient
than methods based on the use of local searches. A wide variety of direct search methods
can be found in Térn and Zilinskas (1989). Recently Palosaari et.al. (1992) have developed
a direct search algorithm for global optimization which is based on alternating sequences of
uniformly distributed and concentrated random searches in the variable space. The search
space is reduced so that the best values of the variables will be approximately in the centre
of the reduced search range. The method can also deal with constrained problems.

CRS is a kind of two phase method with few mathematical complexities and is appli-
cable to a wide class of functions including nonsmooth and, to some extent, constrained
functions. In the original version, CRS1, of CRS (Price, 1977) the search region Q is sam-
pled and then a simplex is formed from a subset of this sample. One of the points of the
simplex is reflected in the centroid of the remaining points (as in Nelder and Mead, 1965)
to obtain a new trial point and the process is then repeated until some stopping condition
is met. Price enhanced the efficiency of CRS1 by a modification which he called the CRS2
algorithm (Price, 1983) and in (Price, 1987), a further modification CRS3 was given. In
CRS2 a more sophisticated use is made of the simplexes in obtaining new trial points and
in CRS3 a Nelder and Mead-type local search is incorporated.

In each of the CRS algorithms initially a set called the ‘trial set’, with a fixed number
N of trial points and the corresponding function values are generated. The global phase
always aims to select a new trial set. This new trial set is constructed by replacing the worst
trial point in the original set by a promising one found in the local phase. The local phase
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is a continuous iterative process in which a trial point, the ‘new’ point, is defined in terms
of a configuration of n + 1 points, n being the dimension of the problem. As the algorithm
proceeds the points in the trial set tend to cluster around the global minimum. Of course,
the probability that the points ultimately converge to the global minimum depends on
the value of N, the complexity of the function and the way in which the trial points are
chosen. However, practical numerical experience suggests that the CRS algorithms are
slower than recent stochastic algorithms. To attempt to make the CRS algorithm more
efficient we have devised two new algorithms, CRS4 and CRS5. The CRS4 algorithm is
non-gradient but CRS5 includes a gradient-based local search procedure. Details of the
two new versions are discussed in this Chapter and numerical results and comparisons are
given. Some concluding observations based on the new algorithms are also given.

4.2 The CRS1, CRS2 and CRS3 Algorithms

CRS is an appropriate heuristic method for global optimization because it demonstrates a
‘reasonably intelligent’ pattern recognition capability. The principle features of CRS1, the

first version of the algorithimns, are given below.

In the search region Q a fixed number of points N is generated from a uniform distri-
bution. The IV points and corresponding function values are stored in an array A and the
highest and the lowest function values are found and denoted by fi, and f; respectively.
At each iteration a new trial point, p, is determined using a set of randomly chosen points
from the N points currently held in A. The function value at p, f, is then compared
with the greatest function value fy, if f, < fr then h and f;, are replaced with p and f,
respectively, but if f, > fi. then the point p is discarded and a new trial point is chosen.
At each iteration n + 1 distinct points, Ry, Ry, Rg, ..., Rnt1, are chosen at random from
the N (N > n) points in store and these constitute a simplex in n-space. The point R, 1
is arbitrarily taken as the pole of the simplex and the new trial point p is defined as the
image point of the pole with respect to the centroid G, of the remaining n points so that
p = 2G — R,41, where p, G and R, 41 represent position vectors. The points generated
by this procedure are known as primary trial points. Without significantly reducing the
effectiveness of the primary search, the efficiency of the procedure is increased by making
use of secondary trial points defined by ¢ = (G + Rn+1) / 2. While the primary trial points
are search oriented (p lies outside the chosen simplex), the secondary points are conducive
to convergence (g lies within the simplex). At any stage in the optimization procedure if
the percentage of successes, fp < fi, in the total number of trials so far is below 50% then
whenever a primary trial fails, the corresponding secondary point is chosen for the next
trial. In this way the cumulative success rate tends to converge on a value around 50%,
maintaining a reasonable balance between search and convergence. A stepwise description
of the CRS1 algorithm is as follows.
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The CRS1 Algorithm

Step 1 Choose N points at random over §2, evaluate the function values at
these points and store the points and function values in an array A.

Step 2 Find in A the worst point k with function value f, and the best
point [ with function value f; if the stopping condition is satisfied, stop.
(The stopping condition is that the absolute difference |fr — fi| should be
less than a given tolerance.)

Step 3a Choose randomly (n + 1) distinct points Ry, R2, Rs, ..., Bn41 from
A. Take Rp41 as pole and find the centroid G of the remaining n points

G = (gm) /n

Find the new trial point p = 2G — R, 11. If p €  and satisfies the other

from

constraints (if there are any) then evaluate f,. If f, < fn, replace h in A
by p and go to step 2. Else if the success rate > 50% then go to step 3a,
otherwise determine ¢ = (G + Rn41) / 2. If ¢ € 2 go to step 3a, else go to
step 3b.

Step 3b If f, < f), then replace h in A by ¢ and go to step 2 else go to step
Ja.

The number of different ways in which (n+ 1) points can be chosen from N is ¥ Cj41
and because the choice of pole R,4; is arbitrary the total number of equiprobable next
trial points associated with the configuration of N stored points is (n + 1)V¥Cpy1. For
CRS1, N=25n is recommended. It should be noted that the CRS1 algorithm will be much
more efficient than pure random search if the probability of success at each iteration is
sufficiently high. In fact this probability is expected to be much higher than pure random
search because of its use of simplexes for new trial points. The disposition of the set of
(n 4+ 1)¥C, ;1 points reflects a general trend in the current configuration and hence the
random choice of any point from this set as the next trial point is likely to result in a more
efficient search than a procedure based on pure random search. On the other hand the
domain of the set is not restricted to the immediate neighbourhood of the configuration and
this is conducive to exploration. The CRS1 procedure achieves a reasonable compromise
between the conflicting requirements of thoroughness of search and convergence by defining
the set of potential trial points in terms of the configuration of the N points of the current
trial set. However, its efficiency can be enhanced by a modification of step 3 resulting in
the CRS2 algorithm. The modification is given by

Step 3 Choose at random 7 distinct points Rz; Rs, ..., Ryt excluding [, the
lowest point. Let Ry = I. Determine the centroid G = (3., R;) / n of the
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n points Ry, Rs,..., R, and compute the next trial point p = 2G — R, 41.
If p e Q and f, < fr then replace h in A by p and go to step 2 else repeat
step 3.

In CRS2, because R; is always the point I, n points are chosen randomly from N ~1
points. Moreover, | can never be the pole of the simplex. Thus the number of trial points
in CRS2 is n?V~1C,. A suggested value for N in this case is 10(n+1). In general, CRS2 is
much more efficient than CRS1 in terms of both convergence and efficiency (Price 1983).
Clearly the greater the value of N the more thorough the search and the greater the
probability of getting a global minimum. By contrast, increasing the value of N slows
down convergence, so the choice of N is a matter of experience. However larger values for

N are generally advocated.

The stopping criterion for the CRS algorithms is defined in terms of the worst and
the best points in the array A in such a way that when the N points are clustered around
the global optimum, the algorithm stops. Typically |fi — fr| < € is taken as the criterion.
The value of € depends upon the problem in hand but usually a small number is preferred.
In our implementation we have taken € = 104, that is, when the function values of all

points in array A are identical to an accuracy of four decimal places.

The CRS3 algorithm is a modified version of CRS2 which comprises CRS2 together
with a non-gradient local search procedure (LOC), selected to preserve the nongradient
feature of the CRS2 algorithm. An adaptation of the Nelder and Mead simplex algorithm
is used for LOC. The number of initial sample points used for CRS3 is the same as for
CRS2. The n+ 1 best points in A constitute a siruplex in n-space and if the function values
in A are arranged in descending order, LOC operates only on the smallest one-tenth of
the array A. Therefore the data required by LOC is explicitly available within the CRS2
database A. A stepwise description of LOC is given below.

The procedure LOC

Stepll Let w be the worst point of the simplex of (n + 1) best points in
A. Let G be the centroid of the other n points. Let s be the second worst,
point of the simplex. Compute three potential trial points,

p=2G—w,
7= (G+w)/2,
r = 4G — 3w.

Stepl'2 If p fails to satisfy the constraints, then go to Stepl'4; else, evaluate

the function at p. If f, < 7., then go to Stepl3; else, go to Step4.
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Step3 If r fails to satisfy the constraints, then accept p as the replacement
point and go Stepl5; else, evaluate the function at r. If f, < f,, then
accept r as the replacement point and go to StepLS; else, accept p as the
replacement point and go to Steps.

Stepl4 If ¢ fails to satisfy the constraints, then stop; else, evaluate the
function value at ¢. If f, < f., then accept ¢ as the replacement point and
go to Stepl's; else, stop.

Step5 Update the simplex by removing w and including the replacement
point. Return to Stepll.

The composite CRS3 algorithm begins with the CRS2 procedure and uses the ordered array
A. The array A is rearranged according to descending order of function value whenever
a new successful trial point is found. During the course of the CRS2 procedure if a trial
point, p, is generated such that f,, is less than (n+ 1)-th smallest function value in A then
A is reordered and LOC is executed otherwise the CRS2 procedure continues. After the
execution of LOC, the CRS2 procedure begins. The whole process continues until CRS2
stops. We now give a stepwise description of the CRS3 algorithm.

The CRS3 algorithm

Step 1 Run CRS2 until either it satisfies |fr, — fi| < ¢, in which case stop,
or it generates a new point, p, which falls within the bottom one-tenth of

the ordered array A in which case go to step 2.

Step 2 Run LOC until it stops; then return to step 1.

Two features of CRS3 should be noted. Firstly, LOC operates only on one-tenth of
A, and thus has only a slight effect on the global search performance of the CRS2 phase.
Moreover, CRS2 involves the best point of A and if the best point is further improved
by LOC each time it is executed then the CRS3 procedure becomes more conducive to
convergence. Such effects tend to speed up the convergence of the algorithm and thus
reduce, to some degree, the global search capability. If desired, it is easy to counter this
effect by making the operation of LOC a probabilistic event or by not requiring that CRS2
should invariably include the best point.

Secondly, LOC can operate at any stage of the CRS3 procedure and so may be run
several times producing multiple local minima and thus slowing down the procedure. On
the other hand, the advantage of LOC is that it can provide the user with useful information
Concerning the progress of the search. In addition, CRS3 can be modified easily so as to
permit the interactive user to switch LOC in or out as required allowing the use of LOC
 to be deferred until it is clear that the global search phase is nearing completion.
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In Price (1987), it is shown that CRS3 performs better than CRS2 in terms of the
number of function evaluations. To verify this, we implemented both algorithms and
compared their performance on the same computer using the seven standard test problems
for global optimization from Table 2.1 (see Chapter 2). For each test problem, the same
series of four different random sequences was used. The performances of CRS2 and CRS3
are compared in terms of cpu time and the number of function evaluations required to
achieve the stop criterion. The results are given in Table 4.1. This Table shows that the
totals of the minimum and average number of function evaluations (over the series of four
trials) for CRS3 are slightly less than that of CRS2. However, in terms of cpu time CRS3
is very much worse than CRS2. This is because the CRS3 procedure spends the bulk of its
time in updating the ordered array A. The cpu time, however, could have been reduced
significantly if we had picked out the highest point and only the (n + 1) best points from
the set of N points in A instead of ordering the whole array whenever a successful trial

point, is found.
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Table 4.1

CRS?2 CRS3

FE cpu FE cpu
Min 457 0.05 387 0.15  BR
Av 550 0.057 434 0.18
Max 658 0.07 558 0.24
Min 408 0.03 476 023  GP
Av 632 0.05 612 0.27
Max 805 0.07 675 0.31
Min 2817 047 2526  3.00 S5
Av 3152 052 3075 3.4
Max 3385 056 3925  3.30
Min 2721 050 2339 270  S7
Av 2891 052 3020 283
Max 3019 053 3979  3.05
Min 2690 054 2516 270  SI0
Av 3186 062 3356  3.36
Max 3866 075 4557  4.30
Min 831 017 813 060  H3
Av 909 018 917 0.75
Max 989 0.20 1000  0.80
Min 3251 119 2636 539  H6
Av 4000 146 3839 648
Max 4695 176 5457 870
Min 13175 295 11693 1486  Total
Av 15320 340 15262  17.01 |
Max 17417 394 20151  20.70

The main difficulty with the CRS algorithms appears to lie in the slowing down of

convergence as the region of the global minimum is approached. It would therefore be

sensible to incorporate additional features so as to make the convergence more rapid as

soon as this region is reached. Therefore, designing an algorithm which explores the search

region in the early stages and makes rapid convergence when confidence is attained would

be desirable. In the next section we propose a new version (CRS4) of the CRS algorithm

which incorporates a periodic feature into the CRS2 algorithm. This additional feature
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helps to allow the search to be more exploratory, to some degree, in the early stages and
to become more aggressive in the later stages. In fact, we have attempted to remedy the
above mentioned defect of the CRS algorithm by incorporating two new ideas into the
algorithm. Firstly we use a Hammersley sequence (Shaw, 1988) rather than a uniform
distribution to select the initial sample points and secondly, instead of carrying out local
searches, we explore the region around the present best point using a beta distribution.
These modifications result in the following new CRS4 algorithm. A PASCAL subroutine

for generating a two-dimensional Hammersley sequence is given in appendix 4A.
4.3 The CRS4 Algorithm

The CRS4 algorithm retains the fundamental features of CRS2 whilst attempting to elim-
inate some of its inefficiencies. CRS4 does not use any local search procedure as the CRS3
algorithm does, but uses CRS2 with two additional features so as to diversify the search

in the early stages and to intensify it in the later stages.

One of the important features of CRS is the choice of N and the way the trial set is
generated over the search region. When choosing points at which to calculate the initial
function values, the most important concern is that, in thé absence of any prior informa-
tion about where the global minimum might be located, the whole search region is ex-
plored. One way of doing this is to choose the points to be randomly uniformly distributed
throughout the region of interest and this is the preferred method of Price. In practice,
the initial points are chosen from a pseudo-random sequence which closely approximates a
set of independently distributed uniform random variables. One major drawback with this
approach is that pseudo-random points are not e‘venly distributed throughout the search
region. A similar problem occurs in the field of Monte Carlo numerical integration and
has, to some extent, been overcome by the use of quasi-random sequences (Hammersley
and Handscomb, 1964). These sequences do not approximate a set of independent realisa-
tions from a uniform distribution, tending, in general, to be much more evenly distributed.
Figure 4 compares 50 points of a two-dimensional Hammersley sequence with 50 pseudo-
random points. Shaw (1988) gives an overview of the quasi-random approach to numerical

integration within the particular application of Bayesian statistics.
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Figure 4(a) 50-point Hammersley sequence. Figure 4(b) 50 pseudo-random points.

It would therefore seem sensible, when an initial set of points is required in order to
investigate the objective function throughout the search region, to use a quasi-random
sequence. For this purpose, we advocate using a Hammersley sequence (see section 2.3.2
in Chapter 2). These points are more evenly distributed than a set of points independently
generated from a uniform distribution. We have made a comparison of using a Hammersley
sequence to generate a set of points with using pseudo-random number for the same purpose
in two dimensions in Figure 4 and the difference is clearly evident.

It would appear that the natural uneveness of pseudo-random points could cause rapid
clustering around an arbitrary local minimum as soon as the search algorithm is initiated.
Alternatively, the global minimum might lie in an area of the search region in which no
initial points are generated. This is less likely to happen if we choose our initial points
from a Hammersley sequence. A quasi-random sequence enables a much better initial
exploration of the objective function throughout the whole search region.

In the optimization phase of the algorithm, unlike LOC in CRS3 which might force the
system to a local minimum, whenever a new best point is found by the CRS2 procedure,
we generate M new points close to it. The purpose of this modification is to explore the
region around a new minimum by generating a small (relative to N) number of points
in the area concerned. In order to achieve this we propose generating the coordinates of
these M points independently from an appropriately scaled beta distribution. A helpful
property of the beta distribution is that the points generated are restricted to the required
search region. The beta distribution on (0,1) has probability density function given by

Fla+8) oy -1
d(r) = —=——22""11-2)""!, 0<z<l, af>0, (4.1)
T{)T(5) '
with mean ﬁ and variance T ﬂ)'(zc: sy B Let & = -&-:—ﬁ be the mean of the S-distribution
then the variance 7 H,);Ez T < 9541;:’), where A = a + 8. Therefore o« = Af and

CB=A(1-8).
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We use the algorithm of Cheng (1978) for generating the (-variates. For the i-th
coordinate of the new point we choose the beta distribution with mean given by the i-th
coordinate of the current best point ! and standard deviation given by

SD = ~DIST , (4.2)

where

DIST = |I; — kil ,
h=(hi,hoy...yhn)

and v is a user supplied parameter. The values of « and § are determined from the given
mean and given standard deviation as follows: Let K; = %; — z; be the difference between
the upper and lower limits on the i-th coordinate. The new coordinate point z; is such
that z; = z; + Kirp where rg is generated from standard S-distribution on (0, 1) with the
scaled mean 6, = (l; — z;) /K;. Now, A = [K?6,(1-86,)/SD?] — 1 is found by setting

2
(%) = MAI_:%)-. Therefore we can write @ = A6, and § = A(1 — 8,).

Clearly, the calculated parameters o and 3 for the beta distribution can take both
positive and negative values but to get reasonable distributions we restrict them to values
greater than or equal to one by ‘clipping’, i.e., if @ < 1 then weset @ = 1 and if § <
1 then 8 = 1. Notice that in the limiting case o = § = 1, the B-distribution is a
uniform distribution. Hence, if the computed standard deviation is high we will merely be
generating a realisation from a uniform distribution.

Early on in the routine, when the array of points is dispersed, the standard deviations
will be reasonably large and so the effect of generation from the beta distribution will be
to explore a wide area around each new best point. The major gain is made, however, at
later stages of the routine. Here, generating extra points from the beta distribution forces
the array to form a dense cluster around the best point more quickly, once the standard
deviation becomes very small. A PASCAL subroutine for generating the S-variates is given
in appendix 4B.

‘The CRS4 algorithm

Step 1  Generate N quasi—random points from the Hammersley sequence
over {1}, evaluate the corresponding function values and store the points
with their function values in an array A. Find the best and worst points
and function values, I, h, fi, fn, respectively in A. .

Step 2 Choose randomly n distinct points R, Rs, ..., fin+1 excluding ! and
set Ry =1[. Determine the centroid G of the n points R;,1=1,2,...,n,

G = (;T:R,-) /n
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and compute the next trial point p = 2G —~ R, 1.

Step 3 if pis in  then evaluate f,, if f, < fi go to step 4; else, return to
step 2.

Step 4 If f, > f; replace h by p in A, find h, fr, in new A and go to step 6,
otherwise replace k by p in A, find I, h, fi, fn in new A, go to step 5.

Step 5 Choose a new trial point p = (z1,x2,...,z,) from an appropriately
scaled S-distribution as follows. Each z;,7 =1,2...,n, is found from the
p-distribution using Cheng’s method (Cheng, 1978) with mean the z”‘ co-
ordinate of the current best point [ = (14,12,...,1,) and standard deviation
given by (4.2). Evaluate f,. If f, < fi replace h by pin A, find A, f;, (and
L fi if f, < fi) in new A, go to step 6. Repeat this step M times.

Step 6 If the stopping criterion is satisfied then stop, otherwise if step 6 is
reached from step 5 go to step 5 but, if not, go to step 2.

To investigate the effect of using the Hammersley sequence we have tested CRS4
against CRS4! which is just CRS4 with the initial N points determined pseudo-randomly.
Preliminary numerical work suggested that y=0.1 is a compromise between exploration
at the initial stage and convergence in the later stages. Therefore, with this «, we first
investigate the effect of M on CRS4, by running the program several times with different
values of M. The results are given in Table 4.2 and indicate that the effect of increasing M
is rather random but the number of function evaluations to satisfy the stopping condition
does decrease as M increases with a slight indication that a reasonable value for M is
about 3n. It is also clear from the final comparisont on Table 4.2 that introducing the
Hammersley sequence has the effect of making CRS4 only 6% better than CRS4! in terms
of the number of function evaluations but about 15% better in terms of cpu time. On the
other hand CRS4 is, on average, about 50% better than both CRS2 and CRS3 in terms of
the number of function evaluations and about 89% and 46% better in terms of cpu time
respectively and consequently the main effect of the new algorithm lies in introducing the
B-distribution. CRS4 is also more robust than CRS4! in the sense that it never failed to
find the global minima but CRS4! failed to do so in 8 runs.

* In the final comparison the data for CRS4 and CRS4! is the average of averages over
7 test functions.
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Table 4.2

CRS4! CRS4 CRS3 CRS2
M FE cpu  FE cpu  FE cpu  FE cpu
n 394 0.05 380 0.04 434 0.18 559 0.05 BR
n+1 308 0.04 382 0.05
n+2 430 0.056 279 0.04
n-+3 478 0.05 315 0.03
3xn 537 0.06 316 0.05
3xn+1 268 0.03 409 0.06
Total 2415 0.28 2081 0.27
AVE 403 0.046 347 0.045
n 429 0.05 630 0.05 612 0.27 632 0.05 GP
n+1 351 0.04 532 0.06
n+2 569 0.06 436 0.05
n+3 357 0.04 308 0.04
3xn 385 0.05 397 (.04
3xn+1l 339 0.04 358 (.05
Total 2430 .28 2651 (.29
AVE 405 0.046 442 (0.048
3 2088 0.41 2133 0.39 3075 3.14 3152 0.52 Sb6
n 1696* 0.32 1864 0.35
n+1 1527 0.30 1529 0.30
n+2 1132* 0.24 1686 0.32
n+3 1591 0.32 1183 0.25
2xn 1482 0.29 1423 0.29
3xn 1182* 0.25 897 0.24
3xn+1 1054 .25 1212 (.28
Total 7742 1.57 11927 2.42
AVE 1548 (0.314 1491  0.302
3 1835 0.36 1876 037 3020 2.83 2891 0.52 S7
n 1637 0.34 2034 0.41
n+1 1066* 0.23 1683 0.35
n+2 1486 0.31 1735 0.35
n-+3 1257 0.27 1498 (.30
2Xn 1320 0.28 1238 0.26
3xn 911* 0.20 1295 0.31 -
3xn+1 1080* 0.24 1031 0.24
Total 7535 1.56 12390 2.59
AVE 1507 0.312 1549 0.323
3 1920 0.41 2191 044 335 3.36 318 0.62 S0
n 1993 0.42 1769 (.38 ‘
n+1 16156 0.35 1350 0.31
n+2 1493 0.33 1384 (.31
n+3 1608 0.34 993 0.24
2xn 1240 0.29 1213 0.29
3xn 1555 0.37 950 0.26
3xn+1 1052 0.27 1266 0.32
Total 12476 2.78 11115 2.55
AVE 1560 0.347 1380 0.318
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CRS4! CRS4 CRS3 CRS2
M FE cpu  FE cpu  FE cpu FE cpu
n 565 0.13 646 0.14 917 0.75 909 0.18 H3
n+1 556 0.13 634 0.14
n+2 593 0.13 565 0.10
2xn 517 0.13 545 0.12
2n+1 524 0.12 441 0.11
3xn 406 0.10 471 0.10
3xn+1 439 0.10 370 (.09
Total 3600 0.84 3672 0.80
AVE 514 (.120 526 0.114

3 3418 1.36 3295 0.32 3839 6.48 4000 146 H6
5 2378 0.97 2071 0.84
n 2618 1.10 2116 0.83

n+1 2017 1.17 2203 0.92
n+2 1697 0.73 1637 0.70
2xn 1399* 0.29 1881 0.67
3xn 1100 0.50 1395 0.57
3xn+1 1346 0.60 1103  0.51
Total 15474 6.43 15401 5.36
AVE 2211 0.918 1925 0.670
FC

FE cpu
CRS4! 1164  0.30
CRS4 1095 0.26
CRS3 2180 2.43
CRS2 2190 (.48

* Local minimum found; FC : Final Comparison

We therefore continued our computational experiments with the CRS4 algorithm with
especial attention given to v and M. This further investigation is based on the following
criteria, diversification of search in the early stages and progressive intensification of the
search as the points move towards the global minimum. To fulfill these demands, we
consider M as a variable whose value increases along with the improvement of the present
best point. In other words, initially M is set to zero and if the CRS4 algorithm finds a trial
point with function value better than the present best one stored in the current trial set, M
is increased by one. M trial points are generated then from the beta distribution and so on
until the algorithm stops. Numerical investigation is carried out with these variable values
of M and the results are given in Table 4.3 in the column under CRS4. The robustness of
the algorithm is also examined by choosing a set of values for . To see the effect on the
results due to the changes in M, we also ran the CRS4 algorithm with only a fraction of
M. For instance we ran the CRS34 algorithm generating 0.5M and 0.75M (rounded down)
points from G-distribution and the results are given in columns under CRS4t and CRS4}
respectively in Table 4.3. In each case the global minimum was located without difficulty
except that CRS4 failed to locate the global minimum for S7 when v = 0.15. Table 4.3
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shows that varying 4 has a considerable effect, with FE and cpu decreasing, in general,
with .

Table 4.3

CRS4 CRS4f CRS4¢ CRS3 CRS2
¥ FE cpu FE cpu FE cpu FE cpu FE cpu
0.15 342 0.05 466 0.05 458 0.06 434 0.18 559 0.05 BR
0.12 389 0.04 434 0.05 330 0.04
0.10 352 0.04 386 0.04 327 0.04
0.07 265 0.04 323 0.04 498 0.05
0.05 255 0.03 410 0.05 381 0.04
0.15 426 0.04 396 0.06 434 0.05 612 0.27 632 0.06 GP
0.12 510 0.05 445 0.05 384 0.03
0.10 406 0.05 418 0.06 422 0.05
0.07 461 0.05 405 0.05 494 0.05
0.06 324 0.03 476 0.06 348 0.04
0.15 1780 0.36 2023 0.38 2038 0.40 3075 3.14 3152 0.52 85
0.12 1802 0.35 1974 0.36 1770 0.36
0.10 1040 0.22 2015 0.38 1859 0.38
0.07 1226 0.20 1886 0.35 1479 0.32
0.05 1234 0.26 1671 0.32 1338 0.26
0.15 2884* (.52 1631 0.33 1468 0.20 329 2.83 2891 0.52 S7
0.12 1611 0.32 1881 0.37 1637 .36
0.10 1732 0.36 1593 0.33 1212 0.27
0.07 1224 0.27 1588 0.33 1063 0.25
0.05 1631 0.33 1368 0.20 1065 0.23
0.15 1424 (.31 1230 0.30 1721 0.37 3366 3.36 3186 0.62 S10
0.12 2037 0.44 1965 0.41 1718 (.38
0.10 1053 0.27 1542 0.37 1441 0.39
0.07 1075 0.26 1582 0.350 1596 0.36
0.056 1147 0.27 1834 0.41 1287 (.32
0.15 601 0.13 695 0.15 613 0.15 917 0.75 909 0.18 H3
0.12 655 0.14 o642 0.14 597 0.14
0.10 614 (.13 768 0.16 767 0.16
0.07 706 0.15 719 0.15 590 0.13
0.05 592 0.15 449 0.11 498 (.12
0.15 3457 1.40 2269 0.90 2077 (092 3839 6.48 4000 1.46 H6
0.12 1770 0.78 1914 0.78 2042 0.87
0.10 2376 0.98 2000 0.79 1627 0.72
0.07 2357 1.01 2142 0.84 1729 0.76
0.05 2260 0.97 1772 0.74 1664 0.73

1150 0.30 1237 0.30 1113 0.28 AVE

* Local minimum found

[ ]
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We summarise the results of Table 4.3 in Table 4.4 by taking the average number of

function evaluations and cpu time on all test functions for different values of .

Effect of -y and variable M

Table 4.4
CRS4 CRS4f CRS4} CRS3 CRS2
FE
~y Total AVE Total AVE Total AVE AVE AVE
0.15 8030 1338* 8710 1224 8809 1268 2180 2190
0.12 8774 1263 9255 1322 8478 1211
0.10 7573 1082 8722 1276 7655 1094
0.07 7314 1045 8645 1235 7449 1064
0.05 7443 1063 7980 1140 6581 940
cpu
04 Total AVE Total AVE Total AVE AVE AVE
0.15 2.29 0.38* 216 030 2.4 0.32 243 0.48
0.12 2.12 0.30 2.16 0.30 2.18 0.31
0.10 2.05 0.29 2.12 0.30 2.01 0.28
0.07 2.03 029 211 030 1.92 0.27
0.05 2.04 0.29 1.97 0.28 1.74 0.24

* Average over 6 functions

In this Table the ratio of the averages of FE and cpu for the best value of v to the worst are
0.78 and 0.76; 0.86 and 0.91; 0.74 and 0.75 for CRS4, CRS4' and CRS4} respectively. The
best result is for CRS4* when v = 0.05 and this is better (about 15%) than the average
result for CRS4 with M fixed and v = 0.1.

In summary we can readily conclude that the introduction of the f-distribution has
a greater effect than the Hammersley sequence but the combination of the two changes

greatly improves the original CRS algorithm.

The effect of the Hammersley sequence has also been investigated on CRS2 and CRS3
and the results are compared in Table 4.5. The results in the columns under CRS2¥ and
CRS3H are the results of CRS2 and CRS3 respectively using the Hammersley sequence.
From the average results it is clear that the Hammersley sequence on its own does have

some slight effect in improving CRS3 but on the contrary it has worsened CRS2.
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Table 4.5
CRS3H - CRS3 CRS2H CRS2

E cpu [FE cpu [FE cpu [FE  cpu
487 0.20 434  0.18 400 0.06 (559 0.05 BR
705 0.29 612 0.27 550* 0.07 632 0;05 GP
3506  3.01 BO75 3.14 2985  0.51 B152 0.52 S5
4181 3.72 3029 2.83 3032 0.56 [2891 0.52 |S7
2559  3.17 3356 3.36 2876  0.57 [3186 0.62 |S10
002 0.67 P17 0751039 0.20 P09 0.18 [H3
2780  5.61 [3839 6.48 {3526  1.31 4000 1.46 [HE

2160  2.38 [2180 2.43 2309  0.53 [2190 0.48 [AVE

* Local minimum found

So far we have shown that the CRS4 algorithm gives a significant improvement over
the other CRS algorithms. Such an improvement of non-gradient global optimization
algorithms should be very useful because of the simplicity and ease of use of these methods.
There seems also to be an important need to devise an algorithin which incorporate a
gradient based local search instead of the Nelder and Mead simplex algorithm as in CRS3.
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4.4 The CRS5 Algorithm

Although direct search-type algorithms for optimization have a role to play in certain sit-
uations where derivatives are not available it is quite clear that the use of gradient type
techniques are preferable, in general, even when the gradients have to be computed numer-
ically. Consequently we have also devised an algorithm, CRSS5, that uses a Hammersley
sequence to determine the initial sample but instead of a simplex-type local search as in
CRS3 or the use of the g-distribution as in CRS4, may (with a pre-set probability) use a
gradient based local search when a new best point is detected. However, as in CRS3, this
local search procedure has been implemented within the framework of the CRS2 algorithmn
in a suitable manner. The CRS3 algorithm operates LOC whenever CRS2 finds a trial
point within the best (n + 1) points of the array A. CRS) has been designed so that a
local search is only started with a certain probability, whenever CRS2 locates a new best
point. Therefore, the frequency of starting a local search in CRS5 is much less than that
of LOC in CRS3 and therefore the global search capability of CRS5 is higher than that
of CRS3. Moreover, LOC needs more function evaluations to improve the best point in
CRS2 than a gradient based local search usually does. We now give a stepwise description
of the CRS5 algorithm. '

Algorithm CRS5*

Step 1 Generate N points from the Hammersley sequence. Evaluate the
objective function f at each point 2(9, i =1,..., N, and store points and

corresponding function values in an array A.

- Step 2 Find &, fi,l, fi € A. If stopping condition |fi — fu| < € is satisfied
then go to step 6, otherwise go to step 3.

Step 3 Choose randomly n distinct points Ry, Rs,...,R,y1 from A but
excluding [, the point with lowest function value and set RB; = I. Compute

p= 2G — Rn+1

where G is the centroid of Ry,...,R,. If p € Q (and satisfies any other
constraints present) evaluate f,, if f, > fn then repeat step 3, else go to
step 4.

Step 4 If f, > fi replace h by p and go to step 2, otherwise go to step 5.

Step 5 Start a local search from p if w < ¢, where w is a random number

in (0,1) and ¢ is a preset number in (0, 1), replace k by the point resulting

¥ Steps 1, 2 and 3 are similar to those of the CRS2 algorithm
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from the local search and go to step 2. If w > ¢ replace h by p and go to
step 2.

Step 6 Carry out a final local search from the best point and then stop.
The minimum from the final local search is taken as the global solution.

The local search in step 5 is carried out for a small fixed number of iterations (normally 1 or
2} and the local search in step 6 continues until a user supplied accuracy is achieved. The
tolerance for the latter local search is 10719, Clearly a higher number of iterations in step
5 is conducive to convergence and therefore reduces the exploration phase of the algorithm.
In step 5 we use the limited memory BFGS algorithm from the NAG Library (E04DGF)
but in step 6 we use a different local search from NAG (E04UCF) for convenience in
programrming,.

The CRSH algorithm will maintain a reasonable balance between the exploration of
the search region and efficiency if ¢ is chosen properly. If in step 2 of the CRS5 algorithm ¢
is small enough this is an indication that the N points have already formed a cluster near
the best point. Different aspects of the CRS5 algorithm have been examined, especially
the value of € in step 2, the local search in step 5 and the value of ¢. Results are given in
Table 4.6 (ITR in Tables 4.6 and 4.7 represents the number of iterations carried out by
the local search in step 5). We also ran the CRS5 algorithm with the initial sample points
generated from a pseudo-random sequence and the results are given in Table 4.7.
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Table 4.6

ITR=1 €= 15 x 102
t =10 0.75 0.50 0.25
FE cpu FE cpu FE cpu FE  cpu
382 0.04 445 0.07 385 0.06 385 0.06 BR
480 0.08 555 0.10 442  0.08 411 0.06 GP
2009 0.43 2009  0.41 2145 0.39 2486 0.48 S5
2463  0.48 2670  0.51 2027 0.43 2007 0.40 S7
2173 0.60 2230  0.55 2070 0.60 1912 0.49 S10
526  0.14 488 0.14 488  0.13 549 0.17 H3
1781 0.76 1768  0.73 1748  0.77 1950 0.82 H6
1402  0.36 1452  0.36 1320 0.35 1386 0.35 AVE
ITR=2 e=1.5x 1072
384  0.05 345 0.05 442  0.07 442 0.07 BR
390  0.06 391 0.06 363  0.06 422 0.06 GP
2132  0.41 2005  0.35 1885* 0.40 2702 047 S5
2554  0.58 2253  0.51 2237 0.56 2231 0.46 S7
1986 0.48 1086  0.45 1086  0.49 2028 0.48 S10
466 0.09 533 0.12 487  0.15 565 0.12 H3
2786  1.17 2786  1.12 2786 1.15 1947 0.85 H6
1528  0.40 1471  0.38 1384 0.41 1477 0.36 AVE
ITR=1 ¢ = 107!
305 0.07 361 0.06 346  0.07 346 0.07 BR
448 0.06 467 0.05 402 0.05 396 0.07 GP
1694 0.33 1694  0.37 1866 0.35 2195 0.40 S5
2155  0.49 2321  0.50 1719 0.39 1652 0.34 S7
1858  0.44 1845  0.40 1709  0.40 1652 0.39 S10
401 0.11 343 0.12 343  0.12 352 0.13 H3
1281 0.61 1281  0.62 1321 0.57 1345 0.60 Hé
1163  0.30 1187  0.30 1101 0.28 1134 0.20 AVE
ITR=2 ¢ = 107!
320 0.05 312 0.05 309 0.06 399 0.06 BR
300 0.04 348 0.04 349 0.04 381 0.06 GP
1804 0.38 1744  0.34 1609* 0.34 2286 0.43 S5
2274  0.49 1931  0.39 1862 0.40 2019 0.44 S7
1674 0.39 1814  0.36 1683 0.38 1704 0.45 S10
342 0.10 387 0.12 374  0.13 428 0.12 HS3
2143  0.97 2143  0.93 2143 091 1342 0.57 HS6
1265  0.35 1241  0.32 1135 0.32 1223 0.30 AVE

* Local minimum found.
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Table 4.7

ITR=1 e=15x10"*
t =1.0 0.75 0.50 0.25
FE cpu FE cpu FE ¢pu FE c¢pu
242 0.04 238 0.04 240 0.05 296 0.05 BR
521 0.06 521 0.0.08 503 0.08 414 0.07 GP
2273* 0.48 2273 0.48 1953 0.40 2076 0.42 S5
1991  0.45 1991 0.39 1991 0.42 2092 0.44 S7
1984 0.56 1834  0.48 1870 0.47 2025 0.46 S10
552 0.19 449 0.13 449 0.13 486 0.15 H3
1562 0.64 1796 0.74 1743 0.78 1948 0.80 H6
1142 0.32 1138 0.31 1250 0.33 1334 0.34 AVE
ITR=2 e=15x10"2
329 0.05 299 0.05 200 0.05 316 0.06 BR
463 0.05 464 0.07 489  0.07 426 0.06 GP
2536 0.51 2291 0.48 2339 0.50 2027 0.40 S5
2306  0.45 3420  0.75 2211 0.42 2086 0.45 S7
2184 0.52 2136  0.54 2136 0.52 2168 0.58 S10
452 0.15 484 0.17 485 0.16 424 0.12 H3
1699  0.73 1699  0.73 1834 0.74 1834 0.71 H6
1424  0.35 1542 0.40 1399 0.35 1326 0.34 AVE
ITR=1 ¢ = 101
215 0.04 211 0,05 211 0.04 244 0.05 BR
462 0.07 439 0.05 453 0.06 355 0.06 GP
2045* 0.41 2045*  0.42 1713 0.38 1838 0.36 S5
1728  0.40 1728 0.34 1730 0.37 1760 0.38 S7
1661 0.43 1580  0.45 1596 0.44 1730 0.43 S10
409 0.17 350 0.10 444 0.18 345 0.12 H3
1163  0.47 1233 0.53 1274 0.54 1398 0.59 H6
940 0.26 924 0.25 1060 0.29 1096 0.28 AVE
ITR=2 ¢ = 1071
247 0.05 256 0.04 256 0.04 261 0.04 BR
433 0.06 430 0.05 380 0.06 360 0.05 GP
2119 044 1963  0.39 1975 0.35 1827 0.34 S5
1970 0.40 1970  0.41 1899 0.40 1722 0.39 S7
1848 0.40 1848 048 1848 0.50 1880 0.43 S10
368 0.10 358 . Q.11 365 0.09 312 0.12 H3
1199 0.55 1199  0.54 1329 0.59 1329 0.58 H6
1169 0.29 1146  0.29 1150 0.29 1099 0.28 AVE

* Local minimum found.
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Averéging the results in Tables 4.6 and 4.7 shows that for CRS5 the introduction of the
Hammersley sequence makes the algorithm about 8% and about 6% worse with respect to
FE and cpu time respectively than when pseudo-random points are used. The Tables also
indicate that the best results were obtained for ¢ = 0.50 with a single iteration in step 5
when e = 107!, It is also clear that if we increase the number of iterations (ITR) of local
search in step 5, the number of function evaluations increases accordingly. Therefore, in
the early stages of the CRS5 algorithm a single step steepest descent local search will be
preferable. The stopping condition in step 2 is an important factor where a small ¢ may
cause unnecessary local searches to be carried out (leading to more function evaluations)
in which case the final local search may not be necessary but a bigger ¢ may weaken the
global search capability. Hence a tradeoff has to be made. The proper choice of € therefore
remaing an open question. In any case if the best point is close enough to the global
minimum then it is likely that the final local search in step 6 will find the global minimum

with a prescribed accuracy.

We now compare CRS4 and CRSS in Table 4.8. The data for CRS5 have been taken
from Table 4.7 for € = 10~1,¢ = 0.50 and I[TR=1.

Table 4.8
CRS4 CRS5
Test Function cpu  [Function cpu
Problems [Eval, Time [Eval Time
BR 116 0.04 2211 0.04
GP 397 0.05 |53 0.06
S5 897 0.24 1713 0.38
57 1295 0.23 1730 0.37
510 950 0.26 [1596 0.44
H3 471 0.10 444 0.18
H6 1395 0.57 [1274 0.54
Total 5721 1.57 [7421 2.01

The results in Table 4.8 clearly show that CRS4 is superior to CRS5 both in terms of

number of function evaluations and cpu time.

Finally, we compared our new algorithms with other recent algorithims using the numn-
ber of function evaluations as a basis and the results are shown in Table 4.9. In this Table
the methods representing A, B, C and G are noted in Table 2.3 in Chapter 2 and the
results for these methods have been taken from the references listed in the same Table.
The results for the rest of the methods including CRS4 and CRS5 (Ali and Storey, 1995)
have been found by implementing them on our own computer. From Table 4.9 it is clear
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that the new algorithms are superior to many of the recent stochastic methods. They
could also be preferable in many practical applications because they are simple and easily

programmable.
Table 4.9
Number of function evaluations

Method GP BR S5 57 510 H3 H6 AVE
A 4400 1600 6500 9300 11000 2500 6000 5900
B 2500 1800 3800 4900 4400 2400 7600 3914
C 2499 1558 3649 3606 3874 2584 3447 3031
CRS2 632 559 3152 2891 3186 909 4000 2190
CRS3 612 434 3075 3029 3356 917 3839 2180
D (SA) 1102* 1088 1120 1122 1179 1252 1817 1263
CRS5 211 453 1713 1730 1596 444 1274 1060
CRS4 316 397 897 1205 950 471 1395 817
G 378 597 620 788 1160 732 807 726
H (ASA) 834 408 524 524 524 451 558 532
I (MSL) 307 206 576 334 1388 166 324 471
J (TMSL) 53 46 98 116 100 60 127 86

* Local minima found

Since the global minima for the test functions, except BR and the Hartmann family,
are known analytically numerical experiments were also carried out using the difference
between the current best function value and the (exact) global minima in the stopping
condition. Therefore, |f* — fc| < € was used as the stopping condition where f. is the
current best function value. The global minima (f*) for BR, H3 and H6 are found by
performing a local search from the vicinity of the global minimizer with local search tol-
erance 1071%, The test therefore indicates up to how many decimal places the solution
can be obtained by the CRS algorithins. Since step 6 in the CRS5 algorithm is used as a
refinement step, inevitably in our implementations solutions are obtained with a required
accuracy and therefore we treat CRS5 slightly differently. For CRS5 we use the above
mentioned stopping condition in step 2 as the only stopping condition. The results are
summarized in Table 4.10.
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Table 4.10
CRS2

1072 10— 1074 10-°

— €

10-¢ 10°7 10°%

EEREER S
X > X X X > X
ST X X X >
ST X x o x >
ST X X X >
STS X X X
ST X X X >
e

CRS3

SRR
™S TS X X X Ty X
ST X X X >
ST X X X >
S TS X X X >
ST X X X >
ST X X X

R

CRS54

ESRsaRs
STH X X X P>
ST X X X ST
S TS X X X e
HSTP X X x>
SR X X X >
S TS X x X

>

e

CRS5

Eba5a8 8
X X X X X » X
X X X X X >7>
X X X X X » >
S X X X X >
TR X x X TP
S>Te X X X e

e S

x Result not obtained; 4/ Result obtained
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From Table 4.10 it is clear that the CRS algorithms are not reliable as far as accuracy
is concerned. The results are worst for the Shekel family for which all the CRS algorithms
can find solutions only up to an accuracy of two decimal places but for the other test
problem results are quite reasonable. No doubt, the non-gradient CRS algorithms are easy
to implement but if these algorithms are used for problems for which a high accuracy is
needed they may fail. The reason is that they stop when all points form a dense cluster
rather than when some goal in terms of accuracy is attained. However, CRS5 may overcome
this because its final solution depends on local search and therefore if a point is found in
the region of attraction of the global minimum then the global minimum can be obtained
up to a required accuracy.

From Table 4.10 it is evident that high accuracy can not be obtained if the final local
search is removed from CRS5. Therefore the question can be raised as to whether CRS4
is better than CRS5 in terms of number of function evaluations and cpu time if a final
local search is incorporated in CRS4 the same way as in CRS5. We therefore ran CRS4
for ¥ = 0.1 and M = 3n with the stopping condition |f, — fil < 107! and with the final
solution refined by the same local search with the same tolerance as was used for CRS5.
The results are compared with the best results for CRS5 in Table 4.11.
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Table 4.11

CRS4 CRS5

FE cpu FE cpu

205 0.05 211 0.04 BR
263 0.06 453 0.06 GP
524 0.13 1713 0.38 S5
821  0.23 1730 0.37 S7
692 0.22 1596 0.44 S10
239 0.12 444 0.18 H3
923 0.50 1274 0.54 H6

3667 1.31 7421 2.01 Total

This Table shows that the CRS4 algorithm can be improved even further if a final local
search is incorporated. The benefits are twofold. Firstly the number of function evaluations
and cpu time are lessened and secondly the final solution is obtained with a prescribed

accuracy.

The CRSS algorithm is designed so that a few steps of local search (not the final local
search) are carried out with a preset probability. Since CRS5 differs from CRS3 only by
the nature of the local search therefore we ran CRS3 with LOC executed with a certain
probability. As in CRS5 we preset ¢ € (0,1] and generate a random number w. If w <¢
then LOC is executed, otherwise not. Notice that ¢t = 1 gives the original CRS3 algorithm.
The results are given in Table 4.12,

Table 4.12
t 1 0.75 0.50 0.25
Test Function c¢pu  (Function c¢pu  [Function cpu  [Function cpu
Problems [Eval. Time [Eval. Time [Eval Time |Eval. Time
BR 558 0.24 528 0.23 W10 0.19 492 0.20
GP 675 0.28 438 0.17 434 0.16 640 0.30
S5 3925 3.24 2864 3.32 []3168 3.32 3149 3.23
ST 3979 3.06 2376 2.68 (2326 2.57  [2562 2.76
S10 4557 4.31 [4388 3.87 B718 3.75  [2475* 2.87
H3 927 0.80 (850 0.65 850 0.64 921 0.65
H6 2636 5.64 1750 5.82 [2013 520 [p815 10.10
AVE 2465 2.51 2456 2.39 1974 2.26 2263 2.87

* local minimum found
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The average results in above Table shows that the performance of CRS3 is improved by
executing LOC with a preset probability. The best result is obtained if LOC is executed
with probability -:1; However, in comparison with the results of CRS5 in Table 4.11 it is
clear that CRS5 is much better than CRS3. Therefore incorporation of a gradient based
local search procedure has improved the CRS algorithm.

4.5 Conclusion

Modifications have been suggested to the original controlled random search method of
Price and the resulting algorithms have been shown to be superior to the original algorithm.
Both of the new algorithms, CRS4 and CRS5, are improved if a final accurate local search
is introduced. The effect of the modifications is to make the CRS approach much more
competitive with the other algorithms tested, only MSL and TMSL having an overall
superiority. This combined with the heuristic direct search nature of the new algorithms
seem to suggest they have a useful part to play in global optimization.
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CHAPTER 5

Application of Global Optimization
to some Problems in Material Science



5.1 Introduction

In this Chapter we describe the application of global optimization to two problems in
materials science. The first problem is to calculate the minimum energy of small clusters
of particles which interact through well-defined many-body interaction potentials. The
second problem is the fitting of such interaction potentials to bulk crystal data.

The first problem arose as a result of some work involving molecular dynamics (MD)
to simulate the ejection of particles after a solid surface had been bombarded with energetic
ions. Such a bombardment can be used together with mass spectrometry of the ejected
particles to determine the composition of the surface; the secondary ion mass spectrometry
(SIMS) technique. The mass spectra consist of single particles and ejected clusters. In any
simulation of this process it is necessary that the interaction potentials give roughly the
correct energetics and structure of these clusters.

The second problem has arisen as a result of the success of many-body, semi-empirical,
potential functions in modelling near equilibrium, bulk crystal properties. A parameter-
isation of the potential is assumed which is based on physical considerations. The free
parameters are then chosen using a least squares fit, to a large number of crystal proper-
ties, by global optimization. This has been achieved for face-centered cubic and diamond
lattice materials (Daw and Baskes, 1983, 1984; Tersoff, 1988, 1988a) but little work has
been done on body centered cubic (bee) materials. The approach adopted here fits the bee
crystal structure, as the preferred minimum energy configuration for tungsten, and also
fits the dimer energetics and the clastic properties of crystalline tungsten.

5.2 Investigation of small Cluster Energetics by
Global Optimization

Empirical many-body potentials are becoming an increasingly important means of investi-
gating high and low energy processes in both metals and semiconductors. For example, the
‘embedded atom’ potential has been used to investigate the molecular dynarmics simulation
(Garrison et al., 1988) of Rh{111} (Rhodium). While such potentials may be less accurate
than those determined using ab initio methods, because of their relative simplicity, they
are invaluable for use with MD simulations.
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Many of these empirical many-body potentials have becn designed with the bulk
material properties in mind. For example, the Tersoff potentials (Tersoff 1988, 1988a)
for Si (silicon), accurately fit the diamond lattice structure as the minimum potential
configuration with the correct binding energy and lattice spacing. They also model the
elastic properties with reasonable accuracy. However, the fitting procedure for the potential
ignored the small cluster energetics. More recently developed potentials (Brenner 1990 and
Smith 1992) have included small cluster properties in the fitting process and indeed in one
case (Brenner, 1990), which develops a many-body C-H (carbon-hydrogen) potential, the
energetics of a large number of small clusters have been accurately reproduced.

Our purpose is to calculate the minimum energy of small clusters predicted by “Tersoff’
potentials for Siand ‘Tersoff-like’ potentials (Smith, 1992) for As (arsenic). The properties
of small clusters predicted by these potentials are discussed in Ali and Smith (1993). When
using MD simulations on Si, the resulting clusters must have the correct energetics or the
calculated proportion of dimers and trimers energetics will be incorrect. It might seem
natural to use MD to try to calculate these structures but this is not easy because the
form of the potentials gives rise to a large number of local minima. We therefore use global
optimisation algorithms to find the minimum energy. We have chosen up to six particles.
We use the global optimization algorithms described in the earlier Chapters to see if they
give comparable results and compare the performance of each method with respect to the
number of function evaluations and cpu time.

Problem Formulation

Before we define the underlying function to be optimized we need to describe the following
terms explicitly.

The binding energy in the Tersoff formulation (see, Tersoff 1988a) is written as a sum
over atomic sites in the form

E; = %ch(?"ij)(‘/n(nj) - BijVa(ry;)) , Vi (5.1)
JF#
where r;; is the distance between atoms ¢ and 7, Vi is a repulsive term, V, is an attractive
term, fc(ri;) is a switching function and B;; is a many-body term that depends on the
positions of atoms ¢ and 7 and the neighbours of atom ¢. More details of each of these
quantities can be found in (Tersoff 1988; Brenner 1990; Smith 1992 and Ali and Smith
1993). The term B;; is given by

Biy = (14 ymgn)~1/2m (5.2)
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where ny and v are known fitted parameters (Tersoff, 1988a). The term &;; for atoms 4
and 7 is given by
&= ) felri)a(Bise) (5.3)
k#i,j

where 6;;4 is the bond angle between bonds 45 and ik and g is given by
g(6ik) = 1+ c?/d — c*/[d? + (h — cos Bijk)z] . (5.4)

The quantities ¢,d and h which appear in (5.4) are also known fitted parameters. The

terms Vp(r;;) and V4(r;;) are given by

Vr(ri;) = Aexp[—Airij]

(5.5)
Va(ri;) = Bexp[—Azri)

where A, B, A; and A, are given fitted constants. The switching function f.(r;;) is given
by

) rij SR-D

— }sin[r(r; - R)/2D)], R—D<ry; <R+D (5-6)
; Ti; > R+ D

fe(riz) =

[ N TSR

Each of the parameters appearing in the above terms has three values representing two Si
potentials, Si(B) and Si(C), given by Tersoff (1988, 1988a) and an As potential derived
by Smith (1992). These values are given in Table 5.1.

Each atom, say atom i, has its own potential energy, E;, given by (5.1). The sum
in (5.1) is taken over j, all neighbours of 7. Therefore to determine the potential energy
of a single particle one has to calculate (5.1) which involves the calculation of (5.2)-(5.6)
for each neighbour of that particle. Notice that the energy of a particle depends upon the
distances and angles subtended with respect to the other particles and therefore different
particles have different energies.. The objective function becomes the total energy for all

atoms, i.e.,

f=> _E;, Vi. (5.7)

It is clear from (5.7) that f is a function of atomic coordinates. Therefore we consider
the atomic positions in two and three dimensional space as variables. We describe more

details of all variables involved in the next section.
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Potential Parameters for Si(B), Si(C) and As

Table 5.1

As Si(B) Si(C)

5.2731318 4.8381 1.0039 x 103
d 0.75102662 2.0417 16.216
h 0.15292354 0.0000 —-0.59826
n;  0.60879133 22.956 0.78734
o 0.00748809 0.33675 1.0999 x 106
A1 6.739581257  3.2394x CS;  2.4799 x CS;
Ao 4.886847795 13258 x CS;  1.7322 x CS;
A 10.45561332  3.2647F3 1.8308E3
B 14.41961332  9.5373E1 4.7118E2
R 3.50/CA, 3.0/CS; 2.85/CS;
D 0.15/CA, 0.20/CS; 0.15/CS;

CA, = 5.6537/2, CS; = 5.4307/2
Calculation of the Potential Minima

In order to calculate the minimum potential energy for small numbers of particles, we first
fix a particle at the origin and choose our second particle to lie on the positive x-axis.
The third particle is chosen to lie in the x-y plane. Therefore the variables involving the
third particle are radial distance of the position of the particle from origin and its polar
angle. Since the position of the first particle is always fixed and the second particle is re-
stricted to the positive x-axis, this gives a minimisation problem involving three variables
for three particles (P3). For four particles (P4), a further three variables (the cartesian
co-ordinates of the 4-th particle) are required to give a minimisation problem in six inde-
pendent variables. Further particles (P5 and P6) are added to determine the energetics
of small clusters. Therefore, for clusters of 4, 5 and 6 particles the number of dimensions
become 6, 9 and 12 respectively. The physics involved in the problems imposes the fol-
lowing restrictions on the variables. The first two variables are taken to lie in [0, 1.16]
for Si and [0,1.30] for As. The third variable for all cases is taken to lie in, [0, 7], and
all other variables are specified on [~1.5,1.5] for both Si and As. However, we invoke
symmetry arguments to constrain the third coordinates of the fourth and fifth particles to
be non-negative and non-positive respectively. We do not constrain the coordinates of the

sixth particle, preferring instead to calculate all the symmetric structures (with respect
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to the 6th particle) which are identical apart from rotational symmetry as a check on the
accuracy of the calculation.

To demonstrate the complex nature of the objective function for this problem we now
give this function explicitly for four atoms i, j, k and I. Therefore, for P4, let z; be the z-
coordinate of the 2" particle, z2 be the radial distance from the origin to the 3™ particle,
z3 the angle the 3'9 particle subtends with the z-axis, x4, s, Zg the coordinates of the 4th
particle. Then

f=E+Ej+E;+E = f(z1,...,%6)

and the E; are given by
E; = 0-5[fc(7"ij) Vi(ri;) — BisVa(rij)) + fo(ric) [Vr(rie) — BixVa(rie)] +
fe(rat) [Vr(ra) — Bu VA(m)]:
= 0.5[fu(ris) [Ae™1™5 — Be™275 {14 9™ (£o(rin)g(Busn) + Felran)g (B))™} ™
+fe(rik) [Ae_'\m" — Be 7% {1+ 4™ (fo(rig)g(Oiks) + Felra)g(Bua))™} ™ ’1‘1:
+felrit) [Ae_Alri' — Be™ 2 {14 4™ (fo(ri;)g(Bug) + felrin)g(Bize))™ }_}'1‘_‘]
E; = 0~5[fc('sz') [Vr(rsi) — BjiValrsi)] + fe(rie) VR(rix) — BpValre)] +
felrit) VR(rzs) = BVa(ra)l]|
= 0.5 folrz) [Ae™75 = Be75 {144 (felrsndgBpie) + Folrin)g (B))™} ™7
folry) [Ae7 = Bem 5% {1k 4™ (fu(r)g(Oss) + Folryn) g Osu))™ } ™7 |
+fe(rs) [AG—A”""’ — Be™ {1 + 4™ (fol(rin)g(Oik) + fe(rsi)9(6))™ }—*‘]
Er =05 [fc(?“ki) [Ve(rks) — BreiVa(res)] + fe(rrs) [VR(ri;) — Bi; Valres)] +
fe(rer) (VR(rer) — BriVa (T'kz)]:
= 0.5 folrus) [Ae™ 7 — Be™ " {1447 (folris)g(Ouis) + FelriadgOs))™ } 777
+felras) [Ae‘*‘””' — Be™ 22 {14 4™ (fo(rai) 9(Bksi) + Felrar)g Bk )™ “—
+fe(rii) [AC_A”"H — Be™ 2R {1 4+ 4™ (fo(rr:) 9(Onts) + fc(rkj)g(ektj))nl}_ﬁ_l]
E;y=0.5 [fc(m) [Vr(ri:) — BuVa(ri)] + felriy) [Vr(ri;) — Bi;Va(riy)] +
fe(rue) Ve(r) — BikVA(le)]:
= 0.5 [fc(Tli) [Ae"“’"“ — Be 2t {14 4™ (fulri;)9(Oui;) + Folrun) g(Bui))™ }‘571&?:
+fe(ri;) [Ae')‘””” — Be™ 2T {] 4 4™ (fe(ru)g(6i5:) + fc(nk)g(f?ljk))”l}'ﬁ?—

Helrue) [Ae_)\lm — Be™ 2™ {14+ 4™ (£o(ria)g(Ouks) + Fo(r15)9(00k;))™ }“T'l"f] -
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Hence in terms of the variables z;, 1 =1,2,...,6,

f=05 [fc(ﬂ'j = z1) [Ae—)”“ — Be™ e {1 + ™ (felrie = z2) (L + ¢ /d* — & /[d°

+(h ~ cos 23))) + folru = V(@2 + 22 + 22 (1 + 2 /d? = 2 /[d® + (h—
Iy 214,471 —mT —A1z2 —Azxz
T D T s [aee - e {1
T (felri) (L4 /d® = /[ + (h - COS$3)2]) + felra)(1 + E/d? - & /[d?
T4€08T3 + Tssin x3 }
N ERE
Be-*zﬂmfﬂﬁﬂs) {1 4™ (folri) (L + /2 — 2/ + (h —

N T ) D) + fe(rix)(1 + 2 /d? = & /[d® + (h—
4 5

T4COSZT3 _ Z5sin Ty )2]))n, }_511\—1“]]
Vgt +22+23) (o3 +zi+ 2d) _

+(h -

] + fol m)[Ae —My/led+ad+ad)

+0.5 l:fc('r'ji) [Ae—)\1$1 - BC_)\QII {1 + "Ynl (fc(rjk = \/(.’L’% + LL‘% — 21119 COS 333))

2742 2142 _ (561—562005333) 2
(1+c/d =/l + (h V{z?+z} - 23:1:1:2 COS I3)
+folrj = V(=1 — x4)% + 23 + 73))
(/=2 + - T, S xg))zl))m} T sl

[Ae—)\n/fzf+m§-—2m1:rg coszz) _ Be—)\z\/fzf+m§—2m1:c2 cos .1,'3){1 4 4™ (fc(f'ji)
(1 — T2CO8T3)
V(@2 + 2% — 21125 cos x3)
+h (1 — z4)(z1 ~ T2 COSZ3) + Toxs SN T3 2]))m}—,ﬁ]
Vit -2 V(za — 21)2 + 22 + 23
$ 5 172 cosTa)y/ ({(xa — 21)% + xf + x8)
+folryr) [Aem 2V (GammnPabtad) _ pemta/(amsPratia)

D) + felrp) (14 & /d? = ¢ /1d?

(1+c2/d> = c2/[d* + (h—

{1 + 4" (folrin) (L + /d = 2/[d> + (b —
(1 — z4)(x1 — 22 COSZ3) + Tox58in :1:3
V{xd + 23 — 2zy20 cosz3)/((xa — 21)2 + 2k + 2 )) D+ felrsa)(1+

2142 — 2142 1 (h— (z1 = 24) 21vy1 | 3T
R e e s ) I
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+0.5 lfc(rki) [Ae"‘”’z - Be"‘”z{l + 4™ (folrkg) (1 + 2/ d2 = 2/[d2 + (h

(z2cosz3 — 1) cosxs + Zo sin? x4

, V(z2 + 23 — 22123 cos 3) D

+folrr = V(@3 + 22 + z2 + 22 — 2z9m4 coszz — 2r2s sinas)) (1 + c?/d?
cos 23{xo coszy — 24) + sinxs(zo sinzs — 5) opym1 | T InT

- (z3 + 73 + 2% 4+ 2% — 27974 cOs T3 — 27225 Sin T3) ) } ]

+fc(rkj) [Ae—-)\l \/Ez¥+x§—2x1x2 coszz) _ Be—)\g\/fxfﬂc% —2x1 23 COS 23) {1 pes (fc(rki)

—/[d* + (h

(zg cosz3 — 1) COS T3 + T sin’ T3
V(3 + £3 — 22122 cosx3)
+folr) (1 + E/d* — & [1d + (h—

(x4 — z9cosxal{z1 — 22 co8x3) + Tosinxa(xosinzrs — x5) 2 )n1

V(&2 + 23 — 22129 cos z3) /(23 + 22 + 22 + 23 — 20224 cOS T3 — 2Toxs Sin z3)
|
} ny ] + fc('rkl) [Ae—)n \/(-(m§+x§+x§+xg—2x2x4 cos x3—2x2xs sin x3)

(1+2/d? = )l + (h - &)

_Be—.\g \/f(xg 4224224122221y cOs X3 —2x275 sin x3)

{149 () (14 2 = 218+ (=
cos r3(x2 cosx3 — T4) + sinz3(zs sinxs — 5)
(@3 + 23 + 28 + 13 — 22274 cos 3 — 22575 Sin z3)
(h— (x4 — zocosz3)(x1 — T2 cosza) + Tosinxs(ze sinzy — x5) 9
V(@3 + 23 — 2z129 cos 73) /(23 + 23 + 22 + 23 — 21924 cOS T3 — 27975 Sin T3)

]))”‘}”’1‘_‘]]

felrw)[Aem Y iataad) _ pemdn/lattabad 1 4 gme () (1 + 2/

)2]) + felrrs) (14 ¢ /d? — 02/[d2+

+0.5

B T3+ 22+ 2} — Tam1 )
V@ + 23+ 2k 4 22 - 25124) /(2 4 22 + 7d)
+Felr)(1 + 2 Jd? = 2 /[d* + (h—
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5.3 Numerical Considerations and Comparison Stud-
ies

In this section we compare the performances of all the global optimization algorithms
previously discussed. The purpose of the comparisons is to sec the merits of the modified
algorithms over their original versions and to see which method is most efficient in finding
the best local minimum. As far as the implementations of SA and ASA are concerned we
invoked local search only for two iterations both in the generation mechanism Alternative
B (sce section 3.3.2 in Chapter 3) and to find the aspiration solution. The values of the
common parameters of the SA and ASA algorithms were kept the same (see sections 3.2.3
and 3.4.3 in Chapter 3) but we used &min = 0.05, fmax = 0.8,74 = 5,6, = 1073, = 0.1 and
the length of Markov chain defined by (3.69) for the implementation of the ASA algorithm.
In the CRS5 algorithm only a single iteration of the local search (EG4UCF) is used except
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at the final stage where a complete local search is carried out. The tolerance for the local
search was 10~ in all implementations as no numerical difficulties were encountered for
this tolerance. The tolerance for the CRS algorithms was € = 10™* except that for CRS5
we took € = 10! and ¢ = 0.5 (sce section 4.4 in Chapter 4). The value of N (the number
of initial points) was taken as 10(n + 1), where n is the dimension of the problem. In all
applications of CRS4, we used v=0.1 and 50%M (see section 4.3 in Chapter 4). We first
examined the performance of the CRS algorithms for up to six particles for both Si and
As and the results are given in Tables 5.2 and 5.3.

- Results of CRS for all Problems
Table 5.2

CRS2 CRS3 CRS4 CRS5
FE cpu FE cpu FE cpu FE cpu
1123 048 1094 0.76 755 0.34 808 0.39 P3 Si(B)
4304 5.33 3724 6.26 2418 2.25 2967 2.64 P4
11111 16.74 18348 38.72 3971 5.66 4321 6.72 P5
37677 82.07 64067 244.97 44980 91.99 42134 87.17 P6
54215 104.62 87233 290.71 52124 108.24 50230 94.92 Total
998 0.26 1092 0.58 705 0.19 612 0.22 P3 Si(C}
9829 4.96 11446  16.48 7369 3.24 8521 3.50 P4
58063 46.73 45173  82.00 12479  9.13 10362  8.90 P5
182720 235.21 329089 1199.38 156916 311.48 175233 222.1 P6
251610 287.16 386800 1298.44 177469 324.04 194728 234.72 Total
952 0.42 1281 1.16 951 0.44 820 0.41 P3 As
4075 3.92 5111 7.70 1694 1.62 2113 2.06 P4
8877 15.58 43173 101.56 6130 9.55 0124 1711  P5
38381 101.52 67241 293.38 33192 8548 3078 79.20 P6
52285 121.44 116806 403.80 41967 97.09 42841 98.78 Total

From the totals in Table 5.2 it is clear that CRS5 works surprisingly well especially in
terms of cpu time. CRS4 and CRRS5H are better than CRS2 and CRS3 with CRS4 better
than CRS5 in terms of FE but the reverse holding in terms of cpu time. CRS3 is by far
the worst of all four algorithms. It is interesting that Si(C) is the most difficult problem.
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Of course, Table 5.2 gives the value of FE and cpu obtained on satisfaction of the sto'pping
condition but it is also important to consider the quality of the approximations to the
global minimum found by the four algorithms. The values of f* are shown in Table 5.3.

Best minima found by CRS for all Problems
Table 5.3
CRS2 CRS3 CR54 CRS5H
o I f*
-7.87  -7.87 -7.87 -7.87 P3 Si(B)
-15.70  -15.70  -1570  -15.70 P4
-20.39  -20.31 -20.39  -15.70 P5
-24.51 -24.51 -26.51 -24.51 P6
-5.33  -5.33 -5.33 -5.33 P3 Si(C)
-7.99 -7.99 -7.99 -7.99 P4
-10.66 -11.30 -10.57 -10.57 P5
-15.10  -1519  -1588  -15.10 P6
-6.85  -6.85 -6.85 -6.85 P3 As
-10.65 -10.65 -10.65 -10.65 P4
-14.78 -14.78 -14.78 -14.78 P5
-19.57 -19.57 -18.49 -16.51 P6

The results here are remarkably uniform and perhaps the only real conclusion is that CRS5
is the worst of the four algorithms for locating the smaller values for f* which, of course,
are not known theoretically.

We next tested the MSL and TMSL algorithms. The results for MSL and TMSL are
given in Tables 5.4 and 5.5 respectively, where IT represents the number of iterations. To
represent the complexity of the problem as far as the number of local minima is concerned
we also give the number, LM, of local minima found. The true number of local minima
for the problem is unknown but numerical experience suggests that it is quite high. We
therefore fixed the number of iterations at 5 for MSL and TMSL. In other words, these
algorithms were allowed to run for a maximum of five iterations only. In all implementa-
tions of the MSL algorithm we used a sample of size 100 but varied 4 and ¢. The results
for TMSL in Table 5.5 were obtained by setting o equal to 4. However, different values
for the number of nearest neighbours g and the number of sample points N were tested.
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Results of MSL for all Problems

Table 5.4

Yy o [ FE cpu LM IT
0.1 2 -7.87 438 018 2 2 P3 Si(B)
0.1 4 -787 438 018 2 2
0.2 2 -787 259 014 2 1
0.2 4 -787 210 017 2 1
0.1 2 -15.70 6352 436 27 &5 P4
0.1 4 -1570 5437 384 25 5
0.2 2 -1570 7516 537 25 5
0.2 4 -15.70 5312 380 21 5
0.1 2 -20.39 15415 1470 66 5 P>
0.1 4 -20.39 12954 11.94 55 5
0.2 2 -20.39 18568 1797 58 5
0.2 4 -20.39 16082 15.53 49 5
0.1 2 -2451 18666 2730 48 5 P6
0.1 4 -2451 19184 2596 50 5
0.2 2 -2451 24216 32.73 65 5
0.2 4 -2451 23088 31.51 63 5
01 2 -533 376 014 1 1 P3 Si(C)
0.1 4 -533 159 0.19 1 1
02 2 -533 376 017 1 1
02 4 -533 159 005 1 1
0.1 2 799 5067 301 26 5 P4
01 4 -799 3978 224 21 5
0.2 2 -799 5217 318 29 5
0.2 4 -799 3820 239 23 5
0.1 2 -10.66 11975 846 64 5 PS5
0.1 4 -10.66 10023 7.12 51 5
0.2 2 -10.66 9698 692 57 b
0.2 4 -10.66 8202 610 48 b
01 2 -13.24 14231 11.78 49 5 P6
0.1 4 -13.24 14027 11.70 48 5
0.2 2 -13.24 17355 1454 69 b
0.2 4 -13.24 17302 14.29 67 5
01 2 -685 6% 050 2 2 P3 As
0.1 4 -685 151 0.08 1 1
2 2 -6.85 970 044 3 2
02 4 -685 151 0.10 1 1
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vy o f* FE cpu LM IT

0.1 2 -1065 8785 6.10 24 5 P4
0.1 4 -10.66 7443 549 20 5

02 2 -1065 9173 644 25 5

02 4 -1065 7228 548 22 5

0.1 2 -14.57 24431 25,05 61 &5 P5
0.1 4 -14.57 20170 20.84 52 5

0.2 2 -14.57 25152 2554 65 5

0.2 4 -14.57 20340 2060 54 5

0.1 2  -1835 35147 4842 67 5 P6
0.1 4 -18.35 39862 5582 72 b

0.2 2 -18.35 43917 61.27 81 b5

02 4 -1835 37946 51.79 78 b
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Results of TMSL for all Problems

Table 5.5
N ¢ [ FE c¢pu LM IT
I0n n-2 -7.87 212 014 3 1 P3 Si(B)
10n n-1 -7.87 212 018 3 1
15n n-2 -7.87 227 026 2 1
15n n -787 227 030 3 1
10n n-2 -15.70 3369 566 11 5 P4
10n n-1 -1570 2520 447 9 4
15n n-2 -14.04 3784 1434 21 5
15n n  -13.11 2896 1627 17 5
10n n-2 -1897 3702 1504 12 4 P5
10n n-1 -1897 3594 1581 11 4
15n n-2 -20.39 6653 55.91 23 5
15n n  -18.97 4962 60.58 18 5
10n n-2 -24.44 4579 2043 9 2 P6
10n n-1 -24.44 4139 2254 8 2
15n n-2 -25.53 13531 169.34 28 5
15n n  -24.44 5921 6814 12 2
I0n n-2 -533 254 015 1 1 P3 SiC)
I0n n-1 -533 254 014 1 1
15n n-2 -533 216 025 2 1
15n n  -533 269 030 1 1
10n n-2 -7.99 2557 488 14 5 P4
10n n-1 -799 1850 376 9 4
15n n-2 -7.99 3723 13.61 24 5
15n n  -7.99 1606 282 5 1
10n n-2 -11.30 5198 1884 20 5 P5
I0n n-1 -11.30 4442 1954 18 5
15n n-2 -12.08 7858 57.21 29 5
15n n  -12.08 5542 6111 22 5
10n n-2 -12.64 2612 10.10 5 1 P6
10n n-1 -12.64 2328 11.20 5 1
15n n-2 -13.32 10212 165.30 31 5
15n n  -13.32 8944 7847 24 5
10n n2 -685 231 039 2 1 P3 As
10n n-1 -685 231 035 2 1
15n n-2 -6.85 228 032 1 1
15n n -685 228 052 3 1
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N g [ FE cpu LM IT

10n n-2 -10.65 4363 7.10 15 5 P4
1I0n n-1 -10.65 2347 3.78 8 3

15n n-2 -10.65 5903 1607 21 5

15n n -10.65 1682 5.63 6 2

10n n-2 -1435 6315 2154 18 5 Pb
10n n-1 -14.35 3648 1277 9 3

15n n-2 -1435 7394 5371 26 5

15n n -14.35 1831 11.27 7 1

10n n-2 -15.62 4900 15.12 6 1 P6
10n n-1 -15.62 3878 1451 b 1

1n n-2 -15.62 11856 163.70 21 b

15n n -15.62 6064 3763 & 1
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The Tables 5.4 and 5.5 show that the number of local minima found by MSL is much
higher than that found by TMSL. In a total of 48 runs MSL continued up to 5 iterations
in 36 runs and TMSL reached up to 5 iterations in 19 runs. Evidently the total number of
function evaluations for MSL is much higher than that for TMSL. In the following Table
5.6 we show the total number of function evaluations and cpu time obtained by MSL and
TMSL. Each total here is taken for all three potentials, for P3, P4, P5 and P6 and for the

particular values of v and ¢ shown in Table 5.6.

Table 5.6

MSL TMSL

Total Total
¥ o FE cpu N g FE cpu Si(B)+Si(C)+As
0.1 2 141573 150.00 10n n-2 38292 119.39 P3+P44P54+-P6
0.1 4 133826 145.40 10n n-1 20443 109.05
0.2 2 162417 174.71 15n = n-2 71585 716.02
0.2 4 139840 151.81 15n n 40172 343.04

Table 5.6 shows that TMSL is much superior to MSL in terms of FE but is less so in terms
of cpu. Table 5.7 compares the results in terms of the best local minima obtained by MSL
and TMSL.
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The Best Results for MSL and TMSL for all Problems

Table 5.7
MSL TMSL
FE f* LM c¢pu FE r LM cpu
210 -7.87 2 017 212 -787 3 014 P3 Si(B)
5312 -15.70 21 380 2520 -15.70 9 4.40 P4
12954 -20.39 55 11.94 6653  -20.39 23 5591 PbH
18666 -24.51 48 27.30 13531 -25.53 28 169.33 P6
37142 126  43.21 22916 63 229.84 Total
159 533 1 014 254 533 1 015 P3 Si(C)
3820 -799 23 239 1606 -799 5 2.82 P4
8202 -10.66 48 6.10 5542 -12.08 22 61.11 PS5
14027 -13.24 48 11.70 8944 -13.32 24 7847 P6
26208 120 20.33 16346 52 142.55 Total
151 -6.85 2 0.08 228 -6.85 0.52 P3 As
7228 -10.65 22 548 1682 -10.65 6 5.63 P4
20170 -14.57 52 20.84 1831 -14.35 11.27 PbH
35147 -18.35 67 25.05 3878 -15.62 5 14.51 P6
62696 143 51.45 7619 21 3193 Total

There is little to choose between the two methods in terms of the quality of the minima
found; TMSL does slightly better for Si(B)P6, Si(C)P5 and Si(C)P6 and MSL for AsP5
and AsP6. The number of local minima found is much higher for MSL than for TMSL
with a consequent high number of function evaluations for the former. The c¢pu time for

TMSL, however, is much worse than that for MSL. In Table 5.8 we compare the results of
the SA and ASA slgorithms.
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Results of SA and ASA for all Problems

Table 5.8
ASA SA
FE cpu b t T, FE cpu I t

13992  5.23 -7.87
27988  16.03  -15.70

54 5556.20 13978 591  -7.87 62 P3 Si(B)
31 7227.13 46458 49.30 -15.70 65 P4
36417  35.87 -20.31 29 7052.22 112951 141.97 -20.31 81 P5
151109 17552 -25.98 64 10399.23 206166 315.71 -23.12 89 P6
229506 232.65 379553 512.89 Total
6073 269  -5.33 94 2760.72 12768 4.27  -4.95 62 P3 Si(C)
53485 2049 -7.99 54 3583.92 56365 2582 -791 81 P4
113077 66.68 -10.14 67 35257.54 114438 85.13 -11.30 80 P5
66274 47.63 -13.03 20 5120.84 272927 254.92 -10.57 90 P6
238009 137.49 456498 370.14 Total

w o = ol

S = = O

20017  8.96 -6.85 4 68 1960.00 14938 6.56 -6.85 63 P3 As
60934 50.97 -1065 4 70 2514.15 52499 58.51 -10.65 53 P4
34285 39.90 -14.78 0 32 2486.85 108406 149.74 -14.57 81 P5
10462 149.67 -1849 1 60 3698.28 205151 319.80 -18.49 89 P6
125758 249.50 380994 534.61 Total

The results in this Table clearly indicate that ASA is much superior to SA in terms of
both FE and cpu and also in finding better values for f*.

The best results for all algorithms tested are compared in Table 5.9 and 5.10 with
Table 5.9 giving FE and cpu values and Table 5.10 giving the best values for f*.
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Table 5.9

CRS2 CRS3 CRS4 CRS5 ASA SA TMSL MSL

1123 1094 755 308 13992 13978 212 210 P3 FE S5i(B)
4304 3724 2418 2967 27988 46458 2520 5312 P4

11111 18348 3971 4321 36417 112851 3594 12954 P5

37677 64067 44980 42134 151109 206166 4139 18666 P6

54215 87233 52124 50230 229506 379553 10465 37142 Total
0.48 0.76 0.34 0.39 5.23 5.91 0.14 0.17 P3 cpu
9.33 6.26 2.25 0.64 16.03 49.30 4.40 3.80 P4

16.74  38.72 5.66 6.72 35.87 14197 1581 11.94 P5

8207 24497 91.99 87.17 17552 315.71 22.54 27.30 P6
104.62 290.71 108.24 94.92 23265 512.89 42.80 43.21 Total
998 1092 705 612 6073 12768 254 159 P3 FE Si(C)
9829 11446 7369 8521 53485 56365 1606 3820 P4

58063 45173 12479 10362 113077 114438 5542 8202 P5
182720 329089 156916 175233 66274 272927 8944 14027 P6
251610 386800 177469 194728 238909 456498 16346 26208 Total
0.26 0.58 0.19 0.22 2.69 4.27 0.15 0.14 P3 cpu
4.96 16.48 3.24 3.50 2049  25.82 2.82 2.39 P4

46.73  82.00 9.13 8.90 66.68  85.13 61.11  6.10 P5
235.21 1199.38 311.48 222.10 47.63 25492 78.47 11.70 P6
287.16 1298.44 324.04 234.72 13749 370.14 14255 20.33 Total
952 1281 951 820 20017 14938 228 151 P3 FE As
4075 5111 1694 2113 60994 52499 1682 7228 P4

3877 43173 6130 9124 34285 108406 1831 20170 P5

38381 67241 33192 30784 10462 205151 3878 35147 P6

52285 116806 41967 42841 125758 380994 7619 62696 Total .
0.42 1.16 0.44 0.41 8.96 6.56 0.52 0.08 P3 cpu
3.92 7.70 1.62 2.06 50.97  58.51 5.63 5.48 P4

15.58 101.56 9.55 17.11  39.90 149.74 11.27 20.84 P5
101.52 293.38 85.48 79.20 149.67 319.80 14.51 25.05 P6
121.44 403.80 97.09 98.78 24950 534.61 31.93 51.45 Total
358110 590839 271560 287799 594173 1217045 34430 126046 G-T FE
013.22 1992.95 529.37 408.84 619.64 1417.04 217.37 88.59 G-T  cpu

G-T : Grand Total
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The best minima found
Table 5.10
CRS2 CRS3 CRS4 CRS5 ASA SA TMSL MSL

Si(B)
-7.87 -787 -787 -787 787 -787 -787 -7.87 P3
-15.70 -15.70 -15.70 -15.70 -15.70 -15.70 -15.70 -15.70 P4
-20.39  -20.31 -20.39 -15.70 -20.31 -20.31 -1897 -20.39 P5
-24.51 -24.51 -26.51 -24.51 -25.98 -23.12 -2444 -24.51 P6

Si(C)
-5.33 -533 -533 -533 533 -495 .533 -5.33 P3
-7.99  -799 -799 -799 .799 -791 .799 -7.99 P4
-10.66 -11.30 -10.57 -10.57 -10.14 -11.30 -12.08 -10.66 P5
-15.10 -15.19 -15.88 -15.10 -13.03 -10.57 -13.32 -13.24 P6

As
-6.85 -685 -685 -6.85 -6.85 -6.85 -6.85  -6.85 . P3
-10.65 -10.65 -10.65 -10.65 -10.65 -10.65 -10.65 -10.65 P4
-14.78 -14.78 -14.78 -14.78 -14.78 -14.57 -14.35 -14.57 P5
-19.57 -19.57 -18.49 -16.51 -18.49 -1849 -15.62 -18.35 P6

A critical comparison of the results in Table 5.9 shows that in terms of FE and cpu

the algorithms can be listed in the following order of merit.

FE cpu
TMSL MSL
MSL  TMSL
CRS4 CRS5
CRS5 CRS2
CRS2 CRS4
CRS3 ASA
ASA SA

SA CRS3

O -3 O v s WD e
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5.4 A Short Ranged Many-Body Potential for Mod-
elling bcc Metal

The energy and structure of defects such as vacancies and interstitials in metals at-
tracts a considerable experimental and theoretical research effort from the physics and
material science communities. There have been a number of theoretical approaches to
calculating the energetics of such defects and one of the most popular has been the use of
interatomic potential functions. These intcratomic potentials can be determined from ab
initio calculations or by empirical means. Semi-empirical pair potentials have been used
to represent accurately the cohesive energy of fcc metals at the correct lattice spacing but
have been found to be inappropriate for use in calculating energetics of defects because the
elastic properties of the material were inaccurately represented. They also cannot be used
for investigating the effects of chemically active impurities. To overcome these problems
many-body approaches were adopted. Two of the most successful have been the poten-
tials of the Finnis-Sinclair or embedded atom (Foiles, 1985) types. These potentials have
been used with various degrees of success to study the properties of surfaces, point defects
and cracks. Many-body potentials have also been developed for semiconductor materials
using the ideas of bond order and preferred angular directions. The approaches used were
based on entirely different considerations than from those for metals but Brenner (Bren-
ner, 1989) has shown that the embedded atom method for metals and the Tersoff/Abell

(Tersoff, 1988) approach for covalent materials are mathematically equivalent.

Most of the work for metals has been for the closed-packed fce and hep configurations.
This is because under pair potential interactions a large collection of particles will always
move to an energetically favourable distribution which is closed-packed. This is clearly
inappropriate for bee materials. We attempt to overcome this problem by fitting a short-
ranged many-body potential whose functional form is designed to give the bee structure as
the preferred potential energy minimum. This potential description is aimed at ensuring
that the bcc arrangement is favoured over the fece, hep and diamond structures. The
potential description contains a number of free parameters which are optimized to fit the
cohesive energy, elastic constants and the bulk modulus of bee materials. Although a model
of a crystal, based on pair-wise interaction, is insufficient to model a stable bec lattice or
fit the elastic constants of the material, our potential description is a modification of two
particle interaction which takes account of the fact that the interaction must be affected by
near neighbours. The Tersoff/Abell approach considers the attractive term to be modified
by the presence of near neighbours. The functional form of the many-body potential is,
therefore, based on the Tersoff/Abell approach where the many-body term is chosen to
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give the bee structure as the preferred minimum. This is described in more detail in the
next section.

The Model

The bee unit cell is shown in figure 5.1. The ‘bond’ angle is defined as the angle formed

by any two atoms in the bec cell with the central-most atom.
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Figure 5.1

We label the central atom ¢ and its distance from atom j is defined as r;;. The angle that is
subtended by atoms j and k with atom ¢ is named 6;;;. Within the bee cell there are three
values of ik, cos“l(%), cos}(—1) and cos~!(~1), corresponding to rjr=a,, rik=v2a,
and Tjk=\/§ao respectively. Here a,, the lattice constant, is the length of the 9 particle
unit cell and nk=§ao. The three angles all satisfy the equation
2 Pk
3 9',; =1—=-L3 . 5.8

The basic form of two-body interactions between atoms 7 and j is chosen to be similar to

the ‘Morse’ potential, i.e.,
Vij = Ae~™2P7ii _ Re—Pri (5.9)

where A, B, no and (3 are fitting constants. This first order approximation to the interaction
potential V;; between two particles has a singularity as r;; — 0, a minimum value (dimer
binding energy) at some fixed (equilibrium position) separation and V;; — 0 as ri; — 0.
The many-body nature of the potential is taken into account by modifying the attractive
part of the potential by multiplying B by a function which is chosen to make the second
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term decrease in magnitude away from the bece configuration. Thus the chosen form for

the total potential energy of the central-most atom 1 is

E= %jz#:ifc(nj)(Ae—nzﬁru _ Be—ﬁ(nj+a1f1+azfz)) (5.10)
where the sum is taken over all neighbours of i. For the bee cell 7 has 8 neighbours situated
at the eight corners of the cube, for fee it has 12 neighbours and for the diamond cell it has
5 neighbours. Notice that we are interested in calculating the energy of the central-most
atom of the bec cube with respect to its eight nearest neighbours. The switching function
fe(7i;) has been chosen so that the potential drops to zero as r;; — oc from its equilibrium
position. The chosen form is

1, . Tij SR—D
fo(rij) = { 1+sin[n(ry; — R~3D)/(4D)], R-D<ry; <R+D (5.11)
0, Tij > R+D '

The values of R and D are chosen as 3.06A and 0.1A respectively. The functions f; and
f2 in (5.10) are given by '

2 r2- ]
Fi=) mhife(rir) (cos (i) — 1+ ga%f) , (5.12)
g 5

fo= Z 8 fe(rie) (155 — \/gao)2(rjk - \/iao)z(rjk —ao)?/(1+ (rix — a0)®),  (5.13)

k#i,j

where p is a known parameter given by

ng—1

p=(> 2 -1)/3 (5.14)
ki iR

and ng is the number of remaining nearest neighbours of the centralmost atom when the
pair (3, 7) is considered. For bec, fee and diamond lattices the value of ng is 7, 11 and 4
respectively. Thus the values of p for bee, fee and diamond lattices are 2.0,3.33 and 1.0
respectively. Within the bee cell r;; = léj—ao for all j and 7 = V2a,, V30, O Gy, Where a,
is the lattice constant. Therefore the penalty functions f; and f2 vanish in the equilibrium
configuration and increase as we move away from the bee structure. At the equilibrium
each pair (4,7) contributes the same energy. The parameters A, B, ng, 3, o1 and ap must
be chosen to fit the cohesive energy and other elastic properties of the material. This is
achieved using least squares and global optimization.
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The numerical calculations presented here, fit the data for tungsten. The free pa-
rameters are optimized to fit the cohesive energy, elastic constants and the bulk modulus
of bec materials. The objective function we have chosen, consists of the sum of squares
of the differences between the required and calculated quantities. The function implicitly
depends on the free parameters and is given by

F=(E-E')+(BM—BM')? + (c1y — cit’)? + (cas — cas’)? (5.15)

where the symbols are defined as :

Required cohesive energy, F = —-8.90eV |
Required bulk modulus, BM = 1.86 ¢V/A3 |
Required elastic constant, ¢;; = 3.12 ¢V/A3
Required elastic shear constant, ¢4q = 0.94 eV/A3

and the ‘dashed’ terms represent the calculated values of the various material properties.
To reduce the number of free parameters needed in the computation, we use the following
arguments. The dimer energy for most metals is not known but the cohesive energy
for some metals is known, for instance the cohesive energy for tungsten (W) is —8.90
with cell length a, = 3.16469A. The model described above will give minimum energy
when the penalty functions fi and f» are zero, that is, when the total potential is the
sum of the individual pair potentials. We now use the additional assumption that the
dimer energy = %cohesive energy. From the two body term

V = Ae™"™2P" _ Be~F" | (5.16)

the equilibrium distance (r4) can be found by setting 4V —0, giving

1 no A

- 1 5.17
with the corresponding dimer binding energy
Vy = %(1 —ng)e AT (5.18)

This implies that ny must exceed 1 as V; < 0. Using (5.17) we can write

1 no A
e~Prd — ommp-TInTh

_ [(mA\TET
(= |
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Again from (5.17) if we fix rq = ‘/Tgao we get

A=B Feotma-ns (5.19)
12
Now (5.18) becomes
B nzA _"'EL—T
=2(1- == 5.20
Vd g (1 nz)( B ) ( )
After substituting the value of A from (5.19) into (5.20) and setting
: 1 : e V3
Dimer Energy (Vq) = g(Coheswe Energy at the equilibrium distance rg = 7%),
e gt 1.1125
_ 2 -@ac(ng—l),@ —1 .
B=——=l¢ t2=1 | 5.21

By fixing ng and 8 in (5.21) values of A and B can be found from (5.19) and (5.21) making F’
" a function of ng, B, a1 and oo only. However, preliminary numerical investigation suggests
that B should be approximately 0.42 and no should be approximately 6.81. Taking these
values for 3 and ng and the corresponding values of A and B gives F as a function of a;
and a only and we have optimized F with respect to these parameters using all the global
optimization algorithms taking [0,1)? as the search region. The optimized values of the
parameters are given in Table 5.11 and the calculated values of the clastic constants and
bulk modulus are shown in Table 5.12.

The optimized parameter valucs

Parameter Values

A 513.48133
B 4.15243
N2 6.81547
Ié) 0.42267
a1 : 0.03082
Qg 0.00490

Bulk Modulus and Elastic Constants

From the general theory of solid state physics, we know that the bulk modulus of a cubic
solid is the energy required to produce a given deformation. From the relationship

c11 + 2 X ¢12

Bulk Modulus = 3

(5.22)
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it is clear that if we calculate the bulk modulus and the elastic constant ¢;;, the remaining
elastic constant ¢y can be found. The bulk modulus is given by

E(Vy+ 6V,) — 2E(V,) + E(V, — 6Vp)]
SV?

BM =, lim Ovp[ (5.23)

where V}, is the volume per particle (Ashcroft and Mermin, 1976). The expression for c1)
is similar to bulk modulus but the shear stress,

- 2E(0) + E(——gb)]
703

where ¢ is the shearing angle (Ashcroft and Mermin, 1976) and E(¢) is the energy for the
deformation due to ¢.

¢ = lim 2[E (¢) (5.24)

Table 5.12
Correct Calculated
Value Value
BM = 1866 eV/A® BM 1.853 eV/A3
c11 3.126 eV/A® ¢y’ 3.136 eV/A3
Ca4 0.944 eV/A% ¢4y 0.958 eV /A3

The computations for the elastic constants and bulk modulus are carried out by fixing
the central most atom at the origin and eight corners are chosen in the three dimensional
space according to the lattice constant a,. A similar scheme was also implemented for the
calculation of energies of fcc and diamond lattices. For calculation of the bulk modulus
the coordinates of the corner atoms are extended and contracted by a magnitude of 0.001.
Similarly for c44 the z-coordinates of the top four atoms are extended and those of the
bottom four are contracted and vice versa to form a small angle of magnitude ¢ with the
vertical axis. This deformation, however does not change the volume of the cube.

Before going on to compare the relative merits of the algorithms we use the optimum
values of the parameters (see Table 5.11) to test the model for different lattices. The
comparison of the encrgetics is demonstrated in Table 5.13.

Minimum Energy

Table 5.13
Lattice Minimum Energy Separation (rq)
bee —8.90eV 2.740A
fec —8.189cV 2.954A
Diamond  —4.45eV 2.740A
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From Table 5.13 it is clear that proposed model for bee has its energy lower than fee and
for the diamond lattice. Table 5.12 shows that the calculated clastic constants are in good
agreement with their correct values. Consequently we can infer that the model is accept-

able. In the next section we compare the numerical results obtained by all algorithms.

Numerical Comparison of the Algorithms

We have implemented all algorithms with the best of the user supplied parameters de-
scribed earlier. We used N = 50 and ¢ = 4 for both MSL and TMSL but we took v = 0.2
for MSL and g = 8 for TMSL. We took the local search tolerance as 10~4 for this problem.
TMSL performed 2 local searches and MSL 3 but only the global minimum was found. We
summarize the results of all algorithms in Table 5.14.

Table 5.14
CRS2 CRS3 CRS4 CRS5 ASA SA TMSL MSL
FE 1327 1159 1083 1596 3582 3951 749 895
cpu 9.96 12.68 8.03 11.32 2842 31.73 6.21 6.37
F* 17E-3 235E-3 19E-3 22E-4 1.5E-3 23E-3 1.5E-4 1.1E-4

Table 5.14 shows that TMSL is the best algorithm with respect to function evaluations and
cpu time and the CRS algorithms are better than the SA-type algorithms. It also shows
that CRS4 performs better than the other CRS methods both in terms of the number of
function evaluations and cpu time and ASA is superior to SA.
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CHAPTER 6

The Optimal Control of Vehicle
Suspension Systems



6.1 Introduction

This Chapter describes a model of an active (computer-controlled) vehicle suspension
system and a new non-linear controller design methodology is presented. Based on the
principles of optimal control, it permits the use of more general cost functions than the
standard linear optimal design techniques and hence increases the freedom of the designer.
It implements the control with an optimal, non-linear feedback function. Having designed
this non-linear, closed loop, feedback control, simulations of the suspension system are
carried out. Feedback is optimized both with and without the imposition of constraints.
Comparisons between the open loop, the unconstrained closed loop and the constrained
systems are given. The global optimization algorithms discussed in previous Chapters are
used to minimize the underlying cost function and their performances are compared.

6.2 Design of Vehicle Suspension System

The modelling of vehicle suspension systems and the design of suspension control
strategies for the purpose of giving a ‘smoother’ ride is a problem that has attracted much
interest over the years (Thompson, 1976; Frithauf, et al, 1985 and Sharp and Crola, 1987).
In the field of active (computer-controlled) suspension control strategy design, a number
of suspension systems have been produced in recent years (Karnopp, 1983; Gordon, et al,
1990 and Gordon, et al, 1991). To date most of the models {Thompson, 1984; Hac, 1985
and Wilson, et al, 1986) have used linear optimal control theory to solve the optimization
problem. The linear optimal control approach, or LQG (linear quadratic Gaussian) as
it is commonly known, assumes unconstrained actuation of the control which is likely to
be undesirable. This approach leads to a linear feedback law and a closed loop system.
Although this method provides an analytical solution with relatively low computational
time, it places unsatisfactory limits on system performance, because the cost function must
be a quadratic function of the state and control variables (Hac, 1987, Marsh, et al, 1989
and Gordon, et al, 1990). Disadvantages of the use of a quadratic cost function are well
explained in Marsh (1992). Hac (1987) introduced the idea of an adaptive linear strategy,
but it is demonstrated in Gordon, ct al, (1990) that this approach could provide poor
performance in some situations, such as when potholes are encountered. A more general
non-linear methodology which does not restrict the designer to quadratic cost functions,
allows greater freedom for the expression of performance requirements and is potentially
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able to produce controllers which enable inherent adaptation of the characteristics of the
vehicle. This fundamental advantage of a nonlinear methodology is likely to be more
effectively demonstrated for an ideal active suspension system since this offers the greatest
freedom of actuation. OQur purpose therefore is to solve the problem for a non-linear
feedback control in order to see how the performance characteristics might be improved
by using a non-quadratic cost function. The motivation and justifications for such an
approach are well-explained in Marsh (1992). Recently, Gordon et al. (1990) and Gordon
et al. (1991) implemented a non-linear feedback control with a non-quadratic cost function,
where the control is a fifth degree polynomial in the state variables, with 91 free parameters,
which are the polynomial coefficients. The problem was formulated using Pontryagin’s
maximum principle and a fitting method used to find the polynomial coefficients, the
numerical scheme however required that optimal open loop data be generated for 4000
initial conditions which is computationally very expensive. A further drawback of their
approach is that only an approximate method was used to solve the open loop problem. In
addition, a controller design subject to realistic constraints on the system was not studied.
We solve the open loop problem using a stable numerical method and design a nonlinear
feedback control. A model of a car suspension system with realistic constraints is also

examined.
6.3 Unconstrained Problem Model and Optimization

A quarter vehicle model is the simplest that can represent the dynamics of a suspension
system and possesses particular advantages over more complex models (see, for example
Sharp and Crolla 1987). This model is to be used to design and test the suspension system
because of its simplicity and ability to model the most fundamental aspects of the system
performance. The system is shown schematically in figure 6.1, which also defines the
variables used in the description of the problem. The suspension system is controlled by
a force generator situated between the wheel and the body. The state equations for the

system are Newton'’s laws of motion, namely;

.'1",'1 = -3,
Iog=1x3 — x4
‘ : (6.1)
ry = (k;ﬁh —u)/m s
Ty = ’U,/M ,
where = (z1,...,x4) is a vector of state variables of the system and u(t) is the control

input to the system.
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Body mass

EOITTE YIS I

- X 4= body velocity

S

suspension
X5 = deflection

Y

Force
generator

[LXTTT RN I

Tyre X 3= wheel VC]OCi[y

xl = deformation

Tyre
Spring

Figure 6.1

Typical values for the constants are M (body mass)=320 kg, m (wheel mass)=40 kg and
k; (tyre stiffness)=2.0 x 10° N/m, (see, for example, Marsh, et al, 1989). For given initial
conditions the performance of the system is assessed via a cost function, L(u,z), which
is a function of both state variables and control. This is chosen to accumulate all the
undesirable effects on the states caused by the disturbances and the costs of the control
action into the a single function (Marsh, 1992). The cost function is then integrated over
the time period to form the dynamic cost, I. Thercfore, the dynamic cost functional to be
minimized is

tma:ﬂ
I= / L(u,z) dt (6.2)
0

with 2(0) = z¢. L(x,u) is a positive definite function of the state variables and control
inputs given by,
L(x,u) = Ji(z1) + Jo(z2) + 23 (6.3)
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where

4000z? . if 1z1] < 0.007
Ji(z1) = ¢ 98500z2 — 1323|z1| + 4.6305 if 0.007 < |z;| < 0.009
25000z7 — 1.323 if |z1| > 0.009 (6.4
500z3 if |z2| < 0.079
Jo{z2) = ¢ 385250z3 — 60790.5|z2| + 2401.22475 if 0.079 < |z2| < 0.081
10000zx% — 60.7905 if |zo| > 0.081

The distances are in metres and this will be used as the unit of length subsequently. The
cost functions J; and J; are quadratic splines chosen to have high values if the amplitude
of the state disturbances is large. Their form is chosen to be approximately the same as
that given by Gordon, et al, (1990) except that they are continuous with continuous first
derivatives with respect to z; and z, respectively. The graphs of J; and J, are shown

below in Figure 6.2.
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Figure 6.2(a) Jy(x). Figure 6.2(b) Ja(z2).

The cost function is chosen to depend on x;, T2 and z4 because (1) the tyre deformation.
z1, should be kept small: (2) the work space between the body and the wheel should
be kept constant; (3) the body acceleration should be as small as possible. This is a
much more realistic cost function than that for the LQG model, which is a continuous
quadratic function and cannot impose a high penalty for large amplitude disturbances.
For the purpose of numerical calculation ¢4z is taken to be 2 secs. This is approximately
equal to the infinite time problem (see Marsh, 1992). The workspace between the body
and the wheel is limited by the design criterion. A typical workspace size is given by
~0.1 € 72 £ 0.1. The tyre deformation is also limited and typically lies in the range
—0.025 < z1 < 0.025. The cost function L(z, u) has been chusen with these design criteria
in mind and has a very large value if z; and z9 lie outside these limits. For the system
(6.1) with performance index (6.2) the open loop control is determined using Pontryagin’s
maximum principle (sée, for example, Bryson and Ho, 1969). This gives the optimal control

u(t) that minimizes (6.2).
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6.3.1 Open Loop Optimization

We apply Pontryagin’s maximum principle to find the optimum open loop costs and
controls for specified initial conditions. In the usual way by introducing a 5-th state

variable, we can write
5 = Ji(z1) + Jo(z2) + &3

= Ji(z1) + Ja(z2) + uz/l'\/_f2 ,

with z5(0) = 0. This gives rise to the system

Ty =-T3 ,

Lo =23 — T4,

&3 = (kx1 —u)/m, (6.5)
4 =u/M,

ts = Ji(x1) + Jo(za) + u2/M2 .

Now, the problem becomes : minimize
I=uzs5(ty) (6.6)

subject to (6.5) and z(0) = (Z,,0). The Hamiltonian H of the system is

5
H=Y M\fi,
i=1
where
. oH
M) = —— i=1,...,5 ,
(t) el
and A(ty;) = (0,0,0,0,1). Here f; are right hand sides of the system (6.5) and A =
(A1,...,A5) is the co-state vector. The co-state equations are therefore as follows:
: _ dJ1($‘1) Agk;
A1(t) = —As drr m
: dJa(x
halt) = 2222
. 2 (6.7)
A3(t) = A1 — Az,
).\4(t) = AQ 3
As(t) =0.

It is seen that the non-quadratic nature of the cost function causes the costate and state

equations to be non-linear and hence yields a non-linear two point boundary value problem.

149



We solve this problem by the steepest descent approach (sce, for example, Rosenbrock and
Storey, 1966). We define

oH
g(u)—a 63
M2 M m

Given an approximation u,(t) to the optimal control then a better approximation, in the
sense of taking a step along the path of steepest descent of the functional zs(ts), can be
shown (Rosenbrock and Storey, 1966) to be

up = u, — eg(u(t)) (6.9)

where ¢ determines the length of step taken. The line search along the negative gra-
dient used a quadratic interpolation (see, for example, Rao, 1978) which does not use
derivatives. Our numerical scheme proceeds as follows. The time interval is discretized as
0 =to,t1,.-.,tn = 2. With an initial guess uo(t) at the control the state equations are
integrated from 0 to 2 and the co-state equatiohs are integrated from 2 to 0. At each time
stage of the integration the nominal control u,(t) is adjusted by the rule given in (6.9). The
whole process is then repeated for the new control u1(#) and the process continues until
the convergence criterion is met. The stopping criterion was ||g{u;)l| < 1074, We used an
integration step h = 0.005 and solved the equations (6.5) and (6.7) using a Runge-Kutta
4th order method (Sanchez, et. al, 1988) with initial control u,(t} = 1.5.

In practical control problems the open loop approach is very inefficient because the
control is not an instantaneous function of the state variables. To determine u(t) requires
that a series of differential equations be solved over the time interval (0, ¢pqz) before the
control u(t) can be determined and then applied. An attempt has been made here to
design a feedback control to overcome the problem. There are many possible formats in
which to express this feedback control (Marsh, 1992). Concern for simplicity leads us to
consider the implementation of the control strategy via a continuous analytical feedback
function to be known as the feedback law. This feedback law overcomes the computational
problems of solving for u(t) by specifying the control u(t) to be a function of the state
variables u(t) = U(z(t), k) which contains some free parameters k& which are chosen so that
u(t) gives optimal responses. Often u(t) is chosen as a low order polynomial (Marsh, 1992)
in the state variables x. The unknown coefficients in the polynomial are the parameters k.
The problem here requires that the controller performs the same operation, irrespective of
whether the system is displaced from its equilibrium condition through positive or negative
values. Clearly the controller should be an odd function of the state variables. We have
therefore chosen U (x(t), k) as a 12 term polynomial, in the state variables, containing first
and third degree terms only. Motivation for such a choice of the feedback function can be
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found in Marsh (1992). For the car suspension problem a full state feedback requires a
non-linear function U (z(t), k) of 4 independent variables (2 displacements and 2 velocities).
Therefore our chosen feedback is given by

U(.'E(t)’ k) = k1$2 + k2x3 + k‘31,‘4 + k‘lx%xa + k5$1$2$3 4 kﬁxg (6 10)
+ kzzq + kswazaza + kozize + k102§ + kuziea + kool .

The parameters k; in (6.10) are found by optimizing a combined cost which is the sum of
the costs incurred due to several initial conditions evenly distributed throughout the state
space. We have, in fact, selected four representative points z(0) in the space of initial
conditions and call them the design sample. To enable the feedback law to give a good
representation across the practically available region of the state space, the design sample
needs to provide information over all areas of the state space. The size of the design sample
must be curtailed however, due to the computational cost. But clearly more points could
be chosen, if necessary, at the expense of increased computing cost. The chosen set of
initial conditions z, are

(0.025,0.1,0,0,0), (—0.025,0.1,0,0,0),

(6.11)
(0.01,0.04,0,0,0), (0.01, —0.04,0,0,0) .

Note that inclusion of the image points —z, to distribute the initial conditions evenly in
the state space will contribute the same cost as z, and these are therefore not included
here. However it will be shown, a posteriori, by simulations of the optimal feedback law
that the values of the cost function calculated at other points do not differ significantly
from the corresponding open loop values.

6.3.2 Closed Loop Optimization

Closed loop optimization implements the control (6.10) with chosen parameter values
k = (k1,ka,k3,k4,...,k12) as opposed to open loop which pre-calculates u(t) to minimize
the cost. As a result the cost function depends implicitly on k. Closed loop optimization

does not involve the co-state equations (6.7) and the new cost function is defined as follows:

Cost function C= sum of the dynamic costs incurred by using each of the four initial
conditions in 6.11 whilst implementing the feedback law with paramcters assigned, i.e.,

4
C= Z cost; (6.12)
j=1

where costj=cost with the j-th initial condition from 6.11. In order to determine the control
u(t) we must determine the optimal parameter set k = (k1, ko, k3, k4, .. ., k12). This is done
by using the global optimization algorithms described in earlier Chapters. However, it was
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felt that to produce numerically reasonable values for k; the state variables should be

normalized by dividing each by its maximum practically available value, thus:

I TIo Iy
=1 =22 =8 =, 6.13

The corresponding new state equations become

y1 = —100y3 ,

- Y2 = 25y3 — 10y4 ,
Y3 = (0.025k,y1 — u)/(2.5m) , (6.14)
Ja=u/M,

g5 = J1(y1) + Ja(ye) + u?/M* |

The cost functions J; and Jo become

2.5y2 if [ £0.28
Ji(y1) = { 61.5625y% — 33.075|y1| + 4.6305 if 0.28 < |11| < 0.36

15.625y7 ~ 1.323 if || > 0.36
in 1 |y1| - (615)
53 if Jyz| <0.79
Jo(y2) = { 3852.5y% — 6079.05y2] + 2401.22475 if 0.79 < |y2| < 0.81
100y2 —~ 60.7905 if jy2| > 0.81

Note that this transformation of the system does not affect the open loop cost at all
and the same open loop control will be produced for a particular initial condition. The
individual normalised costs, cost;, are now found by solving the system (6.14) only with the
normalised initial conditions of (6.11). We have found by extensive exploratory numerical
work the following region of parameter (k;,7 = 1,2,...,12) space within which the system
is well defined.

[0,2.0E3] x [0,2.0E3] x [-5.0E3,1.052] x [-5.0E3,5.0E3]
[~6.0E3,5.0E2] x [0, L5E3] x [-2.0E3,2.0E3] x [0,5.0E3]x
[0,1.5E3] x [-5.0E3,5.0E3] x [-5.0E3,1.0E3]x
[~5.0E3,1.5E3]

The above region was therefore chosen as our search region for all the subsequent calcula-
tions. Seven different local minima were found within the above region but each of these
local minima have the same function value. The function C has a lowest value of 12.69.
The seven individual local minimizers are given in Table 6.1 below. (Not all the local
minima are found by all of the algorithms. The values in Table 6.1 are representative in

those cases where more than one methods found the same local minima.)
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Table 6.1
Local minimizer

ikl k2 k3 ki 13 8 k?

1 53612  530.20 536.32 523.09 53449  539.90  540.38
2 53970 621.23 52011 601.54 59621 541.69  576.11
3 -2080.86 -2040.57 -2098.46 -1990.09 -2066.86 -2089.35 -2076.80
4 3829.17 4080.68 3814.65 3660.40 3891.00 3921.36 3752.10
5 170.05 48676  239.91 8342  257.45  383.22  187.48
6 1301.01 1181.22 128258 1311.17 128693 1246.56 1244.62
7 -1941.02 -1114.49 -1989.10 -1711.17 -1870.07 -1679.93 -1404.76
8 4899.68 3768.93 4895.90 4878.77 4988.70 4120.65 3954.50
9 124284 31.90  1499.89 407.16  1218.00 998.65  447.10
10 3665.00 3286.64 3718.66 3261.95 B3398.93 3841.81 3639.27
11 -3574.96 -2385.87 -1414.28 -3466.25 -3607.44 -2154.98 -3399.40

12 -47.73 -435.58  52.69 -194.85  -3275.65 129.79 1084.71

A set of initial conditions is chosen from the state space at which to test a controller from

Table 6.1. Since all sets of parameters in Table 6.1 give rise to the same optimal cost any
set k; can be used in the feedback law. However, we have used the parameter set in column
1 of Table 6.1 in the feedback law. These results are shown in Table 6.2 where IC stands
for initial conditions and OLC and CLC stand for open and closed loop cost respectively.
The Table shows that the agreement is quite good in all cases.

Table 6.2

IC OLC CLC
(0.025,0.1,0,0) 951 9.67
(-0.025,0.1,0,0) 223 2.36
(0.01,0.04,00) 041 0.42
(0.01,-0.04,0,0) 022 0.22
(0.015,0.1,00) 661 6.75
(0.015,0.05,0,0) 0.76  0.80
(-0.015,0.05,0,0) 0.42 0.4
(0.025,0.05,0,0) 1.53 1.60
(0.025,-0.05,0,0) 0.88 0.95
(-0.015,0.1,0,0) 215 2.30
(0.02,0.09,0,0) 549 5.66
(0.015,-0.08,0,0) 0.91 1.00
(-0.025,0.08,0,0) 1.31 1.40

A comparison of the difference between open and
closed loop costs for a variety of initial conditions
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Finally in the next section a constrained model is considered where the damping is
subject to a delay. The problem is similar to the closed loop problem but has an extra
state variable. This problem is also solved and the results compared with the open loop
and unconstrained closed loop models described above.

6.4 Constrained Model and Optimization

The optimal feedback controller given above has been calculated for a system which
is not constrained by limits on the forces and in which the controller acts with immediate
effect to counteract any disturbances to the system. In practice, however, the suspension
system is a spring-damper combination and the controller u(t) is constrained. The dis-
turbances to the system are controlled by the damper situated between the body and the
wheel while the spring acts as a support to the system. The total force therefore is the
sum of the damper force F; and the spring force k,xo, i.e., u(t) = Fy + k;xo, where the
spring stiffness k, = 1.8 x 10°N/m. The damper force Fy is dynamically constrained and
is dependent on the relative velocity between wheel and body. As the damper force Fy is
constrained so is the total force u{t). The constrained system model has been derived in
consultation with Dr. T. J. Gordon of the Department of Transport Technology, Lough-
borough University. The model includes an extra state variable zg, known as the damper
current of the system which satisfies

dxg 1 c1
9 _ L1 S~ xel) 6.16
Fralaies (Io —z6)(1 + c2|1’ Zs|) (6.16)

where I, is known as the signal current and ¢; and ¢; are constants depending on the
system in question. Typical values for ¢; and ¢ are 3 x 10~2s and 5 x 107352 respectively.
The signal current I, and the damper current xe always lie between 0 and 1. The damper
force Fy is bounded by a maximum value when z¢ = 0 and a minimum value when xg = 1.
There is a well defined relation between the damper force Fy, the relative velocity (z3 —x4)
and the damper current. This relationship is given numerically in Table 6.3. We call this
relationship the damper map P, and it maps between the damper force and the damper
current for a given relative velocity.

Table 6.3
Fy
(3 — z4) -15 -1.0 -05 -0.2 00 02 05 1.0
current=0.0 -2350 -1750 -1500 -800 0.0 900 1300 2400
current=0.5 -2000 -1450 -550 -250 0.0 250 650 1350
current=1.0 -1450 -900 -300 -200 0.0 200 350 800

Relationship between the damper force, the damper current

and the relative velocity across the damper
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This mapping between Fy, (z3 —z4) and current is typical of a realistic automobile control
problem and can be found for a real-life situation by system identification. (The data of
Table 6.3 was supplied by Dr. T. J. Gordon.) Notice that for fixed values of (z3 — z4)
and current, there is a unique value of the damper force Fy. The constrained closed loop
optimization problem is the same as it was for the unconstrained closed loop optimization
with the same cost function, the only difference is that the system now includes an extra
state equation. Thus for the constrained system the new normalized state equations are

71 = —100y;
U2 = 25y3 — 10y, ,

g3 = (0.025ky1 —u(t))/(2.5m) ,

Ja = u(t)/M, (.17

U5 = Ji(y) + Ja(y2) + u(t)?/M?

. 1 c1
v6 = — (o —ye)(1 + —|I, ~ ysl) ,
€1 Co

where yg = zg. The representative set of initial conditions is the same as that taken
for the unconstrained system with the exception that the value of yg(0) was chosen as
0.5, half way between the upper and lower bounds. To integrate the above system at
each time step, i = 0,1,...,n — 1, the control 4(*(t) is found from the state variables at
the begining of the step with the assigned values of k;. Now the damper force is found
from chi) = ul) — ksxg) and the signal current is found by inverse interpolation in Table
6.3, i.e., I = P! (xgi) - .?:Ef),Fy)). If I € (0,1) the integration step proceeds with
u® = Fa(li) + ksrg)with a new damper force F, éi) = P, (xg;) - a:gi), yé")). If however
i < 0,0r > 1, it is fixed (‘clipped’) at O or 1 respectively and a new F, éi)c is found by
interpolation in Table 6.3, i.e., Féi)c = P, (:cgi) - a:gf),O or 1). u® is itself then found
from u(¥¢ = Fa(!i)c + ks:cg) and again integration proceeds. Notice that the damper force

must be obtained with the original (non-normalized) variables.

The global optimization algorithms were used to calculate the optimized parameters
of the feedback law (6.10) for the constrained system. The global minimum was obtained
at 13.95 and there were a number of local minima. The results are summarized in Table
6.4.



Table 6.4

Local minimizer ‘
kL k2 k3 k4 kS K KT

1

1 651.51 623.87  T791.28 1490.98 1083.38 231.76  640.25

2 1452.86 1310.18 1071.81 674.27  1182.76 607.44 1499.52
3 -2023.49 -2072.60 -2143.48 -4799.13 -4537.21 -4937.39 -2003.49
4 -4395.83 1640.91 -3389.28 -4420.82 1382.17 -4928.69 -4543.22
5 -4456.98 -5259.94 -3518.50 -4752.03 -4739.95 -2181.32 -5750.17
6 18.56 107.60  0.0025  303.97  897.98 1458.36  0.00

7 -1732.77 -1209.61 -2000.00 -1945.80 -335.46 -1772.17 -2000.00
3 4161.25 3285.16 2921.95 1500.55 4488.5 1447.26  5000.00
9 1053.03 1061.18 213.70  503.21 422.36 361.51 1500.00
10 -2532.61 -3959.59 -619.18 3821.33 -1058.33 1823.26 -3723.96
11 -3643.94 -4369.33 -1702.10 -3138.17 -4573.44 -2062.64 -4948.54

12 217.81 240.10  628.25  489.93  -1254.67 -3401.59 1287.83
cost 13.95 13.96 13.96 14.11 14.06 14.09 13.95

We have compared the performance of the two feedbacks represented by the param-
eters given in column 1 in Tables (6.1) and (6.4) on the constrained system. Table 6.5
represents the comparison which shows that the constrained controller provides lower cost
for almost all of the state space. In Table 6.5, CUP and CCP represent costs due to
the optimized parameters for unconstrained and constrained feedback respectively on the
constrained system. '
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Table 6.5

IC CUP CCP
(0.025,0.1,0,0,0,0.5) 991 9.89
(-0.025,0.1,0,0,0,0.5) 3.09 2.99
(0.01,0.04,0,0,0.5) 0.70  0.69
(0.01,-0.04,0,0,0.5) 0.38  0.38
(-0.01,0.04,0,0,0,0.5) 039 0.39
(-0.01,-0.04,0,0,0,0.5) 0.68 0.67
(-0.025,-0.1,0,0,0,0.5) 10.04 10.01
(0.025,-0.1,0,0,0,0.5) 304 297
(0.025,0.05,0,0,0,0.5) 2.29  2.26
(-0.025,-0.05,0,0,0,0.5) 2.29 225
(-0.025,0.05,0,0,0,0.5) 1.23 115
(0.025,-0.05,0,0,0,0.5) 128 1.14
(0.0125,0.1,0,0,0,0.5) 6.25  6.25
(-0.0125,-0.1,0,0,0,0.5) 6.33  6.32
(0.0125,-0.1,0,0,0,0.5) 290 2.80
(-0.0125,0.1,0,0,0,0.5) 292  2.84
(0.0125,0.05,0,0,0,0.5) 110 1.09

(-0.0125,-0.05,0,0,0,0.5)  1.07 1.06
(0.0125,-0.05,0,0,0,0.5) 0.61  0.60
(-0.0125,0.05,0,0,0,0.5) 0.63 0.62
(0.0225,0.09,0,0,0,0.5) 6.57  6.56
(-0.0225,-0.09,0,0,0,0.5)  6.63 6.61
(0.0225,-0.09,0,0,0,0.5) 2.26 221

(-0.0225,0.09,0,0,0,0.5) 2.30  2.23
(0.015,0.08,0,0,0,0.5) 2.95 294
(-0.015,-0.08,0,0,0,0.5) 294  2.93
(0.015,-0.08,0,0,0,0.5) 152 1.49
(-0.015,0.08,0,0,0,0.5) 157 153
(0.0,0.1,0,0,0,0.5) 392  3.76
(0.0,-0.1,0,0,0,0.5) 3.95  3.75
(0.025,0.0,0,0,0,0.5) 1.20 1.1l
(-0.025,0.0,0,0,0,0.5) 121 114
(0.02,0.09,0,0,0,0.5) 590 5.88

A comparison between the ‘constrained’ controller and the
‘unconstrained’ controller on the constrained system
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6.5 Implementation and Comparison of Algorithms

In this section we discuss the numerical applications of the global optimization al-
gorithms described in the previous Chapters both to the unconstrained (UP) and to the
constrained (CP) problems. We have implemented the algorithms with the values of the
user defined parameters used in the previous Chapter, the only difference here is that the
local search tolerance was 1076, All algorithms successfully located the global minima
for both UP and CP. In Table 6.6 we first compare the results of the MSL and TMSL
algorithms. The number of function evaluations, cpu times and the optimal values are

used for comparison purposes. Preliminary runs showed that it was only necessary to run
MSL and TMSL for one iteration,

The Results of MSL and TMSL

Table 6.6

MSL TMSL
N v I FE cpu o N g r* FE cpu o
100 0.2 12.69 8751 320.10 2 10n n 12.69 4775 21945 2 UP
100 0.2 12,69 7291 278.32 | 4 10n n 12.69 3921 189.94 4
150 0.1 12,69 5211 179.71 2 15n n+1 12.69 3296 180.27 2
150 01 1269 4331 15221 4 15n n<41 1269 3624 18359 4
200 0.05 1269 4265 14834 2 10n n+1 1269 3834 14546 2
200 005 12.69 3117 12287 4 10n n+1 1269 2991 137.32 4

32966 1201.55 22441 1062.03 Total
100 0.2 1395 10209 47249 2 10n n 13.95 6075 37930 2 CP
100 0.2 13.95 9257 45252 4 10n n 13.95 5129 280.09 4
150 0.1 13.95 6217 23418 2 15n n+1 13.95 5896 285.17 2
150 0.1 13.95 5801 22968 4 15n n+1 1395 5206 277.75 4
200 0.05 1395 5336 168.11 2 10n n+41 13.95 4478 228.01 2
200 005 13.95 4543 - 159.74 4 10n n+1 1395 3924 183.20 4

41363 1716.72 30708 1633.52 Total

From the total figures in Table 6.6 it is clear that TMSL uses fewer function evaluations
and less cpu time than MSL. It is also clear from this Table that for two iterations o =4
has always produced the best results for both algorithms.

Since all eight algorithms successfully found the global minimum therefore in Table

6.7 we compare them only in terms of ¢pu time and number of function evaluations. In

- Table 6.7, the data for MSL is N = 200, v = 0.05 and 0 = 4. The data for TMSL is
N=10n, g=n+1and o =4

1568



Table 6.7
CRS2 CRS3 CRS4 CRS5 SA ASA MSL TMSL
7072 6658 4341 3891 14942 13647 3117 2991 UP FE
4241 5110 4079 3902 16240 15858 4543 3924 CP
243.5 213.2 151.4 123.6 588.00 587.64 122.87 13732 UP cpu
220.0 2459 214.5 1783 702.20 663.98 159.74 183.20 CP

The results indicate that CRS5 is the best algorithm with TMSL and MSL close runners
up. The SA-type are the worse performing algorithms both in terms of number of function
evaluations and cpu time, however, ASA has always exhibited superiority over SA. For UP
some numerical difficulties were encountered. This is because for a few sets of parameters
the dynamic cost for UP became very high and overflow occurred. When this happened we
assumed the cost to be 10%° corresponding to that parameter sct. If at the i-th step of the
Runge-Kutta method, the calculated cost exceeded 1029, we assumed the final cost to be
102°. Notice that this does not happen for CP, because the signal current, I, corresponding
to Fy§ is always maintained within its bounds.
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CHAPTER 7

Application of Global Optimization
Algorithms to some Problems in Control
and Statistics



7.1 Introduction

In this Chapter we have used three more practical problems to examine the performances
of the stochastic global optimization algorithms. Two of the problems are from optimal
control and have arisen in the field of chemical engineering. These control problems have
multiple local optima and the global optimum is sought. For these optimal control prob-
lems, we also compare the results obtained from a special kind of dynamic programming
implemented by Luus (1989). The third problem is a global optimization problem which

has arisen in applied statistics.

7.2 Comparative Studies and Discussion

In this section we discuss the numerical results obtained and make a critical comparison of
all algorithms used on the three problems. These results have been obtained by using the
same user supplied parameters as were used in Chapters 5 and 6. For the implementation
of all methods, on the control problems, we discretize the time interval so that the number
of time steps becomes the number of variables, n, and the constant controls used for each
time step become the variables. For both control problems we used a variable step and
varjable order Runge-Kutta routine, DO2CAF, from the NAG library for integration. The
routine therefore uses constant control, u(i — 1),_ to integrate the system from time step
t;i_1tostept;,i=1,2,...,n.

7.2.1 Tank Reactor Problem:

This is a model of a nonlinear continuous stirred tank reactor which involves two
different local minima. The problem was studied by Luus and Galli (1991). The equations
describing the chemical reactor are:

. 25.’121
1 = —(2+ u)(xy + 0.25) + (x2 + 0.5) exp ,
Ty 42

25321 (7.1)
r1+2/ "

T = 0.5 —x9 — (22 +0.5) exp (
i3 = x? + 12+ 0.1
The control u is unconstrained and the performance index is given by
f=x3(0.78) . (7.2)
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The initial condition is (0) = (0.09,0.09,0.0) and the interval of integration is 0 < ¢ <
0.78. It is required to compute the control variable u(t) which will minimize the perfor-
mance index z3(0.78). The problem has a global minimum z3(0.78) = 0.13309 and a local
minimum z3(0.78) = 0.24442.

The first method we used was the CRS method. We began by checking the numerical
accuracy by finding the number of nurnerical integration step lengths required to obtain a
reasonable accuracy. The number of time steps (variables) taken were 3, 6 and 13. The
results are given in Table 7.1.

Table 7.1
CRS2 CRS3 CRS4 CRS5
FE f* FE f* FE f* FE f* P
1260  0.172 1122  0.172 487 0.173 542 0.172 3
2635 0.142 3918 0.142 1570 0.142 876 0.141 6
12136 0.135 149050 0.136 8997 0.136 1342 0.245 13

It is evident from Table 7.1 that for 13 time steps a reasonably good approximation for
the global minimumn is achieved, therefore, for comparison purpose we only use results
obtained for this number of time steps. We now compare the performance of the CRS
algorithms in Table 7.2.
Table 7.2
FE bl cpu

CRS2 12136 0.135 999

CRS3 14905 (.136 156.6-

CRS4 8997 0.136 67.8

CRS5 1342  0.245* 33.7

* Local minimum

This Table shows that CRS5 could not find the global minimum and that the overall
performance of CRS4 is much better than that of CRS2 and CRS3.

In Table 7.3 the results for the MSL algorithin for some best runs are given. From
Table 7.3 it is clear that MSL successfully found the global minimum for all values of its

parameters. The local search tolerance used was 106,
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Tahle 7.3

v o N f* FE LS LM cpu
02 2 100 0.137 9613 18 2 229.47
02 4 100 0.136 9613 18 2 229.47
02 4 50 0135 6900 10 2 147.32
01 2 160 0.137 3760 8 2 97.89
01 4 100 0.137 3760 8 2 97.89

This Table shows that the best result was obtained when N = 100 and v = 0.1 and that
o had little effect. The results for TMSL are shown in Table 7.4. For all values of ¢
the TMSL algorithm also successfully located a reasonable approximation to the global

minimum but it produced worse results for values of g that were low compared with N.

Table 7.4

q o N f* FE LS LM cpu

n 2 50 0.148 832 1 1 16.38
n 4 50 0.148 832 1 1 16.38
n+l1l 2 50 0.148 832 1 1 16.38
n+l1 4 50 0148 832 1 1 16.38
6 2 100 0.155 1728 4 2 54.04
6 4 100 0.155 1728 4 2 54.04
n+1 2 100 0.148 882 1 1 27.57
n+1 4 100 (148 832 1 1 27.57

If we compare the results of Table 7.3 and 7.4, we see that both TMSL and MSL located
global minima with MSL the more accurate of the two. However, in terms of cpu time and

the number of function evaluations TMSL is much better than MSL.

We tried next the SA algorithm. In the solution generation mechanism, Alternative
B (see section 3.3.2 in Chapter 3) Dekkers and Aarts (1991) suggested ¢, = 0.75, however,
to see the effect of ¢, on this problem we examined several values of t,. The results are

given in Table 7.5.

Table 7.5
f* FE to cpu
0.145 157931 0.75 2382.11
0.173 120675 0.85 1853.93
0.204 52294 095 639.19

0.204 21025 0.99 211.52
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From this Table it is clear that as the number of local searches decreases the number of
function evaluations and cpu time (to satisfy the stopping condition) decrease but the
accuracy of the solution falls off. ¢, = 0.75 does seem a reasonable compromise. Finally
we used the ASA algorithm with ¢, = 0.75 and the best results of ASA together with the

results of the other methods are summarized in Table 7.8.

Final Comparison of the best Results found
Table 7.6
CRS2 CRS3 CRS4 CRS5 SA ASA MSL TMSLDP
FE 12136 14905 8997 1342 157931 101357 69500 832 -
cpu 99.9 156.6 67.8 33.7 2382.1 1380.9 1473 16.3 44.7
f* 0135 0.136 0.136 0.245* 0.141 0.144 0.135 0.148 0.134

* Local minimum

From above results it is clear that the minimum number of function evaluations and the
cpu time were obtained by TMSL but in terms of the accuracy of the solution it is not
quite so good as MSL and the CRS methods. The CRS5 method failed to locate the
global minimum and CRS4 was easily the best, of the other successful CRS methods. The
overall performance of ASA is better than SA but in terms of the accuracy the SA-type
methods are worse than MSL and the CRS methods. We also used the iterative dynamic
programming procedure, DP, (see Appendix 7A) designed by Luus (1989). The results
obtained are quite good, especially in terms of accuracy but these results are deceptive
since to obtain them a lot of preliminary work is needed for the determination of the

appropriate values of the parameters involved (Luus, et al, 1991).
7.2.2 Bifunctional Catalyst Reactor Problem:

This is a difficult optimal control problem, with a multiplicity of local maxima, orig-
inally discussed by Luus, et al, (1991). A chemical reactor with a bifunctional catalyst is

described by the following 7 differential equations:

T = -kir

&9 = kyz1 — (ko + ks)xo + kqzs

&3 = koxa

i4 = —kera + ksxs (7.3)
&5 = kaxg + keta — (ke + ks + ks + ko)zs + krxe + kiozr

¢ = ksxs — k7xg

iy = kgmf, - km.’l:-;
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The initial condition is xz(0) = (1,0,0,0,0,0,0), the integration interval is 0 < ¢ < 2000,
the rate constants are cubic functions of the catalyst blend u, given by

ki = ci1 + cipu+ ciau? +cqud, i=1,2,...,10, (7.4)

where the constants ¢;; can be found in Luus, et al, (1991) and in Appendix 7B. It is
required to compute w(t) so that x7(2000) is maximized for values of u satisfying the
constraints

0.60 < u < 0.90 . (7.5)

The performance index to be optimized is given by
£ = 27(2000) . (7.6)

For convenience we define
f = 10% x 2,(2000) . (7.7)

Luus et al showed, using recursive quadratic programming, that the problem has 25 local
maxima and then went on to find the global maximuimn f* = 10.094 using iterative dynamic
programming. In order to solve this optimal control problem, in all applications 10 time
stages are used. Therefore, there are 10 equal sections each of length 200 and piecewise
constant controls in each section u(0),u(1),...,u(9) to maximize the performance index
are sought. (Ten time stages were found to be sufficiently accurate by Luus, et al (1991)).
In Table 7.7 we compare the CRS algorithims. . |
Table 7.7
FE f* cpu

CRS2 210450 10.06* 401779

CRS3 200339 9.97* 411623

CRS4 - - -

CRS5 119373 10.05* 313210

* Local maximum, - Results not available

This Table shows the best results for the CRS algorithms which all failed to find the global
maximum. However, both CRS2 and CRS5 found the second best local maximum and
in terms of cpu time CRS) is much more efficient than CRS2. For this problem CRS4
completely failed to converge.

We now compare the performances of the MSL and TMSL algorithms. The results of
some best runs are given in Tables 7.8 and 7.9. The local search tolerance was 1077,
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Results of MSL
Tahle 7.8

¥ a N f* FE LS LM cpu

02 2 160 9.90* 7613 19 9 30112.50
0.2 4 100 990* 6521 19 9 27106.10
0.05 4 500 9.90* 11613 21 12  35495.30
0.06 4 1000 10.05* 20759 43 17 46635.40
0.02 2 2000 9.99* 10621 35 18 41758.40
0.02 2 1200 9.99* 6529 22 14  27305.90
0.02 2 1000 10.04* 5393 19 13 22386.70

* Local maxima

Clearly none of the runs for MSL could find the global maximum for this problem. However,
the second best minimum was obtained when v = 0.05 and ¢ = 4. The results for TMSL
show that it does obtain the global maximum

Results of TMSL

Table 7.9

N f FE LS LM c¢pu
150 10.09 5798 15 11  13882.0
150 10.09 5798 15 11  13882.0
175 10.09 8915 23 12 21397.8
175 10.09 8915 23 12 21397.8
250 10.09 10336 26 15  25488.5
200 10.09 10484 26 13  24899.9

N4 3 N N3 S
| S~ N - O S R - S

for all runs. Moreover, in terms of cpu time and FE TMSL is much better than MSL.
To try to make the comparison more fair we took N = 150 and o = 2 for both MSL and
TMSL, v = 0.2 for MSL and g = 6 for TMSL and ran both algorithms and the results
are shown in the Table 7.10. The results for MSL are the average of four runs, 2 of which
produced local maxima of 9.90 and 9.86 and the other two the correct global maximum.

Table 7.10
N FE cpu f*
MSL 150 11252 28676 10.094 (9.90,9.86)
TMSL 150 6013 14361 10.094

This Table shows that TMSL still exhibits superiority in both FE and cpu time.

We show the effect of ¢, on the SA algorithm, for this preblem, in Table 7.11.
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Table 7.11
f* FE to cpu
9.641* 171543 0.75 414400
9.027* 123900 0.85 296317
7.895* 27800 0.95 92939
9.645* 13618 0.99 38836

* Local maximum

Table 7.11 indicates that the effect of local search on accuracy is not so clear for this
problem as it was for the first control problem. However the more local searches the
greater the number of function evaluations and ¢, = 0.75 still seems a reasonable value to

use.
The results of all methods are now suminarized in Table 7.12.

Final Comparison of Best Results Found

Table 7.12
CRS2 CRS3 CRS4 CRS5 SA ASA MSL TMSL DP
FE 210450 200339 - 119373 171543 166317 20759 5798 -
cpu 401779 411623.5 - 313210.0 414400 391517 46635.4 13882.0 1622.3
o 10.06*  9.97* - 10.05" 9.641* 9.640* 10.05*  10.094 10.094

* Local maxima

From this Table it is clear that the minimum number of function evaluations and cpu time
were obtained by TMSL. Moreover, TMSL was the only algorithm to successfully find
the global maximum. MSL, CRS2 and CRS5 found the second best maximum MSL the
number of function evaluations is very high for CRS2 and CRS5 with CRS5 the better of
the two. Both SA and ASA produced the same maxima but in terms of FE and cpu time
ASA is better than SA. Again we tried dynamic programming and it successfully found
the global maximum with the best cpu time but much work was needed to determine the

values of some parameters as in the previous problem.
7.2.3 Pig-Liver Likelihood Function

This example arises from a statistical analysis of the elimination rates of flowing sub-
strates in pigs liver. The problem is to estimate the parameters of a model of steady-state
elimination by the standard statistical procedure of maximum likelihood estimation. The
full details of the mathematical model are given in Robinson, et al.(1983). Experimental
measurements of elimination rate, V;; (for j-th experiment on the i-th pig-liver), on 5 pig
livers, each measured under four or five different conditions are given in table 7.13. The
statistical model fitted to this data has 12 parameters, only two of which are of interest,
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the other 10 are nuisance parameters. This model was first investigated by Robinson, et
al.,(1983), who considered a Bayesian approach to the problem, using uninformative priors,
and obtained the marginal posterior densities of the two main parameters of interest by
quadrature methods. The two important parameters of interest are the Michaelis constant
for the enzyme-substrate interaction (k,,) and the coefficient of variation for the properties
of the capillaries assumed to make up the liver (€2). The 10 nuisance parameters are, for
each pig-liver 4, the standard deviation o; of InV;; and the maximum elimination rate,
Vinax,, of the whole liver.
Table 7.13
Experiinental values of V;

Liver 1 0.09 0.23 0.23 0.33 0.38

Liver 2 0.05 0.11 0.17 .24 0.35

Liver 3 0.26 0.36 0.55 0.57

Liver 4 0.15 0.21 0.36 0.41 0.41

Liver 5 0.16 0.33 0.67 0.70 0.74

Therefore, the log-likelihood function to be maximized can be written as
5
£ (ks €01, 105, Vs« Vinas) = = 3 (maInos + B2 /(203))  (1.8)
i=1

where n; is the nuunber of experiments on the i-th pig-liver (see Schagen, 1986). The data
is analyzed using Bayesian statistical techniques with normal errors assumed i.e. the error

distribution of In V;; is assumed to be normal (Robinson, et al.,1983). Therefore,

Rf (Vn;ax‘- ) kr,n, 62) == Z (ln MJ -_— ln 12,3)2 (7.9)

j=1

where f/;jmmodelled value for j-th experiment on the i-th pig-liver, based on k., €2, Vinax;»
etc and again n; is the number of experiments on the i-th pig-liver. The model values of
V,-j are found by solving the following non-linear equation

.\ 2

where, ¢;;, the logarithmic average of ¢; and &,, is given by

~ Ci _'Eo

= In(e; /To) ' (-1
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F;, ci and ¢, are known constants whose values are given in Table 7.14. It is clear from
(7.10) that f/ij is no longer expressible explicitly and must be determined by numerical

solution of (7.10) with nonzero €.
Table 7.14
Experiment F
2 1.03 c; 0.14 0.43 0.46 1.69 3.69
Co 0.04 0.20 0.23 1.30 3.20
4 0.94 G 0.08 0.16 0.28 0.43 1.65
Co 0.02 0.04 0.09 0.17 0.956
6 .96 c; 0.36 0.63 2.63 26.5
Co (.09 0.26 1.92 26.0
8 1.14 c; 0.23 0.36 0.80 1.47 4.12
% 008 013 048 114  3.78
9 1.22 G 0.16 0.35 2.0 18.4 24.4

Co 0.04 0.13 1.53 18.0 23.6

Robinson, et al.,(1983) integrated out the nuisance parameters and found marginal
posterior modes at k,, = (.225 and €? = 0.165. Schagen (1986) considered an alterna-
tive, maximum likelihood, approach, finding a maximum likelihood value of 23.264 by
optimizing the full 12 parameter likelihood function over [0, 1]*2. Schagen found that the
maximum likelihood estimates of these parameters of interest are somewhat different from
the marginal posterior modes and means obtained by Robinson, et al.,(1983). The best
maximum value he found was 23.983 in a reduced region where the ranges of variables
taken were Vipax, € [0.1,1] and oy, kyp, e? e [0.5, 1]. Hence it would seem that nuisance pa-
rameters have a considerable effect on the maximuin likelihood estimates of the parameters
of interest. We used owr methods to check this conclusion by recalculating the maximum
likelihood estimates. In fact we found that this 12-parameter-optimization problem has a
global maximum value 59.84 with a number of local maxima. However, we used the region
[0.03, 1)1? as the region of optimization in all implementations. Schagen’s results are given
in table 7.15. Noticeably Schagen’s estimates of the parameters of interest are significantly
different from those of Robinson et al indicating that the nuisance parameters may have

some influence on the estimates.
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All CRS algorithms have been applied to this problems and two different local maxima
and the global maximum have been found. The result are given in Table 7.16.

This Table shows that CRS2 could not find the global maximum, CRS5 is much more
efficient than the other methods and the overall performance of CRS4 is much better than
that of CRS2 and CRS3.

In the next Table we give the results of MSL for several runs. We took the local search

Table 7.15
ko = 0.186, € = 0.239, f* = 23.983

i a; Vinax;
1 0.046 0.391
2 0.448 0.367
3 0.739 0.539
4 (0.440 0.416
5 0.736 0.732

Table 7.16

FE f* cpu
CRS2 42796 54.67* 212.6
CRS3 272790 59.84 1350.3
CRS4 11291 59.84 63.8
CRS5 8367 09.84 57.0

* Local maximum

tolerance for this problem as 1075,

Table 7.17

v ¢ N f* FE LS LM cpu
0.2 4 100 59.84 8847 14 1  45.60
0.2 2 100 59.84 9531 15 1  47.87
0.1 4 100 59.84 4443 7 1  22.85
0.1 2 100 59.84 4443 7 1  23.15

Table 7.17 shows that the global minimum was obtained for all runs and the best results
were achieved for ¥ = 0.1 and ¢ = 4. The results of TMSL for this problem are given
in Table 7.18. As before TMSL successfully located the global minimum with fewer func-

tion evaluations and less cpu time. Surprisingly however the effect of ¢ and ¢ were not

significant.
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Table 7.18
g c N f* FE LS LM cpu
n 2 100 59.84 2011 4 2 21.85
n 4 100 59.84 2011 4 2 21.85
n+1 2 100 59.84 2011 4 2 21.85
n+1 4 100 59.84 2011 4 2 21.85

Finally, we used the SA algorithm. The results are shown in Table 7.19. For all values of
to the global minimum was obtained. Once again FE and cpu time decrease as t,, increases
but the effect of ¢, on accuracy is less marked than before with ¢, = 0.85 being the best
value.
Table 7.19

- FE to cpu

59.80 268568 (.75 1396.56

59.81 131222 (.85 686.74

5O.79 96634 0.95 502.31

58.69 103321 0.99 511.49

In Table 7.20 the results of all methods are summarized. This Table shows that within
the CRS algorithms CRS5 is the best and in the overall comparison TMSL and SA are
respectively the best and the worse algorithms.

Final Comparison of Best Results found
Table 7.20
CRS2 CRS3 CRS4 CRS5 SA ASA MSL TMSL
FE 42796 272790 11291 8367 268568 89265 4443 2011
cpu 212.6 1350.3 63.8 07.0 1396.5 5723 228 21.8
f* 5467 5984 50.84 59.84 59.80 59.84 50.84 59.84

* Local maxima,

For this problem, the model values of IA/',J together with maximum likelihood estimates
are given in Table 7.21 and 7.22 respectively. The maximized likelihood value found is
clearly superior to that found by Schagen’s routine. The estimates of the parameters of
interest k,, and € are more closely in agreement with the estimates of Robinson et al,
indicating that integrating out the nuisance parameters does not have a significant effect
on the values of these estimates. In our investigation of the problem, none of the local
maxima found by Schageh was located. The only maxima found were 59.84, 54.67 and
-23.025. The maximum 54.67 was located by CRS2 and that of -23.025 was located by
TMSL.
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Table 7.21
Model values (V;;)

Liver 1  0.093 0.217 0.228 0.345 0.374
Liver 2 0.058 0.1003  0.165 0.222 0.3362
Liver 3 0.2379  0.3655  0.548 0.598
Liver 4  0.1612  0.2147 03313  0.3884  0.4328
Liver 5  0.1657  0.3193  0.6516  0.729 0.7312
Table 7.22
km = 0.224, €2 = 0.168 f* = 59.84
i gy Vinax;
1 0035 0398
2 0.091  0.428
3 0.051  0.604
4 006 0.457
5 0.031 0.738

During the optimization, the model values IA/:;J.,- are found by solving (7.10) which is used
in (7.9) to evaluate each function value defined by (7.8). However, the Vi; have to be
determined by numerical solution of the transcendental equation (7.10). The data needed
in solving (7.10) are &; and F;. The values of é;; are given by (7.11). Therefore, the data
values are available from Tables 7.13 and 7.14. A PASCAL function for the calculation

of function values for the pig-liver function including a PASCAL subroutine for solving

equation (7.10) is given in appexdix 7C.
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CHAPTER 8

Conclusion



8.1 Conclusion )

In this thesis some recent stochastic global optimization algorithms have been studied and
modifications have been proposed. The modified algorithms have been tested on some
well-known test problems as well as on a number of practical problems. In this chapter we
summarize our conclusions and briefly indicate some areas for future research.

We have proposed a new algorithm, TMSL, which combines MSL with the topograph-
ical global optimization algorithm. The main differences between MSL and TMSL are that
instead of using pseudo-random numbers in sampling the search region, as in MSL, TMSL
uses a Halton sequence for sampling and instead of using sample reduction to find the
starting points for local searches, TMSL uses a topograph to find graph minima and then
carries out local searches from a subset of these. The effects of the user supplied parame-
ters for TMSL have been investigated and suggestions for their selection have been given.
TMSL was found to be much superior to MSL in terms of the number of function eval-
uations but not so competitive in terms of cpu time. This is because of the extra work
required for finding the graph minima in the TMSL algorithm. We have found that a great
advantage of TMSL is that it can avoid finding unnecessary local minima whose function

values are higher than the global minimum value.

The conventional SA algorithin cannot memorize the best solution during its execu-
tion. In ASA we have introduced a self-regulatory mechanism so that the best solution is
retained. This mechanism adapts the cooling schedule in such a way that the lengths of
the Markov chains and the rate of decrement of the temperature can both vary. We have
also incorporated a criterion in the stopping condition which may allow the temperature to
increase its value to a certain level. The effects of this re-annealing have been investigated
and we have found that this featwe is an important attribute of the ASA algorithm. We
have clearly demonstrated the marked superiority of ASA over SA,

The new CRS4 algorithm modifies the CRS algorithm by introducing the Hammersley
sequence for sampling and a periodic feature for generating a small number of points using
a S-distribution whenever a best point is evolved through the CRS2 algorithm. We have
also proposed the CRS5 algorithm which replaces a simplex-type local search in the CRS3
algorithm with a gradient-based local search. We have carried out various implementations
of the CRS4 and CRSS algorithms and have found that in each case they are much superior
to their original versions both in terms of cpu time and the number of function evaluations.
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We have also investigated the accuracy of the final solution which has suggested that there
is a need to incorporate a local search, as in CRS5, to refine the final solution of the
non-gradient CRS algorithins.

We have also judged the importance of the new algorithms on a number of practical
problems. In our opinion a real conclusion is very difficult to draw without knowing a
great deal about the problems. However our preliminary investigations have shown that for
problems with a small to a moderate numnber of local minima TMSL is the best algorithm
followed by MSL. Again this conclusion has to be considered with caution as one may
encounter numerical difficulties for noisy functions.

For problems with a large numbers of local minima, for example the problem con-
sidered in Chapter 5, TMSL is still better than MSL. However, for this problem the
performances of the CRS algorithins, especially the CRS4 algorithm, were satisfactory,
especially in terms of accuracy of the final solutions. However, CRS4 always achieved an
overall superiority over the rest of the CRS algorithms. Clearly the CRS algorithms may
be preferable to TMSL and MSL for problems with many minima and problems which are
discontinuous and for extremely noisy. It is therefore clear that there are circumstances in
which the CRS4 algorithm could have an important role to play.

Additional difficulties with the MSL and TMSL algorithins are that they have not only
to perform multiple local searches but also they have to store all distinct local minima and
minimizers obtained. This becomes expensive both in terms of cpu time and storage
for problems with a large number of local minima. The CRS algorithms can partially
overcome this drawback as CRS4 does not perform local searches at all and CRS5 only
needs to perform a complete local search to refine the final solution. However the CRS
algorithms are purely heuristic algorithms. For this reason the ASA algorithm, which is
superior to SA, may be preferable, firstly because even at low temperatures the algorithm
remains exploratory and secondly the amount of data that has to be stored is small. In
essence, therefore, ASA may be preferable for problems where the user has little knowledge
about their complexity.

Research could be continued in several directions such as, the choice of user supplied
parameters for TMSL and MSL especially for practical problems and the effect of different
stopping conditions and their possible improvement. The stopping condition for the CRS
algorithms also remains an important research area. Research could also be continued

towards the derivation of a more appropriate cooling schedule for ASA.

There is also a need to thoroughly investigate the practical problems we have consid-
ered in this thesis and consider other practical problems to further test the algorithms.
Finally, we claim that we have clearly shown that some of the best of the recent stochas-
tic global optimization algorithms can be. substantially improved even on very complex
practical problems.
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Appendix 2A
program halton{input,output);

const
ndims=10;
npoints=500;
" type
float=longreal;
mat=array 1..npoints,1..ndims] of float;
vec=array[l..ndims] of float;
posint = 0..maxint;
var
npts, ndim, i, j, k : posint;
pP,prim : vec;
xpt @ mat;
train :text;

procedure qrhal(var xpt : mat):
var
i, j» k : posint;
r,f,g,h : float;
begin
for i:=1 to ndim do
begin
r:=1/prim{i);
for j:=1 to npts do
begin
if j >1 then
f:=1.0-xpt[j-1,i]
else
f:=1.0-pl[il;
g:=1.0; h:=r;
while f-h <1.0L-3 do
begin
g:=h; h:=h*r;
end;
xpt[j,i]l:=g+h-£;
end;
end;
end;

begin
rewrite{train, 'hal.dat’);
npts:=10; ndim:=2; prim[1]:=2; prim[2]:=3;
pl1]:=0; p[2]:=0;
qrhal (xpt) ;
for i:=1 to npts do
begin
for j:=1 to ndim do
write(train, xptl(i,jl:=14,” /); writeln(train);
end;
end.
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Appendix 2B

The following test functions were chosen from Dixon and Szegd (1978).
GP (Goldstein and Price)

flz1, 22) =[ 1+ (@1 + z2 + 1)2(19 — 1421 + 32} — 14z, + 6z120 + 373) |
[ 30+ (2x1 — 3x9)*(18 — 327y + 1222 + 48%5 — 362122 +2723) |

Q={zeR?|-2<;<2,i=12}, z*=(0,-1), f(z*)=3
There are four local minima
BR (Branin)

Fflxy,x2) = a{zy — bx?d + cxy —~ )2 4 e(1 — f)cos(z1) + e where a = 1,b = 5.1/(4x?),
c=5/n,d=6,e=10,f =1/(8n)

Q={zeR?|-5<2 <10,and0<x; <15}
x* = (~m,12.275); (=,2.275); (3=,2.475), f(z*) =5/(4r).
There are no more minima.
'H3 and H6 (The Hartmann family)
\ 'Fﬂ;q’ ﬂé
flx) =— Ei=1 € €xXp ( - 2j=1 5 (TJ - T’ij)z)
Table 2a
H3 (n=3 and m = 4)

1 Qij C; Dij
1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 (.5547
4 0.1 10 35 3.2 0.038150 0.5743 (.8828
Table 2b
H6 (n=6 and m = 4)
t) Qij G Dij

16 3 17 3.5 1.7 8| 1 (0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.05 10 17 0.1 8 14]1.2}0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 35 17 10 17 8| 3 |0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
17 8 0.05 10 0.1 14]3.2{0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

B> W b e
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1 = {sr € R" I 0<my; £1,1<iL n} These functions both have 4 local minima,

Tloc X (Pity - -1 Pin)y f(Tloc) = —¢;

S5, S7 and S10 (The Shekel family)
fl@) ==Yz - a) (z—a) + )™

with the dimension n=4, m=5,7,10 for S5, 87, S10, respectively, z = (x1,...,7,)7 and

a; = (0.,',1, ...,a,:n)T.

Table 2¢
55, 87,510
i @i Ci
1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
0 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Q= {:r e R* [ 0<x; £10,1<5 < 4}. These functions have 5, 7 and 10 local minima
for 85, S7 and S10, respectively, Tipe = @i, f(Zioc) = 1/c; for 1 < i < m.
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procedure heatup(var starttemp,fval:datatype;

var

begin

Appendix 3A

var x:vector);

ml,m2,m :integer;

tdeml, tdem2,advml ,advm2 : datatype;
w,tempnext,diffcost,bot : datatype;

i,j,k: integer;

starttemp:=0.0;
tempnext:=0.0;

m:=0;
ml:=0;
m2:=0;
tdeml:=0;
tdem2:=0;
advml:=0;
advm2:=0;

fval:=obj(x);

nits:=nits+l;

repeat
starttemp:=tempnext;

moverslt:=allowmove(starttemp,diffcost,fval,x);

if (moverslt=ACCEPT) then begin

ml:=ml+1;

tdcml :=tdcmi+diffcost
end else
begin

m2:=m2+1;

tdcm2:=tdcm2+diffcost;
end;

if (m2>0) then
advm2:=tdem2/m2;
if (m1>0) then
advml:=tdcml1/ml;
if (moverslt<>REJECT)then m:=m+1;
bot:=m2+Chi - (ml#*(1-Chi));
if (bot>0) then
tempnext:=advm2/1ln(m2/bot);

until (m1+m2)=10*ndim;
T:=starttemp;
Ty:=T;

end;

function allowmove(var temp, diffcost,fval :

var x : vector) : moverslttype;

label 31;

var

w,prob,fp,fold,pp : datatype;
i,j,k : integer;
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31:

: vector;
flagl : boolean;
begin
fold:=fval;
w:=random;
if w<= 0.75 then begin
w:=random;
for k:=1 to ndim do
y [k] :=w*xlower [k] +(1-w) *xupper [k] ;
fp:=obj(y);
nits:=nits+l;
end
else
begin
grad(x,g);
for k:=1 to ndim do y[k]:=x{k]-silon*g[k];
fp:=obj(y);
nits:=nits+1;
if fp>fold then begin
silon:=0,5%silon;
goto 31 end;
end;
diffcost:=fp-fold;
if diffcost <= 0.0 then
begin
prob:=1;
end
else
prob:=exp(-diffcost/temp);
w:=random;
if (w>prob) then
allowmove:=REJECT

else

begin
for k:=1 to ndim do
x[k] :=y[k];
fval :=£fp;

if diffcost <=0 then
allowmove :=ACCEPT
else
allowmove:=PROBABILISTIC
end;
end;
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Appendix 4A

program hammersley(input,output);

const
ndims=10;
npoints=500;
type
float=longreal;

mat=arrayll..npoints,1..ndims] of float;

vec=array[1..ndims] of float;
posint = Q..maxint;

var
npts, ndim, i, j, k : posint;
p,prim : vec;
xpt : mat;
train :text;

procedure qrpham(var xpt : mat; prim : vec);

var
i, j,» k : posint;
r,f,g,h : float;
begin
for i:=2 to ndim do
begin
r:=1/prim[i];
for j:=1 to npts do
begin
if j >1 then
£:=1.0-xpt[j-1,i]
else
f:=1.0-p[i];
g:=1.0; h:=r;
while f-h <1.0L-15 do
begin
g:=h; h:=hx*r;
end;
xpt [j,1i] :=g+h-£;
Xpt[j,i]:=%j)/(npts+1)
end;
end;
end;

begin
rewrite(train, ’ham.dat?’);

n%ts:=50; ndim:=2; prim[2]:=2; prim({3]:=3;
P

11:=0; p[2]:=0;
grpham(xpt,prim) ;
for i:=1 to npts do
begin
for j:=1 to ndim do
write(train, xptl[i,jl:=14,’
end;
end.
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Appendix 4B
function BETA(al,bl,kl:longreal):longreal;

var

vli,v,w,r,s :longreal;
P :longreal;
ul,u2,z,t :longreal;
a,b :longreal;
accept :0..1;
gamma,betal :longreal;
alpha :longreal;
ii,jj :integer;

function random: longreal; external ftn77;
begin
alpha:=al+bl;
if al<bl then a:=al else a:=bl;
b:=alpha-a;
betal:=sqrt((alpha-2)/({2*a*b)-alpha));
gamma:=a+(1/betal);
accept:=0;
repeat
ul:=random;
u2:=random;

v:=beatl*1n(ul/ (1-ul));
w:=axexp(v);
r:=(gamma*v)-1.3862944;
s:=atr-w;

z:=ul*ul*u?;

if (s+2.609438)>=(5#z) then accept:=1;
if accept=0 then begin
t:=1n(z);
if s>=t then accept:=1;
end;
if accept=0 then begin
if r+(alpha*ln(alpha/(b+w)))>=t then accept:=1;
end;
until (accept=1);
if a=al then vi:=(ki1*w)/(b+w) else vl1:=(kl*b)/(b+u);
Beta:=v1;
end;
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Appendix TA

Dynamic Programming

Having the z-grid at each time stage, and the allowable values for the control at each

stage, the DP procedure as outlined by Luus (1989) can be summarized as follows:
Iterative dynamic programming algorithm
1. Divide the time interval t; into P time stages, each of length L.

2. Choose the number of z-grid points N¢ and the number of allowable
values M for the control u.

3. Choose the region r for the control values.

4. By choosing N values of the control inside the allowable region,

integrate (7.1) N¢ times to generate the z-grid at each time stage.

5. Starting at the last time stage P, corresponding to ¢ty — L, for each
z-grid point integrate (7.1) from ¢ty — L to t; for all the M allowable values
of control. Choose the control that optimized the performance index and

store the value of the control for use in step 6.

6. Step back to stage P—1, corresponding to time ¢t ;—2L, and integrate
(7.1) from ty—2L to ty— L for each 2-grid point with the M allowable values
of control. To continue integration from ty — L to t5 choose the control
from step 5 that corresponds to the grid point nearest to the resulting x
at ty — L. Compare the M values of the performance index and store the
value of control that gives the maximum value.

7. Continue the procedure until stage 1, corresponding to the initial
time ¢ = 0 is reached. Store the control policy that optimizes the perfor-

mance index and store the corresponding z-trajectory.

8 Reduce the region for allowable control values by a factor €;; i.e.
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where j is the iteration index. Use the optimal z-trajectory from step 7 as
the mid-point for the z-grid at each time stage, and use the optimal control
policy from step 7 as the midpoint for the allowable values for the control
L.

Increment the iteration index 7 by 1 and go to step 4. Continue
the iteration for a specified number of iterations (say 20) and examine the
results. '
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Appendix 7B

Coeflicients for the rate constants k;

i i1 Ci2 Ci3 Cia

1 0.2918487E-02 -(L.8045787E-02 0.6749947E-02 -0.1416647E-02
2 0.9509977E+01 -0.3500994E+02 0.42833290E+02 -0.1733333E+02
3 0.2682093E+02 -0.9556079E+02 0.1130398E+03 -(0.4429997E+02
4 0.2087241E+03 -0.7198052E+03 0.8277466E4+03 -0.3166655E+03
5 0.1350005E4+01 -0.6850027E+01 0.1216671E4+02 -0.6666689E+01
6 0.1921995E-01 -0.7945320E-01 0.1105666E+00 -0.5033333E-01
7 0.1323596E4-00 -{.4696255E+00 0.5539323E+00 -0.2166664E400
8 0.7339981E+01 -(.2527328E+4+02 0.2993329E4+02 -0.1199999E+402
9 -0.3950534E+00 0.1679353E+01 -0.1777829E+01 0.4974987E4+00
10 -0.250466E-04 0.1005854E-01 +-0.1986696E-01 0.9833470E-02
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Appendix 7C

function pig{var x: datatype):float;

var zw,sum,v,e2,km,vmax : float;
i,j,k : posint;

begin
ZW = 1.0; km := XEI]; e := x[2];
for j :=1 to 5 do

begin
sum := 0.0;
sigpigl[j] := abs(x[j+21);
vmax := x[j+7]1;
for i := 1 to numpigl(j] do
begin

solve(v,vmax,e2,fpig[j] km,cvalli,j,1],cvalli,j,2]);
sum := sum + sqr(In(vpigli,jl)-1n(v));
end;
zw:=zw*exp (-sum/ (2*sqr(sigpig[j1)) )/ (exp (numpig[j] *
In(sigpigljl)));
end;
if zw > 1.0e-20 then pig := -1ln(zw)
else pig := 50.0;
end;
end;
end;

procedure solve(var v:float; vmax,e2,f,km,ci,co:float);

var chat,fun,oldv,alpha : float;
begin
chat := (ci-co)/In(ci/co);
alpha := vmax/(km/chat+1);

v := 0.b5%vmax;

repeat
fun := 1+(v/(£*km))/ (exp((vmax-v)/{£*km))-1);
fun := 1 - (e2%vmax/(2*f*km))/sqr(fun);
oldv := v;

v := 0.5%(oldv + alpha*fun);
until abs{v-oldv) < 1.0e-6;
if v < 0.03 then v := 0.03;
end;
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