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ABSTRACT

This thesis is concerned with the extension of Zubov's
method for the determination of domains of attraction. The
basic definitions and theorems of Liapunov and Zubov as well as
a numerical algorithm (due to White) are given in the introductory
chapter.

The application of the method of Zubov to some practical
situations like power systems and control systems of order two
is the subject of chapter two.

Chapter three describes the determination of the domains
of attraction for scalar time varying systems The series solution
has a similar problem of nonuniform comvergence that occurs in
autonomous systems.

Extension of the method to third order nonlinear autonomous
systemsis included in Chapter four so that it can be applied to a
second ogder time varying system which is described in Chapter
five. Results in the form of slices or cross-sections of the
stability boundaries in the various principal planes are obtained.

Systems which have periodic solutions are examined and the
domain of attraction of the stable limit cycle is determined in
Chapter six. Approximate solutions are also used in trying to
determine the démain of attraction of the periodic solutions.

In Chapter seven a technique for solving ‘ ' global
optimization problems is presented. Several onme-dimensional and

two-dimensional minimization problems are solved and the results

indicate the accuracy of this technique.
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CHAPTER 1

INTRODUCTION




1.1 STABILITY PROBLEM.

In man's search for methods that enable him to analyse
physical processes, he is forced to approximate most of these
processes by idealized mathematical models. These models will
in general be systems of mathematical reiationships which only
approximate the original processes through some period of
observation. Methods developed by Newton, Lagrange and others
lead to a description of a physical process by a system of
differential equations which is an adequate model for many
applications. To understand the behaviour of the original process
and to attempt to predict the behaviour in situations not observed,
it becomes necessary to investigate the behaviour of solutions of
these differential equations.

An important branch of the theory of differential equations
dealing with the solution behaviour is the qualitative theory of
differential equations. The qualitative theory is concerned with

two majortproblems:

i) Classifying the solutions of differential equations by

their behaviour.

ii) Searching for methods for determining the solution
behaviour of a given system of differential equations, strictly
on the basis of information supplied by the analytic properties

of the right hand members of the differential equations.

A method used for tackling the second problem is the direct

method of Liapunov, which is one of the main tools for the




qualitative study of the solutions of differential equations.
The application of the direct method of Liapunov to problems of
practical significance has met with only limited success.
However, there are notable exceptions such as the criterion
given by Popov as a solution to Lure's problem. The Popov criterion
is a necessary and sufficient condition for the existence of a
positive definite Liapunov function of a 'quadratic plus integral
form' which is capable of ensuring asymptotic stability in the
large for a system of equations with a single nonlinearity. The
Popov  results are only valid for asymptotic stability in the
large. If this is not the case, then more elaborate procedures
than that of Popov must be found for estimating the domain of
asymptotic stability.

In search of these techniques, several problems become cbvious;
first, it is difficult to construct a suitable Liapunov function
and, second, the resulting approximation to the region of asymptotic
stability;obtained by setting the Liapunov function equal to an
appropriate constant does not guarantee a complete domain of
asymptotic stability. These problems have been studied theoretically
by Zubov Eﬂ and are discussed further by Margolis and Vogt Eﬂ 2
Yu and Vongsuriya Eﬂ, Sarkar and Rao Ea, Hewit Eﬂ and many others,
Great attention has been devoted to autonomous systems, however, the
stability analysis of nonlinear nonautonomous systems is not a highly
developed subject yet. It is the purpose of this thesis to investigate
the stability properties and the domain of attraction of nonlinear
nonautonomous systems, and also to extend the application of the

method of Zubov to power and control systems, The stability region




of third order nonlinear autonomous systems and periodic systems
which still require further research will also be investigated.
The terminology of the theory of stability will be borrowed to
solve global optimization problems through the concept of the

region of attraction of a minimm,

1.2 NROTATION.
All results are formulated in the n-dimensional Euclidean
space R" and the usual properties of this space will be assumed.

The norm of the vector, ]§| will be given as
xl = " 0! - ae, 0.

We shall denote the scalar quantity time by t, and the n+l
dimensional space of the variables (x, t) will be represented as
the Cartesian product R" x R. Let S[r] denote the set of all x
such that |5| £r, r30. S(r) denote the set of X such that
|z] < ¥, r > 0. I denote the set of all t such that t > t

1
t 20and J
[a)

{estgt, t3 to}..In this notation, the subset of
K" X R for which |x]¢r, t3 t, will be given as slr] x I.

A region is a set U C R" such that U is the union of an open
connected set with some, none or all of its boundary points. The
set U is an open region if none of its boundary points are included

and is a closed region if all its boundary points are included.

The complement of the set U with respect to R™ will be denoted by
R™\U. In this terminology the boundary of an open set can be given
by T\u.

The n-dimensional vector space with elements x will be called




the phase space and the n+l dimensional space composed of (%, t)

will be referred to as the motion space. If the xi(t), i=1,.ec,n

are continuous functions of t, the segment of the curve in the

motion space between & and the £€t¢g t, will be called the

motion of x(t) and its projection on the phase space .’S(t) will be

called the trajectory of the motion.

The vector function f(x,t) is said to satisfy a Lipschitz

condition on Sfr] X I with respect to x if

|£(x,5t) - £(x,, 0} < m|x,-x,] (1.2.1)
for X%, €sgltl, te€1I, m € (0,®)

£(x,t) satisfies a local Lipschitz condition on S[r] x I with
respect to x if for every X, € S[r), t € I, there exist numbers

m >0, 6 >0 such that

|£¢z;,0) - £Gx,,0)] < mlz x| t€1

L
whenever

]51 1":0| d '52 _OI
The vector differential equation

x = f(x,t) (1.2.2)
is a system of n scalar differential equations of first order or
in some cases a single scalar differential equation of nth order.
The point (§°,t0), where the solution originates, will be called

the initial value, X, the initial condition and t_ the initial

instant. A solution E(t,go,to) of the differential equation




(1.2.2) has the following properties

d =
-a-E-E(t,‘J_! ,to) = f_(’i(t’}_rosto))

2{-(tca’zt::’to) B T

1f f£(x,t) depends on t explicitly, it is said to be nonautonomous,

if not, it is said to be autonomous. The.singular points of (1.2.2)

are defined as those values of x such that
E(i't) =0 for all t € 1.

Let x be one such value of x, then X = gwill be a solution of

(1.2.2) and x = z will be called an equilibrium position of the

differential equations.

We shall assume that _f_ (i’t) is smooth enough so as to ensure
the existence of a solution for any finite initial condition
(§°,to). Several authors [6,7,8,13] have pointed out that the
uniqueness of the solution of the given differential equation is
not an essential requirement for the application of the direct

method of Liapunov.

1.3 DEFINITIONS.
As a prelude to the development of the basic theory of the
direct method of Liapunov, the concept of definiteness must be

considered for scalar functions V : R° + Rand V : R® x I + R.

Definition 1.3.1.

The real scalar single valued function V(x) which is defined




and continuous on S[r] and such that V(0) = 0 is positive definite

on Slr] if V(x) > 0 for all x € slr] - {0}. V(x) is negative

definite on S[r] if -V(x) is positive definite on S[r].

Definition 1.3.2.

The real scalar single valued function V(z,t) which is defined
and locally Lipschitzian on S{r] x I with V(0,t) =0 for t €1

and V(x,t) is continuous on I, is positive definite Enegative

definite] on S[r] X I if there exists a function W(x) which is

positive definite on S[r] such that
Vix,t) 3 W(x) |_Ts - W(g;)] for every x € Sir] , tE€EI .,

Definition 1.3.3.

The real scalar single valued function V(x,t) is decrescent
on S[r] x I if there exists a continuous function W(x) defined on

S[r] such that W(0) = 0 and
.;[V(E,t)l € W(x) on S[r] x 1.

Definition 1.3.3a. (Alternative Definition).

A function V(x,t) is decrescent if 1im V(x,t) = O uniformly

with respect to t as IE{_I =+ 0,

Definition 1.3.4.

Let a real scalar single valued function V(z,t) be defined
and satisfy a local Lipschitz condition on some set S[r] x I and

for any x, let V(x,t) be continuous on I, and v(0,t) = 0 on I.

The total derivative of V(gx,t) along the integral curve _g_(t,:_go,to)

of x = £(x,t) is defined as




. V(i(t+At,_J_to,to),t+At) - V(E(t,:_:o,to),t)
V(_x_(t,:_co,to),t) = lim sup At

At » 1:)+ \
(1.3.1)

or

Vg+Aef(x,t) ,t+AL) = V(x,t)
At *

{T(;_:_(t,go,to),t) = lim sup
At + 0"

If V(x,t) is continuously differentiable on S[r] X I then (1.3.1)

becomes

7 -V A kel
Vix(t,x ,t ),t) = ox, £,(x5,0) + ...+ %, £,(x,8) + 55 .

Let us assume for the given differential equation

¥ = g(y,t)

that Y(t) is a particular solution. By changing the variable
x =y = Y(t) the origiral equation becomes the equation of the

perturbed motion,

+
X =g(x + ¥(t),t) - g(¥(t),t)
or % = £(x,t)
(1.3.2)

The study of the behaviour of the solutions of the equation of
perturbed motion (1.3.2) in the neighbourhood of the equilibrium
X = 0 is equivalent to considering the behaviour of the original

differential equation in a neighbourhood of the particular

solution Y(t). The stability behaviour of the solution of this




differential equation is defined according to Liapunov [10] as

follows:

Definition 1.3.5.

The equilibrium x = 0 of (1.3.2) is stable if for every

€ > 0 there exists § =6(e,t°) such that
|J_c°I < § implies ]_x_(t,;_:o,to)[ <eg , t€I.

Definition 1.3.6.

The equilibrium x = 0 of (1.3.2) is asymptotically stable

i) the equilibrium x = 0 is stable

ii)  there exists a y > 0 such that |_J_co| < y implies

1lim [x{t,x ,t }| =0 .
tin lseg,ot)|

Definition 1.3.7.

The %quilibrium x = 0 of (1.3.2) is unstable if there exists
€ > 0 such that for every 6 > 0, there is an initial point X,

with ll{ol < 6 and the solution x(t,xo,to) is such that

[x(t,lto,to)[ s € for some t€TI.

Definition 1.3.8.

If the equilibrium x = 0 of (1.3.2) is asymptotically stable,

then the set of initial values (:_{O ’to) such that

i—l:: l'}—c(t’]-':o’tc,)I +0




forms the region of asymptotic stability, which will be denoted

by 8 X J. Other terminologies for X J include "region of
attraction of the point x, 0" and "domain of attraction of the

equilibrium",

Definition 1.3.9.

If the equilibrium x = 0 is stable and

lim |x(t,x ,t }| =0
lin |x(e,x,0t)|

for all (Eo,to) € R" x R, then the equilibrium is said to be

asymptotically stable in the large.

Definition 1.3.10.

The equilibrium x = 0 is said to be uniformly stable if for

every € > O there exists a number § = §(e) such that

I.Ifol <6 = li(t’io’to)l <Ee , tel .

¥
Definition 1.3.11.

The equilibrium x = 0 is called uniformly asymptotically

stable if

i) x=0 is uniformly stable

ii) for every n > O there exists a number T(n) such that
|§(t,§o,to)| <n for every t 3 L+ T{n) and for

every (Eo,to), t 3 0, |§0| <48 .
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Definition 1.3.12.

If the equilibrium x = 0 is uniformly asymptotically stable
for all (Eo,to) € ’" x R, then the equilibrium is unif&rmly

asymptotically in the largpe,

Definition 1.3.13.

An asymptotically stable equilibrium x = 0 is called uniformly
attracting if for every h > 0, h < § and every (Eo’to) such that
h € [EOI €9, t 3 0 implies the existence of numbers a > 0,

T > 0 such that

Ig(t,x_o,to)[ >a for every t € [to’to + 'IZ| .

1.4 MATN THEOREMS OF LIAPUNOV.

The purpose of this section is to present the main theorems
of Liapunov stability theory. Most of the material to be
presented can be found in various places in the literature [?,9,11,12].
These thegrems are included because Liapunov stability theory is
the main tool used in this work but proofs are excluded since they
are adequately reviewed in the literature. Liapunov theory has
been applied to many practical problems such as power systems,
chemical systems, control theory problems, networks, etc.; to
determine whether the equilibria are stable or not, without actually
solving the differential equations of the system. It is the beauty
of this method that the stability as well as the estimates of the

domain of attraction of many complicated problems can be inferred.,
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Theorem 1.4.1. (Stable)

The equilibrium x = 0 of (1.3.2) is stable if there exists
a scalar function V(x,t) with continuous first partial derivative

with respect to x and t such that

i) V(x,t) is positive definite on S[r] x I

ii) The derivative V of V along the motion starting at tyX

is at least negative semi-definite.

Theorem 1.4.2. (Asymptotic Stability)

The equilibrium x = 0 of (1.3.2) is asymptotically stable if
there exists a scalar function V(x,t) with continuous first partial

derivatives with respect to x and t such that

i) V(x,t) is positive definite on S[r] x I
ii) V(x,t) is decrescent on S[r} x I

iii) #V(x,t) is negative definite on S[z]x I .

Theorem 1.4.3. (Instability)

The equilibrium x = Q0 of (1.3.2) is unstable if there exists
a scalar function V(x,t) with continuocus first partial derivatives

with respect to X and t such that

i) V(x,t) is decrescent on S[r] x I
1i)  V(x,t) has a domain of negativity V< O for t > t

iii) \}(x,t) is negative definite on S[r] x I .
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Theorem 1.4.4. (Asymptotic Stability in the Large).

The equilibrium x = 0 of (1.3.2) is asymptotically stable

in the large if there exists a scalar function V(x,t) such that

i) Vv(x,t) is positive definite
ii) V(x,t) is negative definite
iii) V(x,t) is decrescent

iv) v(x,t) is radially unbounded.

In many cases it is not sufficient to know merely that a system
is asymptotically stable with respect to the undisturbed motion
x = 0. Some estimate of the allowed initial disturbances is required

in addition.

Theorem 1.4.5. (The Region of Asymptotic Stability).

The region A containing the origin is a region of asymptotic
stability’of ah - .~ 7 asymptotically stable solution of system
(1.3.2) if there exists a scalar function V(x,t) possessing the

properties

i) V(x,t) is positive definite for x €4, €30
ii) G(E,t) is at least negative semidefinite in A
iii) GQE,t) # 0 on any nontrivial trajectory in A
iv) UV(x,t) # 0 in A except at x = 0

v) One of the curves V(x,t) = constant defines the boundary

of A.
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1.5 THEOREMS OF ZUBOV.

In the process of seeking a suitable Liapunov functiom so
that an estimate of the domain of attraction can be achieved,
several methods like Ingwerson [llﬂ, Szego [15], Variable
gradient [:lﬂ , Nesbit ]:].EEI and many others have been developed.
Since the Liapunov function is not unique, the stability domain
defined by V(x) = constant, may or may not be a good approximation
to the actual domain of attraction. There has been no general
method for generating a suitable Liapunov function which guarantees
asymptotic stability and exact stability boundary. Zubov [1]| to
some extent devefops a method for constructing a Liapunov function
for asymptotically stable nonlinear systems which leads to the
determination of the exact stability boundary. However not all
Zubov's equations can be solved analytically. When the partial
differential equation cannot be solved analytically, an approximate
series solution is used and the stability boundary is only an
approximagion to the true stability boundary. If the equation can
be solved analytically, the closed form Liapunov function defines
an exact stability domain and hence the stability questioms are
completely answered.

The Zubov equation which is being studied may be written as

n
I 5 @0 £ (%0) *+ 3 (x,8) = = §(x,t)(L - eV(x,t))

i=l "7
(1.5.1)
for nonautonomous systems or
n
v
I sr ® £ = - ¢ - eV(x) (1.5.2)
i=1

for autonomous systems, where ¢ is a positive definite function.
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The equation given by e = 1 is known as Zubov's regular equation
while e = 0 gives the Zubov's modified equation. Let us now
state the Zubov Theorems for both stationary and non-stationary
systems. Denote V(x,t) as the solution to the regular Zubov

equation and W(x,t) as the solution to the modified equation,

Theorem 1.5.1.

The function V(x,t), the solution to (1.5.1) is a Liapunov
function which establishes the asymptotic stability of the

unperturbed motion x = 0 of system (1.3.2).

Theorem 1.5.2,

If a region A exists which includes the origin and within
which 0 € V(x,t) € 1, then any trajectory originated in this
region will converge to the origin. Conversely, on any trajectory

which converges to the origin,

¥ 0€V(x,t) <1,

Corollary 1.5.1.

If the modified Zubov equation is considered then we will

have the condition

0g W(E,t) <o

Proof of Theorem 1.5.2,

i)  Sufficiency: (0 ¢ V(x(0),0) < 1 implies asymptotic

stability). This follows immediately from (1.5.1) which can be




Tta
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written as

Ko-va-wn . : (1.5.3)
By assumption, V is positive definite in A and has a negative
definite time derivative given by (1.5.3). From (1.5.3) it is
clear that V admits an infinitesimal upper bound. Hence, V satisfies
all the conditions of Theorem 1.4,2, Therefore all solutions starting
in A will remain in A and converge to the origin.
Necessity: (Asymptotic stability implies 0 € V(x(0), 0) < 1).

Integrating (1.5.3) gives

t
V(x{(0), 0) =1 - (1-v(x(t), t)) exp(- I d{x(t"))dt"). (1.5.4)
o
As £ > o, (1.5.4) becomes
V(x(0), 0) = 1 ~ exp(- Im d(x{t'))dt"). (1.5.5)

(o]

The integral in the exponential exists if and only if x(t')
originates in the asymptotic stability region.

If x(0) = 0, we obtain the trivial solution of (1.3.2). Since
¢(0) = 0, then from (1.5.5) we have V(0, 0) = 0 which is the initial
condition on V. If the integral in (1.5.5) is infinite then V is
equal to one. Hence from {(1.5.5) V cannot be less than zero nor

greater than one. This proves the theorem.
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Theorem 1.5.3.

The curves V(x,t) = 1 or W(x,t) = » if they exist are the
integral curves of (1.3.2) which define the boundary of the domain

of attraction.

Definition 1.5.1.

Let A € (0,1) and B € (0,%).

G(X), H(B) are the sets given by

G

{(x,£): V(x,t) <A}

and

H(B) = {(x,t): W(x,t) < B} .

Theorem 1.5.4.

For any values of A € (0,1), B8 € (0,=)

G()), H(B) are bounded domains inside the domain A,

Theorem 1%.5.5.

If )\1 < Az and Bl < 32, then

G(r)) C 60y
and

H(B,) cuE,) .

Theorem 1.5.6.

If Al =1 and B = « then G(1) = H(xw) = A,
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Theorem 1.5.7.

For a fixed ¢(x,t), the solution V(x,t) of (1.5.1) is

uniquely determined inside the domain A.

Theorem 1.5.8.

The limiting values of the function V(x,t), W(x,t) as

(x,t) > (£, ) are given by

lim _ V(x,t) =1  for all (§,t) € A-A
(x,t)>(E,t)
and
lim _ W(x,t) =«  for all (E,t) € A-A
(x,£)*>(E,t)

where (E,'t-) is a point on the boundary of region A.

Theorem 1.5.9,

In order for the equilibrium x = 0 of system (1.3.2) to be
asymptotieally stable in the large it is necessary and sufficient
that

V(x,t) <1 or W(x,t) <o for all (x,t) € R xR .

Theorem 1.5.10.

In order for the region A which contains the origin to be
the region of asymptotic stability of a uniformly asymptoti.ca“_y
stable and uniformly attractive zero solution of the system
(1.3.2), it is necessary and sufficient that there exists two

functions V(x,t), ¢(xpt)possessing the following properties:
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i} V(x,t) is defined and continuous in A; and ¢(xt)is

defined and continuous for all x.

ii) V(x,t) is positive definite in A and ¢(xt)is positive

definite in R".

jii) Vand ® + O uniformly with respect to t, t 2 O as

|z} + 03
iv lim _ _ V(x,t) = @, where (E,'f:') € A-A and is a
(Eat)+(§st)

point on the boundary of region A.

v) The total derivative of the function V, calculated by
virtue of system (1.3.2), satisfies the relation

av
dt == ¢(_§,t)

Not all of the proofs of the theorems are given. Theorem
1.5.2 is proved as an example. Other proofs of these theorems
are readi‘ly available in the literature,

The theorems for autonomous systems follow in the same manner
as that stated above for nonautonomous systems. Most of these
theorems can be found in Zubov |1, Margolis |:2:] and other

literatures.

1.6 OTHER METHODS.

It is convenient at this stage to describe other work carried
out on Zubov's method in order to show its development and

importance. Some have attempted to solve Zubov's equation by
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way of series solution as proposed by Zubov himself or other
classical methods of solving differential equations. Burnand
and Sarlos [18] employ Lie series of linear operators to solve
Zubov's partial differential equation, while Kormanik and Li [19]
apply this Lie series method to generate points on the stability
boundary. Davidson and Cowan ]:2(3, Rodden EZ]], Texture E22]
developed numerical techniques to analyze Liapunov functions

and determine the stability region. Infante and Clark [233
present a different approach to the determination of asymptotic
stability which utilizes the vector cross product to construct

a Liapunov like function. Let us now discuss some of the methods
which have been developed to generate a Liapunov function and

study the stability analysis of the equilibrium.

i) Lagrange Charpit Method.

Recent work by Miyagi and Taniguchi E2€| attempts to solve
Zubov's equation by solving the characteristic equations by
using the Lagrange Charpit method. They consider a nonlinear

system represented by

x=£f( , £ =0 . (1.6.1)

The construction of the Liapunov function is based on the

solution of the partial differential equation
T
F(x,V,p) = p £(x) + ¢(x) =0 (1.6.2)

where p = g—}v{ and ¢(x) is an arbitrary non-negative function.

The characteristic equation for (1.6.2) is given by
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e B av S S U
It U R TR R, aF v T, aF
Bpl Bpn 1 Bpl n Bpn Bxl 1 9V an n oV
(1.6.3)
oF aF aF . ] 2 .
where sgi ’ 5;;,..., 5;; include E%i,...’ 5%- respectively.

The following n-1 equations containing at least one component

of p are derived from equation (1.6.3):

Gl(E’V:B! ‘g%) =0
3y _
6,(x,V,p, 5%) -0 (1.6.4)

3¢y _
Gy (2:%22s 3 = O

F and G's have a common solution provided

n [9G, oG,
E;i,F] = 3 [3_1_%13_ - g—F -55] =0 (1.6.5)
k=1 P Py
 J
where i=1,2,...,n-1.
When EGi,FJ still give partial differential equations including
P, they also have a tommon solution with F. Letting [Gi,F:I =G
once again, then all the unknown functions %3- seney %% and ¢ will
n

1
be determined from the conditions

n BG oG 9c
[ ,G] [ m m 2.] =0
2 k ) % B9 X Fp

(1.6.6)

R e
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vhere £, m = 1,2,...,max [s], s>n-1, £ #m and

ng‘ BGE. an
q =-ag+pka—v" . (1.6.7)

Solving equations (1.6.2) and (1.6.4) gives p as a function

of X and V
P =p(xV) . (1.6.8)

The possible Liapunov function is then given by

X

(o]

with - V(x) = ¢(x) . (1.6.10)
This method determines the arbitrary non-negative function $(x)
which allows the Liapunov function to be determined. However
Zubov's theory is not employed in the determination of the
stability boundary and thus the exact boundary is not found.
Let us extend the above method to a scalar time varying system.

Ve consiagr

x = f(x,t) with £(0,t) =0 . (1.6.11)

The partial differential equation will then be

F(x,t,V,p,T) = p £(x,t) + r + ¢(x,t) = 0 (1.6.12)
where = %g-, r= %%-, $(x,t) is an arbitrary positive

function.

The characteristic equations for (1.6.12) are given by

E=dt= dv - dp - dr

3F oF T 3F, OF OF oF (1.6.13)
p P 3 X

P ottt
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where Fx’ Ft include ¢x’ ¢t.

From equation (1.6.13) we derive two equations containing

either p or r such that

3
G, (x,t,V,r, 5% , g%b =0

36 3¢

Gz(x,t,V,r, x ? 3t) =0

For F and G to be compatible, they must satisfy

3(6;,F)  A(E,,F)
[Gi’F:I “ & ' IED

9; ap gp 9% O

G or  aF 96

for i =1,2.

conditions

¥ = =
E;I,GZ:I 0 and I:Gz,l?] o .

X, t, V.

Then
t

X
Vix,t) = I pdx + I r dt
o 0

with - V(x,t) = ¢(x,t) .

x = ~ tx(1-x)

3% 9p 3x3p | 3t dr 3t ir

(1.6.14)

=0 (1.6.15)

The unknown functions ¢x, ¢t’ ¢ are determined from the

(1.6.16)

Solving (1.6.12) and (1.6.14) we get p, r as a function of

(1.6.17)

(1.6.18)

Let us consider as an example a scalar time varying equation

(1.6.19)




F=-ptx(l-x) +r + ¢(x,t) =0 .

The characteristic equations are

dx - dt = av - =dp -dr
-tx(1-x) -ptx(l=-x)+r -pt(1—2x)+¢ -px(l-x)+¢t

Suppose G1 =a(t) B(x) ~r =0
then
2 ] 3
G, = [GI,I-] = - 52 atx(l-x) + gTa + —¢ - px(l=-x) = O
[Gl,cz] -- “33 x(1-x) + [— 38 g‘; tx(l-x) - —ax(l-x)
+ Baza ﬂ =0
2 2
ot ot
6,8] = 2B g2 (1-)+3—But (1-2x) - 28 3ot k)
2° gl X 3x 3t Jtox
op . 03B _
Tt S0 ¢
¥

Integrating (1.6.23) with respect to t twice gives

% _ 28 x(1-x) |a(t)dt + 2 x(1-x)a(t)t - Baa + O(x)
at 3x ox

d(x,t) = %g-x(l-x)t Ja(t)dt = B(x) a(t) + 3(x)t + ¥(x)

where ¢(x), Y(x) are arbitrary functions.

From (1.6.24), (1.6.25), (1.6.26) we get

Y(x) =0 .

(1.6.20)

(1.6.21)

(1.6.22)

(1.6.23)

(1.6.24)

(1.6.25)

(1.6.26)

§
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Therefore
G(x,t) = -g% x(l=-x)t Ja(t)dt - B(x)a(t) + &(xdt . (1.6.27)
Now r = a(t)B(x)

& (x) 3B(x)
P = x(1-x) * Ix Iu(t)dt

therefore
X t
V(x,t) = I pdx + I rdt
o o
X
- L —ix) (‘i’f;; dx + B(x) Ia(t)dt
and
- \'r(x,t) = %-5— x(1-x)t Ia(t)dt - B(x)a(t) + d(x)t .
Suppose

8(x) = B(x) = x°, a(t) = 0

then V(x,t) = - x - in(1~x), - ﬁ(x,t) = tx2
2 -t
for L& =x7, Bx) =-x-a(l-x), a(t) =-e
V(x,t) = l:— x - R.n(l-x)] I:l + e“ﬂ
. 2 -t -t 2
and - V(x,t) =x"t e - [% + ln(l—xi]e + tx~ .

From this example if we apply Zubov theory we will get the
domain of attraction as (—=,1) for all t 3 O which is the actual

domain of the problem.

ii) Format Method.

Peczkowski and Liu [?E] introduce a method which generates

a scalar V-function and has the property that, along the trajectories
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of a system under consideration, the scalar functions VorV- Vt
take on a preassigned or desired form. It is called a format
method since it is based upon a fundamental vector matrix equation
or format v = ED + P:I f, which mathematically represents every
vector V which satisfies the scalar product v.f = V- Vt. The
Liapunov functions are generated by the format method in the
following way.

Given system (1.3.2), a form
VW.f = L(x,t)fi2 . i=1l,..., ormn (1.6.28)

is chosen where L is sign definite.

The matrix format is given as
v=[D+pf (1.6.29)

where D is an unspecified diagonal matrix and P an undetermined,
arbitrary skew symmetric matrix.

The curl equations

+ v, ov.

aTl.'.-—E;‘%-’ i#j 'Y i,j =1,.--,n (1.6-30)
] 1

are solved to find the elements of the matrices P and D.

The matrix format is then written as

we=[+p]f . (1.6.31)
Then
V(x,t) = F W dx (1.6.32)
o]
and
V(xt) = W.£ +V, = Les,0E 2+ v . (1.6.33)
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In this method we have to restrict system £ so that V is

positive definite, decrescent and V is negative gemi-definite.

The Liapunov function generated gives the sufficient conditions

for stability or uniform asymptotic stability of the origin.

Consider a system

or

X + f(x,%x,t) =0

% =%

iz = - f(xl,xz,t) .

To generate the V-function which gives

we choose

The format i

|4
]

V=L £

) 0], where L is assumed to be constant
D=

-0 —

"0 -p]
P = P o |» @ constant skew symmetric matrix.

b+ 7e
= pf(xl,xz,t)

PX, = Lf(xl,xz,t) .

The curl equation gives

Hence

G S L/p =k a positive constant,
Ix, [ 9%q

v=V=p f(xl,xz,t)

x, + kf(xl,xz,t)
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and
xl xg x2
V= Io f(xl,O,t)dx1 + -5 * k Jo f(xl,xz,t)dx2

is positive definite for all t 3 O, with

2
V=~ E{f(xl,xz,t)} .

Suppose 2 ~t
then x2 x2 x2

v =_23+ 12 2 x(1+e )
and

) t2
V-l (e ).

-l - , This function is a candidate for a
Liapunov function which gives sufficient conditions for the

stability of the origin.

iii) Metrie Algorithm [26,27]

The algorithm is described as follows

a) A time varying nonlinear differential equation is written as

ii = Fi(x,t) l1£€ign, t30 (1.6.34)

b) A set of n(n-1¥/2 differential equations of integral curves

is formed by eliminating dt

dxi ) Fi(x,t) i s
dx. F. t ’
% Fy(xt)

e
.

(1.6.35)




c)

d)

e)

£)
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The equations are converted to the same number of differential

one—forms by cross multiplying and rearranging

e
v

Fj(x,t)dxi - Fi(x,t)dxj =0, i (1.6.36)

Reduce (1.6.36) to a single one-form by addition and subtraction

W= wl(x,t)dx1 + ...+ wn(x,t)dxn . (1.6.37)

A line integration is taken with t held constant and the result

is taken as a Liapunov function

V=jw=
X

n
+ ...+ jo wh(xl,xz,...,xn_l,yn,t)dyn . (1.6.38)

X xz

1
Jo Wl(ylsoy"-st)dyl + Io WZ(xsyzbos"'at)dyz

The total derivative of V with respect to t is taken and the
V and V are restricted so that the stability theorems are

satisfied,.

To illustrate the method, let us consider a damped Mathieu

equation

X +b(t) x+a{t)x =0

where b(t) and a(t) are continuous, a, 3 a(t) » a, > O and

2 1

b2 > b(t) ;bl > 0.

In state variable form - the equation is

iz = - b(t)x2 - a(t)x1
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therefore

dx1 ) x2
dx2 -b(t)xz-a(t)x1

The differential form is

[E)(t)x2 + a(t)x];]dx1 + xzdx2 =0

x2 xZ
with V= a(e) 5+ -2
. _ a(t) 2 _ 2
and v 7 X b(t) Xy
For V to be negative definite 4(t) should be negative .

i.e. a(t) is a decreasing function,

V is positive definite and decrescent.

Therefore if a(t) is a decreasing function then the equilibrium
of the Mathieu system will be asymptotically stable.

This algorithm does not provide a detailed theoretical discussion
which leads to the formulation of (1.6.36) and (1.6.37). Each of
the equations, (1.6.36) could possibly be multiplied by arbitrary
constants and added as required by (1.6.37). Wall and Moe have
multiplied these equations by unity but multiplication by arbitrary

constants could have resulted in improved conditions of stability.

1.7 WHITE'S METHOD.

White [28] presents a mumerical method which overcomes the
problem of nonuniform convergence of Zubov's method and produces
a better estimate of the domain of asymptotic stability,

The method initiates near the boundary of the stability domain
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and computes trajectories which either tend to the origin or
away from itdepending on where the computation is initiated. The
stability region considered is an approximation to SR N D{f)

where D(f) is the domain of asymptotic stability and
sp = {x : |x|] <R} (1.7.1)

with R a positive number.
His approach of using V to compute x(V) is different from

Texter [22] and Davidson and Cowan [2(3 where x(t) is being computed.

The numerical method is briefly described as follows:

The system equations in m dimensions are given by
=1
or equivalently

:'ci = fi(«’i) i=1,...,m (1.7.2)

with the origin assumed to be an equilibrium, i.e,

fi(_(_)_) = i=1l,.0.,m . (1.7.3)
Zubov's equation is given by

V = - (x) (1-eV)

T

) S v
.21 £, 5 =~ ¢(x)(1-eV) (1.7.4)
i= i :

\

where e = 0 or 1 for the modified or regular form respectively.
The auxi liary equations of (1.7.4) are

d__ dx av

X
1 m ___ av
£, e fﬁ) ¢(x) (1-eV) - (1.7.5)
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Rearranging (1.7.5) gives

dxi - fi(?_{_) .
& Px)(1-eV) i=1,...om. (1.7.6)

(1.7.2) and (1.7.6) are two systems of ordinary differential
equations for x; in terms of t and V respectively. The latter
is obtained from (1.7.2) through the above procedure. It is
agsumed that the initial conditions xi(g), i=1,...,mlie in
the domain of asymptotic stability. It is clearly seen from
(1.7.5) that the trajectories xi(V), i=1,...,m, are the same
as those traversed by xi(t), i=1,...,m. As with xi(t),
i=1,...,m, the trajectories xi(V), i=1,...,m cross the
contours V(x) = p, p = constant, once only for decreasing V in

-

an asymptotically stable system and it follows that

xi(V) +0 as V-~ 0+ .

Integrating (1.7.6) w.r.t. V gives

£.(x)
v 1—
xi(v) = xi(vo) - Jv W dav (1.7.7)
(o)

i=1,.,.,m .
For the purpose of numerical integration, we restrict our

study to systems of second order given by
x = f(x,y) (1.7.8)
¥y = glx,y) . (1.7.9)

Zubov's equation is then written as

V = - ¢(x,y) (1-eV) (1.7.10)
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and (1.7.6) becomes

2{. = e f(pr)
dv {x,y) (1-eV) (1.7.11)
dy = = g(x,y)
dv o(x,y) (1-evV) ° (1.7.12)

The initial point (xo,yo) is now considered to vary along

the radial line from the origin and is written as

b
]

r cosf
o

(1.7.13)

Yo

T, sin @

vwhere 6 is fixed and T, is allowed to vary. A fourth order Runge
Kutta method or any other numerical method (e.g. Fox [29:]) will
be used to integrate (1.7.11) and (1.7.12) to obtain ;(n)’ ;(n)
as approximations to x(Vo—p), y(Vo-p) for given Xy» Yoo P and

stepsize h where p = nh, .

Define

W(r_,0,h,p) = Na®, 3™y . (1.7.14)

The variation of W with respect to T for fixed 9,h,p is then
analysed. Having obtained the behaviour of W, we compute

§O(B.h,P) defined as

ro(e,h,p) = max r_ € {ro

: -g-‘;:‘l (r,,6,h,p) = o} ) (1.7.15)
0

The computation starts by computing W(R,0,h,p) where R is as

in (1.7.1) and then computing W for decreasing r, until W increases

> L] - - ~
again, after which we interval half to obtain r, accurately.




~ . - - *
ro 1S an approximation to a point on the contour V = p, and p

is chosen such that the contour V = p is close enough to the
contour V= ® or V = 1 (for e =0 or 1 respectively). In order

to obtain the boundary point more accurately we use

for a particular value of 6 and p.
To test whether the point obtained is stable or unstable

® ~ .
r (6,p) = optimm ro(B,E,P) w.r.t. h (1.7.16)
J(0) is defined as follows:

(0 if the discontinuous region of the curve

W Vs T, is not encountered
J(8) =4 (1.7.17)

1 if the discontinuous region of the curve

| W Vs r is encountered .,

If J(8) = 0 for all O, then the system is unstable, while
J(8) = 1 for any © gives a stable system. Using J(8) and
r*(G,p) the boundary of the domain of asymptotic stability can
be computed.

White applies his algorithm to a limited number of nonlinear
second order systems and the results are found to be satisfactory.
He illustrates the method on the example of Hahn Eﬂ in great
detail and obtains the stability boundafy in the first quadrant,
He uses circles only as the region of approximation but the use
of an ellipse as the region of approximation could be an advantage.
It will be very worthwhile if the application of White's algorithm

can be extended to some practical situations such as power and
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control engineering. Also the extension of White's method to
time varying systems, nonlinear third order automomous systems
and periodic systems will greatly enhance the usefulness of the

technique.

1.8 MOTIVATIONS.

The subject of stability theory has grown considerably in
recent years and one of its branches, the determination of the
domain of attraction of autonomous systems has been investigated
by a number of researchers. Many attempts have been made to find
the actual domain of attraction or to improve conservative estimates
of the domain obtained by known methods. The main objective of
this thesis is to apply the method of Zubov to some practical
problems and to extend it to time varying and periodic systems
and also to attempt to solve the global optimization problem.

In Chapter II White's method is used to determine the domain
of attraction of power systems taking into account constant
damping and no saliency, constant damping and saliency and variable
damping and saliency. The results are compared with the works of
Prabhakara et al. [30], Prusty [31], Miyagi and Taniguchi [24].
A control system containing a single nonlinearity, $(c), which
satisfies the sector condition only in the interval (ml,mz) and
leaves the sector at ¢ & m, <0 and o 3 m, > 0 is included.

The application of the method to scalar time varying systems can
be found in Chapter III. The comparison between second order
nonlinear autonomous systems and scalar time varying systems is

outlined in this chapter. The Zubov series solution for scalar
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time varying systems is also presented. Extension of the method
to third order nonlinear autonomous systems is included so that
it can be used to compute the domain of attraction of second
order time varying systems. In the third order system, cross-
sections of the stability surface for the principal planes are
given and compared with other known work on this subject. An
attempt is also made towards computing the cross-sections of the
stability boundaries at different heights of a particular axis.
From these cross-sections, a solid shape is‘built by using the
graphics package which is available from the Loughborough
University of Technology Computer Centre.

Systems which have periodic solutions are examined and the
domain of attraction of the stable limit cycle is determined in
Chapter VI.

Finally, the task of solving the global optimization problem
is presented in Chapter VII. The interactive graphical approach
will hopefully ease the location of all the minima of a function

and the determination of all the domains of attraction.




CHAPTER I

SEconNDp ORDER AuTONOMOUS SYSTEMS
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2.1  INTRODUCTION.

In this chapter we will study the stability region of second
order power systems and other autonomous systems. In the past
several techniques have been proposed to determine the domain of
asymptotic stability of such systems. Gless [32], El-Abiad and
Nagappan [33] used Liapunov functions which are similar to the
total system enmergy. Fallside and Patel [34] used the variable
gradient method for studying synchronous machine stability problems,
while Prusty and Sharma [Bi] employed the optimized Szego's
Liapunov function for a single machine considering saliency and
nonlinear damping. These authors obtained the stability region
bounded by the Liapunov function V(x) = V(xc) and the line segment
at the point x = X, where X, indicates the ungstable equilibrium
state. These methods give only estimates of the asymptotic
stability region which are well inside the actual region of
asymptotic stability.

White's method EZB] overcomes the problem of nonuniform
convergence of Zubov's method and computes a much better estimate
of the domain of asymptotic stability. Most of the work done in
this chapter can be found in [35] where White's method is applied
to the single machine systems which take into account constant
damping, constant damping and saliency and also variable damping
and saliency. The applications of the method to a control system
which has a single nonlinearity and to a well known autonomous
system are also included in this chapter. The stability regions

are then compared with the known works on these systems.




37

2.2 PRACTICAL APPLICATION TO SECOND ORDER TIME INVARIANT SYSTEMS.

It is common for nonlinear dynamic systems such as electric
power systems, chemical systems, reactors, etc. to have multiple
equilibrium states, some of which have only a limited region of
stability. We shall apply White's method to some existing power
systems, control systems and autonomous systems and see whether
the regions obtained are as accurate as the actual ones or better

than those found by other conventional methods.

2.3  BRIEF DESCRIPTION OF POWER SYSTEM.

The notations used will be given in Appendix A. A typical

power system is shown in Figure 2.3(i).

E' v
1 X3 P ‘vt x
m‘ ’g R
—h —
I Q
Salient pole infinite bus
. B
synchronous machine

Fig. 2.3(i). Typical Power System,

A salient pole generator is connected to the infinite bus through
a high voltage, long distance transmission system. The voltage
of the infinite bus is constant while the machine voltage, being
proportional to the field flux linkage, is variable during the
transient period due to the field decay. All resistances are

neglected.
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The equation of motion of the synchronous machine [36] can

be written as

The variable damping is given by

x! - x" x' - x"
D(S) = v2 --d—d—f T;l'o sin26 + u—z ™ c0326
1
(xe+ xd) (xe-l- xq)
= a, sin’§ + s, cos’s . (2.3.2)

The electrical power output considering transient saliency is

2
E'v vi{z -x")
Pe(E&,G) =3 sins- q d sin 26
1 )
X *xy 2 (xe-l'xq) (xe+x d)
=b sind- ¢ sin 26 . (2.3.3)
The flux decay equation is
dE! Eex ‘}.?._c',. vix d-x:i
— = - + cos §
dt leo Td ixe-rxd' STd'
Eex
= - ' =
T&: r|1Eq+n2 cos §. (2.3.4)

|
|
|
M§ = P ;(8) - B (E},8) - DS . (2.3.1)

The governor action is described by

dpP

mi :

Te Gt * Pni = Ppjo ~ kS
dP .
ml

< =Ty m B ) -y, 8 (2.3.5)
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By transforming the coordinates so that the origin is the
stable equilibrium point of the new state space, i.e. substituting

S=x +8, 6=x
(o]

1

| . T = -
29 E{l X, +Eq° and x4 Pmio Pmi’ the

above equations will be reduced to

5%

_ . . 2 2
X, = {al sin (x1+6°) + a, cos (x1+60)} x,

b{sin(x1+50) - gin 60} +c{sin 2(x1+60) - sin 260}

- BX4 sin(xl-l-GO) - x,

e
n
1

3 Ny X5 - nz{cos 60 - cos (x1+5°)}

e
]
[}

4 Y1 %t Y, x, - (2.3.6)

2.4  EXAMPLES AND RESULTS.

i)  Synchronmous generator with constant damping Dﬂ .

The differential equations of a single machine with constant
damping, constant field linkage and constant input power are given
by

% = x,

:':2 = - ax, - b{sin(xl-l-do) - sin 60} (2.4.1)

T
where a=0.2, b=1 and 60=-£- .
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(2.4.1) has two critical points at (0,0) and (1.571,0) with
the origin being an asymptotically stable point and the other
critical point an unstable saddle point. The domain of attraction
of (2.4,1) is unbounded but consists of a region around the origin
which is unbounded only in the fourth quadrant. The result obtained
by White's method using ¢ = xi + xg is shown in figure 2.4(i).

The figure clearly shows that this method gives a better estimate

of the stability domain than Szego's methoddsed by Prusty [3i].

ii) Synchronous machine with constant damping and saliency [3?].

The system equations are

%, = - ax, - b{sin(x1+60) - sin 60} + c{sin 2(x1+60) = sin 260}
(2.4.2)
where a=0.2, b=1, c=o.2and60={- .

Here the origin is a stable point and (1.977,0) is an unstable
saddle point. The difference between the abscissa of the two
equilibrium points is used as a guide for choosing the value of R.

In (2.4.2) the domain of asymptotic stability is also unbounded in
the fourth quadrant.

Figure 2.,4(ii) shows the stability regions obtained by this
method and by Szego's method [31] s i1llustrating its superiority.
Comparing figures 2.4(i) and 2.4(ii), it is found that the stability
region of a machine system with saliency is larger than the one
without saliency. Again the domain obtained shows that this method

gives a better approximation of the true stability domain.
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iii) Synchronous machine with variable damping and saliercy [30].
In this example the first two equations of (2.3.6) are used
where the flux decay and governor action are neglected. The state

equations are

X1=X2

M.
|

2 -{al sinz(x1+6°) + a, cosz(x1+60}}x2
- b{sin(x1+6°) - sin 60} + c{sin 2(x1+ 50) - sin 260}

(2.4.3)

where a, = 0.1, a

1 =0.2, b=1, c=o.2,s=%.

2 o

Figure 2.4(iii) shows the stability regions obtaiped by this
method, Szego E31:| and Miyagi EZIZI + The stability regions of
Prusty and Miyagi are all included in the region of this method
showing the superiority of the method. There is a slight difference
between the stability domain of systems (2.4.3) and (2.4.2) owing
to the effect of variable damping introduced in (2.4.3) and this
can be seen from figures 2.4(ii) and 2.4(iii).

The power systems considered have an unbounded domain in the
fourth quadrant., As the stabilityregions obtained were only
approximations to SR N D(f), then for bigger R, we will get a larger
region in the fourth quadrant and hence give a good estimate of
the stability domain. This can be seen from example ii) illustrated

in figure 2.4(iv).
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iv) Second order autonomous system.
Consider the system

. 2
X=% =y

Yy=x~-y . (2.4.4)

(2.4.4) has two critical points at (0,0) and (1,1). The origin
is an asymptotically stable point while the point (1,1) is an
unstable saddle point. The sketch of the behaviour of the
trajectories is shown in figure 2.4(v). The thick curve which

passes through (1,1) is the separatrix.

\(/f\ > x

=

Figure 2.4(v)

This particular example is chosen to show the effect of
Sp N D(f) for different values of R on the domain of asymptotic -
stability. We can also infer from it the convergence of the

stability boundary.
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White's method has no convergence problem and this is
illustrated in figure 2.4(vi). Here we will see that as R increases
the stability region increases in the first three quadrants and
the stability boundary in the fourth quadrant is always fixed.
Various values of R were tested and clearly show that the
equilibrium has a bigger stability region especially in the second
quadrant. The boundaries obtained always pass through the saddle

point (1,1).

2,5 CONTROL SYSTEMS,.

The work concerning the existence and construction of
Liapunov functions for the problem of Lufe in the form 'quadratic
plus integral of the nonlinearity' is well known. Pai, Mohan
and Rao [38] use Kalman's construction procedure [39] with a single
nonlinearity to construct the Lufe type lLiapunov function and compute
the stability regions by the technique proposed by Walker and
MeClamroch [}@]. However, their stability region drawn from the
largest Liapunov function V(x) = constant which is contained in a
finite interval (ml,mz) does not give a complete domain of attraction,
In this section we will compute the region of attraction of a
control system with a single nonlinearity using the method discussed
in Section 1.7. The nonlinearity 9(0) satisfies the Popov sector
condition 0 < Eégl <K, for 0#0, K >0 in the interval
(ml,mz) and hence there exists a region of stability around the
origin of the state space. The region of attraction is compared

with the region obtained by Walker and McClamroch.




44

Consider a system defined in the problem of Lufe

x=Ax+b () (2.5.1)

T
c=cx

where A is an nxn stable matrix (i.e. all its eigenvalues have
. T.
negative real parts); x and b are column vectors, ¢ 1is a row

vector; O is a scalar and ¢(0) is assumed to satisfy the conditions

a) &(o) is continuous for all ¢

b) o<i‘-’?§2)- <K for G #0 (2.5.2)

¢y dO©)=o0.
Lufe uses the Liapunov function

T o
V=xBx+ J d(o)do (2.5.3)
o]

where B is a positive definite symmetric matrix. He states
that the sufficient conditions for global asymptotic stability of
the zero solution of system (2.5.1) with ® satisfying (2.5.2) are

a
i) lim I 3(o)do = = (2.5.4)
o]+ 7o

- b T
ii) _‘I_TCIE+!—’9—<O’ whereE=B£+%A__

and ~-C = ATB + BA .,
A well known condition which is used for complete stability is

the Popov frequency criterion:

Re[(1+jmq) c(jm)] + 250 (2.5.5)



for some non-negative q, K and all real w.
G(s) is the transfer function of the lipear part of (2.5.1)

obtained as
G(s) = - cT(s1-M) 1 . (2.5.6)

It is known that a nonlinearity $(0) which satisfies the
sector condition (2,5.2) for all ¢ # O will result in asymptotic
stability in the large. In many practical problems it is very
rare to have such a nonlinearity. In this section we will also
consider‘a system in which the nonlinearity violates the sector
condition (2.5.2) at some interval ¢ £ m, <Q0and 0 3 m, >0
(i.e. the sector condition is satisfied in the interval (ml,mz)).
For this type of system, the region of asymptotic stability is
not a global one. Here the sector condition is relaxed so that
the system is asymptotically stable but not in the large.

Next we consider the following example given by Walker and

McClamroch
X +ax + bx + d(x) = 0 (a>0,b>0) . (2.5.7)

The system equation in the form of (2.5.1) is
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We will study this system with different types of nonlinearity

fora=1andb=1,

Type (i). (o) = o> $(0)

v
o]

This nonlinearity satisfies the sector condition (2.5.2) for
all ¢ # 0. Hence for this (o) we will have a global asymptotic
stability and the region of attraction is the whole space.
Figure 2.5(i) shows the region of stability by the numerical
method for R = 3.2 and R = 4,9, Obviously for a system which is
asymptotically stable in the large, White's method gives the full circle
for each R as R is increased. This behaviour is not, of course,a proof

of asymptotically stable in the large.

Type (ii).  ¢(0) =0 - &° 5(0)

™

Here the nonlinearity satisfies the sector condition in
the interval (-~1,1) and leaves the sector at 0 € ~ 1 and 0 3 1.

When this ¢ is substituted in (2.5.8) we find that the system

has three critical points, namely (0,0), (-/2,0), (V/2,0). The
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origin is the stable equilibrium point and the rest are unstable
saddle points. This system will therefore have a domain of
attraction which is not the whole space. Figure 2.5(ii) shows
the domain of attraction obtained by the numerical method and
the method used by Walker and McClamroch. The marked difference
in areas produced from these two methods show that the numerical

method gives a better estimate of the domain of attraction.

Type (iii).  ¢(0) = o - o2 8(0)

N
Q

1\

In this case we have a nonlinearity which satisfies the
sector condition in the interval (-,1) and leaves the sector
at ¢ 3 1. The critical points are the origin which is
asymptotically stable and (2,0) which is the unstable saddle
point. The domain of attraction computed by White's method is
shown in Figure 2.5(iii) together with that obtained by Walker
and McClamroch. The result clearly shows the superiority of

the former method.

2.6 CONCLUSION. ‘

In this chapter, White's method is applied to second order

autonomous systems including the power systems to determine the
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region of stability, The results are compared to those of
Prusty and Miyagi. Although Miyagi attempts to solve the Zubov's
partial differential equation using the classical Lagrange—
Charpit method, the exact stability boundary is never achieved.,
This is due to the fact that the method determines the arbitrary
non-negative function ¢ which allows the Liapunov function to be
determined and the Liapunov function V(x) = constant is used to
plot the stability boundary. The results show that White's
algorithm produces a better estimate of the stability region

than that of Prusty and Miyagi. Different values of R were also
used to show the various sizes of the domain and the convergence
of the stability boundary is shown in Figure 2.4(vi). In this
figure fixed boundary points are obtained in the fourth quadrant
which show that White's method does not suffer from the nonuniform
convergence.

A control system containing a single nonlinearity which
satisfies the sector condition in the interval Gml,mz) and leaves
the sector at o ¢ m, < 0zand 0 3 m, >0 is also studied. The
sector condition has been weakened so that the domain of attraction
produced will not be the whole space. Numerical result shows that
this method gives a good approximation of the true stability

boundaries.
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3.1 INTRODUCTION.

The study and analysis of the asymptotic behaviour, stability
and domain of attraction of nonautonomous systems has not received
much attention compared to that of autonomous systems. Grujic [42]
presents a refined analysis of the influence of initial data on
dynamic behaviour and stability properties of nonstationary
systems and establishes relationship from them. Many authors
such as Kalman El;lj, Mandal [43], Newman [44] and Puri ]:45] study
the time varying systems which are asymptotically stable in the
large and hence the stability domain is the whole space.

After describing the method for determining the domain of
attraction of autonomous system in Seetion 1.7 and applying it to
second order power systems, we now apply the method to a scalar
time varying system.

We know that for the second order autonomous system

s

= f(st) (3.1 1)

v = g(x,y)

the Zubov equation is

Iy £y + X Guy) 8 = - $GayI-eVioy) (3.1.2)

which is of first order.

A scalar time varying system
x = f(x,t) (3.1.3)

will give a Zubov equation of order one of the form

¥ w6 tx,0 + 2 (5,0 = - s 00-eVist) (3.1,
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The function V(x,t) according to Zubov UD will have the
positive definiteness and decrescent properties in the stability
region if ¢(x,t) is positive definite and decrescent.

We have seen that the Zubov's equation (3.1.2) can be solved
either analytically or in series form but in most cases analytical
solution is not possible. It has been shown in various papers in
the literature [?,B,Zi] that the truncated series solution gives
only an approximate stability boundary and this boundary does not
approach the true boundary monotonically with the increase of N,
the partial sum number. We shall examine the Zubov equation (3.1.4)

and solve it using a series solution technique.

3.2 SERIES SOLUTION.

Let a scalar time varying system (3.1.3) be written as

_ mf i
=] a(t)x (3.2.1)
or X = f1 + f2 + ..+ fmf (3.2.2)

where the fi are functions of x and t and degree i in x.

Thus, we may write

|
i=1 }
£, =a(t) x', r=1,...,mf . (3.2.3)

Let the function ¢(x,t) in (3.1.4) be written as
i10] i
. ¢(x,t) = } e, (£) x (3.2.4)
i=2
where ci(t) are assumed to be bounded functionms,

or

O=by t Oyt (3.2.5)
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where the ¢i are functions of x and t and of degree i in x.

Thus

¢, = ¢ () x°, u=2...,m . (3.2.6)

We want to construct a Liapunov function V(x,t) of the form
my i
V(x,t) = ] b.(t) x (3.2.7)
i=2 *
where bi(t) are bounded functioms,

or

v=v2+v3 + oeue +vm (3.2.8)

where the Vi are functions of x and t and of degree i in =,

Thus

vV, = b_(t) x, §=2,...,mv (3.2.9)
avs s=1
Frake sbs(t) x 7, § = 2,...,mvV (3.2.10)
BVS . s
-é't-:_ - bs(t) X » 8 = 2,..-,!!!\1 (3.2-11)
. dbs(t)

where bs(t) =~ . (3.2.12)

Equation (3.1.4) after substitution from (3.2.2), (3.2.5)

and (3.2.8) becomes

3 ]
o (\i'2 + ...+ va)(f1 + .., + fmf) +§E (V2 + ...+ va)

=t e 0 -Vm =Y ) (3.2413)

= - (¢2 + ...+ ¢m¢) (3.2.14)
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(3.2.13) is the regular equation, (3.2.14) is the modified

equation. Equating terms of like degree in x, we have ( for (3.2-14 ))

3v2 3V2
3V3 3V3 av
= 1t "% 5 (3.2.16)
v v v ov
A et ooy -2 -, 3 (3.2.17)
x "1 Tt 4 3x 3 Ix 2 i
and so on.
Hence in general
]
av2f+av2 o
9x "1 9t 2
| (3.2.18
an BVn n-1 5
9% f1 M ot ¢n - .E fi ?x (Vn—i+1)
i=2
J
fornx 3.

From the azbove equations we can find the coefficients bi(t)
of the Liapunov functions when ¢ is known. Thus from (3.2.15)
2° Substitution of V2
into (3.2.16) allows b3(t) to be determined and V

we can find bz(t) and a quadratic part V
3 is obtained.
Continuing the process, the highest degree term va can be

obtained. This will enable us to construct a Liapunov function



by the series method and hence an exact domain of attraction can
be determined if a closed form solution is derived from it.
Consider the scalar time varying system

X=-x+ Ze-t x2 . (3.2.19)

This system has the solution

for 2 given x , t .
o’ "o

The solution approaches zero as t + + « and is infinite at

The domain of attraction of the equilibrium is

t
tO o

Now we choose ¢(x,t) = x2 .
Using (3.2.9), (3.2.10), (3.2.11) and (3.2.18) we can find
bz(t), b3(t),..., bmv(t) and hence Vz, V3,...,va can be obtained.

The V-terms are

"

o
|
re
w

-2t 4
e b3

2
1

3732
L
2

1
v -2-e

=-(n-2)t <
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The Liapunov function is therefore

V-VZ+V3+ L BN )

2 = n 2 -1
=§2—): [etx] =xT[1-xet] .

Thus we have a closed form solution of the Zubov equation

and the domain of asymptotic stability is automatically found,

thatis-—W<x<et.

From the series solution the even partial sums converge to the

domain of asymptotic stability - o < x < et and the odd partial sums

. t .
converge to the region of convergence, |x| < e as shown in

Figures 3.2(i) and 3.2(ii) below. Hence this series procedure

has also the usual problem of non-uniform convergence of the region

of asymptotic stability to the domain of attraction that occurs in

t Ny

autonomous systems.

x=e

7/

Figure 3.2(i) Eeven partial sumsﬂ. Figure 3.2(ii) E:dd partial sums:l.
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In order to illustrate further the occurrence of the non-
uniform convergence, we consider both the even and odd partial
sums of V., First we study the even partial sums by taking the

second degree Liapunov function
2

X
V=V, =7

with V=- xz(l - 2x e_t) .

V is negative definite for - » < x <%-et .

Then the region of asymptotie stability - « < x < %-et lies

inside the domain of attraction, D : - ® < x < et.

Taking the partial sums as

V= V2 + V3 + VA
gives Ve=- x2(1 - 4x3 e-3t) .
. 1 t, . 1 t
The resulting RAS - ©® < x < y-e is bigger than — o < x <-§
Vi

but smaller than the domain of attraction D. As the even partial
sums are increased the RAS grows bigger. The RAS boundary will
converge to the actual boundary x = et as n tends to infinity.

Next comsider the odd partial sums by taking

x2 -t
V=V2+V3‘T(1+Xe)-
Now V=- x2(1 - 3x2 e-t)
.. - * 0w 1 t
and V is negative definite for [x| < — e .

3

The RAS is therefore |x| < L &% which lies inside |x| < et,
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Increasing the odd partial sums to the fifth degree Liapunov

function
VoV VT = Ee (1 xets 22Tty 43073t
ot Vat VY, 3 xe X e xe
gives Ve=- xz(l - 5x4e-4t) .

The RAS |x| < Z%;:et is contained in |x| < et. As the odd
5
partial sums are increased the RAS will converge to |x| < et.
Hence from the above analysis the RAS is always contained in the

domain of attraction for any partial sums,

3.3 DETERMINATION OF THE DOMAIN OF ATTRACTION OF SCALAR TIME
VARYING SYSTEMS.

Consider the scalar time-varying system (3.1.3) and Zubov's

equation arising from it,

Vv av
3§'f(x’t) tsp = - $(x,t) (1 - eV) (3.3.1)
where e=0o0r 1 for the modified or regular form respectively.

The auxi liary equatioms of (3.3.1) are

dx dv
& -3 T om0y - (3.3.2)

Rearranging gives

dax _ _ _ f(x,t)
dav d(x,t) (1-eV)
dc _ 1 (3.3.4)

v ¥k, p)(1-eV) *




e

lhe rest of the algorithm will follow in the same manner as

that discussed in Section 1.7.

is drawn with respect to the phase space, whereas the scalar time
varying system the domain will be drawn with respect to the motion
space. Since we are concerned, in this chapter, with determining
the domain of attraction of time varying systems, the graph of x
against t is appropriate. Therefore in the algorithm the initial
point chosen will be (xo, to) and will vary along the radial line

from the origin. Hence it will be written as

X =1 cosb
o o
(3.3.6)

t =1 sin®
[a] [¢]

where 0 is fixed and T, is allowed to vary.

3.4  RELATIONSHIP BETIWEEN SECOND ORDER TIME INVARIANT SYSTEM
AND SCALAR TIME VARYING SYSTEM.

|
|
|
\
|
|
1

In the second order autonomous system the domain of attraction

The Zubov's equations arising from the scalar time varying

system and second order time invariant system are both of the

same order, that is, for scalar time varying system we have a

two—dimensional partial differential equation in x and t of order

one while the second order time invariant system gives a partial

. differential equation in x and y of order ome.

(3.1.2) and (3.1.4) can both be solved by the analytic

method given in Sneddon [46] + The series method discussed by

Hewit [5] and the series method described in Section 3.2 both

have convergency problems. The V's, £'s and ¢'s for the time
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invariant system are homogeneous in x and y whereas for the time
varying system they are only homogeneous in x but not t.

For the time invariant system, the domain of attraction
governed by the phase variables is considered and drawn in the
phase space while in the scalar time varying system we get a
domain in the motion space. In general, the Zubov equations for
autonomous and time varying systems are of the same dimension only
if the order of the time varying system is one less than that
of autonomous system. In (3.1.2) the condition for the system

to approach the stability boundary is
Vo for (x,y) €A and (x,5) > (x,y) €3|A

where A is the region of asymptotic stability, while in (3.1.4)

the condition for the system to approach the boundary is

V+eo for (x,t) €A and (x,t) + (x,t) € A|aA.

Both systems require V and ¢ to be positive definite and
decrescent. The initial condition for solving Zubov's equation
in time varying system is V(O,t) = 0 and V(0,0) = O for autonomous

system.

3.5 GRID METHOD.

Let us now compute the stability boundary of a scalar time
varying system (3.1.3) by a finite difference method and compare
the result with the analytical solution." Consider equation (3.1.3)
with £(0,t) = 0. We want to solve equation (3.1.4) given positive

definite ¢ and the initial condition




67

v(0,t) = 0 (3.5.1)

The required stability condition is that V is positive definite
in the neighbourhood of the origin and V = » is the contour which
will define the domain of attraction.

In order to solve (3.1.4) we set up a rectangular grid system

x = omh , m= = to ®
(3.5.2)
t =nk , n=-<wto .
n
Define
n h'
V(zh, nk) = Vv
Ve -yt
g_:’{(mh, nk) = _m_h..m;l ! (3.5.3)
n n-1
- vV -V
\'i
g—t(mh, nk) = -0 ) .
Vg is the computed value of Vat x = mh and t = nk. Known
functions £ and ¢ at x = mh, t = nk can be written as
£ = £(uh, nk)
(3.5.4)
¢ = ¢(mh, nk)
Substituting (3.5.3) and (3.5.4) into (3.1.4) gives
-1
W -V ) v - v?7h
pom _wl’ . m m — (3.5.5)

m h k

m
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The initial condition (3.5.1) at the grid point becomes

V. =0 for alln .

k . n_n n-1 n
wf V. . +V ~ k¢
vn h 'm ml m m . (3.5.6)
m k n
—f +1
h m
Putting r = k/h , (3.5.6) becomes
r fn oo vn-1 - % d)n
vn - m m;l m m (3.5.7)
n r £ +1

Consider the example

X =~x + 2x2 et

with d(x,t) = x2 .
Zubov's equation is

N (- x + 2x2 e_t) + LA X

ax at

2

and its analytic solution is

x2 -t,-1
V(x,t) = F1-xe?) .
The exact stability boundary is x = et Figure 3.5(i) shows

the boundaries computed by the grid method with initial conditions

2.2
’ o mh =
Vg 0 for all n and Vm T(1=gh) chosen at V = 0.64 and V = 12 for

h = k = 0.11 together with the boundaries obtained by the analytical

method. The result indicates that for small V used, a fairly

accurate curve is obtained when t is negative. As V increases
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the errors become larger. Figure 3.5(ii) shows the boundaries
obtained by using h = k¥ = 0.11 and h = k =0.05 and the true
boundaries. When h and k are small the result tends to converge
nearer to the true stability boundary. This implies that the
curve can be improved by reducing the values of the parameters h
and k. The choice of the initial conditions also plays an
important role in tracing the stability boundaries by grid methods.
Only the initial condition V{(0,t) = O is known but initial conditions
on V(x,0) are not available. There is no standard method for
choosing these initial conditions. The choice that has been made
for the above example is to take the lowest degree term in the
series expansion of V(x,t). Other initial conditions are also
looked at to see the difference in the results. Figure 3.5(iii)

shows the boundaries obtained by using different initial conditions

such as
x2 _..-._xl' —= -
V(X,0> = m)- s V(X,O) = 2(1"2) and V(XQO) = 2(1—}()2

for h =k = 0,11
which are taken at V = 5." The result shows some differences since
there is no proper method for choosing these initial conditionms.

From the results obtained (which are not extensive) we can
conclude that the grid method has difficulty in producing an
accurate stability boundary. The inability of the method to
find the boundary points when solving Zubov's partial differential
equation near the stability boundary is disappointing. This may
be due to the fact that the analytic solution of V is not defined

outside the domain of attraction. The information regarding the
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choice of initial condition will also affect the accuracy of the

result.

3.6  APPLICATIONS.

i)  GCeneral nonautonomous examples,

a) Consider a scalar time varying system
x = - tx(1-x) . (3.6.1)

The analytical solution for given X5t is

x(t,xo,to) = . (3.6.2)

I-x
o

+1
2 2
(t -to )

x e e———
o 2

The solution will tend to zero as t -+ « for X < 1. This implies
that the origin is asymptotically stable. The solution will

approach infinity as t tends to t; for x> 1, where ty is the

il

finite escape time defined by

X
t2 = t2 + 2 fn —2 .
1 o xo- 1

The domain of attraction of the equilibrium is = © < x < 1 which

is independent of t . A sketch of the trajectories of the system

is shown in Figure 3.6(i)
’ , _’/
1 \
>t

Y

Fig. 3.6(i).
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The Zubov's equation for system (3.6.1) is

%¥ (- tx(1-x)) + %%“ - ¢(x,t) .

Choose ¢(x,t) = txz, then the aux4 liary equation becomes

dx dv
——— = dt = .
tx({1-x) —txz

Solving Zubov's equation analytically will give

V===x- tn(l-x)

and the series solution is

From the series solution we found that the odd partial sums
give |x| < 1 as the region of convergence and even partial sums
give the domain of attraction, ~ o < x <1 . The algorithm in
Section 3.3 is applied to system (3.6.1) for different values of
R and the result is shown in Figure 3.6(iii). Even for larger

valuesof R we still have the region for which x is less than one.

b}  Next we study a system which has the exact domain of attraction
for every partial sum of the series solution.

The system is
. 2
x = - tx(1-x") . (3.6.3)

The solution is

(3.6.4)

t =
x(t,xb, o)
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for arbitrary initial condition X to with

lim x(t,x ,t ) =0 if |[x]| <1
o *“0* o o

and
lim x(t,xo,to) = if Ixol >1
t'*tl

where t, is the finite escape time given by

The domain of attraction is |x]| < 1 which is independent of e,

The trajectories are represented in Figure 3.6(ii).
L]
x

]

finl bty
I
]

Fig. 3.6(ii).

Using ¢(x,t) = 2tx2 and solving Zubov's equation gives the

solution

2
V=-1n(1-x") .
The solution converges for |x| < 1. The series solution is

2k

b

lf
v =
m
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and

V= 2t L s DD

We can show that every partial sum gives the exact domain of
attraction, -1 < x <1,

Figure 3.6(iv) shows the region of attraction of the equilibrium
obtained by using R = 1.2 and 1.7. The regions drawn on these
particular values of R are still included in the domain of attraction

and are in the range -1 < x < 1.

¢) Let us find the domain of attraction of the system

x = - tx(1+x) (2-x) . (3.6.5)
The critical points for this system are 2, -1, 0,Zubov's equation

v

= ~tx(1+x) (2-x):| + %— == $(x,t) .

Choose ¢(x,t) = 3tx2, then Zubov's solution becomes

V = - fn(l+x) (2-x)2 .

V =« vhen x = -1 or 2 and the domain of attraction is thus
-1 < x < 2. Figure 3.6(v) shows the domain found by the numerical
method described in Section 3.3. The region of convergence lies

in the region -1 < x < 2. We can see that the result agrees with

the analytical result.

ii) Grujic's Examples ]:42:'

a) Grujic studies the equilibrium state x = 0 of the first order

system
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X = -x + x3(1 + exp(t)) (3.6.6)

and gives

x2<. 1

2 -TI:EEETETT as an estimate

of the domain of attraction. He uses a Liapunov function V = x2
and from the derivative he establishes the domain. The analytic

solution is

2 1
X =

1+ 2 exp(t)+ exp(Z(t-to)) l:—}-i-- 1 - 2exp(t0):|

X
o

for arbitrary X s to'

From the linear part of equation (3.6.6) it is clear that
the system is asymptotically stable. This is true since the

solution approaches zero as t tends to infinity.

Solving Zubov's equation by the series solution technique

for ¢ = xz gives

2
X
Vo 25
4
X 1 &t 4
Vv, "7 t3e %
g <X 1 .t 6,1 2t 6
6% 15 x T3e X
8
x 19 t 8 4 2t 8 2 3t 8
V8 7§-+ 35 e x + g-e x + g-e X

and so on, with the odd terms of V equal to zero.
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Then

In the series, the terms in t make it difficult to form a
closed form solution. Perhaps, an appropriate positive definite ¢
will give a simple positive definite and decrescent V in closed
form, Figure 3.6(vi) shows the stability regions of the equilibrium
x = 0 obtained by the numerical algorithm., These are larger than
that given by Grujic. From the tests performed, it is clearly seen

that global asymptotic stability is indicated.

b) Consider a scalar time varying equation
% = - x(1+2e%) + x> (1+eh). (3.6.7)

The equilibrium state x = 0 of equation (3.6.7) is asymptotically
stable. Grujic shows that the domain of attraction of this system

2

obtained by using the Liapunov function, V =-§— is

2l 20t

1+ et

The regions of asymptotic stability obtained as a result of
our study are shown in Figure 3.6(vii) and are found to be better
than that of Grujic. Again the results indicate asymptotic

stability in the large.
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iii) Yoshizawa's Problems I:U],

2) The time varying system

t

X=~x+ 21*:2 e (3.6.8)

possesses a convergent power series expansion about the origin

on the right hand side and the equilibrium of the linear part

of the system is asymptotically stable. So, according to Lehnigk [48]
the nonlinear time varying system (3.6.8) is asymptotically stable.

The solution is

1
x(t,x ,t ) = —
0o’ o -t 1 21:o ¢
e + T " e e
o
X e
o
for given X to with
t
0 if xo <e?®
1lim x(t,xo,to) = to
g o w© if xo = a
and
to
lim x(t,x ,t ) = if X > e
o’ o 0
t+t1

where t, is the finite escape time defined by

t
x e°
1 0




The solution will be near the origin for a sufficiently

long period of time and will approach zero as t + ®, This implies
that the system is eventually asymptotically stable and since the
origin is the equilibrium state then from the theorem given in
Appendix B the system is uniformly asymptotically stable. The
domain of asymptotic stability is given by — = < x < eto which
is dependent on to. Here we have a domain which depends on the

initial data,

If we use ¢(x,t) = x2 and solve Zubov's equation

ov 2 -t av 2
o X+ 2x e ] +-§E- - X

by series solution we will get the series

v =-%r (1 + e-tx + e-zt x2 + ... )

2 o ¢
-% @
n=0

2
X -t, -1
T (1 Xe )

V=cyhen x = e° and the domain of attraction of the equilibrium
is - » < x < ef,

It is shown in Section 3.2 that the even partial sums of the
series give the domain of attraction, - @ < x < et and the odd
partial sums give the region of convergence !xl < et. The Zubov's

equation can alsc be solved analytically by writing the auxi liary

equation
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Solving the first equation gives

1
x(t) = —
e + ce

el where ¢ is an arbitrary constant .

Substituting x in dt = ﬂ!i and eliminating the constant c,
-X

we will get the solution
2

X

Ve —— e
2(1-x e-t)

and x = e’ is the stability boundary.

The domain of attraction for various circles used is shown
in Figure 3.6{(viii) together with the true stability boundary.
The algorithm computes the stability boundary which is almost

identical to the true boundary within our test regionms.

b) Next we study a system which has a stability region bounded
by le < et
The time varying system

3 -2t

X=~-x+2x e

(3.6.9)

has a solution of the form

2 1
x (t,x ,t ) = —
° o -2t . 2t 1 4t
e + e |—p——=-ce
2 2to
X e
o
for arbitrary L to'
We also have c
0 if |x | <e®
o

lim x
(t’xo’to) = .
toco to if |xo| -e

O




lim x(t,xo,to) = o

t+t1

with finite escape time

_1
t, = 7 in

1 7 _-It, g

The domain of attraction of the equilibrium is

t t < 3 s
- e 0« x <e O which is dependent on t,.

The series solution obtained by using ¢ = x4 is

4
V= %r-(l + e 2t xz + e_4t x4 + e )
4
= X
4(1-x> e 2%y

V=wgives |x]| = et as the stability boundary.

Figure 3.6(ix) shows the stability region obtained by the
numerical method for circles of radii 0.7 and 0.9 together with
the true stability boundary. The boundary plotted converges to

the true stability boundary,

3.7 CONCLUSION.

An algorithm for the determination of the domain of attraction .
for a scalar time varying system is described and applied to many
known problems of this nature. The series solution technique is
presented and we encounter the similar problem of non-uniform

convergence that has already occurred in autonomous system. A

comparison between second order time invariant systems and
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scalar time varying systems is given. The condition of ¢(x,t)

in time varying system is being relaxed in some of our examples
where a decrescent ¢(x,t) is not being used. This requirement

can also be found in [}i], one of Zubov's papers. Examples of
systems in which the domain of attraction depends on t or does

not depend on to are also studied. The finite difference method used
to solve the Zubov's partial differential equation arising from

the scalar time varying system, does not produce an exact domain

of attraction. The problem of choosing the right initial condition

arises from this difference method.
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EXTENSION OF Zusov's MeETHOD TO THIRD ORDER

Autonomous SYSTEMS
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4.1  INTRODUCTION.

In this chapter we will extend the numerical algorithm for
determining the domain of attraction of second order nonlinear
autonomous systems to systems of order three. The domain for
third order autonomous systems will be spherical, ellipsoidal, or
any regular or irregular solid form. We shall define our test

region by the set, S_ given by

R
L L2 2 2 2
SR={5.x1+x2+x3<R} (4.1.1)

where R is defined in (1.7.1).
In third order systems 6 is a fixed 2-dimensional vector
given by

T
8" = (8, 8,) (4.1.2)

and the spherical polar coordinates are written as

X, = R cos 61, %, = R sin 91 cos 62 and Xy = R sin 91 sin 92.

By fixing one of the 8's and varying the other we will get a 6
which can be applied in the algorithm for second order systems.
The result will be presented in the form of cross sections of the
stability surface for the three principal planes. However to
vary 0 so that all the points of SR have been covered and to
compute the domain in solid form is quite complicated. An
alternative is to obtain the result in the form of slices and
build a solid shape from these slices by using the graphics
package which is available in the Computer Centre of Loughborough

University of Technology. Several examples are included and

compared to show the improvement of the domains.
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4.2 EXTENSION OF ALGORITHM TO THIRD ORDER SYSTEMS.

Consider a third order nonlinear system written in the form

of three first order equations

x = £(z,y,2)
i = g(xsy’z) (4.2.1)
z = q(x,y,z)

with the origin assumed to be an equilibrium,

The Zubov equation is

%‘z— f(X’YsZ) + g—;:- g(x,y,z) + -g-‘zl Q(X,Y,Z) = - ¢(x,y,2)(1—eV)
(4,2.2)

where e = 0 or 1 for the modified or regular form respectively.
Transforming (4.2.2) to three ordinary differential equations
will give

dx - f(X:Y!z)
dv ¢(x’y’z) (l-eﬁ)

dl = = g(x,y,z)
dv o(x,y,2z) (1-eV}) (4.2.3)

dz _ _ q(x,y,2)
dv d{x,z,y)(1-ev} °

Next we consider the variation of the initial point (xo,yo,zo)
along the radial line given by (ro, 8) where § is a fixed two
dimensional vector given by (4.1.2) and (ro,g) are given by the

relations
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X =r cos 8
0 1

o = T, 5in 91 cos 62 (4.2.4)

d
(]

z =1 sin 61 sin 92 .

The function W(ro,g,h,p) in (1.7.14) can still be computed
for fixed 8, h and p and by varying r the function ;o(g,h,p)
defined by (1.7.15) can be obtained. The computation of r*(g,p)
for given B, p is identical te (1.7.16) but the procedure for
varying scalar 0 cannot be applied directly to vector §. However
by keeping either 91 or Bz fixed we can vary 6 and compute
r*(g,p) and J(6) for given 8. By doing so we are able to trace
cross—sections of the stability surface for third order systems.
For example, by fixing o

= 0 and varying 8., we can compute the

2 1

stability boundaries in the principal plane, z = O.

)

4.3  SYNCHRONOUS MACHINE WITH A VELOCITY GOVERNOR [30]

In Chapter two we have seen the application of White's method
to power systems of order two. Various machines which take into
account variable damping and saliency, constant damping without
saliency and constant damping with saliency are studied and
compared. Let us apply the algorithm in Section 4.2 to a third
order system of a machine with constant ;amping and a velocity
governor., The state equation for the system which includes the
effect of a velocity governor and excludes the effect of flux

decay can be taken directly from (2.3.6) as
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%y = - ax, = X, - b{sin(x1+6°) - sin 60} (4.3.1)
%337 TN X Y%

where a = 0.3, b =1, 60 = 0.412, Y, = 0.1 and v, = 0.002.,

(4.3.1) has critical points at (0,0,0) and (2.318,0,0) with the
origin a stable equilibrium point and the second singular point
unstable. ¢ = xi + xg + x§ is used to compute the boundaries.
Cross-sections of the stability surface for various principal

planes are compared with the region obtained by Prabhakara et al.
[3@] as shown in Figure 4.3(i) - 4.3(iii). It is found that the
application of the numerical method results in considerable
improvement in the stability boundary estimates over the generalised
Zubov method used by Prabhakara et al. The generalised Zubov method
depends on the right choice of transformation of variables to solve
the partial differential equation and defines the stability region
as V(x) = constant, where the constant is obtained from the relation
constant = min.(v:ﬁ = 0). Also the general information for
selecting suitable forms of transformation is not available and

this will limit the use of the generalised Zubov method.

4.4 ZUBOV'S EXAMPLE.

Zubov shows that the system

X=-x+y+ x(x2+y2)
{4.4.1)

* 2
y=-x-y +y(x +y2)

has a2 limit cycle xz + yz = 1.
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By introducing a third variable we generalize to a third

order system

-

-x+y+z+ x(x2 + yz + 22)

e
]

-x-y+z+ y(x2 + y2 + zz) (4.4.2)

e
f

-x-~y-2z+ z(x2 + y2 + 22)

Ne
L}

which has a limit surface

x2 + y2 + 22 =1 .,
This can be obtained analytically by solving Zubov's equation

oV . 3V .,
— +wy+

= tE=-¢

9z

with ¢ = 2(x2 + y2 + zz) .
The V=-function is found to be

V=-14n(l- x2 - y2 - 22) .

As V 3+ oy x2 + y2 + z2 -+ 1 and as V~+ 0, x2 + y2 + z2 will
tend to zero. The limit surface is unstable since trajectories
starting inside the unit sphere will tend to the origin as t + =
and trajectories starting outside the unit sphere will move away
from it. Next we apply the algorithm to this system. The domain
for the various principal planes is found to be a unit circle as
shown in Figure 4.4(i). Since the domain of the system is a unit
sphere, the cross-sections of the stability boundaries in all the
principal planes will be unit circles. Thus the algorithm gives

the exact results in this example.
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4.5 RESULT IN THE FORM OF SLICES.

It is useful to be able to find cross-sections of the
stability boundaries at various lengths along the diameter of
the solid sphere or cross=-sections of the truncated sphere. For
example, we wish to compute the stability boundaries at y = 0.5
or ¥y = k generally. In order to determine such cross-sections
we have to introduce some transformation. A simple linear
transformation in y and by fixing 62 = %;will lead to the
computation of the stability boundaries in the x - z plane for
various lengths along the y-axis. Similarly the boundaries on
X — y plane and y - z plane for different heights on z-axis and
x-axis respectively can be determined by transforming z or x and
keeping one of the 8's fixed. Figure 4.5(i) shows the cross-
sections of the stability boundaries of the slices of system
(4.4.2) at levels y = 0.5, y = 0.8 and y = O in the x - z plane,
Other planes also give the same concentric circles which represent
cross-sections of the stability boundaries of the truncated spheres.
From the points obtained at all the three planes on different
lengths of the axis, we can build a solid shape by utilizing the
graphics package available from the Loughborough University of
Technology Computer Centre. The result is a hemisphere shown in
Figure 4.5(ii) viewed at four right angles,

Figure 4.5(iii) represents the cross-sections of the stability

=1,2, x, = 0.5 and

boundaries of system (4.3.1) at levels x 3

3

X3 = C in the x - x, plane.
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4.6 INGWERSON'S EXAMPLE.

A nonlinear third order system taken from Ingwerson [llﬂ

is
k) =x,
X, = X, (4.6.1)
x, = - (x +cx)3-bx
3 1 2 3
where b>0, ¢>0 and be-1>0. (4.6.2)

Ingwerson obtains the Liapunov function

b"l{ 1 4 1 & b 2 1 2
Vmg o (prexy) T - x t X thxyxy ¢ 5y

4 4

1y X (x,+cx,)
} (bccl) o, i SN +x3)2

which is positive definite under condition (4.6.2).

vV =- {be-1) (3x§ + 3cx1x2 + ¢:2x2)x2

2 3 2] 2
= = (bc-1) [(2 % + cxz) + 7 :v:l:lx2

is negative semidefimite under the same condition as the positive
definiteness of V. System (4.6.1) is therefore . _

stable?é If b=1.5and ¢ = 1, then

1 4
V= 5 x1 (x1+x2) + = (1 5x +x3)

is positive definite and

a.s. b,

x (Jhen 4.6.2 holds LA S\yst’em s in facf
(Jee D. G. 5"'/”-'[{’-, »ﬂdvamces 'n Control «S‘J/S‘“L[em_g

2 ,/965 , /7.32,)

£
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A | 2 2l.2

v -2-—[(1.5xl+x2) + 0.75x1]x2
is negative semidefinite. Figures 4.6{(i)-(iii) show the cross-
section of the stability domain of (4.6.1) in the three principal
planes by taking ¢ = xi’ + xg + xg s b=15and ¢ =1, Several

tests have been made and larger circular regions are obtained in

1a” tliree -~ planes when the R's are increased.

So we conclude that this system

is asymptotically stable in the large.

4.7  CONCLUSION.

The domain of attraction for third order nomlinear autonomous
system has been investigated and the results are presented in the
form of cross-sections in the three principal planes. The cross-
sections of the stability boundaries at different intervals of
the axis have been obtained. The main difficulty for computing
the domains of third order system is to vary 6 so that all the
points of SR are covered in all directions and this will involve

large computation time.
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CHAPTER V

SeconD ORDER NonNAUTONOMOUS SYSTEMS
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5.1 INTRODUCTION.

The task of establishing the stability conditions of nonlinear
nonautonomous systems seems to pose a formidable problem to the
analyst. Whereas almost complete success has been achieved for
autonomous systems only limited success has been obtained for
nonautonomous systems. Often, engineering problems can
be reduced to, or may be approximated by, a second order differential
equation with time varying coefficients and a method for determining
its stability or stability domain would of course benefit the user.

The range of values of the parameters for which the system is
asymptotically stable forms the stability domain of the parameters.
We shall call this stability domain of the parameters the
"stable parameter region". The region of the parameters for which
the system is unstable is called an unstable parameter region. In
most cases the system is asymptotically stable in the large for
certain values of the parameters, but in some cases there are points
in the parameter space for which the system is asymptotically stable

in a specific region.

Robe and Jones [50] develop a numerical procedure for investigating
the Liapunov stability of second order nonautonomous dynamical systems
and present the stability results in terms of the stable parameter
region, Michael [§i] establishes a stability criterion for the
damped Mathieu equation in which a parametric relation |g| < m2

is defined as the stable parameter region. Ramaran and Rao [51]

obtain an improved stable parameter region given by
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2
le] < max{(/6" + 4 - 2)!m . Sw_

/62+4

This region is obtained from the use of a suitable Liapunov
function. Similarly authors like Hahn , Loud [51{] and many
others obtain relationships between the parameters for which the
system is asymptotically stable and present this relation in the
parameter space,

In general this work deals with systems that are asymptotically
stable in the large for parameters lying in the stable parameter
region and there has been little research on the determination
of the domain of attraction in the phase space of the equilibrium
of nonautonomous systems. An algorithm for finding such domains
will be described in the next section.

The use of the numerical algorithm for third order autonomous
system on second order nonautonomous system will hopefully throw
some light on the determination of domains of attraction in the
phase space. Cross-sections of the stability boundaries in the
x~-y plane for different values of t for an example proposed by
Lehnigk are examined. Tests have alsoc been made on the Mathieu
equation for various values of the parameters of the system and
it is found that for a number of parameter values satisfying the
relationship

w1’ -G-8 >0

the system is asymptotically stable in the large, but for parameters

which do not satisfy the relationship the system is unstable.
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5.2 DETERMINATION OF DOMAIN OF ATTRACTION OF SECOND ORDER NONLINEAR
NONAUTONOMOUS SYSTEM.

Consider a second order nonlinear nonautonomous system

x = £(x,5,t)
(5.2.1)
¥y = g(x,y,t)
with the origin assumed to be an equilibrium, i.e.
£(0,0,t) = g(0,0,t) =0 . (5.2.2)
Zubov's equation is
av v v _ _ -
Ez-f(x,y,t) + 3y g(x,y,t) + T ¢ (1-~eV) (5.2.3)
where e = 0 or 1 for the modified or regular form respectively
and its auxiliary equations are
dx dy dv
= = T e———— - 5-2.4
fx,,8)  BEy,0  OF T T §(1-en (5.2.4)
Rearranging gives
dx _ _ f(x,y,t)
dav ¢ (1-eV)
&y - _ g(x.y,t) (5.2.5)

av d(1-eV)

dt 1

B T

av - p(i-ev)

The form of (5.2.5) is similar to that of (4.2.3) and the
algorithm described in Section 4.2 will be used to compute the

domain of attraction. Again we encounter the vector § and we
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have to fix one compuonent of 6 to determine the cross—section of
the stability boundary. Note that, to ensure positive definiteness
and decrescency of V in the region of stability, a positive definite
¢ is chosen.

The connection between second order nonautoncomous systems and
third order autonomous ones is that the Zubov equation (5.2.3) is
similar to (4.2.2) of the third order system., Also the V's, f's
and ¢'s for autonomous system are homogeneous in x,y,z whereas
for nonautonomous system they are only homogeneous in the phase
variables x and y but not t. Hence the homogeneity of the phase

variables is preserved in Zubov theory.

5.3 DAMPED MATHIEU EQUATION.

Consider a damped Mathieu equation

X+6x+ (w+ccos 2t)x =0 . (5.3.1)
If we write
x(t) = e 3% nepy | (5.3.2)
then (5.3.1) transforms into
. 1 .2
n+ (w- 2-6 +c£cos 2t)n =0 (5.3.3)

which is a form of the Mathieu equation

X+ (0 +ccos 2t)x =0 (5.3.4)
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with a=w- %-62.

Jordan and Smith [54] show that a certain unstable region
(which they called second unstable region) for (5.3.3) occurs
near ¢ = 1l or w = (1 + %?) and on the boundaries of this unstable
region, periodic solutions of period 27 exist. Suppose the damping

term, § = 561 is small, then by letting
w=wleg) = W, *ew + ... (5.3.5)
and solutions of period 27 be

x(t) = xo(t) + exl(t) + iee (5.3.6)

and using perturbation method, the parametric stability boundary

near w = 1 is found to be

1 2
w=1zg/r- 61 (5.3.7)

so long as 6% < %u The set of parameter values for which the

damped Mathieu equation (5.3.1) is asymptotically stable is therefore
wn? -G -shHso0 . (5.3.8)

Taking 8§ =0.2, € = 0.5 and w = 2.0, (5.3.8) is satisfied
and system (5.3.1) is stable. Figures 5.3(i)-(iii) show the cross-
section of the stability boundaries of the above system drawn in
the three principal planes using ¢= xz + y2 and R = 6.4. Since
this system is asymptotically stable in the large for the above
parameter values full circles are obtained for increasing values

of R.
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When § = 0.2, w=1.0and € = 1.5 are used we will get a list
of unstable points from the computation where J(é) of (1.7.17)
are all zero. Hence the system is unstable for this set of
parameter values. Moreover for these values of the parameters

(5.3.8) is pot satisfied.

5.4 LEHNIGK EXAMPLE.

Consider a system
% = Ax + g(x,t) (5.4.1)

where the eigenvalues of the constant nXn matrix A have negative
real parts and g(x,t) is nonlinear with g(o,t) = O,

The equilibrium of the equation of the first approximation
is asymptotically stable. The function g(x,t) is strictly nonlinear

(i.e. g(x,t) cannot be expanded into the form
g(x,t) = A'x + g'(x,0),
where A' is not a zero matrix).

Lehnigk states that system (5.4.1) is asymptotically stable if

the equation
X=Ax (5.4.2)

of the first approximation is asymptoticﬁlly stable and if for

sufficiently small A > 0O
[8(x,t)| <A |x] for |x] #O0and t3t >, |x| ¢h <h.

(5.4.3)
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Let us take

and

gi{x,t) = [x sint, ;_;L!J .

The eigenvalues of A have negative real parts; so the
equilibrium of X =Axis asymptotically stable. The estimate of

the domain of attraction given by Lehnigk is

2
xz + Z%— £1 . (5.4.4)

In this example we use ¢ = x2 + yz and compute the cross-
sections of the stability boundaries at t = 0,1, 2, 3, 5, 6.
Figure 5.4(i) shows these boundaries superimposed on each other
in the x-y plane. The domains obtained are obviously greater

than Lehnigk's domain defined by (5.4.4).

5.5 CONCLUSION.

The numerical algorithm for third order autonomous systems$
is used to determine the domains of attraction of second order
nonautonomous systems. Domains of attraction of the nonautonomous
system which are represented in terms of the phase variables can
now be obtained. The Mathieu equation with damping term has been
discussed and the results are presented in the form of cross-

sections of the stability boundary. This system is stable only

for a certain range of parameters represented by (5.3.8) calculated
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near the second unstable region. Estimates of the domain of
attraction for Lehnigk's system have been obtained for diffeTrent
values of t as shown in Figures 5.4(i) and are found te be larger
than that of Lehnigk. The domains vary for different values of t
and this occurs because the second unstable eritical point is not

the same for different t.
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PErioDIC SOLUTIONS
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6.1 INTRODUCTION.

The present chapter is devoted to one of the more important
problems encountered in the analysis and synthesis of nonlinear
systems with self-oscillatory behaviour or periodic solution.

The problem of stability of these solutions is a difficult one
which has attracted attention for many years. The stability of

a limit cycle is studied. The limit cycle may be stable, unstable
or semi-stable depending on where the trajectories, emanating
from the interior or exterior of the limit cycle, approach to as

t tends to infinity. Methods for obtaining the periodic solution
of nonlinear systems are described in the literature [13].

The theory on the region of attraction of periodic solutions
of a system is required in the determination of such regions by a
numerical method. Zubov Eﬂ states a theorem for finding the
domain of attraction of a periodic solution and gives an example
in which the periodic solution is asymptotically stable in the
large and the origin is an unstable singular point. Some definitions
on asymptotic stability of the periodic solutions and a theorem on
the domain of attraction of this solution are included since this
theory will be used in the numerical method. In implementing
this theory a periodic solution must be known a priori, so methods
for approximating such solutionsare given.

Finally we illustrate the theory by examples which have bounded
domains of attraction and utilize circles and ellipses as our regions
of approximation in the method described in Section 1.7 of Chapter one

for the determination of domain of attractionm.
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6.2 DEFINITIONS AND THEOREM.

Consider a system of equations

dx
?dt—s = FS (xl,--o,xn)’ s = 1,...,1‘! (6.2-1)

whose right hand members are continuously differentiable in all
their arguments. We shall assume that (6.2.1) has a periodic

solution

x_ = ':?Es(t) (6.2.2)

with period T.

Definition 6.2.1.

The periodic solution (6.2.2) of system (6.2.1) is stable
if for every £ > O there exists § = 6(e,to) such that d(xlo,...,xno) <§
implies d[xl(t),...,xn(t)] <g for t €1I.

Here

d(xl,...,xh) = inf /ff

t€fo,7}"i=1

x; - %01 (6.2.3)

Definition 6.2.2.

The periodic solution (6.2.2) of system (6.2.1) is

asymptotically stable if

i) the periodic solution (6.2.2) is stable

ii) there exist a ¥ > 0 such that
d(x) seeepx ) <y implies d[xl(t),...,xn(t):l +0

as t +»
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Definition 6.2.3.

The set A of all points S PERETTE I of the n-dimensional
space is called the region of attraction of the periodic solution,

if from (xlo,...,xno) € A it follows that
d[xl(t),...,xn(t)] +0 as t >

The definitions presented here coincide with those given in
Chapter one where the origin is comsidered as the trivial solution.
Instead of considering the stability of this trivial solution, the
stability of periodic solution is being studied. This type of

stability is sometimes known as orbital stability.

Definition 6.2.4,

A limit cycle is an isolated periodic solution of system

(6.2.1), represented in the phase plane by an isolated closed path.

Definition 6.2.5.

A limit cycle is stable if all the trajectories (both interior
and exterior) approach towards it as t + o and unstable if the
trajectories move away from it.

At this stage it is necessary to state a theorem which leads
to the investigation of the problem of asymptotic stability of a

periodic solution of system (6.2.1).

Theorem 6.2.1. (Zubov).

In order for the region A of the space RP, consisting of
entire trajectories of system (6.2.1) and containing the set

of all x satisfying
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d(xl,...,xn) < § for sufficiently small §, to be the region of

attraction of the periodic solution (6.2.2) of system (6.2.1)

it is necessary and sufficient that there exist two functions

V(xl,...,xn) and ¢(x1,...,xn) satisfying the conditions

i)

ii)

v)

the function V(xl,...,xn) is defined and continuous
in A, the function ¢(x1,...,xn) is defined and continuous

. n
in R.

V(xl,...,xn) is positive definite in A and ¢(x1,...,xn)
is positive definite in Rp, i.e. given any quantity

Y, > 0 it is possible to find Y, and o, such that

V(xl,...,xn) >y, for d(xl,...,xn) >,
and ¢(x1,...,xn) > o, for d(xl,...,xh) > Yy
V+>0and ¢ + 0 as d(xl,...,xn) +0 .

,];ifa‘g V(xl,...,xn) = « , where §s EA-A
s s

and is a point on the boundary of region A.

The total derivative of the function V, calculated by
virtue of system (6.2.1), satisfies the relation

av
d_t = - ¢(x1,...,xn).

The theorem stated above is equivalent to the theorem for

autonomous system in which the region of asymptotic stability of

the origin is considered. In Theorem 6.2.1 the region of

asymptotic stability of a periodic solution is required. The V's
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and ¢'s also possess the positive definiteness and decrescency
properties. The function V + » as one approaches a finite or

infinite point of the boundary of A,

Let us apply the theorem to analyse an example given by

Zubov
X=x+y- x(x2+y2)
- 2 2
Yy==-x+y-y&x+) .
2 22 2 2
We set p = 20x —y ) (+x"4y")

x2+y2
then the partial differential equation corresponding to this

system is

2 2.2 2.2
av 2 2 1'J 2 2 2(1-x“- 14x“+
3x|}+y_x(x+5’)]+g—[‘x+v-y(x+y)]=-(xzy;(“}').

Y X +y
The solution of this equation is

i - ooty
V= > .

x2+y

The function V is defined at all points of the phase space

except at x = y = 0 and satisfies the conditions of Theorem 6.2.1.
2 2 . 2 2 . . aa

V=0for x" +y =1. The circle x" + y° =1 is a periodic
solution and its region of attraction is the whole space. The
function V in the region of attraction apart from the periodic
solution will take positive values. V will tend to infinity as
one approaches a finite or infinite point of the boundary of

the domain of attraction., Although this is a trivial example, it
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contains the characteristic behaviour of the integral curves of q
nonlinear system in the presence of its periodic solution and
also complies with the conditions of the above theorem. Here

the region of attraction fills the entire phase space, while in
the general case the region of attractionofaperiodic solution in
a nonlinear system may be located in a bounded portion of the
space. Examples of this type of region of attraction will be

included in the later section.

6.3 APPROXIMATIONS OF THE PERIODIC SOLUTIONS.

In order to apply the method of Section 1,7 usefully the
periodic solution or approximate periodic solution of system
(6.2.1) should be known a priori so that a positive definite and
decrescent ¢ can be chosen and solving the Zubov's partial
differential equation will guarantee the existence of positive
definite and decrescent V. There are several ways of approximating
the periodic solution of a system and one of the easiest methods

is by harmonic balance. Take a general, second order equation

X+ eg{x,x) +x=0, (6.3.1)

Suppose the approximate periodic solution is r coswt and

that g has a Fourier Series

[t

g(x,%X) = g(r coswt , = rw sinwt )

Al(r) cos wt + Bl(r) sinwt + higher harmonics

{(6.3.2)
with the constant term absent.
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Then (6.3.1) becomes

(l-mz)r cos Wt + g Al(r) cos Wt +E:B1(r) sin wt + higher harmonics = 0

(6.3.3)
This equation is true for all t if
2

(1-0)r +z-:A1(r) 0, Bl(r) = 0 (6.3.4)

r and @ can thus be determined.
Consider the Van der Pol equation
-a 2 -
x+e{(x-)x+x=0 , (6.3.5)

Assume an approximate solution x = r cos &t .

Substituting in (6.3.5) gives

2
(l-wz)r cos Wt =erw[£z - l]sin wt + % er3wsin 3wt .

Equating the coefficients of cos wt, sin wt gives
w =1 and r=2 |,

Hence the approximate solution is 2 cost and the approximate periodic
solution in the phase plane is x2 + y2 = 4.
Another procedure for estimating such solutions is by the

averaging method. We consider (6.3.1) with g(0,0) = 0 and ]el < <1

and represent it by a system of equations

xX=y
(6-3-6)
v ==-cg(xy) - x .

Suppose the solutions are nearly circles in the phase plane and

XxX=rcosfB, y=r sind.
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Differentiating 1:'2 = x2 + yz, 0 = tan-lylx and substituting in

(6.3..6) gives
f = - eg(r cosf, r sinf }sind (6.3.7)
and

B =-1- % g(r cosf, r sin® )cosh . (6.3.8)

From (6.3.7) and (6.3.8)

% * eg(r cosf, r sinb) sinb . (6.3.9)

i

Since the motion is assumed to be periodic with period 2T and r

returns to its original value over one period

21Tdr 2m
J 0 d6 =0 =eI g(r cosB, r sinf) sind d6 . (6.3.10)
o o
. dr .
Since i 0(e), then over one period
r(9) = r + 0(e) (6.3.11)

where T, is the value at the beginning of the period. The

right hand side of (6.3.7) contains the function
g(r cosf, r sinB)sin®

and can be represented as a Fourier—type series over a 'cycle',
0< 0 < 2m.

Therefore

g[r(B)cosB,r(B)sinG]sinB-Ao[r(e)] + Z {An[r(e):lcosne

n=]l

+ Bn[r(e):l sin ne} (6.3.12)
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where An(r) and Bn(r) are obtained by treating r as constant in

the usual definitions of Fourier series coefficients:

2w
Aol:r(e)] -21? L g[r(e)cos u, r(8)sin {Isin u du

and forn a1 (6.3.13)
1 27
An[r(e).‘ = I g[r(e)cos u, r{f)sin {Isin u cos nu du
- o
1 2n
Bnl:r(ﬂ)] =T I g[r(e)cos u, r{8)sin u:|sin 4 sin"nu du .
o

Equation (6.3.9) becomes, for all 9,

o
-g—;— -er(r) + e nzl An(r)cos nf + Bn(r)sin nﬂ:l . (6.3.14)

Integrating over a cycle Bo <@g < Bo + 27 gives

0 _+2m 8 +2m
[+ ] oo (o) -

r(6°+21r) - r(BD) =g Je Ao(r)de + g nZJe _An(r)cos no
o o

-

+Bn(r)sin nb| 4o . (6.3.15)

Over such a cycle, r is constant to order €, so the terms under

the-sumation sign disappears, and
r(eo + 27) - r(eo) = 21reA°(r). {6.3.16)

Therefore the simplified equation

g_g = e A_(r) (6.3.17)
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at least gives the increments in r per cycle correctly to order €.
The simplified equation corresponding to (6.3.7) is obtained

by writing

dr dr 46 dr 2
It = 36 at o * 0

=~ -ng(r) R (6.3.18)

Similarly (6.3.8) becomes

do €

where

2w
m (r) = L r cos u, r s8in ulcos u du
o 2-" o g »

and r is treated as constant for the integration.
Let us find the approximate solution for the Van der Pol's
equation (6.3.5) for small positive €.

From (6.3.13)
r r2
) =3 [7." 1]

N
and the approximate equation (6.3.18) is

2
d_r=—.€_r.r_——- 1
.-l
and its solution when r(0) = r is
2] —¢et }
r{t) = 2/{1 - [1 - 4/ro]e }

which tends to 2 as t + =

From (6.3.19), 8(t) = - ¢t + 8 .
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Therefore the required approximate solutions are given by

2 cos(t-0 )
x{t) = r(t) cos B(t) = 2

Y
{1 - (1-4/r:)e Et}

As t =+ « the approximate periodic solution in the phase plane
becomes x2 + y2 =4,

In the above methods we have assumed that the system
X +eg(x,X) + x =0

has at least one periodic solution and that its phase diagram
contains either a limit cycle or a centre. This system is in

a sense close to the linear equation X + x = 0 for small €, and
the solutions will be close to ecircles and thus the assumption

of a closed path which is circular but with unknown radius is
used to approximate the periodic solution. The application of
the algorithm by using approximate periodic solutionsto determine
the domain of attraction of a periodic solution of a system will
be given in Section 6.5. In the next section we will use the

exact periodiec solution to determine such domains.

6.4 EXAMPLES AND RESULTS.

Let us now apply the numerical method described in Chapter 1

to problems which have periodic solutionms.

i) Consider a system of equations

X=2x+y - 3x(x2+y2) + x(x2+y2)2
(6.4.1)

» 2 2.2
¥ =2y =~ x = 3y(xP4y?) + ylx*4yD)
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Let us solve (6.4.1) by using the substitution

2
r=x +y

then r = 2r(1-1) (2-r) . (6.4.2)

Solving this first order differential equation gives

1

1+ e4t

r=1=%

r approaches one as t tends to infinity.
Therefore r = 1 or xz + yz = 1 is the stable limit cycle.

Also r approaches zero or two as t tends to minus infinity.

Furthermore
T>0 for r>2
F<O for l<r<2
>0 for 0<r<l .

From (6.4.2) we see that all trajectories inside the circle
xz + y2 = 2 approach the periodic solution x2 + y2 = 1 showing that
this limit cycle is stable, that is, trajectories starting at
0<r<1 and 1< r < 2will spiral towards x2 + y2 = 1.

The closed path x2 + y2 = 2 is a periodic solution of (6.4.1)
which is unstable.

Next choose ¢ = 4(1-r)2, and Zubov's equation becomes

dav _ _ 2(1-r)
dr r(2-r) .

Solving the Zubov equation gives

V=~-fnr(2-r)
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V=o when r = 2 or 0. Hence the domain of attraction of the
periodic solution x2 + y2 =1is 0<rg2 or x2 + yz € 2.

We can also solve the Zubov partial differential equation

the same solution as above.

The aux4{ liary equations will then be

dx = dy
2x + y - 3x(x2+y2) + x(x2+y2)2 -x+ 2y - 3y(x2+y2) + y(x2+y2)2

- av
C oy Dy?
Solving these equationggive
xdx + ydy - dv
2 2 2 2 2
x“4y%) (1x%-y*) (2-x -y%) - 4(1-x2%?
therefore V=-m 2n(x2+y2)(2-x2-y2) .

Figure 6.4(i) shows the region of attraction of periodic
solution of system (6.4.1) obtained by the numerical method
using ¢ = 4(1-x2-y2)2. We see that for R = 1.2 the region is
a circle of radius 1.2 and this is due to the fact that our circle
of approximation is only x2 + yz = 1.22,whereas the actual domain
is x2 + y2 € 2. Also the domain is based on SR N D(f).

' However, for R > /5, we get a circle of radius v2 as shown in

corresponding to (6.4.1) by the characteristic method and obtain
|
|

the figure.

We also apply the numerical method to system (6.4.2) derived

from (6.4.1) using ¢ = 4(1-r)2. Equation (6.4.2) is a first order
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differential equation and its domain is presented in the motion
space as shown in Figure 6.4(ii). The stability domain lies in
the region 0 < r £ 2 and this is true since the stability domain

of the periodic solution of system (6.4.1) is x2.+ y2 £ 2.

ii) Let us take another example

(6.4.3)

X=-y+x(1l~ x2+y2)(2 - /x?+y2)
§=x+y0 - Awdre - D .

System (6.4.3) has periodic solutions xz + y2 = 1 and x2 + yz = 4,
Trajectories which lie on either side of the circle radius one
but inside the circle of radius two will approach the circle
xz + y2 = ] asymptotically. This circle is a stable limit cycle.
Trajectories which lie interior or exterior to the circle of
radius two will spiral away from the circle x2 + y2 = 4 and this
circle is the unstable limit cycle. The bounded domain of
attraction is x2 + y2 € 4, Figure 6.4(iii) shows the region of
attraction of the periodic solution of system (6.4.3) obtained
by using ¢ = 2(1 - /45:;532 with R = 0.9 and any R > 2. Notice that
even for R > 2, we still get a domain defined by a circle radius
two which is the actual domain.

By reversing the time of system (6.4.3) one will expect the
origin to be a stable singular point and with ¢ = xz + y2 the
stability boundary curve will be x2 + y2 = 1. This curve is in

fact the stable limit cycle of system (6.4.3)., The limit cycle

can thus be approximated by taking the negative time of the system.
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iii) Let us study a system of equations which has periodic solutionsg

other than circular orbit%. The system

X=2x+y -~ 3x(222+y2) + x(2x2+y2)2

(6.4.4)

= -2x+ 2y~ 3y(232+yz) + Y(2x2+Y2)2

has periodic solutions in the form of ellipses, viz.

X 2 2 AR

The ellipse gTS + y2 = 1 is the stable limit cycle and the other
one is unstable.

One of the periodic solutions of system (6.4.4) has a finite
domain of attraction and all trajectories within this domain will
tend to the stable limit cycle as t tends to infinity. Figure 6.4(iv)
shows the domain obtained by the numerical method where circles of
radii 1.2, 1.3 and 1.6 are chosen as the region of approximation,

, ¢ = 4(1 - (2x2+y2))2 is used. Since the domain is elliptical in
shape, it is therefore appropriate to estimate our region as
ellipses rather than circles. So in polar coordinates x = R cos §
and y = (R+k)sind where k is constant. Use of ellipses will save
computation time and the boundary is achieved much more quickly.
Figure 6.4(v) shows the domain computed by using various sizes

. of ellipse. So depending on what shape the domain of attraction
is, we c;n choose the forms of the region of approximation for
computing the boundary. Note that if any trajectory begins on
the stability boundary 2x2 + yz = 2 of a stable periodic solution,

then it remains on it with increasing or decreasing time.
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6.5 EXAMPLES ON APPROXIMATE PERIODIC SOLUTIONS.

In this section we shall try to find the domain of attraction

of a periodic solution using an approximate periodic solution.

i}  Consider the Van der Pol equation
o 2 .
Xx+e(x-1)x+x=0 (6.5.1)

with € > 0,

This system has the origin as an unstable focal point and
has a periodic solution (limit cycle) in the form of closed curve
in the phase plane containing the origin. The phase trajectories
emerging from the interior of the limit cycle approach the limit
cycle and trajectories exterior to the limit cycle will also approach
the limit cycle. Solutions of (6.5.1) will tend asymptotically to
the periodic solution and hence this solution is asymptotically
stable. By using the harmonic balance method the approximate
periodic solution of (6.5.1) is x2 + yz = 4. Using this solution

z—yz)2 is employed

as a guide for choosing ¢, the relation ¢ = (4-x
in the numerical method. Figure 6.5(i) shows the region of attraction
of the periodic solution obtained by using the approximate periodic
solution with € = 0.5 and R = 1.4, 3.4 and 4.4. Since the domain

of attraction of the periodic solution is the whole space it is

obvious that from the characteristic of the method the estimate of

the domain will be a larger circle if R is increased.

ii) Consider a periodic solution which has a bounded domain of

attraction. Let us take system (6.4.3) which has periodic solutions

2 .
x2 +y =1 and x2 + y2 = 4, Here although we approximate the
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solutions by the harmonic balance method we still get the exact
periodic solutions. TFor the sake of utilising approximate solutions
simply consider an approximation x2 + yz = 0.92 which is near
enough the periodic solution x2 + yz = 1, Then using
¢ = 2(0.9 - x2+y2)2 in the algorithm we obtain the region of
asymptotic stability of the periodic solution as shown in
Figure 6.5(ii). The smaller circle is obtained when R = 1.6 is
used while the bigger one is the domain of attraction of the
periodic solution where values of R greater than two are used.

Next we take an approximate solution 1.1:c2+y2 =1. With

2 2.2

¢ = 2(1-1.1x -y" )", the domain of attraction of the periodic

solution obtained is shown in Figure 6.5(iii). Ellipses

2 2 2 2
X 7+ —Lf =1 and-= 7+ _LZ = ] are being used as the region of
1.1 1.5 2.2 2.6

approximation. The former gives the inner ellipse while the

latter gives the domain of attraction.

iii) Let us now consider system (6.4.4) where the periodic

2

solutions are 2x2+'y2 =1 and x2 + %— = 1, The solution 2x2 + y2 =1

is a stable limit cycle. Again the harmonic balance method will
give the exact solution of the system. Consider an approximate
solution 1.91r.2 + yz = 1. Take ¢ = 4(1-1.9x2—y2)2. The domain of

attraction of the periodic solution is shown in Figure 6.5(iv) where

the above approximate sclution is used. The regions of approximation

2 2 2 2
used are ellipses -ii- + Iy? =1 and 1?5;2+ ;Zgz = 1, The stability

- .2 y2
boundaxry of the stable limit cycle is x + g— = 1.
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From the examples given above, although an approximate
solution is used we still obtain the exact stability boundary
of the periodic solution. Thus without the knowledge of the
actual periodic solution, the domain of attraction can be found
by using the algorithm of Section 1.7. In many practical problems
the exact periodic solutions are often difficult to obtain,
Many attempts have been made to solve these problems through
various approximation methods such as harmonic balance, averaging
method and perturbation method. So knowing the approximate
solution, the problem of determining the domain of attraction of
a periodic solution of some systems can be solved as shown in our
examples., These examinations will indicate that other engineering
problems which have periodic solutions and bounded domains of

attraction may also be solved without much difficulty.

6.5 CONCLUSION,

The domain of attraction of a periodic solution of an
engineering problem or control system can now be estimated by
this numerical technique. The limit cycle may be drawn by reversing
the time of the system. We may also conclude whether the limit
cycles are stable or unstable and determine the domain for the
stable one. The test region may also be allowed to vary and this
depends on the shape of the domain of the particular system.
Although the examples treated are simple in nature, they contain
the characteristic behaviour of the trajectories of nonlinear
systems in the presence of periodic solutions and have a feature

where the periodic solutions have bounded domains of attraction.
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Often in many engineering systems the actual periodic solution
is not always available, so finding the domain of attraction is
a difficult problem. Clearly this difficulty is eased since the
algorithm allows the use of approximate solution for determining
the domains of attraction as discussed in Section 6.5. The
definitions and theorems of stability of periodic solution are
equivalent to the definitions and theorems of stability of the
trivial solution, x = O and these make it possible to use the

algorithm mentioned in Section 1.7.
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CHAPTER VII

GLoBAL OPTIMIZATION
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7.1  INTRODUCTION.

Techniques for solving global optimization problems are still
rather primitive and there is a considerable need for further
research into this area. In many practical situations, we have
optimization problems in which the objective function is not convex
and possesses multiple minima. It is the identification of these
mipima that has stimulated researchers to devise techniques that
may locate these minima automatically. In many techniques of global

optimization we usually encounter with two main problems, viz:

i) locating the minima

ii) determining the domains of attraction of the minima,

The minimization algorithms |:55,56,57] for locating a2 local minimum

are well known and have been discussed extensively. Only a few

attempts have been made towards solving the global minimization . ‘
problem.

Trecanni et al. [5@ propose an algorithm which utilizes the
concept of region of attraction of the minimum by a Liapunov function
approach. The objective of their method is to identify the saddle
point which lies on the boundary of the region of attraction of a
given minimum by successive approximations of the region of attraction.
C.R. Corles [ﬁé] goes a step further by implementing an algorithm for
global optimization in two dimensions based on the above approach in
a different way. He locates a minimum and constructsa series of
ellipses around it until a saddle point is located and continues to

search for another minimum and then a further series of ellipses is

constructed; repeating the process until all the minima have been
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identified. Branin [?@] presents a trajectory method which is
based on the integration of a series of differential equations
whose trajectories lead to the stationary points or critical points
of the objective function. However this technique does not determine
whether all the stationary points have been found.

In this chapter, an attempt is made towards detecting global
minima by determining the domains of attraction of the local minima.
The method is more of an interactive graphical approach which locates
a minimum by any local minimization method and computes the domain
of attraction of this minimum by the method described in Section 1.7
of Chapter one. Then taking any point outside this domain, locate
the second minimum and determine its domain; repeating the process

until all the minima and domains have been identified. We also look

at the possibility of obtaining all the minima and domains automatically

by imposing certain criteria while determining the domain of a minimum.
That is, if the distance of a point on the boundary of the domain

from the minimum is less than R defined by (1.7.1), then the direction
of this point from the minimum and magnitude of R are taken to find a
point which acts as the starting point for another minimum. The result
is illustrated by testing an example given in Storey [ﬁi]. We conclude
by illustrating the graphical approach to functions with a single

variable and with two variables.

7.2 FUNDAMENTALS OF GLOBAL OPTIMIZATION.

Definition 7.2.1.

A point x € S is the global mipimum point of a function £(x)
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on a set 5, if x € § implies £(x) 3 ffgj.

Definition 7.2.2.

A point x' is the local minimum point of a function f(x) if
there exists a neighbourhood M around x' such that if X € M then

f(x) 3 £(x").

Definition 7.2.3.

The region of attraction of a minimum is the set of all
neighbouring points which if used as initial points for a
minimization algorithm will cause the algorithm to converge to
that particular minimum.

Consider a differential equation

X =~ g(x) (7.2.1)

where g(x) = grad f(x) . (7.2.2)
The solutions of system (7.2.1) are the orthogonal trajectories
of the contours of the function f(x). 1In stability theory, the
equilibrium points are obtained by equating the right hand side
of (7.2.1) to zero, which is equivalent to finding the critical
points of the function f(x) in differential calculus. So the
critical points of the function f(x) are the equilibrium points
of system (7.2.1) and all minima of £(x) become asymptotically
stable points, all maxima correspond to unstable points and saddle
points remain saddle points. The region of attraction of a minimum
of the function £(x) is therefore the domain of attraction of the
stable equilibrium point of system (7.2.1). The boundary of the

domain of a minimum must pass through at least one saddle point
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and this saddle point also belongs to the boundary of the domain

of another minimum if another minimum exists. Note that if the
function has maxima then the domain of attraction is determined

by reversing the time of system (7.2.1). Treccani et al.[58] use
the local minimum as a starting point to identify a saddle point
from which another minimum may be found if it exists. They consider
the Liapunov function

V(x) = f Hx (7.2.3)

where H is initially chosen as the Hessian of the function at
this local minimum, so that its derivative corresponding to
system (7.2.1),

V(x) = 5? HxX =~ 25? Hg (7.2.4)

. . T
is negative whenever x° H g > 0.

EF H g will be positive until either g = O (a stationary
point is found) or g is tangential to the surface V = constant.

Their algorithm is divided into four main steps.

Step 1.

A local minimum is first located by a local minimization
algorithm and a linear transformation is performed so that this
minimum is the new origin. The extermal point penalty function
method is used to minimise {T‘z

vV = xT H=x e
o — —

subject to the constraints

i) 5? x=-t30

i) V. (® 30 .




The first constraint removes the origin which would otherwise

be the solution to the problem. This method determines the
smallest value of VD(E:_) on which a point X, exists with

ﬁo(gc) = 0. This point therefore limits the region in which
VQ(E) is a Liapunov function which gives information regarding
asymptotic stability of the equilibrium peint at the origin for
system (7.2.1) represented in the transformed variables. The
external point penalty function method does not guarantee that

a minimum is found with ﬁo(g) = 0. So a sequence of minimization

is performed with an additional constraint
B—Vo(z.,)-e>0

where B is the value of Vo(g) found in the previous search, until

an acceptable solution is obtained.

Step 2,

The second step is to identify the largest level set of

f(x) contained in Vo(gc). The problem is therefore

minimise f(x)

such that Vb(g) = VO(EC) .

Let the solution be x = z,- If E(Eo) = 0 then the saddle point

has been identified.

Step 3.

The region of attraction is extended by constructing another

quadratic function
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T
Vi(g) x Hi X .

H, is defined in such a way that one of the axes of the ellipscid
defined above lies on a straight line joining the origin to the

point 24 found in the previous step. The minimization performed

is
Minimize Vi(g)
subject to the constraints

i) V@ 30

ii) x z._, 30, this restricts the minimization to the
half of the quadratic surface on the same

side as z.
=i-1

iii)  a constraint that restricts the minimization to points

external to the surfaces Vj(gc), J=lyee.,i=1

iv)  a constraint that prevents the plane formed by ii) cutting

the earlier surfaces.

Step 4.

Repeat step 2 by considering the surface formed by the boundaries
of Vj(gc), J=1lyee,i . If z; is the solution and g(gi) = 0 then
the required saddle point, z; has been identified, otherwise return

to step 3.

The following theoretical results are produced in relation to

their algorithm.

Theorem 7.2.1.

The local minimization outlined in step 1 will converge after

a finite number of steps.




Theorem 7.2.2.

The level sets identified in steps 2 and 4 are contained in

the region of asymptotic stability of the minimum.

Theorem 7.2.3.

If the sequence z; is finite it terminates at a saddle point.
If it is infinite and not convergent, then there does not exist
any saddle point and if some conditions on the sequence of matrices
Hi are maintained then the limit point of the sequence will be a
saddle point.

C.R. Corles, however, has shown that for certain functions
it is theoretically impossible to construct a sequence Hi vhich
satisfies the conditions on the eigenvalues of Hi' The detailed
descrip;ion of the method of Corles can be obtained in his

paper ESQ] .

7.3  INTERACTIVE GRAPHICAL AID TECHNIQUE.

This technique attempts to solve global optimization
problems by initially locating a local minimum from an arbitrary
point and then computing its domain of attraction. A point outside
the computed domain is taken as the starting point for searching

for the next minimum and domain and continues until all the minima

and domains have been identified. We shall consider the differential

equation defined by equations (7.2.1) and (7.2.2). The global

optimization problem is solved through the following steps.

i} An initial estimate is taken as a starting point for

searching for the local minimum of £(x) by any minimization
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algorithm. Newton's method which is given in Appendix C is

used in our examples. This may not be the best method for :
locating a local minimum. In this graphical aid technique, however,
we do not require a critical analysis of the minimization method.

So the use of the method of Newton is sufficient for our purpose

but other minimization methods can also be employed. °

ii) Perform a linear transformation so that the minimum
is the new origin of the transformed equation of (7.2.1). Compute
the domain of attraction of the new origin by the numerical method
described in Section 1.7. For the purpose of our drawings transfer
the origin back to the minimum. Points on the boundary of the
domain of attraction are also transferred to the old axis. Trace

the boundary of the domain of this minimum.

iii) Take any point outside the computed domain, search for

the next minimum, if it exists. Follow step {(ii).

iv) Repeat step (iii) until all the minima and domains of

attraction have been identified.

This approach is easy to apply since the set of differential
equations can be formed from any given function. Hence we are
able to solve the global optimization problem by computing the
domain of attraction of the stable equilibrium point of the
differential equation which is in fact the domain of attractiog
of the minimum of the function.

Since our interest is only to locate the minima and their
domains of attraction, no attempt is made towards analysing the
rate of convergence to its local minimum as this has been discussed

in many optimization references.




7.4  FUNCTIONS OF TWO VARIABLES.

Let us first implement the method for two dimensional problems.

i) Consider the function
3 2
£(x,y) = x° + 2’6—- xy . (7.4.1)

This function has a minimum at (1,3) and a saddle point at (0,0).
The contours of this function are shown in Figure 7.4(i). The
set of differential equations formed by using (7.2.1) is

- 3x2 +y

X

(7.4.2)

y=x- % .
Figure 7.4(ii) shows the domain of attraction of the stable
critical point of (7.4.2) which is the domain of the minimm of

(7.4.1). Notice that the saddle point (0,0) lies on the stability

boundary.

ii) Consider the problem given in Storey [61:] which has
two minima and one saddle point. The function
f(x,y) = (1!:2+§/2-1)2 + (x+y—1)2 (7.4.3)
1 1/3 1 1/3
has minima at (1,0) and (0,1) and a saddle point at Eﬂ , &d .

The contours of (7.4.3) are shown in Figure 7.4(iii).

The differential system is

X = - 4x(x2+y2-1) - 2(x+y-1)
(7.5.4)
¥ = = hy(PtyP-1) - 2(xty-1) .

The domains of attraction of the minima are shown in




158

Figure 7.4(iv) where ¢(x,y) = 2(x2+y2) and R = 1,0 are used.

Points starting in region A will converge to (0,1) and points in

the region B will converge to (1,0) in the minimization procedure.

We do not expect the minimization algorithms to converge to the

exact solution, but to converge to some small neighbourhood of

the minimum. A test has been made by taking the minima at

(0.9, 0.0) and (0.1, 1.0) and the domain is shown in Figure 7.4(v).
Although the true minimum is not used, the domain of a point in the small
neighbourhood of the minimum can still be computed. The region of stability
of the minima is found to be symmetric about the line x = y. The typical

effect of using different values of R is shown in Figure 7.4(ix).

iii) Consider the function
f(x,y) = 2(::-'y)2 - x4 - ya (7.4.5)

which has maxima at (vVZ, — v2) and (~/2, v2) and a saddle point
at (0,0). The contours of (7.4.5) are shown in Figure 7.4(vi).
The differential system is formed by taking (7.2.1) with time
reversed so that the equilibrium points of the system are
asymptotically stable, so
x = 4(x-y) - 4x3
(7.4.6)
§ == 4Gy - by .
Clearly the critical points of (7.4.6) are (V2, =~V2), (-V2, /2)
and (0,0). Taking ¢ = 4(x>+y2) and R = 2.9 the domains of the
maxima are plotted as shown in Figure 7.4(vii). The line x =y

forms the boundary of the two domains of attraction of the maxima.
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minima. The function
2 2 2 2 2
f£(x,y) = (9x +4y " +12y-16x-16xy-1)° + (x +2y-2x-2xy+1) (7.4.7)

has roots at (-1,-1), (1,-1), (1,2) and (3,1).

The differential equations arising from (7.2.1) are

P

e
n
1

4[%9x-8y-8)(9x2+4y2+12y-16x-16xy-1)

+

(x—y-l)(x2+2y-2x-2xy+1i]

e
n
1

4[;4y—8x+6)(9x2+4y2+12y—16x-16xy-1)

+

(1-x) (x2+2y-2x-2xy+1)] . (7.4.8)

|

iv)  Next we study an example of a function which has four

Figure 7.4(viii) shows the domains of attraction of all the
four roots by using ¢ = 4(x2+y2). For functions with four minima,
the computation of the domains is not accurate. It is very difficult
to compute the boundaries which pass through the saddle points of
the function since the trajectories are quite complicated. The
figure shows roughly on which line the saddle points are located.
Since this is a graphical aid technqiue, points well outside the
computed domain of a known minimum may be taken as an initial guess

for locating another minimum. The contours may become narrower as

they approach the saddle points,

7.5 FUNCTIONS OF A SINGLE VARIABLE,

Let us now apply the technique to a one-dimensional optimization

problem.




i) The function

xﬁ
-5 (7.5.1)

f(x) = - 2x2 + 2x3

has a minimum at x = 1 and maxima at x = 0, 2.
The differential equation

x = 2x(1-x) (2-x) (7.5.2)

has a stable equilibrium point at x = 1,

The lines x = 0 and x = 2 form the boundary of the domain of
attraction of the minimum, x = 1 as shown in Figure 7.5(i).
Different sizes of ellipses are used as our regions of approximations.
The maxima of (7.5.1) become unstable roots for system (7.5.2). Any
points inside the domain of attraction of the minimum will converge

to x = 1 in the minimization algorithm,

ii) Consider the function
x2 x4
f(x) = - —2"' + T (7-5-3)
with minima at x = 1 and x = - 1.

The scalar equation is
. 2
x = x(1-x") . {(7.5.4)

Figure 7.5(ii) shows the domains of attraction of x = 1 and
x = - ] obtained by using the graphical approach. Any point starting
above the positive x—axis will locate the minimum x = 1 and likewise
points below the x-axis will converge to x = - 1 when used in any

minimization algorithm.




iii)  Take the function

2 Sx4 x5
f(x) = - 2x" + - 5 (7.5.5)

with minima at x = 1 and x = ~ 1 and maxima at x =0, 2, -2,

Forming a scalar equation gives

% = x(1-x2) (b-x2) . (7.5.6)

The origin of (7.5.6) is an unstable equilibrium point. The
domains of attraction of the minima are shown in Figure 7.5(iii).
Any initial point taken in the interval 0 < x < 2 will converge to
x = 1 and points in the interval -2 < x < O will converge to x = -1
when used in the graphical aid technique. The domain of attraction
of the maxima x = 0, 2, ~2 obtained by reversing the time of (7.5.6)
is given in Figure 7.5(iv). 1If the function is maximized in the
region -1 < x < 1 then x = 0 will be located. If maximization
starts at x > 1 the maximum x = 2 is located while for x < -1 the

maximum X = -2 can be identified.

iv) Comsider a polynomial function which has a minimum and

maximum close to each other, Such a function is

x5 9x4
f(x) = - 5 + %

- 29508 x> + 19.76x° - 18.82x (7.5.7)

and the minima are at x = 1.107 and % = 2,905 and the maxima at
x = 1.888 and x = 3.1. Figure 7.5(v) shows the graph of this

function.
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Figure 7.5(v)
Forming the differential equation gives .
- 4 3 2
x=x =-9x + 29,08x" - 39.52x + 18.82 . (7.5.8)

The minima of function (7.5.7) are the stable points of
system (7.5.8) while the maxima are the unstable points. The
roots 2.905 and 3.1 are quite close to each other. The domain
of attraction of x = 1.107 ig == < x < 1,888 and the domain of
attraction of x = 2,905 is 1.888 < x < 3.1. Figure 7.5(vi) shows
the domains of attraction of x = 1,107 and x = 2.905. Any point
starting below the line x = 1.888 will find the minimum x = 1.107

and points in the region 1.888 < x < 3.1 will converge to x = 2,905

when a minimization is performed. Although the roots and values




of the function at these roots are close to each other the domains

of attraction of the minima can still be determined. The closeness
of these roots does not affect the determination of the domains

of attraction.

v) Next we study a function which has transcendental terms

and has kth order continuous derivatives. McCormick EG?.] considers

the function

f£(x) = x sinx - exp(~x) (7.5.9)

in finding the global minimum in the interval EO, Zﬂ by using

the method of constant signed higher derivatives. In this interval
there is only one internal minimum which is located at x = 4.91177.
Let us now take a bigger interval where there exists multiple
minima. For the purpose of applying the technique of Section 7.3
we take the interval E), Sﬂ where minima occur at x = 4.91177 and
X = 11.0855 and maxima occur at x = 2,074, 7.978 and 14.207. The
graph of this function is given in Figure 7.5(vii).

£(x)
n

15 -

10 1

-5 L) 2 3w 4 5n

Figure 7.5(vii)
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4

The differential equation formed by using (7.2.1) and

(7.2.2) is

X==38inx - x cosx ~ exp{—x) . (7.5.10)

The stable points of system (7.5.10) are therefore x = 4.91177

and x = 11.0855. The maxima are the unstable ones and will form

the boundaries of the domains of attraction of the minima.

Figure 7.5(viii) shows the domains of attraction of the minima

x = 4,91177 and x = 11.0855. With the technique of Section 7.3

points starting in the region 2.074 < x < 7.978 will locate the
minimum x = 4,91177 while points starting in the region

7.978 < x < 14,207 will find the minimum x = 11.0855. Similarly

using this technique we can also locate all the minima and compute

the domains of attraction of the minima of this function if a

bigger interval is considered. For this example, Figure 7.5(viii)
indicates the accuracy of the technique, the exact boundaries

of the domains of attraction of the minima being obtained to 3 dec. places.
This technique certainly has the advantage over McCormitk's method since
all the minima and domains can be obtained. McCormick only considers
the function in the interval EO, 217] where only one internal

minimum exists and no attempt is made towards locating the minima

and determining their domains of attraction in a bigger interval.

7.6 DISCUSSION OF GRAPHICAL AID TECHNIQUE.

The interactive graphical aid technique locates the minima
by any local minimization algorithm such as Newton (see Appendix C)

and computes the domains of attraction of these minima by the
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method of Section 1.7. In this technique results of stability

theory have been borrowed to solve global optimization problems.

It is called a graphical aid technique since it only considers

points outside the computed domains of attraction of the minima

for locating other minima and computing their domains of attraction.
Sections 7.5 and 7.4 illustrate the use of the technique on

one-dimensional and two-dimensional optimization problems respectively.

In the two-dimensional problem the technique successfully locates the

minima and plots their domains of attraction. An exact stability

boundary, x = y is obtained for system (7.4.4) where the minima

of function (7.4.3) are (1,0) and 0,1) and the stability regions

are symmetric about the line x = y. Figure 7.4(iv) also indicates

N3\
that the saddle point [IZ] s Eﬂ lies on the stability

boundary of the two minima. In problem (iv) of Section 7.4 the
function contains four minima and the problem of locating these
minima is a difficult one. By using this technique, although the
domains of attraction obtained are not very accurate all the four
minima can still be located. This is because points well outside
the computed domains may be taken as an initial guess for locating
another minimum. In a single variable function all the minima and
domains of attraction can be easily found by this technique and
this is shown by the examples considered in Section 7.5. Thus the
problem of global optimization which is admittedly difficult can

be solved by the interactive graphical aid technique.
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7.7 POSSIBLE AUTOMATIC METHOD.

The problem of identifying minima and determining their domains
of attraction automatically is still a difficult problem to solve.
One factor is that the time involved in locating the minima and
computing the domains may exceed the limit of our computer usage
time. Complicated functions with many minima will certainly need
a lot of time to determine the minima and domains. In this section
we try to devise an automatic algorithm which relies on the technique
proposed in Section 7.3. In the graphical aid technique, an arbitrary
point outside the computed domain is chosen as an initial guess for
locating the minimum. In order to implement the method automatically,
the direction of a point on the stability boundary whose distance
from the mwinimum is less than the given R is selected from the
computation of the domain of attraction of the minimum, This direction
is used to find the starting point (which lies outside the computed
domain) for the location of the next minimum. We summarize the

algorithm through the following steps.

i) Given an arbitrary point, find a local minimum by any

minimization algorithm.

ii) Transfer the minimum to the origin. Compute the domain
of attraction of the minimum and also pick the direction
of a point on the stability boundary whose distance from

the minimum is less than the value of R defined by (1.7.1).

iii) The direction, say ¢, picked from (ii) is used to find the
starting point (which lies outside the computed domain and is
defined by (R cos¢, R sin¢ )) for the location of the next

minimum. Locate the minimum. Repeat step (ii).
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iv) Repeat step (iii) until all the minima and domains of

attraction have been identified.

The method is applied to the problem of Section 7.4.ii with
R = 1.0 and the result is as shown in Figure 7.4(iv). The
arbitrary initjal point is (0.3, -0.1) and the minimum located
is (1, 0). The angle picked is 160°. So the starting point for
locating the next minimum is (cos 1600, sin 1600) which lies
outside the computed domain. Although we are able to locate the
minima and compute the domains automatically, the computation
time is very large. So complicated functions with many minima

may require a considerable amount of time.

7.8  CONCLUSION.

The idea of combining stability theory and optimization theory
throws some light on solving the global optimization problem. The
graphical aid technique is another space covering technique which
successfully locates the minima and computes their domains. For
functions with two minima or maxima the stability boundaries traced
are accurate as seen in examples (ii) and (iii) of Section 7.4.

But functions with four minima the boundaries are difficult to
compute especially the boundaries which pass through the saddle
points and the domains are not drawn accurately. The method also
solves the one~dimensional optimization problem with multiple minima.
In this one-dimensional optimization problem, an example from a
recent article of McCormick (62] is studied in a larger interval

and the exact boundaries of the domains of attraction of the
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minima are obtained as showm in Figure 7.5(viii).

The automatic method looked promising in that it
is able to locate the minima and to determine their domains of
attraction automatically as seen from the application of the
method to the problem of Section 7.4.ii which has two minima.
However the computation time is very large. So for functions
with many minima, the computing time involved may exceed the
limit of our computer usage time.

The graphical aid technique concerns only in solving the
global optimization problem by trying to locate all the minima
as well as determining their domains of attraction. No eritical
analysis regarding the efficiency and accuracy of this technique

is given and this would be a worthwhile topic of further research.
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The work of this thesis is mainly concentrated with applying
the method of Zubov to some practical problems and extending it
to higher order systems, time varying systems and periodic systems
and also solving global optimization problems. Several comments
have been included throughout the preceding chapters and in this
chapter it is appropriate to summarize and draw some conclusions
regarding the work and make suggestions for further research.

Zubov's theory plays an important role in generating a
Liapunov function and estimating the domain of attraction of a
stable equilibrium of the given system. The fact that V=1 or =
which defipes the exact stability boundary, gives some incentives
in trying to establish the complete domain of attraction. However,
solving Zubov's equation is not an easy matter. Some authors have
attempted to solve the Zubov's equation by the classical methods
for solving first order partial differential equation and some
have tackled the problem through series and Lie series construction
procedures. The series solution however has a convergency problem.
Also in most problems it is extremely difficult to obtain a closed
form solution of Zubov's equation.

Miyagi and Taniguchi selve Zubov's equation by the classical
Lagrange Charpit method. The method determines an arbitrary non
negative function ¢(x) which allows the Liapunov function to be
determined. In the process of solving the partial differential
equation the authors have assumed many arbitrary functions so that
a Liapunov function can be formed easily. However Zubov's theory
is not applied fully in determining the domain of attraction, so

the exact stability region cannot be achieved. An attempt has




been made to apply the Lagrange Charpit method to a scalar time

varying system in the example of section 1.6(i) and the actual
domain of attraction (-«, 1) is obtained for all t 3 O when the
condition V = » is imposed. Here again many arbitrary functions
have been assumed. Further research is required as to what
criteria should be used to select these arbitrary functions.

An obvious way of solving Zubov's equation is by numerical
methods. The result of using finite difference methods is not
encouraging because of inaccuracies as the stability boundary is
approached. Also the choice of the initial condition V(x, 0) will
affect the accuracy of plotting the stability boundary.

White has developed a numerical method which determines the
domain of attraction of a stable equilibrium of a system. This
method overcomes the problem of nonuniform convergence and finds
the domain of attraction accurately. Zubov's equation is
transformed into a pair of first order ordinary differential
equations in the case of second order autonomous system. The
method initiates near the boundary of the domain of asymptotic
stability and computes trajectories which either tend to the
origin or away from it, depending on where the computation is
initiated. The approach of using V to compute x(V) is different from
the Texter algorithm where x(t) is computed. In White's method,
a circle defined by (1.7.1) is used as the region of approximation
but other shapes could also be assumed. For systems which have
elliptical regions of asymptotic stability the use of an ellipse
as the region of approximation has an advantage over the circular

approximation and allows the boundary points to be computed more
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quickly. In most numerical algorithms the starting point for
computing the stability boundary is taken near the boundary but
a method which determines the domain of attraction by initiating
near the origin would form a worthwhile area of research.

In Chapter two we have applied White's method to some practical
problems like power systems and control systems and the results are
encouraging because considerable improvement in the estimates of
the domain of attraction has been achieved. 1In the Luré problem
the sector condition has been relaxed so that the system is
asymptotically stable but not in the large. The region of
attraction obtained clearly shows the superiority of the method.

The method of White has been extended to scalar time varying
system and the results are presented in motion space. Accurate
domains of attraction have been obtained. Here the Zubov's
equation in some of the examples requires a positive definite and
decrescent ¢ and in some a positive definite ¢ only. There is
still an uncertainity concerning thenature of ¢. For example, in
section 3.7(i) only a positive definite ¢ is used, but still the
Zubov's equation can be solved analytically giving a closed form
solution and the exact domain of attraction can be inferred.

The series solution for scalar time varying systems also
suffers from the problem of nonuniform convergence. In the
Yoshizawa example we have shown that the even partial sums of the
series converge to the domain of attraction -» < x < et while the
odd partial sums converge to the region of convergence |x| < e,
In the series construction procedure, the V's, f's and ¢'s for

second order time invariant systems are homogeneous in x and y
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but for the scalar time varying systemsthey are only homogeneous
in x. The construction of the series solution for a second order
time varying system by following the same line of argument as

the scalar time varying system forms another possible topic of
research. In the series, the bounded functions of time will be
determined by solving the linear equations formed by equating the
coefficients of the phase variables.

In the extension of the algorithm to third order autonomous
systemsthe problem of varying the vector E? = (61,62) to cover
all directions of the state space is encountered. One way of
resolving this problem is to compute the cross-section of the
stability boundaries in all the principal plames. So to vary 6,
one of its components is fixed so that the variation of scalar ©
discussed in White's algorithm can be applied. The domain of
attraction of a third order autonomous system is in general
represented by a volume in three dimensions. The cross-sections
of the stability boundaries at different levels of the three axes
are computed and from these boundary points a solid figure is
drawn by using the graphics package which is available from the
Loughborough University of Technology Computer Centre. A method
of varying vector § so that all dimensions are covered will
certainly ease the problem of determining the domain of attraction
of third order autonomous systems. The domains of attraction of
second order time varying systems represented in the phase space
are obtained by using the algorithm for third order autonomous
systemsS.

The extension of the method to periodic systems requires the
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knowledge of the periodic sclution being studied. The only
difference in the method is that instead of studying the trivial
solution x = 0, we consider the periodic solution. So the form

of ¢ will be different from the former case but the positive
definiteness and decrescency of ¢ are still preserved. In many
periodic systems it is often difficult to obtain the exact periodic
solution. The advantage of the method is that knowledge of
approximate periodic solutions is sufficient for the determination
of domains of attraction.

It is known that the solution of global optimization problems
is a difficult task. The use of stability theory gives us the
possibility of determining the domains of attraction of minima
of a function using the differential equations formed by taking
the negative gradient of the function., The domains of attraction
of the stable critical points (which are the minima of the
function) of this system are obtained by White's method. 1In the
one-dimensional minimization problems, the results obtained are
impressive. In the two-dimensional problems the computed domains
of attraction of the function with two minima are accurate but
this is not so for functions with four minima. This is because
the contours may become narrower as they approach saddle points.
The result tells roughly the location of the saddle points.
Nevertheless, all the four minima of the function can be located
since points well outside the computed domain of attraction of a
known minimum can be considered as starting points for identifying

another minimum. Since we are only interested in identifying the
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minima and determining their domains of attraction, the critical
analysis of the graphical aid technique is not given and there

is certainly a scope for further research in this area. Extension
of the method to a three-dimensional minimization problem forms

another possible research topic.
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AppENDIX A

Notations used for the power systems.

M -~ inertia constant
.6 = load angle
60 - steady state load angle

D,a,a;, - damping coefficients

Pmi - mechanical power input

Pmio - steady state mechanical power input

Pe - electrical power output

E& = voltage proportional to field flux linkage

an - steady state voltage proportional to field flux linkage
ox ~ exciter voltage

v -~ infinite busbar voltage

xd,xq - direct-axis and quadrature-axis synchronous reactances

x&,x& - direct—-axis and quadrature—-axis transient reactances

x" - direct-axis and quadrature~axis subtransient reactances

n
d’7q
x, - external reactances
T&o - open circuit transient time constant
T& - short circuit transient time constant
Tgo’T;o - open circuit subtransient time constants
T, - equivalent time constant of the governor system
. b - amplitude of the fundamental of power angle curve
c - amplitude of the second harmonic of power angle curve

- 1
ny 1/Td




.
_ (xd xd)v

1 ] L
(xe + xd)Tdo

1/T
e
- k/Te
- governor amplification factor

- Liapunov function
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APPENDIX B

DEFINITIONS AND THEOREMS OF EVENTUAL STABILITY

Definition 1:

The origin of a system x = F(t,x) is said to be eventually
stable if, for a given € > 0, there exist numbers § and T such

that

||xo” < § implies ||x(t,x0,to)]|< e forall £3¢t >T.

Definition 2:

The origin of the system % = F(t,x) is said to be eventually

asymptotically stable if

i) it is eventually stable and

ii) there exists an h > 0 and a To such that

|]x°” <h and t 3T imply x(t,x ,t) +0ast >,

Theorem 1:
Eventual stability of the origin is equivalent to the following:

given € > O there exist numbers § and T such that

][x(tl,xo,to)||< § for some t, 3T implies ”x(t,xb,t°)||< £

for all t 3 tl .

Theorem 2:

Eventual asymptotic stability of the origin is equivalent

to:




i)

ii)

eventual stability of the origin

there exist an h > 0 and a '1‘0 such that

”x(tl,xo,to)” <h for some t; 3> T_ implies

x(t,xb,to) +0 as t >,




ApPENDIX C

Newton's Method,

The general iteration for this technique is

L0t _ _(n)

— a—

_ 1:(n) oL (E(n)) Ef(’.‘_(n))

(n)

where G-l(z_(n)) is the inverse of the Hessian at the point x o .

Vi (:_c_(n)) is the gradient of the function at the point g_(n) and
(n)

. s n+ : e e
is a scalar parameter obtained so that f(gt_( 1)) is minimized.

(o)

The initial point x

t

is tzken to be a suitable estimate

of the minimum.







