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Abstract 

Calcmm wns are an important second messenger m hvmg cells Indeed calcmm sig

nals m the form of waves have been the subject of much recent expenmental mterest 

A fundamental approach for studymg cellular s1gnallmg 1s the combmation of state of 

the art expenmental techmques, m particular h1gh resolutiOn fluorescence imagmg, 

w1th spatw-temporal mathemat1cal models of mtracellular calcmm regulatwn Exper

Imental findmgs can be mcorporated mto mathematical models and, v1ce versa, model 

pred1ctwns can be d1rectly tested m expenrnents This approach prov1des a powerful 

tool to clanfy the very complex mechamsms involved m cellular Ca2+ s1gnalhng 

The a1m of th1s thes1s 1s to prov1de mSJght mto osc1llatwns and waves of cytosohc Ca2+ 

m both smgle and multi-cellular systems from a mathematical perspective We focus 

on two models of Ca2+ release for a systematic mathematical and numencal analysis 

of Ca2+ dynamics One of them IS a bwphys1cally detailed model wh1ch we study 

usmg tools from b1furcatwn theory, numencal contmuatwn and numencal s1mulatwn 

The other IS a much Simpler m1mmal model of Ca2+ dynam1cs that emphasises the 

fundamental space and time scales of cellular Ca2+ dynamics and allows for exact 

mathematical analysis For the detailed bwphys!Cal model we calculate the speed 

and stab1hty of travellmg waves as a functwn of physiologically significant parameters 

The m1mmal model of Ca2+ dynam1cs IS obtamed Via a systematic reductwn of the 

bwphys1cal model and 1ts analytically obtamed behaviOur IS shown to be m excellent 

agreement w1th the ongmal bwphys1cal model Th1s m1mmal model IS then used to 

gam ins1ght mto the effects of spatial heterogeneity and bwlog1cally reahstJc sources 

of nmse on intra- and mter-cellular cell signalling. In particular we pursue 1ssues 

of wave propagatiOn, wave propagatiOn fa1lure and the role of nmse m generatmg 

coherent whole cell rhythms 
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c:::-1 
Introduction 

Many processes m hvmg systems are oscillatory Biological rhythms occur at all levels 

of bwlog1cal orgamsatwn, from umcellular to multi-cellular orgamsms, w1th penods 

rangmg from fractwns of a second to years Besides qmte obvwus examples of bJO

log~cal oscillations such as the beatmg of the heart, lung resp1ratwn, the sleep-wake 

cycle, central pattern generatwn and locomotiOn m ammals, there are many mstances 

of bwlogical osc1llatwns at the cellular level These rhythms find the1r roots m the 

many regulatory mechamsms that control the dynamics of hvmg cells For example, 

neural and cardiac rhythms at the smgle cell level are associated w1th the regulatiOn of 

voltage-dependent JOn channels, metabolic osc1llatwns ongmatmg from the regulatiOn 

of enzyme actJvJty, pulsatJle mtercellular s1gnals and mtracellular calcmm osc1llatwns 

associated w1th receptor actJvJty, wh1le regulatiOn of gene expression in hypothalam1c 

neurons underlies circadian rhythms Although different cell types express markedly 

d1fferent rhythms a common set of components assembled m a cell-spec1fic manner 

can g1ve nse to d1fferent spatial and temporal dynam1cs. Thus, the spatially extended 

nature of the cell and the way m wh1ch these components are organised mto mteract

mg complexes IS v1tally important for generatmg physwlog1cally s1gmficant cellular 

rhythms In v1ew of the large number of vanables mvolved, the spatially extended 

1 



CHAPTER 1 INTRODUCTION 2 

nature of the cell, and the complextty of nonlmear feedback processes, mathematical 

models are vttal for a better understandmg of how molecular and cellular mechamsms 

gtve nse to osctllatwns Importantly a mathematical approach opens up the way to 

explore the role of space, heterogenetty and n01se m shapmg cellular rhythms Mod

els are also useful to understand the transttlon from stmple to complex osctllatory 

behavwur and for dehneatmg the condttlons under whtch they arise The strength 

of a theorettcal approach is that 1t clanfies the molecular and dynamtcal mechamsms 

for cellular rhythm generation 

One of the most stgmficant findmgs m the field of mtracellular stgnalhng wtthm the 

last two decades is the discovery of Ca 2+ osctllatwns Thts has radtcally affected the 

way bwchemtcal osctllatwns are vtewed. Ca2+ osctllatwns are of mterest for a vartety 

of reasons Ftrst, they occur m a large number of cell types, etther spontaneously or 

as a result of stlmulatwn by an external stgnal such as a hormone or a neurotrans

mitter Second, 1t lS now clear that, bestdes the rhythms encountered m electncally 

excttable cells, they represent the most wtdespread osctllatory phenomenon at the cel

lular level Thtrd, Ca2+ osctllatwns are often assoctated wtth the propagatwn of Ca2+ 

waves wtthm the cytosol, and somettmes between adJacent cells. Thts phenomenon 

has become one of the most Important examples of spatw-temporal orgamsatwn at 

the cellular level Ca2+ ts a htghly versatt!e mtra- and mter-cellular stgnal that op

erates over a wide temporal range that ts now known to regulate many dtfferent cel

lular processes, from cell d!Vlston and dtfferentlatwn to cell death [11] Many of the 

Ca2+-stgnalhng components are orgamsed mto macromolecular complexes m whtch 

Ca2+ -stgnalhng functtons are earned out w1thm htghly locahsed envtronments These 

complexes can operate as autonomous umts that can be multtphed or mtxed and 

matched to create larger, more dtverse stgnalling systems, as tllustrated by cardtac 

Ca2+ signalling. Raptd highly locahsed Ca2+ sptkes regulate fast responses, whereas 

repetitive global transtents or mtracellular Ca2+ waves control slower responses Cells 

respond to such osct!latwns usmg sophtstlcated mechamsms mcludmg an abthty to 
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interpret changes m frequency. Such frequency-modulated s1gnallmg can regulate 

specific responses such as exocytos1s and differential gene transcnption 

In this thesiS we shall explore oscillatiOns and waves of cytosolic Ca 2+ m both smgle 

and multi-cellular systems from a mathematical perspective More prec1sely, we focus 

on two models of Ca2+ release for a systematic mathematical and numencal analys1s 

of Ca2+ dynamics One of them is a biOphysically detailed model wh1ch we study 

usmg tools from bifurcatiOn theory, numencal contmuation and numencal simulation. 

The other IS a much simpler m1mmal model of Ca2+ dynamics that emphasises the 

fundamental space and time scales of cellular Ca2+ dynamics and allows for exact 

mathematical analysis For the detailed biophysical model we calculate the speed 

and stab1hty of travelling waves as a function of physiOlogically significant parameters 

The m1mmal model of Ca2+ dynamics IS obtamed via a systematic reductiOn of the 

biophysical model and Its analytically obtamed behaviOur 1s shown to be m excellent 

agreement with the ongmal biOphysical model This mmimal model IS then used to 

gam ms1ght mto the effects of spatial heterogeneity and bwlog1cally realistic sources 

of nmse on mtra- and mter-cellular cell signalling In particular we pursue Issues 

of wave propagatiOn, wave propagatiOn failure and the role of nmse m generatmg 

coherent whole cell rhythms 

1.1 Experimental observations on Ca2+ oscillations 

It has been known for a long time that calcmm osc1llatwns operate m penod1cally 

contractmg muscle cells (e g heart cells) and neurons [115] However, they were 

only first discovered m non-excitable cells m the mld-1980s, notably m oocytes upon 

fertilisatiOn by Cuthbertson and Cob bold [40] and m hepatocytes subJect to hormone 

stimulatiOn by Woods et al [172, 173] These direct observatiOns of Ca2+ osc1llatwns 

followed earlier theoretical predictiOns [89, 129] and md1rect measurements [130]. 

Later, Ca2+ oscillatiOns were also found m many other animal cells [10, 16, 62, 82, 
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142, 157] as well as m plant cells [111]. The progress of the expenmental results on 

Ca2+ oscillatiOns and the associated propagation of mtracellular Ca2+ waves ansmg 

in recent years has been exammed in a senes of reviews [7, 8, 12, 14, 33, 39, 55, 76, 

112, 128, 131, 167, 168] We briefly recall the mam properties of Ca2+ osc1llatwns as 

determmed from a large number of expenmental studies Cytosohc Ca2+ oscillatiOns 

anse either spontaneously [72, 106] or in response to stimulatiOn by extracellular 

signals, with penod rangmg from nearly one second to tens of minutes, dependmg 

on the cell type Among the most studied cells, with regard to Ca2+ osc1llatwns, are 

cardiac cells, oocytes, hepatocytes, endothelial cells, fibroblasts, pancreatic acinar 

cells and pitUitary cells The shape of the oscillatiOns IS highly vanable (see Figure 

1 1) In some cases the osciilatwns are quasi-smusoidal, while m others they take the 

form of abrupt spikes, which are often preceded by a gradual mcrease remmiscent 

of the pacemaker depolansmg potential seen m oscillatory neurons or cardiac cells 

[45[ It has been repeatedly observed that oscJllatJons occur only in a certam range of 

stimulatiOn and that the frequency of Ca2+ spikes increases with the mtenSity of the 

st!Illu!us Besides the mductwn of oscillations by external signals, It IS often possible 

to ehc1t a tram of Ca2+ spikes by mcreasmg the level of extracellular or mtracellular 

Ca2+, or the level of inositol 1,4,5-tnsphosphate (IP3 ) [121]. The latter messenger IS 

synthesised m response to external signals and IS known to raise the level of cytosohc 

Ca2+ through mobihsatwn from mtracellular stores [9, 15] 

1.2 Spatial Ca2+ propagation 

The spatial propagatiOn of Ca2+ waves mediated by diffusive transport of calcmm wns 

has long been observed in a variety of egg types after fertJhsatwn [24, 60, 77, 78, 79] 

In these cells, waves of Ca2+ propagate over the cortex, from the site of fertihsatwn 

The wave-hke propagatiOn of Ca2+ signals has now also been observed m other cells m 

which Ca2+ osc1llatwns were previOusly charactensed (see for example [1, 13] for some 
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F1gure 1 1 Typ1cal calcmm osc1llatwns from a varzety of cell types A Hepatoc

tyes st1mulated Mlh vasopressm (VP) B Rat parot1d gland stimulated w1th carbachol 

(CCh) C Gonadotropes stimulated w1th gonadotropm-releaszng hormone (GnRH) 

D Hamster eggs after fertlllsatwn The t1me of fertlllsatwn lS denoted by the arrow. 

E and F Insulmoma cells stimulated wlth two d1jferent concentratwns of carbachol 

(From [14}) 
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reviews). Thus, Ca2+ oscillations and waves appear to be closely related phenomena 

[15]. The velocity of Ca2+ waves varies in different cells; the wave propagates at a 

rate of the order of 10 pm/son the surface of oocytes [77, 79], 30 J.Lm/s in hepatocytes 

[162], and at a rate close to 100 J.Lm/s in the cytoplasm of cardiac cells [160]. The 

most complex wave patterns, exhibiting hot spots, spherical, spiral and planar waves 

were demonstrated in Xenopus oocytes [94]. As an example, the image of a Ca2+ 

spiral wave is given in Figure 1.2 . A single mammalian cell of size 10-20 J.Lm is 

Figure 1.2: Confocal image of regenerative spiral waves of free Ca2+ observed in 

Xenopus laevis oocytes (From [g4}). 

not large enough for such complex patterns, although similar patterns have been 

observed in larger cardiac cells and in networks of astrocytes and glia (98]. Also other 

experiments indicate that in some cell types (for example epithelia [141] and glia 

[26, 27]) Ca2+ triggered by mechanical stimulation may propagate from cell to cell. 

This intercellular propagation appears to be mediated by the passage of Ca2+ or IP3 

through gap junctions [19], although extracellular messengers such as ATP may be 

involved. 
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Moreover, high-resolutiOn Imagmg of Ca2+ m a vanety of cell types shows that trav

ellmg waves can vary m their appearance. For example, the calcmm wave that oc

curs durmg fertilisation m mature Xenopus eggs appears to be contmuous [57, 120], 

whereas the calcmm wave m Immature Xenopus oocytes propagates as a sequence of 

bursts [25, 122, 124, 174). It IS commonly believed that mformatwn IS encoded m 

the time course of the Ca2+ signal Thus, the d1stmctwn between these two modes 

of propagatiOn is hkely to be of physiOlogical significance Another mteresting as

pect of mtracellular Ca2+ regulatiOn IS the generatiOn of global events bmld up from 

elemental local events called puffs These elementary events m many electncally non

excitable cells have amplitudes typically rangmg from ~ 50-600 nM, a spatial spread 

of ~ 6 pm and a total duration of~ 1 second Apart from Xenopus oocytes, such 

events have subsequently been observed m HeLa cells, neuntes and endothelial cells 

(reviewed m [22)). In heart and skeletal muscle, where Ca2+ release channels are 

spatmlly orgamsed m clusters, localised Ca2+ release events have also been seen [31) 

These events called sparks are analogous to the Ca2+ puffs, although they are usually 

faster in onset and dechne, and have a more restncted spread (~ 1- 3 pm). Ca2+ 

sparks and puffs are simple examples of the stochast1c nature of mtracellular Ca2+ 

dynamics The t1mescale on which stochasticity IS observed when puffs/sparks are 

tnggered IS of the order of many seconds However, the on gm of the stochastic nature 

of Ca2+ release events hes m the md1vidual gatmg of Ca2+ channels, which occur on 

the millisecond timescale 

As regards the physiological significance of Ca2+ oscillatiOns and waves, It IS conceiv

able that the rapid spatml propagatiOn of Ca Z+ signals provides a useful commumca

twn mechamsm between d1stmct parts of the cell or between different adJacent cells m 

a tissue (see [27, 141)) Calcmm signals regulate a large number of cellular processes 

includmg contractiOn of muscle fibers, release of hormones and neurotransmitters, 

synapt1c plasticity, sensory perceptiOn and adaptatiOn m photoreceptors, exocytoSis, 

gene expression, gap JUnctiOn regulatiOn and others 
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1.3 Overview of the thesis 

In Chapter 2, we define the mam components of the cell and descnbe Important 

aspects of Ca2+ dynamics mvolved m the regulatory mechamsms of Ca2+ s1gnallmg 

m living cells We then d1scuss the bas1c approaches used in the modellmg of Ca2+ 

osc1llatwns, mcludmg the contmuous determmJstJc models of Ca2+ osc1llatwns based 

on a descnption of essentml Ca2+ fiuxes throughout the cell. B1furcat10n analysis 

of various bwphys1cal models demonstrates that osc1llatwns are typically assocmted 

w1th an mstability of a fixed pomt m favour of a stable hmit cycle over a range of 

parameter values Moreover, the bifurcation structure for many of the commonly 

used bwphys1cal models of Ca2+ oscillatwns can be surpnsingly nch Three of the 

bas1c models of Ca2+ osc1llatwns m the presence of IP3 (two-pool model of Goldbeter 

et al [63] and one-pool models of De Young Keizer et al [175] and Atn et al [2]) are 

rev1ewed m more detail Interestmgly for the DYK model we uncover an mterestmg 

global bifurcatiOn structure (at least for a given set of parameter values) Because 

of the success of the DYK model in reproducmg expenmentally observed behavwur 

(such as the open probability of release) we use th1s as the bas1s for bmldmg a whole 

cell model, descnbed m Chapter 3 Chapter 2 also g1ves a bnef overv1ew of some 

models exh!bitmg more complex forms of Ca2+ oscillatiOns, such as penodic burstmg 

and chaotic behavwur. However, detailed aspects of these types of oscillations will 

not be studied m th1s thes1s 

In Chapter 3 we simplify the detailed bwphys1cal DYK model of Chapter 2 usmg 

a mathematical reduction process based on some biOlogically realistic assumptiOns 

regarding the time scale of bmdmg and unbmdmg to receptor s1tes Travelling wave 

behaviOur m a whole cell model 1s then studied m th1s reduced model We present 

a detailed numencal bifurcatwn analys1s together w1th a linear stability analysis of 

Ca2+ wave propagation. We demonstrate that the model supports an mterestmg form 

of b1furcat10n structure mcludmg global and penod doublmg bifurcatiOns A vanety 
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of propagatmg patterns are sustamed by th1s model mcludmg travellmg pulses and 

penod1c travelling waves, 2n-penodJC orb1ts and 2n-homoclimc orb1ts Moreover, a 

kmematJC theory of Irregular wave propagatiOn IS used to pred1ct the ex1stence of a 

non-penod1c travellmg wave (that connects two periodic wave trams) 

In the DYK model, as well as m other bwphysical models of Ca2+ release, ms1ght 

mto behavwur is typically only poss1ble w1th numencal analysis One of the mam 

ambitions of this thesis is to mtroduce a m1mmal model of Ca2+ release consistent w1th 

more deta1led biophys1cal models, yet IS analytically tractable Importantly we shall 

mtroduce a mathematical framework to address 1ssues of Ca 2+ release and oscillation 

Th1s framework IS based upon the determm1stJc FJre-DJffuse-FJre (FDF) model of 

Ke1zer et al [88] wh1ch uses a threshold process to mimic the nonlinear properties of 

Ca2+ channels The main advantages of studymg FDF type models are the poss1b1lity 

to analyse them exactly w1th both contmuous and d1screte d1stnbutwns of Ca 2+ 

release s1tes In Chapters 4 and 5 we consider continuum and diScrete d1stnbutwn of 

release s1tes respectively 

In Chapter 4, we mtroduce the generalised verswn of the FDF modeL The d!stn

butwn of Ca2+ release s1tes IS contmuous in th1s chapter The generalisatiOn, firstly, 

mcorporates a time dependent threshold to m1m1c refractonness of release s1tes and, 

secondly, the notion of IP3 senSitivity motivated by a reduction of the DYK modeL 

Mathematical analys1s is used to h1ghlight the ab1lity of the generalised FDF model to 

descnbe realistic Ca2+ waves and m particular solitary and penodic waves The pa

rameters of the FDF model are constramed usmg numencal data from the bwphys1cal 

DYK modeL Th1s allows a d1rect comparison between these models. 

In Chapter 5, we study the FDF model w1th a more biolog~cally realistic distnbu

twn of release s1tes. In the first part of the chapter, we mvestigate how a regular 

array of release s1tes mfluences the propagatiOn of saltatory travellmg waves (w1th 

non-constant profile) By cons1dermg calcmm stores as Idealised pomt sources we are 
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able to explicitly construct solutiOns of the FDF model that correspond to saltatory 

solitary and periodic travelling waves Moreover, the simplicity of the underlymg 

determ1mstic FDF model can lead to further computatiOnal Improvements When 

cons1dermg a discrete set of release sites and calcmm puffs or sparks that have a sim

ple on/ off temporal structure the calcmm profile can be solved for m closed form. In 

the second part of the chapter, by assummg that release times occur on some regular 

lattice, we simplify the FDF model even further The dynamics for release events IS 

calculated via a thresholdmg of the calcmm profile at a release Site By direct nu

mencal simulation we Illustrate that this computatwnally cheap versiOn of the FDF 

model provides an accurate representatiOn of the ongmal model We shall also demon

strate that It IS both natural and straightforward to generalise our one-dimensiOnal 

FDF model to two dimensiOns SimulatiOns for both one and two d1menswns are 

presented with regular and disordered distnbution of Ca2+ release sites Varymg 

system parameters reveals that the model supports many patterns of wave propaga

tiOn behaviOur mcludmg regular and megular lurchmg travelling pulses, collidmg and 

penod1c waves, travellmg fronts and spiral waves as well as abortive waves These 

calcmm wave formations have been widely observed experimentally in a vanety of 

livmg cells 

Although theoretical work on Ca2+ dynamics has mcreased m recent years (reviewed 

m [149]), the spatially extended nature of the cell combmed with the stochastiC nature 

of localised calcmm release and the heterogeneous d1stnbutwn of Ca Z+ stores has 

received far less attentiOn 

In Chapter 6 we mtroduce a model of calcmm release based upon a stochastiC gener

alisatiOn of the FDF threshold model The stochast1c nature of release IS mcorporated 

via the mtroductwn of a simple probab1listic rule for the release of calcmm from mter

nal stores We Illustrate that this IS a natural way to mvestigate puff/spark to wave 

transitiOns w1thm a spatially extended cell model with a discrete d1stnbutwn of re-
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lease sites By avmdmg a Markov process descnptwn of channel gatmg we s1de-step 

the need for computatwnally expensive Monte Carlo type simulatwns FunctiOnal 

forms for the d1stnbutwn of the mcorporated threshold nmse can be mferred from 

the recent observatiOn oflzu et al [75] that the probability ofrelease per umt time has 

a s1gmmdal functiOnal form Numencal simulatwns are presented for both one- and 

two-dimensiOnal cell models and demonstrate a vanety of nmse-sustamed patterns 

of wave propagatiOn In the parameter regime where determm1stic waves exist, it is 

possible to Identify a cnt1callevel of nmse definmg a non-eqmhbnum phase-transition 

between propagatmg and abortive structures A statistical analysis shows that this 

transitiOn is the same as for models m the directed percolatiOn umversahty class [70] 

A study of a two-dimensional cell model Illustrates that not only does the model sup

port nmsy circular and spiral waves as expected but that It can also exhibit a form 

of array enhanced coherence resonance [69, 73, 178] We find that coherent motion, 

m the form of Simultaneous and penodJC release of calcmm from all stores, can be 

mduced purely by nmse 

The Ca2+ oscillatiOns and waves considered m the previOus chapters have been char

actensed m smgle, and often isolated, cells However, because many organisms are 

multi-cellular, there IS a need for the mtercellular communication of regulatory sig

nals One such form of cellular commum<:atwn IS an mtercellular Ca2+ wave that 

spreads through multiple adJacent cells. These intercellular Ca2+ waves were first 

observed m epithelial and glial cell cultures m response to mechamcal stimulatiOn 

and neurotransm1tters and have been ob&erved later m many other cell types [140]. 

In Chapter 7, we mvestigate the Issue of wave propagatiOn failure through a cell 

culture Once agam we focus on two different models (DYK and FDF) The analysis 

(analytical and numencal) of mtercellular waves m these two models will be divided 

mto two parts In the first part the mtercellular Ca2+ wave IS mediated by a passive 

diffusion of Ca2+ through gap junctions and the level of IP3 concentratiOn IS constant 



CHAPTER 1 INTRODUCTION 12 

throughout the tissue In the second part, pass1ve dtffusion of IP3 from the stimulated 

cell w1ll be taken mto account as well as Ca2+ propagatiOn through the gap JUnction 

We compare both models of mtercellular Ca2+ waves m respect of wave propagatiOn 

dependence on gap-junctwn permeab1hty 

Fmally m Chapter 8 we present a summary of maJor achievements and natural 

extenswns of th1s thes1s 

Some Important results of th1s thes1s were pubhshed m [37, 164, 165] and are to 

appear m [36] 



Models of calcium oscillations 

Cellular Ca2+ dynam1cs mvolves the exchange of Ca2+ ions between mtracellular 

stores and the cytosol, the mtenor and extenor of a cell or between cells, as well 

as transport by dlffuswn and buffermg due to the bmdmg of Ca2+ to protems, e g 

calmoduhn and calbmdm Intracellular stores are typ1cally located w1thm the ml

tochondna, endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR) The ER is 

an extensive membrane network of tubes and Cisternae (sac-hke structures) m many 

eukaryotJC cells, important m the synthesis of protems and hp1ds The SR IS the 

specific analogue of the ER m the card1ac, smooth and skeletal muscle The ER/SR 

IS the prmc1ple location of Ca2+ storage within the cell The area between the plasma 

( outs1de) cell membrane and the ER/SR IS called the cytosol, where most of the cel

lular metabolism occurs M1tochondna are membrane-enclosed organelles d1stnbuted 

through the cytosol They can trans~ently accumulate calcmm durmg cell stJmulatwn 

and provide the energy, for example, for cell movement, diVISIOn and contractwn A 

schematic dmgram of a cell w1th components relevant to Ca2+ dynam1cs 1s shown m 

F1gure 2 1. The act1ve elements of the wmc exchange processes through cell mem

branes are channels and pumps Typically channels have an open and closed state 

as well as a host of mtermed1ate states, and allow for flux of Ca2+ down 1ts electro-

13 
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Figure 2. 1: Schematic diagram of the pathways involved in the control of cytosolic 

Ca2+ oscillations. 

chemical gradient when they are open. Pumps, on the other hand, transport Ca2+ 

against its electro-chemical gradient requiring a source of energy. The local dynam

ics of Ca2+ release and uptake can lead to oscillations in the free cytosolic calcium 

concentration. Such oscillations are believed to arise via nonlinear interactions be

tween various cell components, including intracellular stores, pumps and channels and 

are often modelled using coupled ordinary differential equation descriptions of these 

sub-systems. The complexity of this modelling approach is greatly increased when 

spatial aspects , such as spatial separation of receptors, SR/ER microstructure, and 

functional distinction between cell periphery and cell bulk, are brought into play. For 

theorists, one of the most interesting aspects of Ca2+ dynamics is that local oscil

lations can be spread by ionic transport to form complex spatio-temporal patterns 

such as oscillatory waves, spiral waves, and waves that travel from cell to cell. Not 

only are these structures physiologically important (see Chapter 1) , they are also 

mathematically interesting and challenging to understand in their own right. The 
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strength of mathematical models and analysis IS twofold 1) mathematical models 

help to quantify expenmentally obtamed data and n) models yield qualitative ms1ght 

mto processes which are not expenmentally accessible 

The determimstlc modellmg of Ca2+ s1gnallmg has h1stoncally been based on a well

established determ1mstic apparatus to descnbe self-sustamed oscillatiOns m chemistry 

and physics usmg nonlmear differential equation systems Local dynamics m these 

systems IS typically excitable, oscillatory or b1stable For sufficiently large perturba

twns, excitable dynamical systems respond to small perturbatwns of a linearly stable 

statiOnary state with a large amplitude excursiOn, that ultimately returns the system 

to rest Oscillatory dynamical systems are different m that they exhibit sustamed 

oscillatiOns, typically around an unstable fixed pomt Fmally, b1stab1lity refers to 

systems with two stable statiOnary states, perhaps separated by an unstable state 

In the present chapter, we focus on the temporal orgamsatwn of mtracellular Ca2+ 

signals and review some basic approaches m the mathematiCal modellmg of Ca2+ 

oscillatiOns Spatw-temporal aspects such as calcium waves are not mcluded m the 

mathematical treatments of Ca 2+ s1gnallmg m this chapter and will be considered 

later Before d1scussmg theoretical models of Ca2+ oscillatiOns, we first overview the 

regulatory mechanisms mvolved m the control of Ca2+ concentration w1thm a cell 

This leads us to a more detailed discussiOn of the types of channel regulatmg Ca2+ 

mfiux and effiux, the energetic mechanisms underlying refilling of mtracellular stores 

and the chemical pathways that ultimately lead to calcmm release m response to an 

external agomst 

2.1 Calcium dynamics 

The mechamsm of Ca2+ oscillations relies on feedback processes that regulate Ca2+ 

levels w1Lhm the cell Whilst extracellular Ca2+ concentratiOn vanes between 1 and 2 

ml\f, Ca2+ concentration m the cytosol Is mamtamed at a restmg level between 50-100 
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nl\1. Followmg cellular stJmulatwn, cytosohc Ca2+ can transiently nse to between 1 

and 10 J.LM [17] Although mcreases m cytosohc Ca2+ are necessary for many cellular 

processes, sustamed elevatwns m cytosohc Ca 2+ are cytotoxic and may lead to cell 

death Thus, 1t IS necessary for the cell to strictly regulate cytosohc Ca2+ levels w1thm 

defined lim1ts In order to achieve th1s the cell has developed a repertmre of Ca 2+ 

channels, bmdmg protems, pumps and exchangers [17] 

Two classes of oscillatiOns are read1ly d1stmgmshed those that depend pnmanly 

on the mflux of Ca2+ through channels from the extracellular space, and those that 

depend pnmanly on Ca2+ release from mternal stores. In th1s latter class, d1stmctwns 

can be made on the basis of whether the release of Ca2+ IS dommated by the ryanodme 

receptor (RYR), the mos1tol (1,4,5)- trisphosphate receptor (IP3R) or a combmatwn 

of both IP3Rs are the predommant Ca2+ release channels m non-electncally excitable 

(nonmuscle) cells, whereas RYRs are predommant m exc1table (muscle) t1ssues [74] 

In response to s1gnals at the cell membrane, Ca2+ IS released from the ER/SR mto 

the cytosol m the form of global or spatially localised elementary events [21, 22] The 

surface cell membrane consists of several d1fferent types of Ca2+ channels voltage

operated calcmm channels (VOCCs), that open m response to depolar1satwn of the 

cell membrane, receptor-operated channels, that open m response to the bmdmg of 

an external ligand, second-messenger-operated channels, that open m response to the 

bindmg of a cellular second messenger, and mechanically operated channels, that 

open m response to mechamcal stimulatiOn The mechamsm of transduction of the 

signal at the cell membrane to the ER IS dependent on the nature of the m1tial 

stimulus. In all cell types external ligand bmdmg to 1ts receptor channel JllltJates a 

cascade of s1gnals wh1ch ultimately results m release of Ca2+ from the ER The best 

charactensed of these s1gnals uses the diffusible second messenger IP3 The bindmg of 

an extracellular agomst such as a hormone or a neurotransmitter to a receptor m the 

surface cell membrane can cause, v1a a G-protem link to phospholipase C (PLC), the 

cleavage of phosphotJdylmos1tol ( 4,5)-b!sphosphate mto d1acylglycerol and IP3 IP3 
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subsequently diffuses mto the cell and bmds to an IP3R on the ER resultmg m Ca2+ 

release [9] However, m excitable cells, z e neurons and muscle, an actwn potential 

or activatiOn of receptor operated channels results m influx of Ca2+ across the cell 

membrane which subsequently acts as the messenger to stimulate the RYRs, and also 

IP3Rs, to release Ca2+ through an autocatalytic process referred to as calcmm-mduced 

calcmm release (CICR) [47, 94] Both the RYR and IP3R are subJect to several levels 

of regulatiOn on the cytosolic face where Ca2+ can both promote and mhib1t 1ts release 

from e1ther channel At low concentratiOns Ca2+ stimulates Ca2+ release through the 

receptor, whereas at h1gh Ca2+ concentratiOn release IS mhib1ted Furthermore, at 

increasmg Ca2+ concentratiOn the IP3R becomes more sensitive to ligand and less 

sensitive to Ca2+ dependent mh1b1tion [134] Thus, Ca2+ potenhates 1ts own release 

and can stimulate release from ne1ghbourmg receptors Th1s mechamsm of CICR 

for generatmg osc1llatwns m the concentratiOn of cytosohc free Ca2+ IS believed to 

under he the waves that propagate vm Ca2+ d1ffuswn m a vanety of cell types [20[ 

Of equal importance to the regulatiOn of Ca2+ release from the ER/SR are the mech

amsms of Ca2+ clearance from the cytosol This function IS performed by a number 

of transporters located m the cell membrane and the ER/SR. One such transporter 

IS the sarco- and endoplasmic reticulum calcmm ATPase (SERCA) wh1ch IS a Ca2+ 

pump located in the membrane of the SR and ER whose function IS to accumulate 

Ca2+ mto the mternal stores usmg ATP as an energy source [102] ATP IS a nbonu

cleosJde 5'-tnphosphate functwnmg as a phosphate group donor m the cell energy 

cycle and carnes chem1cal energy between pathways SERCA functions are regulated 

by both cytosolic and ER/SR conditiOns Under restmg conditiOns SERCA IS rela

tively inactive but followmg an mcrease m cytosohc Ca2+ the activity of the pump 

IS mcreased, resulting m re-sequestratiOn of Ca2+ mto the ER [99] From the other 

s1de, the Ca2+ pumpmg act•v•ty of SERCA IS regulated by the Ca2+ content of the 

ER SERCA actiVIty IS max1mal when the store IS depleted and decreases as the store 

approaches 1ts maximal capac1ty [114] There IS also aNa+ /Ca2+-exchanger in the 
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cell membrane that uses the energy of the Na+ electrochemical gradient to remove 

Ca2+ from the cell at the expense of ra+ entry. 

CytosoVcytoplasm 

ea2+ 

ho f channel 

ER/SR 

Plasma membrane 

Figure 2.2: General scheme of the main processes involved in intracellular Ca2+ os

cillations. 

Many models of Ca2+ oscillations are based on the description of essenLial fluxes (see 

Figure 2.2). Calcium is removed from the cytosol in two principal ways: it is pumped 

out of a cell and is sequestered into ER/SR. Calcium influx also occurs via two prin

cipal pathways: inflow from the extracellular medium through Ca2+ channels in the 

surface membrane and release from internal stores. The construction of mathematical 

models is based on the formulation of flux balance equations for the various reactions 

and transport processes in the particular cell. 
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2.2 Theoretical models of Ca2+ oscillations 

Two-pool model 

One of the ear hest models for IP 3-dependent Ca2+ release assumes the ex1stence of 

two d1stmct mternal stores, one of wh1ch IS sensitive to IP3 , the other is sens1tive 

to Ca2+ [62, 63, 89] The model assumes the IP3 produced in response to the ago

nist stimulatiOn releases Ca2+ from the IP3-sens1tJve store through IP3Rs. The Ca2+ 

that IS thereby released stimulates the release of further Ca2+ from the Ca2+ -sens1t1ve 

store A cruc1al assumptiOn of the model IS that the concentratiOn of Ca2+ m the 

IP3-sens1tive store remams constant, as the store IS qmckly refilled from the extra

cellular medmm A schematic d1agram of th1s model 1s shown m Figure 2 3 The 

Influx 

Outside the cell 

Extrusion (kc) 

Calcmm-mduced 
calcmm release (J ,,,.se) 

Cell membrane 

Cytosol 

IPrdependent 
release (r) 

Inside the cell (c) 

F1gure 2 3 Schematzc dzagram of the calcmm fiuxes mvolved m the two-pool model of 

Ca2+ osczllatwns 

concentratiOns of Ca2+ m the cytosol and m the Ca2+-sens1tive pool are denoted by c 
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and c, respectively The model assumes that IP3 causes a steady flux r of Ca2+ mto 

the cytosol, and that Ca2+ 1s pumped out of the cell at the rate -kc Then, assuming 

a homogeneous system, the model equatwns are 

where 

de 
dr 
de, 
dr 

= r-kc-f(c,c,), (2 1) 

](c, c,), (2 2) 

(2 3) 

and T denotes time The function j descnbes the dynam1cs of Ca2+ exchange between 

the cytosol and the Ca2+ -sens1t1ve pooL The first term luptake IS the rate at which 

Ca2+ IS pumped from the cytosol mto the Ca2+ -sensitive pool by an active process, 

the second terms lrelease IS the rate at which Ca2+ IS released from the Ca2+ -sensitive 

pool, and the th1rd term IS the rate at which Ca2+ leaks from the Ca2+ -sensitive pool 

mto the cytosol lrelease demonstrates that Ca2+ stimulates 1ts own release through 

the positive feedback process of CICR [48, 50[ In th1s model r denotes the constant 

concentratiOn of IP3 and is treated as a control parameter 

It IS Simple to nond1mensionahse the model equatwns to get 

du 
E(Jl- u)- if(u, v), (2.4) E-

dt 
dv 

J(u,v), (2.5) E-
dt 

f(u,v) /1 ( unu: 1) -(v:: 1) C~P ~uP) -ov, (2 6) 

where u and v are the nond1menswnal concentratiOns of Ca2+ m the cytosol and 

m the Ca2+ -sensitive pool respectively, and 11 denotes the nond1menswnahsed IP3 
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concentratiOn (for more detatled dtscusston see [85]) By lettmg w = u + /V the 

two-pool model can be put mto the form of a generahsed FttzHugh-Nagumo model 

for descnbmg excttable membrane [56, 116] 

dw 
dt 
dv 

E
dt 

ft-(w-jv), 

f(w-jv,v) 

(2 7) 

(2 8) 

The charactenstic of FttzHugh-Nagumo type models common to many biologtcal 

mechamsms at the cellular levelts a lmear nullclme for the slow vartable and a cubtc 

nullclme that has etther "N" shape or mverted "N" shape for the fast variable The 

nullclmes (dw/dt = 0, dvfdt = 0) of the two-pool model in Ftgure 2 4 demonstrate 

thts well-known structure of excttable system whtch ts suffictent to produce oscillatory 

behaviOur 

The stabthty of the steady state (u0 ,v0 ) gtven by 

uo fL, 

f(fL, vo) 0 

ts determmed by the roots of the charactenstlc equatiOn 

1 
H =- (Jfu(uo, vo)- fv(uo, vo) +E) 

€ 

(2 9) 

(2 10) 

(2 11) 

Smce fv < 0, the roots of the charactenstte equatiOn (2 11) have negattve real part 

(and the steady state ts stable) tf H > 0, and they have posttlve real part tf H < 0 

At H = 0 the steady state changes stabthty through a Hopf btfurcatwn (HB), and at 

these pomts a branch of penodtc orbtts appears Osctllatory behaviour m dynamtcal 

systems is most eastly summansed by a bifurcation dtagram For thetr numencal 

constructiOn we use the software package AUTO [46], as implemented in XPPAUT 

(see Appendtx A 1) The bifurcatiOn dtagram for the two-pool model as a functiOn of 
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the mam parameter p, IS shown m Figure 2 5. As p, is mcreased, oscillatiOns appear 

at a supercntical HB and disappear m the same manner. The two bifurcatiOn pomts 

are connected by a branch of stable penodtc orbtts OscillatiOns occur for a constant 

value of p, This shows that CICR mechanism IS sufficient to produce oscillations 

in the absence of IP 3 osctllatwns The functiOn of IP 3 here IS to produce a steady 

mflux of Ca2+ into the cytosol from the IP3-sensitive pool, and this steady mflux 

dnves Ca2+ oscillations A typtcal example of osctllatwns gtven m Ftgure 2 6 shows 

pronounced sptke-hke behaviOur, m agreement wtth many expenments. 

V 

08 /<E'--i-- Unstable steady state 

I I / Pertodtc orbtt j 
l~C I 

i i 
,l /~/ 

___ / --------·-

06 

w 

Ftgure 2 4: Nullclmes (solzd curves) and sample lzmzt cycle of perzodzc orbzt (dashed 

curve) of the two-pool model zn the form gzven by equatzons (2 7} and (2 8} for the 

followmg parameters JL = 0 4, 1 = 2, E = 0 04, fJ = 0 13, a = 0 9, o = 0 004, n = 2, 

m= 2, p = 4 Intersectzon of the nullclznes corresponds to the steady state value 

In the two-pool model Ca2+ stimulates Its own release, whtle the flow of Ca2+ from 

the mternal store IS termmated when the concentratiOn of Ca2+ m the mternal store 

becomes too low However, more recent expenmental evidence mdtcates that not 

only does Ca2+ stimulate Its own release, It also mhtbtts It, but on a slower time 



CHAPTER 2 MODELS OF CALCIUM OSCILLATIONS 23 

u 

Figure 2 5 Bzfurcatwn dzagram of the two-pool model for the followzng parameters 

1 = 2, E = 0 04, (3 = 0 13, a = 0 9, o = 0 004, n = 2, m = 2, p = 4 Czrcles denote 

amplitude of perwdzc orbzt HB Hopf bzfurcatwn 

u 

I 2 

08 

oL-----~------~----~------~----_j 
0 20 40 60 80 100 

Figure 2 6 An example of penodzc osczllatwns zn the two-pool model for J.l = 0 32 
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scale [123[ It IS believed that th1s sequential actlvatwn and inact1vatwn of the IP3R 

by Ca2+ JS the fundamental mechamsm underlymg IP3-dependent Ca2+ oscJl!atwns 

and waves A number of models wh1ch mcorporate th1s hypothesis have appeared 

and been reviewed, for example, m [153] and [161] Two basic modellmg approaches 

have been developed One of them, developed by De Young and Ke1zer [175], mimics 

the molecular subumt configuratiOn of the IP3R to reflect the actlvatwn/inactlvation 

sequence of the channel that results from the bmdmg of Ca2+ and IP3 to the IP3R 

An alternative approach, explored by Atn et al [2] IS the constructiOn of a model 

based on the kmetic data of Ca2+ release through the IP3R of the same form as 

F1tzHugh-Nagumo type models [56, 116] We now cons1der these two approaches m 

more deta1l 

The De Young Keizer model 

The bwphys1cal DYK model [175] assumes that the IP3R is composed of three m

dependent and 1dentlcal subumts Each of the subumts mcludes a bmdmg s1te for 

act1vatmg IP3 , actlvatmg Ca2+ and mactlvatmg Ca2+ Only bmdmg of IP3 on the 

act1vatmg IP3 s1te and bmdmg of Ca2+ on the Ca2+ actJvatmg s1te leads to a Ca2+ 

flux through the receptor Each state of the subumt IS g1ven by x,1b z,J, k E {0, 1}, 

where the first mdex refers to the IP3 bmdmg s1te, the second to the Ca2+ actlvatwn 

s1te, and the th1rd to the Ca2+ mact1vatwn s1te If any of the mdJCes z, J or k are 

equal to 1, the bmdmg s1te IS occupied, otherwise the bmdmg s1te IS unoccupied The 

model generates e1ght poss1ble receptor states w1th correlated trans1t10ns between 

them (see F1gure 2 7) where p and c denote IP3 and Ca2+ concentrations respectively 

The differential equations for the receptor states are based on mass-actwn kmet1cs 

For example, 

(2 12) 
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F1gure 2 7 Schematzc bzndzng dzagram for the IP3 receptor model of De Young and 

Kezzer 

where 

(2 13) 

(2 14) 

(2 15) 

Smce expenmental data md1cates that the receptor subumts act in a cooperative 

fashwn, the model assumes that the IP3R passes Ca2+ current only when three sub

umts are m the state X no, and thus the open probablhty of the receptor is xrlO The 

full DYK model consiSts of seven differential equatwns for the receptor states ( w1th 

the constramt ~•,J,k x,Jk = 1, expressmg conservatwn of probab1hty) and w1th the 

followmg differential equatwn for Ca 2+ dynam1cs 

de 3 r 3c2 

dt = (r1X110 + rz)(c.,- c)- cz + k~, (2 16) 
Jreccptor flux '-.,..-" 

Jpumpmg 

where Cer denotes the concentratiOn of Ca2+ m the ER The first term m th1s equatwn 

1s the Ca2+ flux through the IP3R, and It 1s proportwnal to the concentratwn differ

ence between the ER and the cytosol. A constant r 2 charactenses an IP 3- mdependent 
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kt 400 J.LM- 1 s-1 k_l 52 s-1 rt 20 s- 1 

k2 0 2 J.LM-ls- 1 k-2 0 21 s- 1 r2 0 004 s- 1 

k3 400 J1M- 1s- 1 k_3 377 36 s-1 r3 1 2 J1M- 1s-1 

k4 0 2 J.LM-ls- 1 k_4 0 029 s- 1 kp 01 J.LM 

ks 20 J.LM- 1s-1 k-s 1 65 s- 1 
Cer 1J1M 

Table 2 1 Parameters of the DYK model 

leak from the ER mto the cytosol The second term descnbes the actton of Ca2+ AT

Pases that pump Ca2+ from the cytosol mto the ER Expenmental data shows that 

the Ca2+ ATPase ts cooperative, wtth a Htll coefficient of 2 One of the key proper

ties used in formulatmg models of the IP 3R ts the expenmental analysts of the open 

channel probabthty as a function of [Ca2+] Bezprozvanny et al [18] showed that th1s 

open probab1hty IS a bell-shaped functwn of cytosohc Ca2+. Thus, at low [Ca2+], an 

mcrease m [Ca2+] mcreases the open probab1hty of the receptor, while at h1gh [Ca2+] 

an mcrease m [Ca2+] decreases the open probabthty Parameters m the model are 

usually chosen to obtam agreement wtth thts steady-state data Ftgure 2 8 shows the 

calculated eqmhbnum open probabthty of the IP3R as a functiOn of cytosohc Ca2+ 

concentration for the parameters gtven m Table 2 1 Thts plot demonstrates th1s 

bell-shaped function of open probab1hty that reahst1cally decreases for lower levels of 

[IP3] The kinetic property of the IP3R that the receptor 1s activated qmckly by Ca2+, 

but mactlvated by Ca2+ on a slower t1me scale, 1s mcorporated m the magn1tude of 

the rate constants 

The btfurcatton dtagram of the DYK model as a functiOn of the mam bifurcatiOn pa

rameter pIS shown m F1gure 2 9 Thts dtagram demonstrates that the curve of steady 

states folds up, formmg two hm1t pomts (LPs) Between these LPs three solutions 

ex1st for a small wmdow of p values For low and htgh IP3 concentratiOn there 1s 

only one stable fixed pomt For the parameter values of p where the system has an 

unstable steady state period1c osctllattons occur The branch of stable penodtc orb1t 
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Figure 2 8 The steady-state open probabzlzty of the IP3 R, as a functzon of cytosolzc 

{Ca2+ J from the DYK receptor model at three dzfferent IP3 concentratzons 

IS broken mto two different branches, both of which anse in a homochmc bifurcation 

(HC) and end in a supercntical HB A typical example of penodic oscillations m the 

DYK model IS shown m Figure 2.10 Though for our chorce of the parameters the 

DYK model demonstrates a comphcated form of bifurcation structure, this IS not 

always the case For some parameters m the physiOlogical range, the model shows a 

bifurcatiOn structure similar to that seen m the two-pool model This IS Illustrated 

m Figure 2 11 where with an mcrease m IP3 penodic orbits appear via a supercntical 

HB and disappear m the same manner These HB pomts are connected by a stable 

branch of penodic orbits 

The Atri model 

One of the other approaches to modelhng Ca2+ release, suggested by Atn et al [2], 

assumes that Ca2+ inactivates the IP3 receptor in a cooperative manner In this 

model the IP3R consists of three bmdmg domams, the first of which bmds IP3 , the 

other two bmdmg Ca2+, and It IS assumed that the receptor passes Ca2+ current only 
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Figure 2 9 Blfurcatzon dzagram of the D YK model C1rcles denote amplztude of 

perzodzc orbzt HB Hopf bzfurcatzon, HC homoclznzc bzfurcatzon 
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Figure 2.10 An example of perzod!c orb!t m the DYK model for p = 0 35 
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Figure 2 11 Bzfurcatzon dzagram of the DYK model for the followzng parameters 

r1 = 6, rz = 0 108, r 3 = 0 76, Cer = 1 69 Other parameters are as zn Table 2 1 

when IP3 IS bound to domam 1, Ca2+ IS bound to domam 2 and IS not bound to 

domam 3 Each bmdmg domam whiCh is mdependent of the other domams consists 

of a number of bmdmg s1tes If p1 IS the probability that IP3 1s bound to domain 1, 

pz IS the probability that Ca2+ IS bound to domam 2, and 1 - p3 IS the probability 

that Ca2+ IS bound to domam 3, then the steady-state Ca2+ flux through the IP3R 

1s giVen by 

J= ktPIP2P3 (2 17) 

for some constant k1. The probabilities p., z = 1, , 3, have been chosen such that 

J agrees w1th the steady-state expenmental data Moreover, to complete the model 

1t IS assumed that p 1 and p2 are mstantaneous functwns of [Ca2+] and [IP3], but that 

p3 acts on a slower time scale, so that 

J = ktPtPzh, (2.18) 

where h IS a time-dependent mactJvatwn vanable Thus, the model satisfies the 
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b 011 kl 0 7 ttM 

{3 0 02 ttMs- 1 k2 07ttM 

"Y 2 ttMs- 1 k7 01 ttM 
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Table 2 2 Parameters of the Atn model 

followmg equatwns 

de 
dt 

dh 
Th

dt 

kftth (b + (1- b)c) - "fC + {3 
kl + c k7 + c 

ki 
k~ + c2- h, 

30 

(2 19) 

(2 20) 

where c denotes Ca2+ concentratiOn, and b, k1, k2, "'(, k7 and Th are constants The first 

term m equatwn (2 19) IS the Ca2+ flux through the IP3 receptor In a fashiOn Similar 

to the DYK model, the second term represents pumpmg of Ca2+ out of the cytosol 

mto the ER, and {3 represents a constant leak mto the cytosol Jt IS an mcreasmg 

functiOn of IP 3 concentratiOn and is treated as the m am b1furcat10n parameter The 

values of other parameters are g1ven in Table 2 2 

In Figure 2 12 we show the nullchnes (dc/dt = 0, dh/dt = 0) of the Atn model for 

a fixed value of Jt and the phase traJectory that corresponds to a penod1c solutwn 

Similar to the DYK model, the steady-state open probab1hty of the IP3R m the Atri 

model IS a bell-shaped curve demonstratmg a decrease m open probabihty for low 

and h1gh cytosohc Ca2+ and increase for some mtermedmte Ca2+ level (see F1gure 

2 13) As expected the probab1lity decreases w1th a decrease m IP3 concentratiOn 

The b1furcatwn dmgram of this model is shown m Figure 2 14 and a typical example 

of a stable period1c oscillatiOn iS shown m F1gure 2 15 Note that the Atn model 

exh1b1ts oscillatiOns m a manner Similar to the DYK model (w1th two HB pomts 

and two branches of penodlC orb1ts both of wh1ch anse m a HC bifurcatwn), though 
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Ftgure 2 12 Nullclznes (solzd curves) and sample lzmzt cycle of perwdzc orbzt (dashed 

curve) of the Atrz model for /l = 0 7 Intersectwn of the nullclznes corresponds to the 

steady state value 

Ftgure 2 13. The steady-state open probabzlzty of the IP3 R, as a functwn of cytosolzc 

{Ca2+} from the Atrz receptor model at three dzfferent values of /l 
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Ftgure 2 15 An example of perzodzc osczllatzons m the Atrz model for J1 = 0 6 
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there are some differences between these two models First, the Atn model does not 

mclude the factor (c., - c) m the term descnbmg the IP3-sens1tive Ca2+ current. 

Thus, It assumes that the concentratiOn of Ca2+ in the ER IS so high, that depletiOn 

of the ER has only a negligible effect on mtracellular Ca2+ dynamics for most of 

the physiological regime Also the form of the pumpmg term IS different from that 

m the detmled DYK model, whiCh uses a Hill equatiOn with coefficient 2 There 

IS expenmental evidence that the form used m the DYK model IS a more accurate 

descnptwn of the Ca2+ ATPase found m a vanety of cell types [99] Despite these 

differences, the similarities between the bifurcatiOn structures of these two models 

suggest strongly that fast activatiOn and slow mactivatwn of the IP 3R by Ca2+ IS a 

significant mechamsm underlymg Ca 2+ oscillatiOns 

Bursting and chaos 

As mentiOned in the previOus chapter, expenmental results may show more complex 

forms of Ca2+ dynamics, for example, penod1c or chaotic burstmg Such patterns 

of complex oscillatiOns have been studied mtensely m the case of transmembrane 

potential oscillatiOns m electncally excitable cells [28, 29, 62, 85] and similar patterns 

are seen m Ca2+ burstmg One mmor difference IS that while often m electnc bursting, 

each active phase compnses several consecutive, large spikes with nearly the same 

amplitude, m Ca2+ burstmg smgle large spikes are followed by smaller 'secondary' 

oscillatiOns 

These complex Ca2+ oscillatiOns are typically believed to anse by the mterplay be

tween two oscillatory mechamsms. Shen and Larter [144], for example, have demon

strated regular burstmg and a transitiOn to chaos m a model mvolvmg d1ff<erentml 

equatiOns for cytosolic Ca2+, endoplasmic Ca2+ and IP3 Another model glVlng nse 

to bursting IS based on the previOusly discussed two-pool model [63] with the Ca2+ 

level m the IP3-msenSitive pool treated as a dynamical vanable [23] 
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!\I ore recently another explanatiOn of complex mtracellular Ca 2+ oscJI!atwns has been 

proposed [65, 108] where Ca2+ sequestratiOn by m1tochondna and the Ca2+ bmdmg 

to cytosolic protems is taken mto account These studies extend earlier work on 

modelling the possible m1tochondnal modulatiOn of Ca2+ Signals [109] Numencal 

s1mulatwns of these models demonstrate Simple Ca 2+ oscJI!atwns, penod1c and ape

nodic burstmg and chaos under variatwn of parameter values A model proposed 

by Kummer et al [90] uses variables for cytosolic Ca2+, endoplasmiC Ca2+ and the 

concentratwns of active subumts of a G-protem and active PLC Th1s model shows 

particularly good agreement w1th expenmental observatwns m two respects F1rst, 

each oscJI!atwn penod starts w1th a large, steep spike followed by a number of pulses 

of decreasmg amplitude around an elevated mean value Second, varymg the model 

parameters, one finds that the difference in st1mulatwn nature can mduce (penod1c 

or apenod1c) burstmg or regular osCJllatwns (see F1gure 2 16 for an example of typical 

chaotic burstmg) 

8 

4 

2 

0 \ \ '\ \\ \ \'\ \ 
20 40 60 80 100 120 

t (s) 

Figure 2.16 An example of chaotzc burstzng zn the Kummer model {90} 
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Summary 

In th1s chapter we have descnbed the mam components m a single cell such as the 

ER/SR, cytosol, calcmm receptor channels and pumps that are mvolved m the regula

tory mechamsms of cellular Ca2+ dynam1cs. We have also discussed some of the main 

theoretiCal models proposed for mtracellular Ca2+ osc1llatwns (for further rev1ews see 

[54, 85, 143]) A numencal b1furcatwn analysis of these models shows that the gener

atiOn of Ca2+ osc1llatwns occurs m a Similar fashion under parameter vanatwn, even 

though the model equatwns d1ffer m the1r particular forms. Vve conclude that the 

maJor mechamsm for generatmg oscJllatwns m system w1th IP 3R IS fast actJvatwn of 

IP3R by IP3 and slow mact1vation by Ca2+ The extension of these basic models may 

lead to the formation of more complex pattens of Ca2+ oscillatwns such as burstmg 

and chaos observed expenmentally However, we do not cons1der these types of Ca2+ 

s1gnals m th1s thes1s 



The De Young Keizer model 

In the precedmg chapter, some of the standard models underlymg Ca2+ oscillatwns 

and a review of their properties were mtroduced One of the more popular of these 

IS the DYK model [175] based around a detailed descnptwn of the dynamics for 

IP3Rs Firstly, this model makes It plausible that the expenmental act1vat10n and 

mactivatwn by cytosolic Ca2+ of the IP3 receptor/channel IS sufficient to produce 

oscillations m calcium concentratiOn Secondly, the complete mechamsm mvolves 

only a smgle internal pool of Ca2+, the ER/SR It IS believed to be the first model 

that explams oscillatwns on the basis of only the lP 3 receptor /channel and a smgle 

Ca2+ pool 

The present chapter Is dedicated to a study of travellmg wave behavwur m this model 

using a systematic numencal b1furcat10n analysis For the most recent set of exper

imentally determmed parameter values the model supports an interestmg form of 

b1furcat10n structure mcludmg global bifurcatwns We also present a lmear stability 

analysis of solutwns and a kmematic theory of wave propagatwn based around dis

persiOn curves for penod1c waves This allows us to predict the existence of travellmg 

waves which connect penod1c orbits The prediction IS subsequently confirmed with 

36 
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direct numencal s1mulatwns 

3.1 Reduction of the De Young Keizer model of Ca2+ 

release 

The model developed by De Young and Ke!Zer [175) descnbcs IP3 dependent Ca2+ 

osc1llatwns between the ER and the cytosol As the model has been explamed m detail 

m the prevwus chapter, we g1ve only a brief descnptwn here The IP3R model has 

e1ght poss1ble receptor states Trans1t10ns between these states are shown m F1gure 

2 7, where p and c denote IP3 and Ca2+ concentratwns respectively Seven differential 

equatwns based on mass-actwn kmetics together w1th the constramt I:,,J,k x,1k = 1 

(conservatiOn of probability) form a mathematical model of the IP3R The model 

assumes that IP3R releases Ca2+ only when three subumts are m the state x 110 , 

z e w1th one IP3 and one act1vatmg Ca2+ bound. Thus the open probability of the 

receptor IS xf10 The set of differential equatwns for the receptor states are combmed 

With the differential equatwn (2 16) for Ca2+ dynamics descnbmg fluxes from the ER 

to the cytosol (Ca2+ release from IP3Rs and constant leakage) and back (the actwn 

of SERCA pumps) 

The complex1ty of such a detailed receptor model prov1des motivatwn to simplify the 

model w1th the retentwn of 1ts essentml properties One s1mplificatwn of the DYK 

model [175] was suggested by L1 and Rmzel [96] who have shown that the ongmal 

full model can be approximated by an excitable system of Hodgkm-Huxley form [71) 

The Hodgkm-Huxley equatwns are the first quantitative model of the propagatiOn 

of an electncal s1gnal along a sqmd gmnt axon The model of Hodgkm and Huxley 

was ongmally used to explam the actwn potential m the long gmnt axon of a sqmd 

nerve cell, but the ideas have smce been extended and applied to a w1de vanety of 

exc1table cells (see [85] for an excellent rev1ew) The expenmental observatiOn that 
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IP3 and Ca2+ bmd qmckly to the actlvatmg s1te g1ves nse to the assumptiOn that the 

receptor IS m a quas1-steady state w1th respect to IP3 bmdmg and Ca2+ activatiOn 

[86, 96, 161) Th1s 1s 1mphed by the parameter values for the detmled receptor model 

shown m Table 2 1, where k, and k_., ~ = 1, 3, 5, are s1gmficantly larger than k, 

and k_., ~ = 2, 4 Thus, the receptor states can be arranged mto two groups those 

Without Ca2+ bound to the mactlvatmg s1te (x000 , x010 , x 100 and Xno) called group I 

states, and those w1th Ca2+ bound to the mactlvatmg s1te ( x001 , x0u, x101 and xn1) 

called group 11 states Because the bmdmg of IP3 and the bmdmg of Ca2+ to the 

actlvatmg s1te are assumed to be fast processes, w1thm each group the bmdmg states 

are at quas1-steady state w1th respect to trans1t10ns w1thm the group The dlfferentml 

equatwns govermng the states m group I are 

dxooo dt = -Xooo (k5c + k1P + k4c) + k_lxwo + k_4Xo01 + k_5xow, 

dxuJO dt = -x1oo(k5c + k-1 + k2c) + k1PXooo + k-2X101 + k_5xuo, 

dxow dt = -xow(k-5 + k1P + k4c) + k_lxuo + k_4xou + k5cxooo, 

together w1th the equatiOn for the mact1vat10n vanable called h 

h = L:x,,o 
t,J 

(3 1) 

(3 2) 

(3 3) 

(3 4) 

Assummg that the group I bmdmg s1tes are all m quas1-steady state, the quasi

steady-state equatiOns are obtamed by settmg dx000 /dt = dx100/dt = dx010 /dt = 0 

and neglectmg slow terms Thus, 

Xooo(k5c + k1p) = k_lxwo + k_5xow, 

xwo(k5c + k-i) = k1PXooo + k_5Xuo, 

Xow(k-5 +kip) = k_!Xuo + k5cxooo 

(3.5) 

(3.6) 

(3.7) 

These equatwns may be solved together w1th the constramt (3 4) to g1ve the group I 
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state probabJht1es wh1ch are found as 

Xooo = , 
(p + KJ)(c + Ks) 

(3 8) 

K1ch 
XoJO = (p + K1)(c + Ks)' Xno = (p + Kt)(c + Ks)' (3 9) 

where K, = k_,j k, An identical procedure apphed to the group II receptor states 

g1ves the quas1-steady-state equatiOns for that group 

K3Ks(1- h) 
XoOI = (p + K3)(c + K 5)' 

K3c(1- h) 
Xon = (p + K3)(c + Ks)' 

Ksp(l- h) 
x 101 = (p + K3)(c + K5)' 

(3 10) 

pc(l- h) 
Xm = (p + K3)(c + K5) 

(3 11) 

To denve a dlfferent1al equation for h, we add the differential equatiOns for the group 

I states with the mcluswn of transitions between the group I and group II states and 

substitute all the quas1-steady-state expressiOns to get 

(3 12) 

Thus, by regardmg the receptor as bemg ID a quasi-steady state with respect to IP3 

bmdmg and Ca2+ activatiOn the seven differential equatiOns descnbmg the kmetics 

of IP3 receptor m the full DYK model1s reduced to JUSt one Therefore, the reduced 

model IS g1ven by the two differential equations, one of which IS the Ca2+ dynamics 

equatiOn (2 16) with 

~-...!.p:=ch:.::_~~ 
Xno = (p + Kt)(c + Ks) (3 13) 

and another is the differential equatiOn (3 12) for h. The dynamics of the machvatwn 

vanable his remm1scent of that of the gatmg vanables m the Hodgkm-Huxley model 

of nerve membrane [71] and can be wntten ID the form 

dh 
T(c) dt = h00 (c)- h, (3 14) 
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where 

(3 
h00 (c) = a( c)+ (3' 

wtth 

1 
T(c) = a( c)+ (3' 

(3 = k-2P + k_4J(3 

p+ !(3 

40 

(3 15) 

(3 16) 

In a certam range of the parameter p, the system has an excttable steady state, 1 e 

small (subthreshold) perturbatwns of the steady state decay exponenttally, but larger 

(superthreshold) perturbatwns result m a large transtent before the return to steady 

state In Ftgure 3 1 we show the nullclmes (dc/dt = 0, dh/dt = 0) of the reduced 

DYK model for the fixed value of p and the phase traJectory that corresponds to the 

penodtc solutwn The mtersect10n of two nullclmes corresponds to the steady state 

value The typtcal penodtc behavwur ts represented m Ftgure 3 2 showmg that the 

osctllatwns are very sptke-hke 

Osctllatory behavwur m the model ts most eastly summansed wtth a btfurcatwn 

diagram, usmg p as the mam btfurcatwn parameter A numerically constructed bt

furcatwn diagram of the reduced model ts shown m Ftgure 3 3 The curve of steady 

states ts folded, so that for a small wmdow of p values there are three solutwns For 

htgh and low p there ts only stable fixed pomt For the parameter values of p where 

the system has an unstable steady state penodtc oscillatwns occur and the figure 

shows the maxtmum and mmtmum of the penodic orbtt In fact there are two dts

connected branches of stable periodtc orbtts, both of whtch anse m a HC btfurcation 

and end m a supercnttcal HB Osctllatwns of Ca2+ first occur wtth a large penod 

and a very sptky profile As p mcreases the penod of osctllatwns rap1dly decreases, 

as tllustrated m F1gure 3 4 Note that the btfucratwn dmgram of the reduced DYK 

model IS in good quahtattve agreement with that of the full model shown in F1gure 

2 9 The mam dtfference ts m the amphtude of the hm1t cycle osc1llatwn close to 

the second HB In the full DYK model the amphtude 1s shghtly smaller than m the 
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Figure 3 1 Nullclmes (solzd curves) and the phase traJectory (dashed curve) corre

spondmg to the perzodzc solutwn of the model ob tamed for the parameter value p = 0 6 

Intersectzon of the nullclmes corresponds to the steady state (c, h) 
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Figure 3 2 An example of a typzcal perzodzc orbzt of the receptor model for p = 0 6 

and the mztzal values (c, h) = (0 24,0 61) 



CHAPTER 3 THE DE YOUNG KEIZER MODEL 42 

reduced model Importantly, the reduced model captures the essential features of the 

full model, namely a wmdow of oscillatwns between two HBs, with three fixed pomts 

near the first of these This suggests that the assumptwns used m the mathematical 

reductwn process are both reahstlc and effective for simphficatwn of the DYK model 

08r-------r-------r-------r-------r------, 

c 
HC 

06 

p 

Figure 3 3 Bzfurcatzon dzagram of the reduced D YK model Czrcles denote amplztude 

of perzodzc orbzt HB Hopf bzfurcatzon; HC homoclzmc bzfurcatzon 

3.2 Travelling waves in the model 

As we discussed earher in Chapters 1 and 2, oscillatwns of mtracellular calcium do 

not often occur umformly throughout the cell, but are orgamsed mto repetitive mtra

cellular waves [1, 9, 79, 136[ In large cells such as Xenopus oocytes, the mtracellular 

waves develop a high degree of spatial orgamsatwn, formmg concentnc circles, plane 

waves, and multiple spirals [92, 93, 94] 

The observed Ca2+ waves m many types of cells are believed to be the result of Ca2+ 
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p 

Figure 3 4 The perzod of the perzodzc orbzt m the DYK model as a functzon of p 

diffusiOn between Ca2+ release sites Although travellmg waves cannot be explamed 

by diffusiOn m all types of cells, It IS a reasonable assumptiOn for modellmg mtra

cellular Ca2+ waves Accordmg to this hypothesis, the cell cytosol forms either an 

excitable or an oscillatory system In either of these cases the hnkmg of release sites 

by diffusion can lead to coordinated waves of h1gh Ca2+ concentratiOn 

In actual physiological systems, cytosohc calcmm IS strongly buffered in the cell Free 

Ca2+ Ions typically constitute only 1% of the total calcmm m the cytosol and mea

surements m cells md1cate that buffer-bound calcmm IS at least an order of magnitude 

less mobile than free Ca2+ [91] Generally speakmg, these buffers are poorly mobile, 

and they reduce both the amount of free calcmm and Its ab1hty to diffuse Detailed 

models of calcmm buffermg have been studied by some researchers [80, 117, 119, 138] 

Nowycky and Pmter [119], m particular, d1d a highly detailed study of the effects of 

vanous types of calcmm buffers 
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The chem1cal reactwn for calcmm buffermg can be represented by the react1on 

(3 17) 

where P IS the buffermg protem and B IS buffered calcium If we let b and c denote 

the concentratiOn of buffer w1th Ca2+ bound and the concentration of free Ca2+ 

respectively, then a Simple model of calcmm buffermg IS g1ven by the followmg system 

of equatwns 

ac 
at 
ab 
at 

Dc\12c + f(c) + k_b- k+c(b1 - b), 

Db \12b- k_b + k+c(b1 - b), 

(3 18) 

(3 19) 

where k_ and k+ are the rates of Ca2+ release from the buffer and uptake by the 

buffer respectively; b1 IS the total buffer concentratiOn, and f(c) denotes all the other 

reactwns mvolvmg free Ca2+ (for example, channel characteristics, Ca2+ pumps, Ca2+ 

leak etc) De and Db define the d1ffuswn coefficients of Ca2+ and buffer accordmgly. 

If the buffer has fast kmetlcs, 1ts effect on the mtracellular Ca2+ dynam1cs can be 

s1mply analysed. Assummg that k_ and k+ are large compared to the t1me constant 

of calcmm reactiOn, we take b to be m the quasi-steady state k_b- k+c(b1 - b) = 0, 

and so 

b = ~ ]{ = k_ fk+ 
J( +c' 

It follows that 

ac ab ac 
at+ at =(I+ V) at' 

Combmmg th1s equatiOn w1th (3 18) and (3 19), we obtam 

ac 
at 1 ~V ( \1

2 (Dcc+ Dbbt J(: J + f(c)) 

- 1 ~V ((Dc+DbV)\1
2
c- ~;~~l\lcl 2 +f(c)) 

(3 20) 

(3 21) 

(3 22) 
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We see that nonlmear buffenng changes the model and that Ca2+ obeys a nonlmear 

d1ffusion-advectwn equatiOn, where the advectwn IS the result of Ca2+ transport by 

a mobile buffer [169] The effectzve d1ffuswn coefficient IS a linear combmatwn of the 

two d1ffuswn coefficients De and Db and lies somE>where between the two. If the buffer 

IS not mobile, z e Db = 0, then (3 22) reverts to a reactwn-d1ffuswn equatwn, w1th a 

reduced d1ffuswn coefficient. 

Models with fast, Immobile and unsaturated buffers have been considered by a number 

of authors [85, 91, 152, 156, 169] There has been relatively little work done on Ca2+ 

transport by mobile buffers However, 1t IS known that mcluswn of mobile buffers does 

not tend to elimmate an ex1stmg wave [152], although 1t can cause the appearance 

of two stable waves m some cases [148] Little else IS known about their effects on 

qualitative wave properties In this thesis we Ignore the complicatmg effects of Ca2+ 

buffers assummg that calcmm buffenng IS mcluded Implicitly m the model (m both 

the cytosol and the ER) by treatmg all fluxes as effective fluxes, and usmg a small 

d1ffuswn coefficient for Ca2+. Th1s IS a realistic assumption m light of recent work 

that indicates buffer mobility has only a limited effect on wave properties [155] Thus 

1t is likely that mcluswn of mobile buffers would have no qualitative effects on our 

results 

For the generatiOn of Ca2+ waves m the model we add a term D"V2c to the nght 

hand s1de of equatwn (2 16), where D IS an effectzve diffusiOn coefficient. We shall 

restnct our attentiOn to one spatial d1menswn for a detailed understandmg of wave 

propagatiOn usmg a mixture of analysis and numencs We also Ignore any effects 

of heterogeneity w1thm a smgle cell Though this assumption cannot be JUstified on 

physiological grounds, the effects of discreteness on wave propagation are unlikely 

to be understood until wave propagation m a homogeneous medmm IS understood 

Later, m Chapter 5, we relax the assumptiOn of homogeneity 

For travellmg waves With fixed velocity s It IS convement to rewnte the DYK model 
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m the comovmg reference frame where ~ = x - st A transformatiOn mto th1s frame 

y1elds 

o,c = Do~c + so~c + h(c, h) 

a,h = so~h + h(c, h), 

where 

(3 23) 

(3 24) 

(3 25) 

(3 26) 

In the comovmg frame, travellmg waves w1th speed s correspond to stationary solu

tions defined by o,c = o,h = 0 Hence, they can be found by studymg solutwns to 

the travellmg wave ODEs 

de 
d~ =W, 

dw 
D d~ = -sw- ft(c, h), 

dh 
s d~ = -h(c,h) (3 27) 

Travellmg pulses correspond to a homochmc orb1t in these equations, wh1lst penod1c 

wave-trams correspond to hm1t cycle oscJllatwns F1xed pomts of the travelling wave 

ODEs correspond to homogeneous states of the spatially extended model 

We present a numencal analysis of the travellmg wave ODEs for the DYK model g1ven 

by (3.27), treatmg p = [IP3] as the physwlogJcally s1gmficant bifurcatiOn parameter 

Homochmc orb1ts are expected to anse as the hm1t of penod1c orbits as the penod 

tends to mfimty All numerically computed homochmc orb1ts presented here are JUst 

penodJC orb1ts w1th large penod, wh1ch for practical purposes we take as 104 

3.2.1 Bifurcation analysis 

For any fixed value of s we can construct the b1furcatwn d1agram Similar to that m 

F1gure 3 3 and find the values of pat wh1ch Hopf b1furcatwns occur. These blfurcatwn 

pomts can be contmued m the (p, s) parameter plane In F1gure 3.5 we trace the locus 
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of Hopf b1furcat10ns labeled HB, as well as three branches of homochmc orb1ts labeled 

HC definmg sohtary travellmg pulses The Hopf b1furcat10ns curve forms a d1stmct 

loop smce the curve of steady states of Ca2+ osc1llatwns has the S-shape as shown in 

F1gure 3 3 The behavwur of the system as s --+ oo is exactly that of the model m the 

absence of d1ffuswn, as expected from the general theory [103] Thus, for large values 

of s there are two Hopf blfurcatwns and only two homochmc b1furcatwns (labelled 

(B) and (C)) The branch of penodw orb1ts that ongmates on the nght most Hopf 

b!furcatwn ends m a homoclmic b1furcat10n on branch B, wh1le the branch of penod1c 

orb1ts ansmg from the left most Hopf blfurcatwn ends m a homochmc b!furcatwn on 

branch C 

For mtermedmte values of s only one of the three homochmc branches (labelled (A)) 

occup1es a s1gmficant window of p values Th1s homochmc branch anses from the 

branch of penodw orb1ts that ongmates on the nght most Hopf bifurcation and 

sohtary waves on this branch fa1l to propagate 1f p is too small We now d1scuss some 

aspects of th1s blfurcatwn dmgram wh1ch are mterestmg from a dynam1cal systems 

perspective 

F1rst of all, we take a closer look at the upper part of homochmc orb1t branch A 

and show a magu1fied v1ew of F1gure 3 5 m F1gure 3 6 The homochmc branch A 

1s found to end at a T-pomt [61] Th1s 1s a point where a heterochmc cycle ex1sts 

between a saddle and a saddle focus Note that global b1furcatwns m th1s model can 

be d1rectly lmked to wmdows of parameter space where there are three fixed pomts. 

Prevwus work by Glendmnmg and Sparrow [61] pred1cts the ex1stence of a wmdmg 

homoclimc branch near a T-pomt Th1s phenomenon 1s clearly seen m F1gure 3 6, 

where the homochmc branch B connects to homochmc branch A m a sp1ral F1gure 

3.7 (A and B) shows the heterochmc cycle between two fixed pomts at the T-pomt a 

whole cycle and magmfied v1ew of the cycle in the ne1ghbourhood of the saddle focus 

and the saddle pomt The sp1ral of homochmc orb1t occurs when the homoclmic orbit 
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Figure 3 5 Two-parameter bzfurcatwn dzagram of the travellzng wave equatwns HB 

the curve of Hopf bzfurcatwn poznts, HC branches of homoclznzc orbzts 

begms and ends at the saddle pomt The spiral path of the branch of homochmc orb1t 

IS a result of the sp1ral nature of the traJectory m the neighbourhood of the saddle 

focus 

Next we examme the lower part of homochmc orb1t branch C usmg the magmfied 

view presented m Figure 3 8 As the speed of travelhng wave decreases, folds m the 

homochmc branch C occur before the branch mtersects a curve of Hopf b1furcat10n 

pomts Balmforth et al [5] have shown that the resultmg osc1llatwns m the branch of 

homochmc orb1ts correspond to homoclmic orbits that make multiple loops around 

one of the other steady states before returnmg to the startmg pomt Just such an 

orb1t IS presented m Figure 3 9, wh1ch IS taken from branch C at a pomt near where 

the branch mtersects the locus of Hopf pomts For companson F1gure 3 10 shows a 

homochmc orb1t from branch C before the branch starts to fold. Th1s orbit goes once 

around another steady state before returnmg to the rest. 
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F1gure 3 6 Magmfied mew of the upper part of Fzgure 3 5 where homoclzmc branch 

A connects to homoclznzc branch B at a T-poznt 

Th1s form of btfurcatiOn structure has also been observed by Sneyd et al [154] m a 

numencal analysis of travelling waves m a model of pancreatic acmar cells We bnefly 

present the mam physiOlogy of their model The model of Sneyd et al assumes that 

there are two dtfferent shut states, S and S, and Ca2+ regulates the mterconvers10n 

of the receptor between these two states Snntlary, there are two open, 0 and 0, and 

two mactJvated states, 11 and It Thetr model of an IP3R IS based on the bmdmg 

dtagram shown m Ftgure 3 11, where p and c denote IP3 and Ca2+ concentratiOns 

respectively Smce IP3 can bmd to etther shut state, and convert 1t to an open state, 

the concentratiOn of Ca2+ wtll determme the rate at whtch receptors are opened by 

IP3. In a simtlar fashiOn, [Ca2+] controls the rate of receptor macttvatton, and the 

rate of recovery from mact1vat10n. By usmg a standard assumption that openmg 

of the receptor by IP3 bmdmg 1s a fast process compared to receptor mactJvat10n 

and recovery from mactJvat10n, the model of Sneyd et al reduces to two equatiOns 

Stmtlar to the Li-Rmzel reduced DYK model, one equation expresses conservatiOn 

of calcmm m the cytoplasm, and the other descnbes the gatmg dynamtcs of the 
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Figure 3 7 The heterochmc cycle at the T-pomt (A) the whole cycle, (B) magmfied 

mew of the cycle SP. saddle pomt, SF saddle focus 
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Figure 3 8 Magnzfied vzew of the lower part of homochnzc branch C, showmg the 

foldzng of the branch as 1t approaches a locus of Hopf b!furcatwn pomts 
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Figure 3 9 A homochnzc orbzt from the marked poznt 1 zn Figure 3 8 
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F1gure 3 11: A schematzc dzagram of the full receptor model of Sneyd et al {154] 
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IP3R The concentratiOn of Ca2+ IS affected by d1ffuswn, IP3Rs, calcmm pumps, and 

leakage,! e 

(3 28) 

w1th the d1ffuswn coefficient D; Jr(c, h,p) denotes the mflux through IP3Rs, Jp(c) the 

ATPase-dnven Ca2+ flow from the cytoplasm to the ER (SERCA pumps) as m the 

DYK model (see equatwn (2 16)), and J1 md1cates the constant calcmm leakmg into 

the cell The vanable h = h(x, t) m the model of Sneyd et al represents the fractwn 

of the IP3Rs that are active The port1on of active IP3Rs vanes accordmg to 

(3 29) 

where 

(3 30) 

(3 31) 

and R. = r _,jr, for 1 = 1, 3, 5. The1r model assumes that the IP3R IS made up of 

four mdependent, 1dent1cal subumts and can only release calcmm when all four of 1ts 

subumts are open. Thus the influx of calcmm IS proportwnal to the probability that 

each of four subumts are open 

(3 32) 

Although the structure of IP3R d1ffers to the one m the DYK model, the Sneyd et 

al model possesses a qualitatively Similar b1furcatwn structure Sneyd et al have 

discussed the bifurcatiOn dmgram m some deta1l, although Without an explic1t deter

mmatwn of wave stability We further develop the1r arguments and determme the 

stab1lity of numencally constructed solutwn branches m the DYK model usmg lmear 

stability analysis. Our results are consistent w1th the recent paper of Romeo and 
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Jones [135], who mvest1gate the stab1hty of travellmg pulse solutwns m the Sneyd 

et al model of pancreatic acmar cells [154] Note that our stab1hty analys1s m [165] 

pre-dates that of Romeo and Jones [135] 

3.2.2 Stability 

Lmeansahon of (3 23) and (3 24) around a stationary (travellmg wave) solutwn (eo(~), 

hoW) and considermg small perturbatwns of type (r(~, t), s(~, t)) ex (r(~), s(O) exp(.\t) 

y1elds an e1genvalue problem g1ven by 

M [r(E)] = .\ [r(~)] ' 
s(~) s(E) 

where 

At(~)= 8cft(eo(E),ho(O), 

Bt(O = ach(eo(~), ho(O), 

A2(~) = ah!I(eo(~), ho(~)), 

B2(~) = ahf2(Co(~), ho(~)) 

The hnear stab1hty of a travellmg wave IS then determmed by an exammatwn of the 

spectrum of the Jacob1an M m (3 33) The e1genvalues assocmted WJth perturba

tions around the homogeneous steady state (g!Vlng the essential spectrum) can easily 

be found by subst1tutmg solutwns of the form u(~, t) = exp(.\t + 1kE)u0 into the 

lmear equatwn Ut = Mu. Hence, the contmuous spectrum of M IS defined by a 

charactenshc polynomml of the form det[M(k)- .\!] = 0, where 

[

-Dk
2 + isk +At A2 ] 

M(k) = 
Bt 1sk + B2 

(3 34) 

Here At, A2, Bt and B2 are the forms taken by A1W, A2(E), B1(0 and B2W when 

(eo(~), h0 (~)) = (c, h) 1s a homogeneous steady state Assummg that Re(.\)= a and 

Im(.\) = (J, g1ves us the followmg system for the contmuous spectrum 

-DB2k2 + Dk2a- s2k2 + 2sk(J + AtB2 - (At+ B2)a + a 2 - (32 - A2Bt = 0 

-Dsk3 + Dk2(J + sB2k- 2ska + sAtk- (At+ B 2)(J + 2a(J = 0, 
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wh1ch may be solved Simultaneously to g1ve the pa1r (a(k), f](k)) To find the full 

spectrum of the lineansed system it remains to determme the pomt spectrum of M 

In particular the e1genvalue spectrum of a smgle pulse m an mfimte system contams 

a contmuous part wh1ch can be identified w1th the spectrum of the stable rest state, 

as well as a d1screte part related to eigenfunctwns localised near the pulse solutwn 

Smce, m general, solutions c0 (~), h0 (~) and the e1genfunctwns of the JacobJan M 

are not available m closed form, the e1genspectrum of M has to be determmed nu

mencally We have used Founer spectral methods on a bounded domam w1th a dJs

cretJzatwn of N = 28 pomts to do precisely th1s A brief descnpt1on of these methods 

IS g1ven m Appendix A 3 and a more detailed d1scusswn may be found m [166[ and 

[170] The zero e1genvalue, which always ex1sts due to the translational symmetry 

of the problem, IS used as a numerical accuracy check and has been obtamed w1th a 

preciSIOn of 10-4 F1gure 3 12 shows the eigenspectrum for travellmg pulse solutions 

on the upper and lower part of homochmc branch A m F1gure 3 5 We see that, m 

both cases, the contmuous spectrum lies completely m the left complex half-plane 

The discrete spectrum for the solution on the upper branch remains m the left half

plane However, the discrete spectrum for the solution on the lower branch crosses 

the 1magmary ax1s and has an Isolated eigenvalue m the nght half-plane Hence, we 

conclude that of the two possible coex1stmg solitary pulses 1t 1s the faster one that is 

stable 

3.2.3 A kinematic theory of spike trains 

By treatmg the penod of osc1llatwns as a parameter it IS also poss1 ble to construct 

dispersiOn curves showmg the speed of a wave as a functiOn of 1ts period In F1gure 

3.13 we present a typical d1spers10n curve, s = s(~), for a penod1c orb1t A numencal 

calculatwn of the e1genspectrum of M shows that 1t IS the faster of the two branches 

that IS stable Knowledge of dispersion curves opens the way for the development of 
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F1gure 3 12 (A) Ezgenvalues of the lznearzsed system zn the complex plane for the 

pulse solutwn at p = 0 2363 and s = 2 (B) Ezgenspectrum at p = 0 2408 and 

s = 0 6 The solzd lznes correspond to the analytzcally obtazned contznuous spectrum 

at the same parameter values 
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F1gure 3 13 The dzsperszon curve for perzodzc travellzng waves when p = 0 2622 

a kznematzc theory of megular wave propagatiOn that attempts to follow megularly 

spaced spikes of actiVIty [132] M1ller and Rmzer [113] considered impulse propa

gation along the Hodgkm-Huxley cable equatwns [71] usmg numencal expenments 

and deduced that the kmematlc approx1matwn provides a reasonable estimate for the 

vanat10n m mtersp1ke mtervals and the mfluence of d1sperswn durmg propagation 

Usmg the1r approach the dynam1cs of Ca2+ spzkes are considered to evolve accordmg 

to 

(3 35) 

where s( ) IS the velocity as a functiOn of mtersp1ke mterval g1ven by the d1spers10n 

relatiOn for penod1c wave trams The t1me at wh1ch the nth sp1ke occurs at positwn 

x 1s defined m terms of a threshold parameter Cth as 

oc(x, t) 
Tn(x) = mf{ t I c(x, t) ~ Cth, at > 0, t ~ Tn-l(x)} (3 36) 

We shall call t,n(x) the mstantaneous mtersp1ke mterval (181), as 1t measures the time 

between spikes of activity at pos1t10n x When the mstantaneous 181 1s constant, we 
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recover a smgly penod1c wave Importantly, th1s framework IS ideally smted for the 

analysis of Irregular sp1ke trams 

For hnear stability analysis we cons1der local perturbatwns of the firing times as 

Tn(x) --t Tn(x) + gn(x) A general propagatmg wavetram IS stable 1f under the 

perturbatiOn the system converges to the unperturbed solutwn dunng propagatiOn 

(z e , gn(x) --t 0 as x --too) Insertmg the perturbed solutwn m (3 35) g1ves 

dgn(x) = _ s'(fln) [ n( ) _ n-i( )] 
dx s2(fln) g X g X • (3.37) 

Thus, a lmear stab1hty analys1s of the kmematJC equatwns shows that solutwns are 

stable 1f s'(lln) > 0 for all n. For a penodJC orb1t w1th lln = ll for all n the stab1hty 

pred1ctwns of the kmematJc theory (solutwns are stable 1f s'(ll) > 0, z e on the upper 

branch) are m complete agreement w1th those obtamed from the e1genspectrum of 

M Interestmgly 1t has been shown that when the stable branch of the d1spers10n 

curve has an exponential shape then there are solutwns to the kmematic equatwns 

that descnbe stable connectiOns to penodJC orb1ts [35] This form of wave may also 

be regarded as a travellmg front m the ISis such that lln(x) = ll(Kx- wn) for some 

K and w where ll( ) has a sJgmOJdal shape To confirm th1s prediction we perform a 

direct numencal SimulatiOn of the DYK model Smce we are lookmg for a travellmg 

front m the mstantaneous IS Is we choose m1tlal data (at one end of a cell of length 

L) w1th a sp1ke tram that has a step change m the intersp1ke mtervals ( changmg from 

Ll(l) to ll(2) after n* ISis of ll(l)) g1ven by 

n* 00 

I(t) = L P(t- nll(J)) + L P(t- n* Ll(J)- (n- n*)ll(2)) (3 38) 
0 n=n*+1 

w1th general rectangular stimulus of the form I(t) = L:n P(t- Tn(o)) w1th P(t) = 

I01J(t)IJ( Td- t), where ! 0 IS the magmtude of an apphed pulse, Td 1ts duratiOn and IJ(x) 

IS a step funct1on w1th IJ(x) = 1 for x 2': 0 and 1s zero for x < 0 

F1gure 3 14 g1ves an illustratiOn of th1s s1gnal An example of direct numencal Sim

ulation IS shown m F1gure 3 15 We can see a trans1t1on from penod Ll(l) to ll(2) as 
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Ftgure 3 14: A stzmulus szgnal I(t) for a connectwn between orbzts wzth dzffenng 

mstantaneous IS!s The followmg parameters are used ! 0 = 35, Td = 1, L = 200, 

~(t) = 30, ~(2) = 50, n* = 200 

time mcreases Another way to vtsuahse these connectwns between penodtc orbtts IS 

to plot the ISis at vanous values of x as a functwn of the number of sptkmg events 

at those posttlon, as shown m Ftgure 3 16 (where we have used values of ~(!) to ~(2) 

that best tllustrate the stgmmdal nature of the front) Here, 1t IS clearly seen that the 

step change can smooth out to form a transttwn layer of the form predtcted by the 

kmemattc theory 

3.2.4 Period doubling bifurcations 

Usmg dtrect numencal stmulatwns Sneyd et al [154] also show that secondary waves 

and Irregular travellmg wave behavwur can anse near the pomt where homochmc 

branch A dtsappears at aT-point Such waves are also expected m the DYK model 

Sneyd et al conclude that homochmc branch A IS the one that generates phystologt

cally stgmficant travellmg waves. Our stabthty analysts would also suggest that one 

may restnct attentwn to the faster branch However, when broadenmg the dtscusswn 
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Figure 3 15 Btzmulatwn of a cell of length L = 200 and p = 0 26 wzth a sptke 

tram mput at x = 0 wzth mstantaneous IBI changmg from ll.(l) = 30 to ll.(2) = 50 

after 200 sptkes Dynamzcs of Ca2+ zs shown at a posztwn of 3Lf 4 from the pomt of 

stzmulatwn, showmg a connectwn between perwdzc orbzts wzth IBI ll.(l) and ll.(2) 
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Figure 3 16. Travellmg front zn the IBis, showmg a connectwn between perzodtc orbzts 

Imtwl data zs m the form of a spzke tram wdh a step m the IBis after 200 sptkes from 

ll.(l) = 30 to ll.(2) = 31 Here, p = 0 26 and Cth = 0 3 Data zs represented at the 

followmg posdwns 0, L/4, L/2 and 3L/4, wzth L = 200 
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of waves to cover penod1c travelhng waves 1t IS possible that there are other interest

mg b1furcatwn structures present W1th th1s m mmd we turn our attentwn to penod 

doubhng b1furcatwns of the orb1ts ansmg at Hopf b1furcatwn pomts m F1gure 3 3 

We have found that 1t IS poss1ble for penod doubhng b1furcatwns to occur for slow 

waves ansmg when branches of penod1c orbits connect to each other as m F1gure 

3 17 In th1s figure, penod doubhng pomts of a pnmary penod1c orb1t are labelled 

PD1, penod doubhngs of secondary orb1ts as PD2 etc Orb1ts of type PD2 and PD4 

are destroyed m global homochmc b1furcatwns m favour of homoclmic orb1ts wh1ch 

we denote as HC2 and HC4. F1gure 3 18 (A, Band C) demonstrates typ1cal examples 

of double penod1c orbtt and double homochmc orb1t as well as 4-penodlc solutwn It 

IS hkely that there ex1sts a fam1ly of 2n-penod1c orb1ts wh1ch anse from n-penod1c 

orb1ts (through penod doubhngs) and end m 2n-homochmc b1furcatwns 

c 

p 

F1gure 3 17. Bzfurcatzon dwgram of the reduced DYK model for s = 0 2 and D = 1 

showzng perzod doublzng bzfurcatzons HE Hopf bzfurcatzon, PDn perzod-doublzng of 

an n-perzodzc orbzts, H C2 homoclznzc bzfurcatzon to a doubly perzodzc orbzt 

In F1gure 3 19 we show the branches of 2- and 4-homochmc orb1ts HC2 and HC4 
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F1gure 3 18 Examples of {A) double penodzc orbzt for p = 0 3034, (B) double homo

clmzc orbzt for p = 0 306 and {C) 4-penodzc orbzt for p = 0 3055 and s = 0 2 
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together w1th the lower part of homoclinic branch A Th1s figure suggests the pos

Sibility of a homoclimc-doubling cascade ansmg from the unstable solitary pulse of 

branch A Since, however, these b1furcatwns are those of an unstable wave they are 

not expected to be physwlog1cally s1gmficant 

0 34 
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022 

0 18 

027 
p 

F1gure 3 19 Two parameter bzfurcatzon dzagram of the travellmg wave equatzons 

showmg homochmc-doublmg cascade HCn branches of n-homoclzmc orbzts; HB 

Hopf bzfurcatzon, PDn penod-doublmg bzfurcatzon curves of n-perzodzc orbzts (dashed 

curves) 

Summary 

In th1s chapter we have presented a detmled numencal b1furcatwn analysis of travel

lmg waves m the reduced DYK model of calcmm release The linear stab1lity of these 

waves has been found by numerically solvmg an appropnate e1genvalue problem A 

by-product of th1s mvest1gatwn 1s the observatiOn that th1s model has qualitatively 

the same dynamics as the recently mtroduced two-state model of IP3 receptor dy

namics for pancreatic acmar cells [154] We have also presented a kmematJC theory of 

wave propagatiOn based around numerically computed dispersion curves for penod1c 
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waves We have used this to predict the eXIstence of a non-periodic wave that may 

be regarded as a travelling front that connects two different penodic orbits Direct 

numerical simulatiOn of the DYK model has confirmed this predictiOn 



The continuum Fire-Diffuse-Fire model 

The analysis of travelling waves, even in reduced DYK model presented m the previous 

chapter, IS typically only possible with the use of numencal bifurcatiOn techniques In 

th1s chapter we mtroduce a much simpler FDF type model which provides an Idealised 

model of Ca2+ release w1thm livmg cells This model was origmally intended as a 

model of cardmc myocytes m which calcmm release occurs v1a RyR Ca2+ channels 

located m a regular array m the SR [88] The discreteness of release s1tes leads to a 

wave of mcreased Ca2+ concentratiOn that travels With a lurching quality (saltatory 

propagatiOn) However, one of the maJor successes of the FDF model is that 1t can be 

analysed both m the discrete and contmuous limits Th1s chapter IS concerned w1th 

the contmuum descnption where waves propagate w1th a constant profile Saltatory 

waves Will be considered m Chapter 5 

We generalise the ongmal FDF model to mcorporate dependence on IP3 concentra

tiOn and also refractormess of release sites This allows a direct companson between 

numerically obtained properties of the DYK model m Chapter 3 and new exact ana

lytical results for travelling waves m the FDF model We demonstrate that travellmg 

wave solutiOns of the contmuum FDF model exh1b1t many qualitative and quanti-

65 
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tatJve features of the waves we have descnbed for the DYK model under parameter 

vanatwn 

4.1 The Fire-Diffuse-Fire model 

The propagation of Ca2+ waves m cardtac myocytes are often along the longitudi

nal axiS where Ca2+ release sites are aligned m regular arrays with a characteristic 

separatiOn of ~ 2J1m This structure of cardiac myocytes IS amenable to modelling 

and leads to an idealised model of spark-mediated Ca2+ waves (FDF model), ong

mally mtroduced by Keizer et al [88] They suggested a simplified model of Ca2+ 

release that mimics the properties of CICR from Isolated Sites to explore the nature 

of saltatory wave propagation In this model a Site releases Ca2+ mstantaneously 

("fires") when the value of [Ca2+] at the Site exceeds a threshold value To mimic a 

long-lastmg refractory state, once a site has released Ca2+, It can no longer fire agam 

The release sites are located with a fixed separation d and Ca2+ released at one site 

diffuses contmuously with an effectwe diffusion constant D, due to the presence of 

myoplasmic buffers The ongmal FDF model was decnbed by the smgle-evolutwn 

equation 

au 8
2
u (7 " -a = Da 2 +-~ o(x- x,)8(t- t,)8(t, + TR- t), 

t X TR 
t 

(4 1) 

where u(x, t) IS the average concentratiOn of calcmm, o IS the Dirac delta functwn, 

8() IS the Heaviside step function (8(t) = 0 fort < 0, 8(t) = 1 fort 2: 0), t, is the 

first time at which the 2th site takes on the threshold value, u IS the source amplitude 

and TR IS the "nse time" for the receptor ( 2 e , the length of time the receptor IS open 

durmg a release event) In contrast to the kmetic biophysical models, the FDF model 

leads to analytical expressiOns for the wave shape and the wave speed Moreover, this 

model reproduces the full range of wave propagatwn, from saltatory to continuous, 

whereas homogeneous reactwn drffusron models predict only contmuous propagatiOn 

We Illustrate this m Figure 4 1 where we show the propagatron of contmuous and 
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saltatory Ca2+ s1gnals m the onginal FDF model In panel A, the tlme constant 

for Ca 2+ release TR = 1 s and the propagatmg s1gnal 1s a travellmg front Panel 

B presents a Simulation usmg TR = 10 {lS where spark-like Ca2+ release leads to a 

propagatmg s1gnal that lS distmctly saltatory In th1s model the speed of the wave 

front 1s determmed by the time 1t takes Ca2+ released by the s1te at the front to 

diffuse to the next act1ve s1te and ra1se the value of [Ca2+] there to the threshold 

Note, that the contmuous wave travels at ~ 11 3 Jlm/s wh1le the saltatory wave 

travels at ~ 67 Jlm/s The long duratwn of Ca2+ release m the contmuous case 

appears to slow the veloc1ty of the propagatmg s1gnal The works of Ke1zer et al [88] 

and other researchers [44, 126, 127] g1ve a s1mple cntenon for d1stingmshmg saltatory 

and contmuous propagatwn modes When DrR/rF « 1, propagatwn lS saltatory and 

the wave speed 1s proportwnal to D In the saltatory lim1t, propagatwn cons1sts of 

1solated bursts of Ca2+ that occur as each consecutive s1te fires When DrR/ rf2 » 1, 

propagatwn lS contmuous, the veloc1ty 1s proportwnal to VD, and many s1tes are 

releasmg Ca2+ Slmultaneously The effect of Ca2+ pumps, wh1ch resequester the wns 

back mto the stores was neglected m these studtes (assummg that the pumps operate 

on a very slow time-scale) The analys1s of the FDF model was extended later by 

Coombes [34] to mclude Imear SERCA pumps 

Here we generalise the FDF model to mclude multiple Ca2+ release events for de

scnbmg more realistic travelling Ca2+ waves The generalised verswn of the model 

sustams both sohtary and penod1c travelling wave propagatwn The Ca2+ s1gnal lS 

generated by the mechamsm of CICR, 1 e the receptor channel is act1vated at low 

cytosohc Ca2+ levels and mh1b1ted at h1gh cytosolic Ca2+ levels Thus, for low Ca2+ 

levels, an mcrease m Ca2+ stimulates a further mcrease At h1gher levels the receptor 

mactivates and cannot reopen for some time dunng wh1ch 1t 1s in a refractory state 

Thus, the release of Ca2+ by mtracellular stores 1s self-regulatmg The release events 

(Ca2+ puffs or sparks) lead to the propagatwn of travellmg waves vra d1ffuswn of 

Ca2+ The model mcorporates descnptwns of the two maJor fluxes between the ER 
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Figme 4.1: Continuous (A) and saltatory (B) travelling wave propagations for the 

following parameters: D = 30 p,m2 / s, d = 2 p,m, a = 5 p,M · p,m, U th = 0.1 p,M and 

TR = 1 s for panel A and 10 p,s for panel B. 

and the cytosol. The first is due to a pump which drives the Ca2+ up the gradient 

from the cytosol back into the ER and the second arises when the Ca 2+ channel opens 

and causes a large flux from the ER into the cytosol. Denoting the concentration of 

Ca2+ ions by u(x, t) , the generalised FDF model is given by the following partial 

differential equation 

au u 8
2
u "' m - = -- + D - + p(x) 6 'TJ(t - T (x)), 

8t Td 8x2 
m 

X E IR, t > 0. (4.2) 

The decay time rd describes the action of the Ca2+ pumps that resequester the Ca2+ 

back into the stores. Note that in comparison to the DYK model, the model of a 

pump is linear and is one of the reasons why t he generalised FDF model is mathemat

ically tractable. The other reason is that t here is no explicit inclusion of a receptor 

dynamics. Rather, Ca2+ puffs are triggered from the release site at position x at 

times Tm(x), mE Z. These release times are defined in terms of a threshold process 

according to 

rm(x) = inf{ t 1 u(x, t) > h, au~~, t) > o; t 2: r m- 1(x)}. (4.3) 
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However, as 1t stands the FDF model ignores the significantly important process 

of bemg m a refractory state and cannot therefore be sensibly used to understand 

penodJC travelling waves It IS of course perfectly satisfactory when studymg solitary 

waves, smce smgle release events are not affected by refractonness To remedy th1s 

lack of refractormess we introduce a t1me dependent threshold The 1dea IS to mimic 

refractormess, wh1lst retammg analytical tractability, w1th a threshold wh1ch IS h1gh 

JUSt after a release event but gradually decays back to some more normal level Such 

a process may be wntten 

h = Uth- h +I L o(t- Tm(x)), wtth mJtJal data h(O) = Uth, (4 4) 
T 

m 

where T determmes the refractory t1me-scale and 1 IS some large pos1t!ve constant 

Usmg th1s scheme h decays towards a constant threshold Uth at a rate T-
1 and h --t 1h, 

whenever a Ca2+ puff IS tnggered The functwn 17(t) descnbes the shape of the puff 

and IS often considered to be a simple rectangle 

a 
1](t) = -8(t)8(TR- t), 

TR 
(4 5) 

where 8( ) IS a step functwn, a IS the strength of the puff and TR 1ts duratiOn For a 

simple contmuum model we cons1der the dens1ty d1stnbutwn of the calcium sources 

p(x) = 1 (the discrete FDF model1s diScussed m Chapter 5) 

4.2 Solitary travelling pulse 

Before discussing penodic travelling waves we first review some properties of solitary 

wave propagatiOn m the contmuum FDF model [34] Solitary travelling waves may be 

descnbed m the form T 0(x) = x/ s, where s denotes the speed of the wave Assummg 

u(x, t) = u(~), where~= st- x, g1ves the followmg travellmg wave ODE 

u a 
Du~~- su~-- = --G(~)G(sTR- .;), 

Td TR 
(4 6) 
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where ue = du/d~ For travelling pulse solutiOns wh1ch satisfy hme~±oou(~) = 0 the 

solution to ( 4 6) takes the form 

-oo < ~ < 0 

(4 7) 

With 

(4 8) 

By ensuring the contmmty of the solutiOn and 1ts first denvatJve at ~ = 0 and ~ = STR 

the unknown coefficients a~, . , a4 may be found as follows 

003 A- [1- e-A+STR] 

A+ 
A_ >. 

-Q3-e- +STR 

A+ 
Td!J A+ 
TR A-- A+ 

a3 [1 - e -Lsrn] 

(4 9) 

( 4 10) 

(4 11) 

(4 12) 

The self-consistent speed of the travelhng pulse can be found by demandmg that 

u(x, T(x)) = u1h, z e m the travellmg frame system u(O) = Uth This gives from (4 7) 

that the speed of a travellmg pulse satisfies the 1mphcJt equatiOn 

Uc = A- [1 - e-A+STR] 
A_- A+ ' 

( 4 13) 

where Uc = u1h TR/ !7Td It IS straightforward to show from ( 4 13) that the speed 

of the wave scales wtth the square-root of the dtffuswn coeffictent [34] Ftgure 4 2 

demonstrates the speed of the constant profile travelhng pulse as a functiOn of the 

dtmenstonless threshold parameter Uc = 1Lth TR/ !7Td The two waves coalesce at a LP 

and propagatiOn fatlure can result for too large a chmce of the threshold parameter 

Ftgures 4 3 and 4 4 demonstrate exactly this When we are m the parameter regtme 
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to the left of the LP, solitary travellmg wave in the model propagates through the 

whole cell (Figure 4 3) To the right of the LP, travellmg pulses fml to propagate 

and we observe an abortive wave (Figure 4 4) Figure 4 5 demonstrates a numerical 

contmuatwn of the LP m Figure 4 2 This figure specifies the area of parameters m 

the (u,, Tn
1

) plane where stable travelling pulse exists 

5.----.-.-------r------,-------~-----. 

s 

4 

3 

2 

LP 

----------OL--=~~----~------~----~----__J 
0 005 01 0 15 02 0 25 

u, 

Figure 4 2 Speed s as a functwn of the dzmenswnless threshold parameter u, m the 

contmuum FDF model for the parameters Td = TR = D = 1 A lmear stabzhty analyszs 

shows that the fast branch zs stable {34} 

4.3 Periodic travelling wave 

In this sectwn we consider penodJC travellmg waves m the generalised FD F model 

We construct periodic travelling waves by wntmg release tlmes m the form Tm(x) = 

(m+ kx)tl, where k is the wavenumber and s = 1/(k/:l) the wave velocity The 

travelling wave ODE m the travellmg frame co-ordmate system (~ = st- x) IS given 

by equatwn ( 4 6) The periodic travelling wave solutwn to ( 4 6) takes the form 
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Figure 4.3: Space-time plot of the calcium concentr-ation showing the solitary tra·uelling 

wave propagation in the continuum FDF nwdelwith the parameters from Figure 4.2 

and u, 0.1. 
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Figure 4 A: Space-time plot of the calcutm concentration showing the propagatzon 

fatlure of solitary travelling wave tn the contmuum FDF model with the pamrnele1·s 

from Figure 4.2 and Uc = 0.25. 
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Figure 4 5· Contmuatzon of the lzmzt poznt shown m Fzgure 4 2 m the (uc, r[/) 

parameter plane 

u(~) = u(~ + m-6.): 

0 < ~ < STR 
( 4 14) 

STR < ~ < s.6., 

with A± given by equation ( 4 8) By demandmg contmmty of the solutwn and its 

first denvatlve the coefficients at, . , a 4 may be found as follows 

Tda )._ (1 - e>-+s(L>-rn)) 

TR ( >._ - >.+) ( e>-+sl> - 1) ( 4 15) 

Tda ).+ (1- e>--s(l>-rR)) 

TR (>._- >.+) (e>--st>- 1) 
( 4 16) 

Tda )._ (1- e-A+STR) 

TR (>._- >.+) (e>-+sl>- 1) 
(4 17) 

Tda ).+ (1- e-LSTR) 

TR (>._- >.+) (e>--st>- 1) · 
( 4 18) 

The self-consistent speed of the penodic travellmg wave may be found by demandmg 

u(s.6.) = h This generates an imphcit equatwn for the dispersion relatwn s = s(.6.)· 



CHAPTER 4 THE CONTINUUM FIRE-DIFFUSE-FIRE MODEL 74 

( 4 19) 

where Uc = UthTR/TdCI We plot a typical d1sperswn curve m F1gure 4 6, showmg a 

similar shape to that of the DYK model (see F1gure 3 13). No attempt has been made 

to tune free parameters of the FDF model to obtam a quantitative fit to data from the 

DYK (or other) model We mvoke the model mdependent kmematJC theory presented 

earher to establish that it IS the faster of the two possible branches that IS stable 

Moreover, smce the stable branch of the d1spers10n curve has an exponential shape 

stable waves representmg connectwns to penodJCs are also expected If we neglect 

refractormess and consider a constant threshold the resultmg dispersiOn curve exhibits 

unphysical divergent speeds This IS expected m the absence of a refractory process 

smce release events can occur arb1tranly close in t1me In F1gure 4 7 we illustrate an 

s 

14 

06 

I 
I 
I 

stable 

\,'--------------------~~~3!: _______________ _ 

02L-------~--------~--------~------~ 
0 5 10 15 20 

Figure 4 6 The dzsperswn curve obtazned from {4 19} when Uc = 0 2, T = 2, 'Y = 3, 

TR = 1, Td = 1 and D = 1 

example of a penodJC travelling wave m the contmuum FDF model Sohtary pulses 

constructed in sectwn 4 2 may also be defined from penodic solutwn by takmg the 

hm1t !1 -too 
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Figure 4.7: Space-time plot of the calcium concentration showing the periodic travel

ling wave pmpagation in the continuum FDF model with the parameters from Figure 

4.6 and D. = 10. 

A weakness of the FDF model is that it is independent of IP3 concentration, which 

as we have seen is an important parameter of the DYK model. To include a notion of 

IP 3 sensitivity within an FDF model it is natural to modify the threshold parameter, 

such that release events are easier to generat e in the presence of high IP3 . We suggest 

that the level of Ca2+ in the ER, Cer , required to generate a periodic travelling wave 

is a good candidate for determining a threshold function Uth = Uth(p) . In Figure 4.8 

we continue Hop£ points of Figure 3.5 that define the borders of such a region in the 

(p, Cer) parameter plane. This figure shows that for small values of IP 3 waves fail to 

propagate and that lower levels of Cer are required to generate waves with increasing 

[IP 3], as observed experimentally. Vve approximate the threshold function of Figure 

4.8 using 

[ 

- Bp ] 
Uth (p) = k uo + A;_ C , (4.20) 

where k = 1, u0 = 0.48, A = 0. 1627, B = 0.5583 and C = 0.055 are fitted numerically. 
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F1gure 4 8. Concentratzon of calcwm m the ER, Cen as a functzon of IP3 concentra

tzon, p, m the DYK model, requzred to generate travellmg waves 

The mcluswn of an IP3 dependent threshold level m the FDF model makes 1t sens1t1ve 

to IP3 and allows a more direct companson w1th results from the DYK model 

In F1gure 4 9 we plot the wave speed of a pulse as a functiOn of the lP 3 concentratiOn 

In the same figure we plot the homoclimc branch A of the DYK model from Figure 3 5 

for better Visualisation For a companson between the DYK model and the generalised 

FDF model we choose the same d1ffuswn coefficient and adjust the remammg t1me 

and strength scales appropnately A value for TR IS chosen Simply by readmg off the 

temporal duratwn of a calcmm sp1ke m the DYK model The time scale of the linear 

pump in the FDF model is chosen so as best to agree with that of nonlinear pump 

term m equatwn (2 16) ThiS term 1s s1gmmdal with a slowly varymg gradient for 

mtermedmte levels of calcmm concentratiOn The gradient m th1s intermediate reg~me 

provides a reasonable estimate for Td Th1s leaves only one free parameter, namely 

k, whJCh we choose so as to g1ve the best quantitative agreement of the generalised 

FDF and DYK models Note that both curves m F1gure 4 9 are very Similar In the 
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absence of an IP3 dependent threshold functwn no such companson would have been 

possible. 
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F1gure 4 9 Speed of the travellzng pulse zn the FDF contznuum model as a functwn 

of [IP3} wzth k = 0 17, TR = 0 5, Td = 0 29 and D = 1 The second curve zs the 

homoclzmc branch A of the DYK model from Fzgure 3 5 

Summary 

In th1s chapter we demonstrated that much of the travelling wave behaviOur of the 

bwphys1cal DYK model in Chapter 3 can be reproduced by a much simpler FDF 

type model We presented a generalised form of contmuum FDF model w1th an IP3 

dependent threshold and a s1mple refractory process Parameters of the FDF model 

are constramed usmg numencal data from the DYK model The mam advantage 

of studymg FDF type models IS the1r mathematical tractability A mathematical 

analys1s of solitary and penod1c travelling waves shows the ab1lity of the generalised 

FDF model to descnbe realistiC travellmg Ca2+ waves The analytical tractability of 

the model also opens up the poss1b1lity to study more realistic d1stnbutwns of release 

s1tes and this IS discussed m the next chapter 



Discrete Fire-Diffuse-Fire model 

Our discussion of the FDF model m the prevwus chapter began w1th the Jssue of 

cellular heterogenmty m a vanety of cell types The maJonty of the spatml whole-cell 

models (see Chapter 2) are based on the assumptiOn that the ER can be represented 

as a compartment contmuously d1stnbuted throughout the cytosol Although it can 

somet1mes be ngorously JUStified, th1s assumptiOn 1s made largely for convemence 

The 1mages of Ca2+ activity m cardmc myocytes confirm the facts of cellular mhomo

geneJty (see F1gure 51), demonstratmg Isolated Ca2+ sparks, wave JmtJatJOn and a 

spark-mcdmted propagatmg Ca2+ wave Skeletal muscle and cardmc cells are mvaded 

by T-tubules, wh1ch allow communicatiOn w1th the extracellular space T-tubules have 

voces allowmg the mfiux of calcmm mto the cell m response to an actiOn potential 

The RyRs through which calcmm is released are located directly opposite the calcmm 

channels The phys1cal arrangement of calcmm release SItes means that m these cell 

types 1t may not be appropnate to v1ew the release of calcmm as spatially umform 

In card1ac cells, calcmm waves do not normally propagate w1thout T-tubule st1mulus 

The discreteness of calcium release s1tes m these cell types prevents the spontaneous 

propagatiOn of a calcmm wave, whiCh would lead to spontaneous (uncontrolled) mus

cular contractiOn Th1s IS a poss1ble sJtuatwn m wh1ch the discreteness of release s1tes 

78 
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(A) 

(B) 

(C) 

Figure 5.1: Confocal line-scan images of isolated Ca2+ sparks, wave initiation, and 

a spark-mediated propagating Ca2+ wave in cardiac myocytes. Horizontal scale bar 

(space): 5 p,m except for panels B, C and E in (C) which is 10 p,m; vertical scale bar 

(time): 100 ms except for (C) and second panel in (A) which is 200 ms. (From the 

work of Cheng et al. (30}} . 
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could have maJor negative consequences For example, m hypertenswn, cardmc cells 

compensate for mcreased pressure by growmg larger (hypertrophy). It IS poss1ble that 

in th1s hypertrophied state, the separatwn between RyRs and T-tubules IS mcreased, 

leadmg to less effective couplmg between actwn potent1als and calcmm release, and 

impa1red contraction [ 176] 

The generalised FDF model may be naturally extended to mclude the discrete nature 

of calcmm stores w1thm a cell In th1s chapter we cons1der the FDF model defined 

m Chapter 4 w1th a discrete d1stnbutwn of calcmm release s1tes This s1mple change 

to any contmuum model destroys translation mvar1ence and mvahdates many of the 

standard tools of analysis However, w1thm the FDF framework analytical progress 

IS still poss1ble To illustrate th1s pomt we mvestigate how a regular array of release 

s1tes mfluences the propagatiOn of saltatory travellmg waves. 1\fakmg the further 

assumption that release events occur on a regular temporal lattice we simplify the 

FDF model so that it may be re-wntten m the language of bmary release events We 

mtroduce a dynamics for the release events that are calculated v1a a thresholdmg of 

the calcmm profile at a release s1te Thus, under the assumptiOn that release times 

occur on some regular temporal latt1ce the model does not have to be evolved as a 

d1scontmuous PDE w1th a self-consiStent search for the t1mes of threshold crossmg 

that define release events. D1rect numencal s1mulatwns are used to show that th1s 

computationally cheap versiOn of the FDF model provides an accurate representatiOn 

of the origmal model 

5.1 Spatially discrete FDF model 

One of the maJor advantages of the generalised FDF model g1ven by equatwn ( 4 2) IS 

that 1t may be naturally extended to account for saltatory travellmg wave propaga

tion Contmuous and d1screte hm1ts m the model are ach1eved by spec1fymg the form 

of the d1stnbution function of Ca2+ release s1tes p(x) The d1screte approx1matwn 
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m the FDF model may be obtamed by modelhng Ca2+ release s1tes as point sources, 

that IS, an array of Dirac delta functions o(x- Xn), where Xn IS the spattal pos1tton of 

the nth release s1te For s1mphc1ty we cons1der an 1deahsed set of pomt sources so that 

the function of the dlstnbutwn of Ca2+ release Sites IS given by p(x) = 'I:n o(x- nd), 

where d IS the spacmg between stores The general structure of the model1s g1ven by 

the simple schematic d1agram of F1gure 52 The FDF model provides a cancature 

of Ca2+ release events wh1ch mtcract v1a d1ffus10n of Ca2+ and the tnggenng of a 

CICR-hke mechamsm Ca2+ puffs or sparks m the model are tnggered from the re-

puff 

d 

ER 

n-1 n n+l 

F1gure 52 Schematzc representatwn of the FDF model 

lease site Xn = nd at t1mes Tm(xn), mE Z, accordmg to a threshold process defined 

by ( 4 3) The shape of the puff 1s assumed to be the same as m the contmuum FDF 

model and IS g1ven by equatwn ( 4 5). 

5.1.1 Periodic travelling wave 

The solutwn of the FDF model given by equatwn ( 4 2) with a d1screte d1stnbutwn of 

Ca2+ release s1tes can be expressed in the terms of the Green's functwn for the cable 

equatwn as 

00 lt 100 00 u(x, t) = : L dt' dx'G(x-x', t-t')o(x' -xn) L rl(t' -Tm(xn)), (51) 
R n=-oo -oo -oo m=O 
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where 

-t/rd 
G(x t) = e e-x'/(4Dt)e(t) 

, V41fDt 
(52) 

The substJtutmg of the functwn ry(t) mto equatwn (51) g1ves 

u(x, t) - ~ f 1~ dt' 1: dx'G(x- x', t- t')o(x'- xn) 
n=-oo 

00 

(5 3) 
m=O 

U 00 00 {T"'(xn)+rn - L L }
7 

G(x- Xn, t- t')dt' 
TR n=-oo m=O Tm(xn) 

We cons1der penodJC travellmg waves that sat1sfy Tm(xn) = nd/s+mb. = n6.1 +mb., 

m 2:: 1, where s IS the speed of threshold crossmg events g1ven by s = d/ 6.1 and 6. 

IS the t1me between successive Ca2+ release events at a store For s1mphcity we shall 

consider 6. to be sufficiently large that we do not have to worry about the mcluswn of 

refractory process and take the threshold for release to be Uth (p) defined by equatwn 

(4 20) Then the solutwn descnbmg saltatory penod1c travellmg waves m the FDF 

model1s 

a 1mm(t-n6.1-m6.,rn) 
u(x, t) = - L G(x- nd, t- t'- n6.1 - mb.)dt'. 

TR n,m 0 
(54) 

Th1s can be rewntten as 

u(x, t) = u L H(x- nd, t- nb.1 - mb.), (5 5) 
n,m 

where 

1 lmm(t,rn) 
H(x, t) = - G(x, t- t')dt' 

TR 0 
(56) 

We determme the speed of the travellmg waves m a self-consistent manner by de

mandmg that 

hm u(nd, nb.1 + mb.) = u,h(P) 
n,m-oo 

(57) 
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Then usmg JmtJal data such that u(O, 0) 

determmed by 

0 the speed of the wave is imphcJtly 

00 00 

Uth(P) =a- 2:::2::: H(nd, n~1 +m~), (5 8) 
n=Om=l 

With 

1 1rn H(x, t) = - G(x, t- t')dt' 
TR 0 

(59) 

A saltatory periodic travelling wave determmed by (54) and (5 8) IS shown m F1gure 

5 3 Th1s nicely illustrates that waves propagate w1th a non-constant profile and that 

large mcrease m Ca2+ concentratiOn occurs JUSt after a release event The saltatory 

nature of the wave may be directly attnbuted to the fact that release s1tes are not 

spread contmuously throughout the system 

ud/cr 
I 6 

I 2 

08 

D1stancc (x) 

F1gure 53 An example of a stable saltatory perwdzc travellzng wave The perwd ~1 

zs determzned self-conszstently as ~1 = 0 2 Other parameters are Td = 1, d? / D = 1, 

TR = 0 1, ~ = 4 2 and Uc = Uth(p)d/u = 0 1 The system zs sampled at some large 

release tzme t0 , then at t0 + TR and t0 + ~ 1 

We now demonstrate how the penod of travellmg waves depends on the mam system 
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parameters. In the special case TR -> 0 we see from equatiOn (59) that H(x, t) -> 

G(x, t), which ts given m closed form by (5.2) Hence, the speed of the wave can be 

found by solvmg 

Uth(p)d 

!7 

00 00 

di: I: G(nd,nt::.t + mt::.) 
n=O m=l 

(5 10) 

where Tn = d? / D For fimte TR, the functiOn H(x, t) IS evaluated m [34] as H(x, t) = 

A(x, t- TR)- A(x, t), where 

A(x, t) 

(5 11) 

In Figure 54 we show how the period of travellmg waves depends on the value of r;;1 

for the case that TR = 0 We see that there IS propagatiOn fatlure at some cnt1cal 

value of Td, where two branches of the solutwns coalesce To Illustrate the effects of 

a finite width for the calcmm puff on the speed of the penodtc travelling wave we 

contmue the LP of the bifurcation d1agratn m Figure 5 4 as a function of TR. The 

results of a numencal contmuatwn are shown m Figure 5 5 Thts plot shows the 

parameter regiOn where saltatory periodic travellmg waves can exist and highlights 

the fact that with mcreasmg TR the LP m Figure 5 4 occurs at mcreasmgly larger 

values of Td 

The fact that there are two solutiOn branches for a penod1c travelling wave ratses 

the questiOn of stability To determme the stability of saltatory waves we consider 

perturbatiOn of the release times where Tm(nd) -> Tm(nd)+cmA, A E IC, and examme 

the lineansed evolutiOn of these perturbations SolutiOns are linearly stable If Re A < 
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Ftgure 54· Perzod ~1 as a functzon of the parameter Ti1 w1th TR = 0 Other param

eters as m F1gure 5 3 

08 

04 

Saltatory travel hng wave 

OL---~~--~----~----~-----i----~ 
I 2 3 4 

Ftgure 55 Contmuatzon of the LP of F1gure 54 m the (Ti\ Tn) plane 
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0 After subst1tutmg mto equatwn (5 8) and expandmg to first order we obtam 

(5 12) 
n,m 

where we have set .X= a+ 1(3, a, (3 E lR Here, H'(x, t) = oH(x, t)jot DlfferentJatwn 

of equatwn (59) shows that H'(x, t) = [G(x, t) - G(x, t - TR)I/rR To find the 

stab1hty of the solutwn as a functiOn of parameters the system of two equatwns 

Rei!>( a, (3) = 0 and Im if>( a, (3) = 0 has to be solved simultaneously for a and (3 

along the solutwn branch Two possible types of bifurcatiOn pomt are defined by the 

condJtwns a = 0, (3 = 0 and a = 0, (3 # 0 For the first case a change m stab1hty 

occurs when <P(O, 0) = 0 The second type of mstab1hty anses when a complex 

2r---r---r---~--~--,---,---,---, 

<ll(0,[3) 

0 --- -------- -------- - ----------------- - -------------- --------

0 2 3 4 

F1gure 56 A plot of the functzon <P(O, 1r) along the solutzon of Figure 54, showzng 

that there ts a change m stabtltty at the LP where propagatzon fatlure occurs 

eigenvalue crosses the 1magmary ax1s Then a change of stab1hty occurs when (3 = 1r 

A plot of the functwn <P(O, 1r) m F1gure 56 shows that the change of stab1hty for the 

solutwn shown m F1gure 5 4 occurs at the LP definmg propagatiOn failure A direct 

examinatiOn of a = Re .X, along the two solutwn branches, shows that the faster 

branch IS stable, wh1le the slower one IS unstable. 

-------- ---- --
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5.1.2 Solitary travelling pulse 

In the absence of multiple Ca2+ release events from an individual store, z e cons1dermg 

the case when m = 0, we recover the discrete FDF model of solitary travellmg wave 

propagatiOn [34] A saltatory travellmg pulse solutiOn IS analytJcally determmed by 

the followmg equation 

(}" 
00 1mm(t-n~t,TR) 

u(x, t) = - L G(x- nd, t- t'- nbq)dt' 
TR n=-oo 0 

(5 13) 

and IS illustrated m F1gure 5 7 The speed of the solitary wave can be found m a 

ud/cr 

I 5 

I 0 

------- Uc 

0 5d Dtstance (x) !Od 

F1gure 5 7 An example of a stable saltatory solltary travellzng wave The perzod t.1 

zs determzned self-cons!stently as t.i = 0 17 Other parameters as m Fzgure 53 

self-consistent manner sJmJ!ar as m the periodic case by demandmg that 

lim u(nd, nt.i) = Uth(P) 
n~oo 

(5.14) 

and for the spec1al case when TR -> 0 this gives 

(5 15) 
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In F1gure 5 8 we show how the speed of solitary travelling pulse depends on the 

d1menswnless threshold parameter Uc In common w1th the penodJC wave solutwn 

there IS the co-eXIstence of two travellmg waves w1th speeds that approach each other 

as the threshold parameter mcreases Eventually the two solitary waves coalesce at 

the LP such that propagatwn fmlure can result for too large a chmce of the threshold 

parameter 

03r---~--~----~--~--~----~---, 

\ 

\ 
\ 

02 '\ 

"' "-... unstable 

" " 0 1 " " " 
stable 

___JLP 

0~--~----~--~----~--~----~--~ 
0 0 1 02 03 

Uc 

F1gure 5 8 Perzod .6.1 as a functwn of the dzmenswnless threshold parameter uc wzth 

TR = 0 Other parameters as m Fzgure 5 7. 

5.2 Discrete-time FDF model 

5.2.1 One-dimensional model 

The analytical tractability of the d1screte FDF model IS not only useful for gammg 

msight mto the dependence of wave speed on system parameters, but can help m 

reducmg the computatwnal demands on a numencal scheme for the self-consistent 



CHAPTER 5 DISCRETE FIRE-DIFFUSE-FIRE MODEL 89 

evolutwn of the model equatiOn Constder for the moment the class of solutions where 

all release ttmes occur at mteger multtples of TR, the nse-ttme of the receptor In thts 

case we may wnte 

(5 16) 
m p 

for all n, where we define the release functzon an (p) as 

{

1 T;:" = PTR 
an(P) = , 

0 otherwtse 
(5 17) 

and T;:" = Tm(xn) 1s the time of release of the mth puff at the nth release stte In 

general the release ttmes will not occur at multtples of TR However, by restnctmg 

the system so that release times do occur on a regular temporal lattice and choosing 

T = RrR (the refractory ttme scale) for some RE Z, we may wnte 

mm(R,p) 

an(P) = G(un(P)- Uth) IT 8(uth- Un(P- m)), (5 18) 
m=l 

where un(P) u(xn,PTR) The first term on the nght IS a stmple threshold cond1t10n 

for the determmatwn of a release event whtlst the second term ensures that release 

events are separated by at least the refractory ttme scale T. Thts restnctwn of the 

model ehminates the need for the prectse determmatwn of release ttmes The FDF 

model then takes the parttcularly stmple form 

(5 1g) 

where Q 1s the hnear dtfferenttal operator 

(5 20) 

wtth Green's function gtven by equatwn (5 2) and r ts a dtscrete set that indexes the 

stores. 
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The dynam1cs for PTR < t < (p + 1)TR IS completely determmed m terms of imtial 

data up(x) = u(x,prR) as 

(5 21) 

where 

H(x, t) = l G(x, t- s)ds, (5 22) 

and 

(G@ up) (x, t) = l G(x- x', t- PTR)up(x')dx' (5 23) 

Compared to the ongmal FDF model the one we have descnbed here IS computatiOn

ally cheap to solve Release events defined by an(P) = 1 are eas1ly calculated smce 

un(P) = up(xn) may be wntten as a sum of two terms that are both amenable to 

fast numencal evaluatiOn In particular up(x) may be wntten m terms of the bas1s 

functwns Hn(x) = aH(x- Xn,TR)/rR, so that 

(5 24) 
nEr 

Smce the basis functwns Hn(x) are fixed for all time they need only be computed 

once For small TR we also have the useful result that H(x, TR) ---> G(x, TR), wh1ch 1s 

g1ven m closed form by (5 2) The convolution m (5 24) may be performed efficiently 

usmg Fast Founer Transform (FFT) techmques Once agam the FFT of G(x, TR) 

need only be computed once, so that 1t 1s only necessary to successively construct the 

FFT of up(x) for p = 0, 1, 2, . We then have that G@up = _F-1(.F[G[.F[up]), where 

.F denotes the FFT Hence, under the assumptiOn that release t1mes occur on some 

regular temporal lattice the model does not have to be evolved as a d1scontmuous 

PDE w1th a self-consistent search for the t1mes of threshold crossings that define 

release events 

Of course the above approach IS only useful 1f the restncted class of solutwns that 

we have focused on IS m some sense close to solutwns of the full model To illus

trate that th1s IS the case for practical apphcatwns we compare the exact solutwn 
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of a saltatory travellmg pulse w1th that from th1s model In F1gure 5 9 we plot the 

speed of a lurchmg sohtary pulse for the full FDF model discussed m the prev10us 

sect10n On the same figure we plot numencal results obtamed from our reduced FDF 

model. It can be seen that there is excellent agreement between the two, JUstifymg 

the practical assumption that release events can be considered to occur only at mteger 

multiples of the calcmm puff duration From expenmental data Jt is apparent that 

the refractory time-scale Js typically 50 times that of the release duratiOn (see [87] for 

a d1scussion) so we assume R = 50 m our simulatJOns 1f Jt IS not specified. Typically 

TR IS approximately 10-20 ms 

100 

s 

80 

60 

40 

20 

oL-----~----~----~----L-----L---~ 
0 0 I 02 03 

Uth 

F1gure 59 Speed of a solztary pulse as a functzon of the threshold level Uth zn the 

FDF model Crosses denote results from szmulatzons of the reduced FDF model wzth 

500 regularly spaced stores Parameters d = 2 pm, D = 30 pm2 js, T = 10 ms, 

Td = 0 2 pM/s 

The best way to illustrate the sort of behaviours that can be generated by th1s reduced 

model1s w1th a space-time dens1ty plot for calcmm concentratiOn In real cells release 
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sites are not hkely to be arranged on a perfectly regular lattice, although for cardiac 

myocytes release sites are in fact regularly spaced along the longitudinal axis of the 

cell In our s1mulatwns we focus both on regular and disordered d1stnbutwn of 

release sites Free boundary conditiOns are assumed m model simulatwns, z e wave 

propagatiOn m the system IS restricted only by cell size 

First of all, we present simulatiOn results m one dimensiOn for a regular lattice of 

release sites, with lattice spacmg d In Figure 5.10 we show a sohtary lurchmg pulse 

ansmg from an Initially activated release site m the middle of the cell This mcely 

Illustrates that a discrete set of release sites can lead to a wave that propagates with a 

non-constant profile, but with a well defined speed Expenmentally observed calcmm 

waves, for example m Immature Xenopus oocytes, evoked by stimuh JUSt above the 

wave threshold do not propagate m a smoothly contmuous manner either The confo

callmescan 1magmg of mtracellular Ca2+ signal done by Callamaras et al [25] clearly 

shows this in F1gure 5.11 In the case when two waves are Initiated at well separated 

release sites, two lurchmg pulses Will propagate toward each other In Figure 5 12, we 

show that they are destroyed m wave-wave colhswns just after the observed mcrease 

in Ca2+ concentratiOn caused by their mteractwn. This phenomenon of wave-wave 

anmhilatwn may be directly attnbuted to the refractonness of the underlymg release 

dynamics Interestmgly, by varymg the parameters of the system we may also observe 

the propagatiOn of periodic travelhng waves In practice this may be easily achieved 

by decreasmg the refractonness of the system, so that the Ca2+ concentratiOn at the 

1mtially activated release site IS still above the threshold after the refractory time and 

the system 1s ready to 1mtiate a new travellmg pulse We demonstrate this behaviOur 

m Figure 5 13 A similar effect may be obtamed, for example, by mcreasmg the 

d1ffuswn or decreasing the threshold parameter m the model 

Now we consider a disordered distnbutwn of release sites In this case the position 

of release sites m a regular array IS perturbed by a small random vector (of size 
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0 50 
Distance (j.tm) 

Figure 5.10: An example of two lurching pulses moving out from the center of a 

deterministic one-dimensional FDF model with 50 regularly spaced release sites. Pa

rameters as in Figure 5.9 for a cell of linear dimension 100 J-tm and Uth = 0.1. 

Figure 5.11: The confocal linescan image of saltatory wave propagation evoked by 

flash photolysis of IP3 in immature Xenopus oocytes {25}. 



CHAPTER 5. DISCRETE FIRE-DIFFUSE-FIRE MODEL 

s ........ 
t-< 

0.5 

0 
-50 0 

Distance (!..un) 

94 

0.8 

0.6 

0.4 

0.2 

0 
50 

Figure 5.12: An example of colliding pulses moving out from the release sites located 

apart on the distance of60 p,m. Other parameters as in Figure 5.10. The interaction 

between two waves causes the propagation failure. 
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Figure 5.13: An example of periodic travelling wave moving out from the center of a 

deterministic one-dimensional FDF model with 50 regularly spaced release sites with 

R = 48. Other parameters as in Figure 5.10. 
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cd). Simulation results indicate that regular waves give way to more irregular waves, 

with the degree of irregularity increasing with the amount of spatial disorder. The 

irregularity of these waves is direct ly attributable to the quenched disorder of the 

release sites. Ultimately, if the degree of spatial disorder is sufficiently large we see 

propagation failure. Figure 5.14 shows an example of a periodic travelling wave in 

the system with a disordered distribution of release sites. This disorder gives rise 

to irregular activity, though with well defined periodicity. An example of disorder 

induced propagation failure is shown in Figure 5.15. The reason for this failure is that 

the average distance between release sites appears to be too large for the spreading 

of activity. 

5.2.2 Two- dimensional model 

The generalisation of our FDF model to two dimensions is both natural and straight

forward by introducing a continuous spatial coordinate r E IR2 and a discrete set of 

vectors rn E IR2
, n E Z, indicating the positions of release sites. The basis functions 

H(r - rn) can be computed numerically from equation (5.22) with 

- t /Td 
G(r t) = _e __ e - r2/(4Dt) 

' 47rDt 
(5.25) 

and r = [r[. However , it is also possible to compute the basis functions in closed form 

for two special cases. i) In the limit 'Td --too then H(r) = E1 (r2/4D-rR)/41fD, where 

E1 ( x) is the exponential integral function 

E1 (x) = f'xo dz e-z. 
l J; z 

(5.26) 

This corresponds to the limit of zero pumping, where calcium is not removed from the 

cytosol. ii) For small 'TR we also have that H(r, t) --t G(r , t) (as already noted in sec

tion 5 .1.1) . Since the puff duration is very small compared to -r this is a very accurate 

approximation, and so has been used in numerical simulations for this sect ion . 

First of all , we present simulation results on a regular square lattice, with release 
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Figure 5.14: An example of pe1·iodic traveLling wave moving out from lhc center of a 

one-dtmcnszonal FDF model unth nTegttlurly spaced release sites when c 0.4d and 

R - l Other pammeters as in Fzgure 5.10 
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Figure 5.15: An example of travelling wave propagation failure in a one-dimensional 

FDF model with irregularly spaced release sites when c = 0.6d and R = 48. Other 

parameters as in Figure 5.1 0. 
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site spacing d. An example of behaviour in the deterministic two-dimensional FDF 

model with an initially active release site in the center of the cell is shown in Figure 

5. 16. Here a sequence of snap shots shows nucleation of a wave and subsequent 

propagation of the wave through the cell . Repetitive nucleations occur in the middle 

of the cell with the period of oscillation largely determined by the refractory time

scale. l ote that the octagonal shape of the wave (rather than a circular one) is due 

to the underlying square array of release sites. Animations of this figure and others 

may be found on the CD provided, where the corresponding file name is indicated 

in the caption of each figure (also see Appendix A.2). Different choices of initial 

conditions give rise to more complex patterns of wave propagation. For example, in 

Figure 5.17 we show spiral wave propagation, similar in structure to that observed 

in the work of Dallon and Othmer [41]. In common with our model these authors 

also consider a discrete/ continuum model for signalling in Dictyostelium discoideum 

in which cells (rather than release sites) are treated as discrete points in a continuum 

of chemoattractant. 

Now we consider a disordered distribution of release sites in two-dimensions, in the 

same manner as in the one-dimensional model. Figure 5. 18 demonstrates an example 

of wave propagation in the presence of an irregular square lattice with an initially 

active single release site in the center of the cell. Comparing to Figure 5.16, the 

irregularity of the release sites causes the propagation of more circular waves with 

unequal activities. As expected, the degree of disorder in the distribution of release 

sites may change the pattern of wave propagation. To illustrate this we present Lwo 

figures with different perturbations on the release site positions. Figure 5.20 shows an 

irregular wave that fails to propagate, whilst Figure 5.19 shows one that propagates 

and ultimately gives rise to a periodic spread of activity. In Figure 5.21 we show the 

propagation of spiral wave similar as in Figure 5.17, but with an irregular distribution 

of release sites. 
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F igure 5.16: Temporal sequence snapshots for the deterministic two-dimensional FDF 

model on the regular square lattice cell 120 J.Lm x 120 J.Lm. Other parameters as in 

Figure 5.9 and Uth = 0.1. Frames are presented every 0.1 s starting in the top left 

corner and moving rightward and down. An initial seed in the center of the cell 

model leads to the formation and propagation of the well defined wave front. After 

the refractory time in 0.5 s a new release event appears in the middle of the square 

lattice giving rise to a new propagating front of activity. (File: reg_prop. avi) 
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Figure 5.17: Initiation of a spiral wave in the deterministic two-dimensional FDF 

model on the regular square lattice cell via activation of a line of release sites. Other 

parameters as in Figure 5.16. (File: reg_spiral. a vi) 
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Figure 5.18: Temporal sequence snapshots for the two-dimensional FDF model on 

the irregular square lattice cell 120 J.tm x 120 J.tm with E = 0.4d. Other parameters 

as in Figure 5.16. Frames are presented every 0.1 s starting in the top left corner 

and moving rightward and down. An initial seed in the center of the cell model leads 

to the formation and propagation of the periodic irregular circular wave front. (File: 

irreg_propl. avi) 
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Figure 5. 19: Temporal sequence snapshots for the two-dimensional FDF model on 

the irregular square lattice cell 120 p,m x 120 p,m with E = 0.6d. Other parameters 

as in Figure 5.16. Frames are presented every 0.08 s starting in the top left corner 

and moving rightward and down. This example demonstrates the propagation and 

ultimate rise to a periodic spread of activity. {File: irreg_prop2. a vi) 
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Figure 5.20: Temporal sequence snapshots for the two-dimensional FDF model on 

the irregular square lattice cell120 p,m x 120 p,m with E = 0.8d. Other parameters as 

in Figure 5. 16. Frames are presented every 0.1 s starting in the top left corner and 

moving rightward and down. This example demonstrates the propagation failure in 

the model. (File: irreg_failure. a vi) 
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F igure 5.21: Initiation of a spiral wave in the deteTministic two-dimensional FDF 

model on the irregular square lattice with E = 0.2d. Other parameters as in Figure 

5.17. (File: irreg_spiral. avi) 
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Summary 

In this chapter we have studied the generalised FDF model with a discrete distnbu

twn of calcmm release sites The discrete FDF model Is still mathematically tractable 

and solutiOns that correspond to saltatory sohtary and penod1c travelling waves have 

been explicitly constructed Moreover, we have shown that this mimmal model of 

Ca2+ release can be further simplified Assummg that release times occur on some 

regular lattice leads to a computatwnally inexpensive determimstic model where re

lease events are calculated via a thresholdmg of the calcmm profile at a release site 

We have shown by direct numencal simulatiOn that this computatwnally effective ver

Sion of the FDF model provides an accurate representatiOn of the ongmal model It IS 

also natural and straightforward to generalise our FDF model to two dimensiOns The 

model has been extensively numencally simulated in both one and two dimensions 

with regular and Irregular d1stnbutwn of release sites SimulatiOn results demonstrate 

that under parameter vanatwn thP model supports many patterns of wave propaga

tiOn mcludmg regular and Irregular solitary and penod1c travellmg waves, colliding 

waves, travellmg fronts, spirals and abortive waves Besides this, the simplified ver

siOn of the FDF model Is m an Ideal form to be generalised to mcorporate stochastJc 

effects 



Stochastic FDF model 

Ca2+ signalling withm and between hvmg cells anses through complex mechamsms 

wh1ch have evolved to the specmhsed needs of particular cell types It IS important not 

to forget that the release of Ca2+ IS controlled by the stochastlC openmg and closmg of 

Ca2+ channels and the transitlOns between these two conductance states are random 

m tlme [31, 118, 124] As we have prev10usly emphasised, Ca2+ waves are composed 

of elementary stochastlC release events Ca 2+ (puffs or sparks) through smgle channels 

or several channels m a cluster [104, 105, 159, 163] The stochastlC nature of the 

release kmetics appears to play a sigmficant role in ImtiatlOn and propagat10n of the 

wave both m systems based on the IP3R [107] and the RyR [30] Hence, stochastlC 

effects need to be taken mto acount when waves are modelled mathematically 

Most of the theoretical research on calcmm waves has focused on determimstlc models 

of mtracellular Ca 2+ release (see Chapter 2) Only relatively recently has the stochas

tlc nature of mtracellular Ca2+ release been considered [51, 52, 53, 87, 145, 146] 

Keizer and Smith [87] and Falcke et al [53] have both emphasized the Importance 

of modelling stochastlc release kmetics when considermg mitlatlOn and subsequent 

propagation of waves Both have observed waves that abort m the presence of nmse 

107 
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and also shown how nmse may generate a spark-to-wave trans1t10n Ke1zer and Sm1th 

[87] mtroduced a spatmlly one-dimensional stochast1c model w1th a clustered dJstn

butwn of RyR release channels for card1ac myocytes The numencal s1mulatwn of 

the1r model reqmres combming the evolutiOn of a nonlmear PDE w1th a contmuous 

time Markov process descnbing the trans1t10n between the open, closed and several 

mtermedmte states of the RyR The model of Falcke et al [53] considers a stochastJC 

verswn of the DYK IP3R model, but w1th channel clusters at lattiCe pomts coupled 

by fast diffusion The assumption of fast dlffuswn and lmeanty of the equatiOn for 

calcmm transport allows an admbat1c ehmmatwn of the calcmm dynamics in favour 

of a purely stochast1c contmuous t1me Markov process for the channel configuratiOns 

of the IP3R A recent numencal study of the spark to wave trans1t10n m cardmc cells 

may be found m [75] 

In th1s chapter we mtroduce a model of calcmm release based upon a stochast1c 

generalisation of the FDF threshold model We show how th1s leads to a natural 

descnptwn of release events usmg a probab1hstic rather than a determm1stlc update 

rule S1mulatwn results are presented for both a one and two-d1menswnal cell model 

These simulatwns illustrate that stochastlc calcmm release leads to the spontaneous 

production of calcmm puffs/sparks that may merge to form saltatory waves Suf

ficiently large threshold nmse IS able to terminate a wave prematurely suggestmg 

that for some cntlcal nmse level there IS a non-eqmhbnum phase trans1t10n between 

propagating and abort1ve waves A statistical analysiS shows that the model exhib1ts 

properties consistent w1th behavwur of other models from the umversahty class of 

directed percolatwn [70] In a two-d1menswnal cell model, we show that not only 

does the model support nmsy Circular and spiral waves as expected but that 1t can 

also exh1b1t a form of array enhanced coherence resonance (AECR) [69, 73, 178] We 

find that coherent motion, m the form of Simultaneous and penod1c release of calcmm 

from all stores, can be mduced purely by nmse 
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6.1 One-dimensional stochastic model 

The d1screte-time FDF threshold model defined by equatwns (5 18), (5 21) and m

troduced m the prevwus chapter 1s m an 1deal form to be generahsed to mcorporate 

stochastlC effects The s1mphc1ty of the underlymg determm1st1c model means that 

the calcmm profile can be solved for m closed form, w1thout the need for assump

tions such as fast d1ffus10n Th1s obvmtes the need to numencally evolve a PDE to 

obtam calcium profiles Moreover, the FDF threshold 1s a natural pomt at wh1ch to 

introduce a source of nmse m the system By avmdmg a Markov process descnpt10n 

of channel gatmg we s1de-step the need for computatwnally expens1ve Monte Carlo 

type s1mulat10ns 

We cons1der the stochastic gatmg of receptor channels to g1ve nse to an effective 

threshold that can be modelled under the replacement Uth ---t Uth + ~ where ~ 1s an 

add1t1ve nmse term w1th d1stnbut10n p(~) The probab1hty that an(P) = 1 1s then 

g1ven by 

mm(R,p) 

P(an(P) = 1) = P(un(P) > Uth) IT P(un(P- m)< Uth), (6.1) 
m=l 

where 

P(u > u1h) = j p(~)G(u- Uth- ~)d~ (6 2) 

For convemence we choose p(~) = f'(O so that 

P(u > Uth) = f(u- Uth) (6 3) 

In work by Izu et al [75] 1t has been argued that the probab1hty of release per umt 

time follows a functwnal form g1ven by un / (I<n + un) w1th the H1ll coefficient n = 1.6 

and Ca2+ sens1t1V1ty parameter I<= 15 I'M Moreover, recent work descnbed m [36] 

shows that such functional forms can be denved from stochast1c models of channel 
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clusters Th1s also suggests that natural chmces for f(u) are s1gmmdal functwns 

Here we shall make the cho1ce 

u - - 1 + e-13u" { 
1 1 } 

f( ) - 1 + e f3u 1 + ef3uth ( ), (6 4) 

so that the probability of release IS zero when u = 0 and tends to one as u -> oo In 

summary, the stochastJc FDF model IS defined by equation (5 21) w1th the an(P) E 

{0, 1} treated as random vanables such that P(a = 1) 1s g1ven by (6 1) In F1gure 

6 1 we illustrate the release probability functwn f( u- u1h) Note, that m the lim1t 

/3 -> oo, th1s functiOn approaches a step function so that P( u > u1h) = 8( u - u1h) 

and we recover our ongmal determ1mstJC model Thus we mterpret (3 as a parameter 

descnbmg the level of nmse For sJgmmdal forms of f the nmse d1stnbutwn p = f' 
1s bell-shaped w1th the w1dth of the bell controlled by (3 (see F1gure 6 2) In th1s 

framework the refractory time-scale can also be thought of as bemg drawn from some 

d1stnbutwn, smce release events are no longer bound by the constramt that they be 

separated by at least r 

f(u-um) 
smanp 

06 

02 04 06 08 

F1gure 6 1 The release probabzhty functzon f(u- Uth) suggested experzmentally [75} 

Here we illustrate the sort of behavwrs that can be generated by th1s stochast1c model 
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F1gure 6 2 The functzon of nozse dzstrzbutzon p( ~) for the gzven szgmozdal form of 

functzon f 

A space-t1me dens1ty plot of a sohtary lurchmg pulse ansmg m the determm1st1c hm1t 

(3 -t oo has already been shown m F1gure 5 10 (for a regular array of release s1tes) 

As we have already noted th1s IS quahtat1vely the same as that seen in expenmental 

!me scans, hke that of F1gure 5 11 Both these plots are useful for companson w1th 

results from the stochastic model In F1gure 6 3 we plot the correspondmg behavwur 

to F1gure 5 10 m the presence of a fimte amount of nmse Imttal release from the 

central s1te leads to a local elevatwn of Ca2+ which lntttates a propagatmg Ca2+ wave 

v1a act1vatwn of nearby &I tes, as m the determm1st1C case However, the stochasttc 

nature of the wave IS ev1dent from the fact that 1t does not propagate symmetncally 

away from the 1mtial event A s1m1lar type of behavwur can be observed m the 

determm1st1c FDF model w1th an Irregular d1stnbutwn of release s1tes (see F1gures 

5 14 and 5 15) However, m th1s mstance (w1thout threshold nmse), 1mtial data 

always leads to the same wave form, whereas m the stochast1c FDF model th1s IS 

not the case Another example of a stochasttc travellmg wave IS g1ven in F1gure 6 4 
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for a higher level of threshold noise Although rather well defined to start w1th the 

leftward propagatmg wave termmates at around 1 4 s. Act1v1ty m the wake of the 

pnmary stochastic front can also be sufficient to pnme release s1tes for subsequent 

spark production, seen at around 1 6 sand agam at around 3 2 s It 1s also poss1ble for 

propagatmg pulses to lead to the creation (m the1r wake) of oppos1tely propagatmg 

pulses Th1s so-called back-firzng has been observed m a number of models (see for 

example [3, 58]) mcludmg the stochastlc calcmm release models of Ke1zer and Sm1th 

[87] and Falcke [53] S1mulat10n results demonstrate that th1s model captures the mam 

quahtatlve features of the expenmentally observed calcmm puff/sparks and waves m 

a vanety of cell types [25, 30, 107] (see, for example, the confocallmescan image of 

Ca2+ s1gnallmg m F1gure 6 5) 

6.1.1 Directed percolation 

From F1gure 59 1t 1s easy to see that the determm1stic FDF model can support 

travellmg waves 1f the threshold for release 1s not too h1gh, 2 e , 1f Uth < u;h, where 

u;h lS defined by the saddle-node b1furcat10n where the fast and slow branches of 

s = s( u1h) coalesce However, m the reg1me where u1h < u;h 1t 1s poss1ble that nmsy 

verswns of these waves w1ll fall to propagate lf nmse levels are too h1gh Th1s leads 

to the mterestmg poss1b1hty of a cnt1cal nmse that defines a border between waves 

which survwe or eventually go extznct Indeed Bar et al [6] have produced numencal 

ev1dence that the model of Falcke et al [53] for stochastlc calcmm waves exh1b1ts a 

non-eqmhbnum phase-trans1t10n belongmg to the so-called d1rected percolatwn (DP) 

um versah ty class 

DP 1s a d + 1-dlmenswnal dynamlC process that 1s often treated as a testmg ground 

for new 1deas in non-eqmhbnum statistical mechamcs [4, 110, 158] Models w1thm 

the DP umversahty class are mterestmg because they exh1b1t non-eqmhbnum phase 

trans1tions In particular they can exh1b1t trans1t10ns from absorbzng states, 2 e 
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Figure 6.3: Stochastic travelling wave for the model of Figure 5.10 with a finite amount 

of noise. Here {J = 70. 
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Figure 6.4: Stochastic travelling wave for the model of Figure 5.10 with a finite amount 

of noise. Here {3 = 10. 

150 ms 

Figure 6.5: The confocallinescan calcium image in immature Xenopus oocytes show

ing that puffs tend to occur randomly between different release sites {25 j. 
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I 
t=O vy: initial configuration 

I= I 

1=2 
- -/ -6_ 1=3 0 ~-- final configuratiOn 

r= I 2 N 

Figure 6 6 DP zn 1 + 1 dzmenszons znterpreted as a tzme-dependent stochastzc process 

Open {closed) bonds are zndzcated by solzd {dashed) lznes and black {whzte) czrcles 

denote actzve {znactzve) sztes Startzng from a fully occupzed znztzal state the model 

evolves accordzng to the dynamzc rules of equatzon {6 5) and reaches a final state at 

t=3 

configuratiOns that can be reached by the dynamics but cannot be left, under vanat10n 

of parameters controllmg the level of nmse m the model As an example, a (1 + 1)

dimenswnal directed bond percolatiOn process IS Illm,trated m Figure 6 6, where the 

lattice sites are enumerated honzontally by a spatial coordmate z and vertically by a 

discrete time vanable t A local binary variable s,(t) IS attached to each site s, = 1 

means that the Site Is active (occupied) whiles,= 0 denotes an mact1ve (unoccupied) 

site We define a cluster m this context as a group of ne1ghbourmg occupied sites 

On the contrary, If all nearest neighbours of an occupied site are mact1ve, this site 

IS zsolated For a given configuration at time t, the next configuratiOn at time t + 1 

can be detennmed as follows For each pair of bonds between the sites (z ± 1, t) and 

(z, t) two random numbers z; E (0, 1) are generated. A bond IS considered to be open 

(with probability p) If z; < p, leadmg to the update rule 

1, If s,_ 1(t) = 1 and z; < p, 

s,(t + 1) = 1, 1f s,+l(t) = 1 and z: < p, 

0, otherwise 

(6 5) 

PercolatiOn theory deals with the clusters that are formed m this process When the 
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probabl11ty p 1s very small, most s1tes are e1ther 1solated or form small clusters wh1ch 

contam a finite number of s1tes Clearly, there 1s no contmuous cluster between the 

two hm1ts of the lattice As p mcreases, there appear on the average more and more 

clusters of larger s1ze When a certam value of p = Pc lS reached, there suddenly 

appears the poss1b1hty of a cluster connecting contmuously the two hm1ts of the 

latt1ce This cluster 1s usually called the znfimte cluster m the percolatwn hterature, 

even though the system 1s fimte For all values p > Pc, there 1s a continuous path 

of actlve s1tes ex1sts connectmg the extremes of the latt1ce (from past to future) A 

phase transttwn 1s defined to occur at the pomt where p =Pc and there is a quahtatlve 

change m the system behavwur (from an absorbmg state to an mfimte cluster) asp 

lS vaned through Pc Numencal s1mulatwns of the (1 + 1) d1rected bond percolatwn 

process show that the temporal evolutwn of a DP process changes s1gmficantly at 

the phase trans1t10n Typ1cal space-tlme h1stones for random m1tlal cond1tlons and 

a smgle act1ve seed are shown in Figure 6 7 For p < Pc the number of occupied s1tes 

decreases exponentmlly until the system reaches the absorbmg state (no occup1ed 

s1tes), whereas for p > Pc there 1s a fimte probab1hty that the resultmg cluster lS 

mfimte At the cnhcal pomt when p = Pc, the mean actlve s1te number decays very 

slowly and the cntical cluster 1s generated w1th certam scalmg propert1es Prec1sely 

at the cnt1cal pomt the surv1val probab1hty, II(t), that a wave 1mtiated from a smgle 

s1te has not aborted after t t!me steps, 1s expected to scale asymptotically as r 8, 

where o !S a umversal scalmg parameter (see [70] for a review) The analys1s of the 

DP umversality class 1s h1ghly non-tnv1al and 1t has only been poss1ble to obtam 

cnt1cal exponents for models m th1s class numerically The best current estimate for 

o comes from the work of Jensen [81], who finds that o ~ 0 159464 

Accordmg to the Janssen-Grassberger DP conJecture, any spatlo-temporal stochastlC 

process w1th short range mteractwns, fluctuatmg act1ve phase and umque nonfluctu

atmg (absorbmg) state, smgle order parameter and no add1t10nal symmetnes, should 

belong to the DP class. Smce these are almost the definmg charactenstlcs of a mm1mal 
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Figure 6 7 DP m 1 + 1 dzmenswns startmg from random znztzal condztwns (top) and 

from a smgle actzve seed (bottom) 

model for stochastJc calcmm release we should not be too surpnsed If our stochast1c 

FDF model also belongs to the DP class. To explore this possibility we conSider the 

behaviOur of our model under vanatwn of the noise parameter (3 We denote the 

cntical value of (3 at the phase transitiOn between propagatmg and abortive waves 

by f3c To obtam a good estimate of the cntJcal exponent 8 we construct the effective 

exponent 

8(t) = ln[II(~t)/II(t)], 
nr 

(6 6) 

where In r IS the distance used for estimatmg the slope of II(t) For (3 # f3n 8(t) will 

deviate from a straight !me (m the large t hm1t) so that plots of 8(t) for vanous choices 

of (3 may be used to predict f3c· An est1m ate of 8 IS obtamed by extrapolating the 

behaviOur of 8 ( t) to r 1 = 0 In Figure 6 8 we plot 8 ( t) for vanous f3, showmg that for 

our choice of system parameters f3c ~ 0 47 In Figure 6 9 we plot the correspondmg 

dJstnbution of survival times II(t) for the activatiOn process started from a smgle 
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site. Using our value of f3c we find 6"' 0.159, suggesting that our model does indeed 

belong to the DP universality class. Whether or not a DP transition will be seen in 

a living cell is another matter entirely. As pointed out by Hinrichsen [70], the size 

of a living cell is only a few orders of magnitude larger than the diffusion length , 

leading to strong finite size effects. Moreover, inhomogeneit ies as well as internal 

cellular structures are a source of disorder that may further complicate matters. To 

date there is no clear experimental evidence that there is a phase transition between 

survival and extinction of propagating calcium waves in living cells. 

Till now we have illustrated the properties of the stochastic FDF model with one

dimensional studies in the regime where wave propagation is possible in the limit of 

zero threshold noise. In the next section we turn to two-dimensional studies and also 

explore the parameter regime where an init ial disturbance could not propagate in the 

deterministic regime. 

-o(t) 

-0.05 

-0.25 

-0.3 

0 0.005 0.0 1 
1/t 

Figure 6.8: A plot of - 8(t) as a function of 1/t for three different level of threshold 

noise, (3 = 0.49 (upper curve), (3 = 0.47 (middle curve) and {3 = 0.45 (lower curve) . 
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Figure 6.9: The distribution of survival times for the stochastic FDF model at the 

critical noise defining the transition between propagating and abortive waves. For 

large t, II(t) scales as r 0·159 , indicating that our model belongs to the DP universality 

class. 

6.2 Two-dimensional stochastic model 

In this section we consider a two-dimensional FDF model discussed in section 5.2.2 

in the presence of threshold noise. For simplicity we focus only on a regular square 

lattice of release sites, with lattice spacing d. A single active site is placed in the centre 

of the square lattice at the beginning of simulations. An example of behaviour in the 

two-dimensional stochastic FDP model is shown in Figure 6.10. Here a sequence 

of snap shots shows nucleation of a circular front, subsequent propagation and the 

emergence of noisy spiral waves. These waves can be annihilated in collisions with 

other waves and created by spontaneous nucleation. The long time behaviour of the 

system is dominated by the interaction of irregular target and spiral waves. This is 

typical of dynamics in noisy spatially extended excitable systems. In fact the role 

of fluctuations for the generation and propagation of patterns in spatially extended 
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excitable media is a subject of increasing attention and can be traced back to work 

by Jung and Mayer-Kress [83, 84]. We note that both the stochastic FDF model and 

the Jung and Mayer-Kress (JMK) model describe the interaction of threshold devices 

with spatially decaying connectivity (fixed in the JMK model, but determined by 

the calcium profile in ours). In the JMK model noise is added to the state variable, 

whereas in the stochastic FDF model it is added to the threshold. 

Importantly it is possible for noise to sustain spatio-temporal structures that could 

not otherwise occur. In this case a removal of all noise would lead to a deterministic 

system which could not support Lravelling waves. Since noise sustained target waves 

may collide with each other this typically limits their growth to a finite region, whose 

size is expected to decrease with increasing noise. Indeed the scale of noisy spiral 

waves has been shown to be dominated by the ratio of longitudinal (normal to the 

front of high activity) and the traversal (parallel to the front) speed of propagation 

[84] . As noise levels increase the transversal propagation speeds up, yielding a spiral 

wave with larger curvature. For increasing noise it is possible that the breakup of 

spirals and increased spontaneous nucleation of other spirals may destroy any coherent 

mot ion. However, it is also possible to see coherent motion for high levels of noise. 

In fact coherence can actually be enhanced in regions of high noise and it is possible 

to observe synchronized global release events. This type of behaviour has recently 

been termed array enhanced coherence resonance (AECR) and is typical of the way 

in which noise can lead to structured activity in spatially extended excitable systems 

[69, 73, 178]. In Figure 6.11 we show an example of this type of phenomenon in 

the stochastic FDF model. Here an initial disturbance leads to the propagation of 

a circular target wave. In the wake of the wave t here is then subsequent release 

from a set of neighbouring sites. After this one sees near simultaneous release from 

a large number of sites. This process of simultaneous release repeats and at every 

stage recruits more and more stores. After only a few cycles of this process one sees 

an almost simultaneous release from all sites. This causes an oscillation in the global 
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F igure 6. 10: Temporal sequence snapshots for the two-dimensional stochastic FDF 

model with {J = 100 (low noise) . Other parameters as in Figure 5. 9. Frames are 

presented every 0.45 s starting in the top left corner and moving rightward and down. 

An initial seed in the center of the cell model leads to the formation and propagation of 

a circular front. Spiral waves form in the wake of the wave by spontaneous nucleation. 

These can be destroyed in wave-wave collisions and created by spontaneous nucleation. 

(File: noisy_prop. mpg) 
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Figure 6.11: Temporal sequence snapshots for the two-dimensional stochastic FDF 

model with {3 = 10 (high noise). Other parameters as in Figure 5.9. Frames are 

presented every 0.45 s starting in the top left corner and moving rightward and down. 

An initial seed leads to the formation of a circular travelling front. In the wake of the 

wave there is periodic and near simultaneous release from a large number of stores, 

typical of systems exhibiting array enhanced coherence resonance. (File: AECR. mpg) 
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signal U(t) defined by 

1 lfl 
U(t) = TfT ~ u(rn, t), 

123 

(6.7) 

where lfl is the number of release sites. An example of this oscillation is shown in 

Figme 6. 12 for the data of Figure 6.11. In this figure we also plot the variation of 

U(t) for the data presented in Figure 6.10. Although showing some level of periodic 

behaviour, it is clearly not as regular as that of the AECR example. The frequency 

of the AECR oscillation (as measured by variation in U(t)) increases monotonically 

with the noise level {3-1 (above a cut-off below which AECR fails), and is shown in 

Figure 6.13. 
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F igure 6. 12: Plot of the global signal U(t) for the data of Figure 6.11 (solid line) and 

also that of Figure 6.10 {dashed line). 

We emphasize that the coherent motion illustrated in Figure 6.11 is induced purely by 

noise without an external periodic signal. This is very reminiscent of the behaviour 

of an excitable activator-inhibitor medium recently discussed by Hempel et al. [69]. 

They also consider a model with threshold noise (but with fixed Gaussian spatial 
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Figure 6.13: Frequency f of oscillation of U(t) for the system exhibiting AECR as a 

function of {3- 1
. Note that frequency increases monotonically with increasing noise 

levels. Parameters as in Figure 6.11. 

interactions) and note that when the nucleation time becomes much smaller than the 

intrinsic refractory time of the system, all cells fire and come back to rest essent ially 

at the same time. 

Finally we demonstrate that the stochastic FDF model may generate Ca2+ sparks and 

waves in the fashion similar to that seen in experiments. In Figure 6.14 we illustrate 

the visual similarity between our model results and those of Marchant and Parker 

[107] . F igure 6.14 (B) demonstrates the summation of activity from many stochastic 

puff sites generating regularly repetitive Ca2+ waves in Xenopus oocytes. The similar 

behaviour of wave propagation in the stochastic FDF model is shown in Figure 6.14 

(A) for the low level of noise and by decreasing the refractoriness of the system. 

Experimental results in Figure 6.14 (C) illustrate an example of disruption of CICR 

resulting from Ca2+ diffusing between release sites, thereby functionally uncoupling 

individual sites. By increasing the level of noise and refractoriness in the stochastic 
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FDF model we observe the continued rise of individual puffs without generation of 

repetitive waves (Figure 6.14 (D)) similar to that in F igure 6.14 (C). 

' 
• , • I I 

(A) I • 

• I . 

(B) 

(C) 

(D) 

Figure 6.14: (B) and (C) : Image sequences illustrating the patterns of Ca2+ liberation 

evoked in immature Xenopus oocytes by a photolysis flash of IP3 . Each image sequence 

was captured at intervals of 0.1 s. (Prom (107}). (A) and (D): An example of 

generated Ca2+ puffs/sparks and propagating waves in the stochastic two-dimensional 

FDF model of Ca2+ release for {3 = 70, R = 5 and {3 = 5, R = 50 respectively. 

Frames are presented every 0.25 s. 

Summary 

In this chapter we have introduced a stochastic generalisation of the FDF model for 
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Ca2+ release One of the mam advantages of our model IS that 1t is computatwnally 

mexpens1ve. The stochast1c nature of the release events IS modelled by the mcluswn 

of additive nmse to the threshold For h1gh nmse we observe spontaneous Ca2+ sparks 

and the possJbihty of global coherent signals m the form of Simultaneous and penodJC 

release from all s1tes For low nmse Ca2+ sparks can remforce each other and propagate 

as waves. A statistical analysis of the model shows the mterestmg possJbJhty of a 

non-eqmhbnum phase trans1t10n between propagatmg and non-propagatmg waves 

suggestmg that the model belongs to the directed percolatiOn umversahty class 



Intercellular calcium waves 

In many cell types, an mitiated wave of mcreased mtracellular calcium can spread 

from cell to cell to form an intercellular wave Dtstmct from the prevtous chapters 

where we studted mtracellular waves, thts chapter constders some aspects of mtercel

lular calcmm stgnal propagation In parttcular we are mterested m the tssue of wave 

propagation fa~lure through the cell culture as a functwn of cell-cell couplmg parame

ters The focus ts on the detatled bwphystcal DYK model dtscussed m Chapter 3 and 

the much Simpler FDF model dtscussed m Chapter 4 Both of these models are ex

tended to the ttssue level by connectmg model cells wtth gap junctions In the case of 

the determtmstJC and contmuous FDF model prectse analytic statements about mter

cellular wave propagatwn fatlure are made as a functwn of gap JUnction permeabtlity 

The llllportant effect of IP 3 regulatiOn and transport on mtercellular wave propaga

tion IS explored numencally for both FDF and DYK models, and m both mstances IS 

shown to severely restrict wave propagatiOn Moreover, comparisons between the two 

models show both qualitative and quantitative agreement, lendmg further support to 

the notwn that the FDF model wtth an IP3 dependent threshold provtdes a realistic 

cancature of the more complicated DYK model 

127 
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7.1 Mechanisms of intercellular calcium wave propa

gation 

There IS considerable expenmental evidence to show that mtracellular calcmm s1gnals 

can mediate mtercellular commumcat1on by actlvatmg calcmm s1gnals m surroundmg 

cells [19, 26, 42, 43, 59, 139, 140, 177] It has been proposed that mterccllular Ca2+ 

waves can serve to coordmate a multicellular response to a local stimulus In some 

systems, such as the a~rway epithelium, the cell culture forms a thm layer of cells, 

connected by gap JUnctions When a cell m the middle of the culture IS mechamcally 

stimulated, the Ca2+ m th1s cell mcreases qmckly generatmg an mtracellular wave 

After a time delay of a second or so, the neighbours of the stimulated cell also show 

an mcrease m Ca2+, and th1s mcrease spreads sequentmlly through the culture An 

mtracellular wave moves across each cell and after a short delay at the cell bound

ary 1mtJates a similar mtracellular wave m the ne1ghbourmg cell Repet1t10n of th1s 

process results m an mtercellular wave movmg across the culture The distance the 

wave propagates appears to depend on the magnitude of the mitJal stimulus 

IP3 can play the role of a second messenger, releasmg Ca2+ from ER v1a IP 3R Ca2+ 

channels that are sensitive to both Ca2+ and IP3 (d1scussed m deta1l m Chapter 

2) Ev1dence also md1cates that mtercellular waves are medmted by the movement 

of IP3 through gap junctwns When mtercellular signalling of th1s type was first 

discovered, several qualitative models of the underlymg mechamsms were proposed 

[19, 140, 150, 151, 153] The mam 1dea of these models 1s based on the passJve

dlffuswn hypothesis wh1ch IS shown as a schematiC d1agram m F1gure 7.1. Mechamcal 

stimulatiOn of a smgle cell m1tiates the productwn of IP 3 m that cell and consequent 

release of Ca2+ Some of th1s IP3 moves through gap JUnctwns to neighbouring cells, 

releasmg Ca2+ from mternal stores there A small amount of IP3 can stimulate a 

large release of Ca2+ v1a a positive-feedback process The subsequent transport of 
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Ca2+ through ne1ghbourmg cells stimulates further release resultmg m an mtercellular 

Ca2+ wave This hypothesis for the propagatiOn of intercellular Ca2+ waves rehes on 

the passive diffusiOn of IP3 between cells v1a gap JUnctions 

It IS Important to emphasise that this dlffuswnal hypothesis of wave propagatiOn 

cannot fully account for the observed behaviOur of all Ca2+ waves For example, the 

~--------~IP3 --------~-----=::~-

"fi(B Ca2+ 

··-· ·• 

ER 

Figure 7.1 Schematzc dzagram of the passzve dz.ffuszon hypotheszs for the propagatzon 

of zntercellular Ca2+ waves GJ gap JUnctzon, IP3 R IP3 receptor/ Ca2+ channel 

The EB szgn denotes Ca2+- znduced Ca2+ release {From [ 140]) 

intercellular Ca2+ waves observed m the liver [125, 133[ and the astrocyte networks of 

the central nervous system [38, 59] propagate over large distances and cannot simply 

rely on the diffusion of a messenger from a smgle pomt or cell In these cases, It 

IS hkely that a process of regeneration IS reqmred to actively propagate the wave 

This can be explamed by the fact that both the calcium-releasmg messenger IP3 and 

calcmm can participate m the gap-Junctwnal mode transmissiOn [32, 137] In some 
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systems, an external signalts apphed globally, so that IP 3 concentratiOn mcreases m 

practically all cells Under these condttwns, calcmm release m the presence of IP3R 

and RyR calcmm channels can be acttvated by the CICR mechamsm (dtscussed m 

detatl m Chapter 2) Thus, calcmm mflux through gap JUnctwns may tngger calcmm 

release m a cell actmg as an mtercellular medtator and m thts way a regenerative 

mtercellular calcmm wave could spread 

CICR and gap-Junctwnal calcmm dtffuswn may be considered as a baste mechamsm 

of mtercellular calcmm stgnallmg Recently, models based on a CICR/gap-JunctJonal 

calcmm dtffuswn mechamsm have been developed for the formatwn of mtercellu

lar sptral waves of calcmm m htppocampal shces [171], for the synchromsatwn of 

calcmm osctllatwns m hepatocyte couplets [ 66] and for the propagatwn of calcmm 

wavefronts m a model of calcmm elevatwn through CICR coupled to cytoplasmic 

and gap-Junctwnal calcmm dtffuswn [67] A common findmg m these studtes IS the 

existence of a cnttcal JUnctwnal calcmm permeabthty which must be exceeded for 

mtercellular wave propagatiOn or synchromsatwn to occcur Our mtentwn m the 

mvestJgatwn of mtercellular wave stgnalhng ts to begm wtth a simple mathemattcal 

model and focus on the conditwns under whtch mtercellular calcmm waves can occur, 

and on how the occurence and properttes of the waves depend on the parameters of 

the calcmm transport processes m the cell The FDF model of mtracellular calcium 

waves dtscussed m Chapter 4 can be constdered as a good candttate to start the 

analysts of mtercellular wave propagatiOn. 

7.2 Intercellular Ca2+ waves in the Fire-Diffuse-Fire 

model 

A detmled analysts of the prevwusly presented FDF model demonstrates the for

matwn of mtracellular travellmg pulse of calcmm propagatmg vta the mteractwn of 
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CICR and calcmm d1ffusion Cons1dermg rnult1ple cells w1th gap-Junctwnal connec

twns and calcmrn fluxes across the gap JUnctions, we may study the charactenshcs of 

intercellular Ca2+ wave propagatiOn m the FDF type model m terms of basiC cellular 

parameters 

7.2.1 Model equations 

We mtroduce a lmear cell array connected by the gap JUnctwns shown m F1gure 7 2. 

The change m the concentratiOn of cytoplasmiC calcmm m the 1-th cell, u,(x, t) = 

[Ca2+], 1 = 0, 1, , n, IS given usmg a contmuum FDF model m the followmg form 

8u, _ D8
2
u, """ ( Tm( )) u, -- -+L,'TJt- X--

8t 8x2 Td' 
m 

0::::: X::::: L, (7 1) 

where L denotes the length of a cell and x IS mapped for each cell mdlVldually to 

the mterval (0, L). A detailed discussiOn of th1s equation can be found m Chapter 4 

0 X L 

F1gure 7 2 Lmear array of cells of umform length L, coupled by the gap JUnctwns 

We only mentiOn here that the function ry(t) descnbmg the shape of the Ca2+ puff 1s 

g1ven by 

ry(t) = a8(t)8(rR- t), (7 2) 

where 8(·) IS the HeavJsJde step function, a IS the strength of the Ca2+ puff and TR 

1ts duratwn Note that m companson to Chapter 4 we do not consider the puff shape 

to be normalised 
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The mtercellular calcmm fluxes through gap JUnctwns are assumed to be proportwnal 

to the concentratiOn differences across the gap JUnctwns so that 

-D~Ix~o = Fc[u,_!(L, t)- u,(O, t)], 

(7 3) 

D~ lx~L = Fc[u,+J(O, t)- u,(L, t)J, 

where Fe IS the effective gap-Junctwnal calcmm permeability. We study the case 

of a solitary travelling pulse From the analysis of Chapter 4 (sectwn 4 2) we may 

wnte the followmg 1mplic1t equatwn for the speed of solitary travelling pulses m an 

mfimtely long smgle FDF cell model as 

Uth .A_ [1 - e -A+STR] 

rnd A-- A+ ' 
(7 4) 

where s denotes the speed of the wave, Uth IS the FDF threshold and A± = [s ± 

V s2 + 4D /Tdl/2D The b1furcatwn d1agram m F1gure 7 3 shows the speed of the 

travellmg pulse as a functwn of the calcmm puff duratwn TR· One notes that the 

speed of the stable solutwn branch IS constant for almost the whole parameter reg1on 

of TR where sohtary travellmg pulse can ex1st Th1s 1mphes that large values of TR 

do not sigmficantly mfluence the speed of the propagatmg pulse (at least for a large 

cell). In th1s respect we assume that the duratwn of a Ca2+ puff 1s large enough so 

that 1ts shape can be approximated by the s1mple threshold condition aG(u- u1h) 

Thus, to carry out mathematical analysis of a smgle pulse, we consider the Simplified 

equatwn for the concentratiOn of cytoplasmiC calcmm m the form 

au, 82u, ( u, - = D-- + ae u,- Uth) - -, 0 ~X~ L, % = 0, 1, 
~ 8x2 ~ 

, n, (7 5) 

together w1th equatwns (7 3) for the mtercellular calcmm fluxes across the gap JUnc

twns. 

7.2.2 Analysis of the model 

The analys1s of wave propagatiOn m the model follows a Similar approach to that 

of Hofer et al [67] For convemence we non-d1menswnahse the model equatwn by 
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Figure 7 3 Speed of the zntracellular travellzng pulse zn the FDF model as a functwn 

of the Ca2+ puff duratzon TR for the chozce of parameters D = 1, Td = 1, u = 1 and 

Uth = 0 1 

mtroducmg the scaled time T = t/Td, space ~ = xj L and calcmm concentratiOn 

u = uju,h In the remainder of th1s chapter we Will use the symbol u(~, T) mstead of 

u for the scaled concentratiOn Hence, the model takes the followmg form 

au, 82
u, ( ) 

BT = (j 8~2 + ne u, - 1 - u., 

(jtlx=l =p[u,+I(O,T) -u,(1,T)[, 

w1th the three d1menswnless parameters 

(j = DTd 
£2, 

o::;~::;1, (7 6) 

(7 7) 

(7 8) 

Prov1ded that a > 1 the kmehcs of CICR and calcmm removal g1ven by f(u) = 

n8( u -1)- u exh1b1t bJStab1hty F1gure 7 4 shows that a calcmm signal is represented 
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by the transitiOn from the rest state of low cytoplasmic calcmm u = 0 to the excited 

state u = a which corresponds to the elevated calcmm level followmg the tnggenng 

of CICR We suppose that a local stimulus IS apphed m cell 0, at positiOn ~ = 0, 

10 

f(u) 
8 

6 

4 

2 

0 
=() 

u=a 

-2 
0 2 4 6 8 10 

u 

Figure 7 4. Bzstable kznetzcs of ER calcwm release and removal J(u) wzth step

functwn CICR when a = 10 

uo(O,r) = Co, T > 0, (7.9) 

and that Imtml calcmm concentratiOn m all cells IS at the rest state, u,(~, 0) = 0. If 

the stimulus tnggers a regenerative mtercellular calcmm wave, It may be that all cells 

of the array become activated However, It IS also posSible that signal propagatiOn 

fails at some distance from the pomt of Imtiatwn, because the gap-Junctwnal calcmm 

mflux m to a cell becomes too small to excite CICR and hm1ts the spatial range of the 

signal Regenerative mtercellular calcmm waves and spatially hm1ted calcium signals 

can be expressed m terms of the asymptotic behavwr, T -too, as 

hm u,(~) =a (7.10) 
•~oo 
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and 

hm u,(~) = 0 
•~oo 

(7 11) 

respectively, where u,(O, 0 ~ 1 < oo, denote statwnary concentratiOns Thus, If 

the u,(C T) approach the solutwn g~ven by equation (7 11) after apphcation of a 

local stimulus eo we observe the fa1lure of regenerative intercellular wave propagatiOn 

Statwnary solutwns to equatwns (7 6) and (7 7) may satlbfy equatwns (7 9) and 

(7 11), 1f calcmm m cells up to cell m, m> 0, IS above the CICR threbhold, wh1le m 

the remammg cells 1t is below 

{

> 1, 0 ~ 1 ~m 
u,(~) = 

< 1, m+ 1 ~ 1 < oo. 
(7 12) 

Lettmg au,f 8T = 0 m equatiOn (7 6) yields the followmg solutiOn for the calcmm 

profile 

(7 13) 

where 

{

a, 

a,= 0, (7 14) 
otherwise 

By connectmg the solutwns for ne1ghbounng cells usmg equatwns (7 7), one may 

obtam a lmear system of difference equat10ns for {3, and I• m the form 

({3,) = A (!3·-1
) 

lt lt-1 
(7.15) 

The matnx A results from evaluatmg equatwns (7 7) for calcmm fluxes w1th equatwn 

(7 13) for 1 < m and 1 > m + 1 and 1s found as 

(7 16) 
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The system of difference equatwns (7 15) can be exphc1tly solved for m closed form 

m terms of (f3o, /o) as 

(
{3,) = p (A:_ ~) p-1 (f3o) , 
,, 0 A+ /O 

(7 17) 

where A± are the eigenvalues of matnx A and P IS a modal matnx w1th lmearly 

mdependent e1genvectors as 1ts columns The system of equatwns (7 17) IS solved by 

{3, 

{3, 

w1th the followmg spectrum for A 

where 

.\_ = A = T(1 - y'1 - 1/T2) 

.\+ = 1/ .\_ 

for m+ 1:::; z:::; oo, 

(7 18) 

(7.19) 

(7 20) 

(7 21) 

We note that T :::: 1 and, therefore, 1t IS strmghtforward to 1dent1fy that A IS real and 

0 :::; A :::; 1 The terms A -• are excluded from equatwns (7 19) because of the use of 

the boundary condition g1ven by equatwn (7 11) SubstJtutmg the expressions for {3, 
and[, g1ven by (7 18) mto the system of difference equatwns (7 15) and solving th1s 

system m respect of v1 and v2 show that 

and 
e-l/V6 A- 1 

v2 = el/VJ A - 1 . (7 22) 

Usmg equatwns (7.18) and (7 19) w1th equatwn (7.13) the gap-Junctwnal flux condi

tions (7 7) between cells m and m+ 1 and the left boundary cond1tion (7 9) mtroduce 

a lmear system of equatwns for b~, b2 and B 1 as a functwn of m This system IS 

g1ven m Appendix (A 4) and has a umque solutwn In th1s way, the calcmm profile 
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u,(() g1ven by equatiOn (7 13) is found m terms of the model parameters w1th the 

spat~al range of s1gnal m to be determmed The relatiOn (7 12) y1elds m such that 

the cond1t10ns to the solutwn 

Um(O) > 1, Um+i(O) < 1 (7 23) 

are satisfied A cntical sJtuatwn occurs 1f the calcmm concentratiOn m cell m + 1 

JUSt reaches the CICR threshold, 2 e Um+J (0) = 1 Th1s cond1t10n separates the case 

when the (m+ 1 )st cell1s not exc1ted from the case when 1t IS exc1ted The expressiOn 

for Um+ 1 ( 0) IS Simply defined by 

(7 24) 

and IS derived m Appendix A 4 For the spatially limited calcmm s1gnals Um+l < 1 

for some fimte value of m The other case is when limm~oo Um+ 1(0) > 1 and we 

expect the stimulus to induce nondecaymg mtercellular calcmm waves The cntical 

condition separatmg the two cases IS 

lim Um+J(O) = 1 
m~oo 

(7 25) 

Takmg the lim1t m--> oo m equatwn (7 24) (and correspondingly in equatwn (A 5)), 

we find that the cond1hon for propagatiOn depends on the cellular parameters a, p 

and 0 and does not depend on the s1ze of the 1mtiatmg stimulus s 

cond1t10n IS g1ven by the followmg equatiOn 

.\(cosh(~) - .\) 1 

1- .\2 a 

Th1s cnt1cal 

(7 26) 

This equatiOn 1mplic1tly defines a cntical value of permeability, Fcnt>cab wh1ch defines 

a border between propagatmg and non-propagatmg mtercellular travelling waves In 

fact condition (7 26) may be regarded as a special case of that considered by Hofer 

et al [67] (who treat a more general scenano where gap JUnctions occupy a fimte 

fraction of the s1ze of each cell) As F1gure 7 5 demonstrates the cntlcal Junctlonal 

permeability IS a monotomcally mcreasmg functiOn of the effective calcmm diffusiv

ity In th1s figure the phys1cal vanables Fe and D have been plotted (rather than 
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F1gure 7 5 Crzt1cal gap-yunctwnal permeability Fcnt~eal requ1red for mtercellular cal

cwm wave propagatwn accordmg to equatwn (7 26) for the cho1ce of parameters 

!7 = 1, Td = 1, 1Lth = 0 1 and L = 7 5 Crosses md1cate the results from numerz

cal s1mulatwn of the full FDF model of mtercellular waves w1th the same parameters 

and TR = 1 Increasmg agreement between numencal experzments and theory 1s found 

w1th mcreasmg TR, as expected 

the1r non-d1mensionalised counterparts, p and o) It 1s worth rcmembermg that the 

mathematical analysis for denvmg the implicit equation (7 26) was only earned usmg 

an apprmamate puff shape To test the valid1ty of th1s approx1matwn, the cnt1cal 

permeability m the full FDF model of mtercellular Ca2+ waves (equation (7 1)) was 

found numencally The results of th1s numencal analysis IS shown by crosses m F1gure 

7 5 It can be seen that there IS good, but not prec1se, agreement between the two 

models, JUStJfymg the assumptiOns of the simplified model F1gure 7 6 demonstrates 

the calcmm concentratiOn for mtercellular waves m two cases of bemg JUSt above or 

below the numencally found cnL1cal curve For F > Fcnt1caJ, a local stimulus tnggers 

a regenerative mtercellular calcmm wave It cons1sts of a senes of mtracellular waves 
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punctuated by gap-junctional delays (Figure 7.6 a). The spatial range of propagation 

is potentially arbitrarily large, only limited by system boundaries, and the intracel

lular speed of propagation is constant. Very long-ranging calcium waves of constant 

speed were reported for systems in which PLC-activating agonist has been applied 

globally, and junctional calcium diffusion has been hypothesised as a coupling mech

anism [38, 133, 179]. If F < Fcriticat, no regenerative intercellular waves exist and the 

signal does not propagate beyond the stimulated cell (Figure 7. 6 b). Thus, regener

ative calcium waves are triggered if the propagation condition is satisfied; otherwise 

the signal remains restricted to the first cell. Moreover, the permeability of Ca2+ at 

(a) (b) 

25 

20 

5 

7.5 I 5.0 22.5 30.0 37.5 7.5 15.0 22.5 30.0 37.5 

Distance (x) Distance (x) 

Figure 7.6: Space-time plot of the calcium concentration in the FDF model of intercel

lular waves for the following parameters: a = 1, rd = 1, rR = 1, Uth = 0.1, L = 7.5, 

D = 1 and (a) Fe= 0.18 (regenerative intercellular wave), (b) Fe = 0.16 (propagation 

failure). In both cases the left most cell was stimulated and the first 5 cells are shown. 

the gap junction controls a delay in the transmission of the wave between cells. In 

Figure 7. 7 we plot the position of the wave front against time. The wave front is 

defined to be the place at which [Ca2+]= 0.3. The rising portion of the curves corre

spond to the movement of the wave across a cell , whereas the flat portion correspond 

to the intercellular delay. As Fe decreases, the intercellular wave moves more slowly, 

0.3 

0.2 

0.1 

0 
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due prmc1pally to an mcrease m the mtercellular delay 
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F1gure 7 7 Posztzon of wave front as a functzon of tzme for 3 dzfferent values of Fe 

zn the FDF model All other parameters are as zn Fzgure 7 6 

We have investigated a basic model of mtercellular calcmm s1gnal propagatiOn based 

on CICR Via ryanodme reccptors and gap-Junctlonal calcmm dlffuswn Tlus type of 

wave propagatiOn cannot fully account for the observed behaviOur of all Ca2+ waves 

In the presence of IP3R calcmm release channels both the calcmm-releasmg messenger 

IP3 and calcium can participate m the gap-Junctional mode of transmiSSIOn. The 

next sectwn mtroduces some features of mtercellular calcmm waves m IP 3 sensitive 

systems. 

7.3 Intercellular Ca2+ waves in the presence of mobile 

Expenmental ev1dence supports the hypothesis that mechamcally-st1mulated mter

cellular Ca2+ waves m some systems can result from the diffuswn of IP3 through 
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gap-Junctwns (see F1gure 7.1) In th1s case a model based on the dynamic properties 

of IP3 IS essential for the representatiOn of these processes We assume that IP3 moves 

through the culture by passive dlffuswn, movmg from cell to cell v1a gap JUnctwns, 

and decays at the same time Then, w1thm each cell equatiOn for the cytoplasmiC IP3 

concentratiOn denoted by p = [IP 3] 1s 

8p - D [)2p - VPp 
at - P Dx2 k" + p' 

(7 27) 

where Dp IS the d1ffuswn coefficient of IP3 , Vp IS the max1mal rate of IP 3 degradatwn, 

and k" IS the concentratiOn at wh1ch IP3 degradatiOn is half-maximal The mtercel

lular fluxes of IP3 are assumed to be proportional to the concentratiOn differences 

across the gap JUnctwns, z e 

(7 28) 

where L denotes the length of a smgle cell and p, IS the IP3 concentratiOn in cell z 

Fp defines the gap-Junctional IP3 permeability coefficient 

The Ca2+ dynamics w1thm each cell can be descnbed by the reduced DYK model 

g1ven by equatwns (2 16) and (3 14). The deta1led denvatwn of these equatwns has 

been g1ven in Chapter 3 w1th the parameter values listed m Table 2 1 

Similar to the IP3 , the mtercellular Ca2+ fluxes are assumed to be proportwnal to 

the concentration differences across the gap JUnctwns 

(7 29) 

w1th the gap-Junctwnal calcmm permeability Fe We are now m a posJtJOn to consider 

the effects of mob1le IP3 on mtercellular calcmm waves in both DYK and FDF based 

models 
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7.3.1 Intercellular Ca2+ waves using the DYK single cell model 

Before we analyse mtercellular signal propagatwn m the presence of dlffusmg IP3 

we first consider the simpler case when the value of IP3 concentratiOn throughout 

the culture IS constant We assume that the wave spreads from cell to cell only by 

the Ca2+ fiuxes given by equatwns (7 29) The extended analysiS of mtracellular 

oscillatwns and waves m the DYK model represented in Chapter 3 determmes the 

IP3 concentratiOn, which IS reqmred for the wave generatiOn m a smgle cell This 

generated mtracellular wave may propagate through the culture with propagatiOn 

controlled by gap-Junctwnal calcmm permeability. From Chapter 4 we expect that 

a DYK model, with constant level of IP3 throughout the tissue, will behave quali

tatively like an FDF model with an appropnate IP3 dependent threshold This IS 

Illustrated m Figure 7 8, where the calcmm concentratiOn of mtercellular waves IS 

shown for two different values of calcmm permeability Figure 7 8 shows exactly the 

same qualitative features as that for the FDF smgle cell model, shown m Figure 7 6 

For both single cell models mtercellular calcmm wave propagation IS favoured with 

mcreasmg gap-Junctwnal couplmg. The cntical calciUm permeability for wave prop

agatiOn can be found numencally for the DYK single cell model and analytically for 

the FDF smgle cell model, usmg (7 26) and (4 20) In Figure 7 9 we plot the cnt1cal 

Fe dependence on the effective Ca2+ diffusivity for both smgle cell models It IS seen 

to be a monotomcally mcreasmg functwn For completeness the wave front positiOn 

as a functwn of Fe for the DYK model IS shown m Figure 7 10 As expected the 

variatiOn of permeability through the gap JUnctwns causes a delay time in the trans

missiOn of the wave between cells, precisely of the type already found for the FDF 

model (see Figure 7. 7) 

We now consider the full dynamics for IP3 concentration defined by equatwn (7.27), 

coupled to equatwn (2 16) descnbing the dynamics of mtracellular Ca2+ Both IP3 

and Ca2+ fiuxes through the gap JUnctwns are assumed to be proportwnal to the 
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Figure 7.8: Space-time plot of the calcium concentration in the DYK model of inter

cellular waves with the constant IP3 concentration p = 0.25 for the parameters given 

in Table 2.1, L = 7.5, De= 1 and (a) Fe = 0.07 (intercellular wave propagation), {b) 

Fe = 0.04 (propagation failure}. In both cases the left most cell was stimulated and 

the first 5 cells are shown. 

concentration differences, given by equations (7.28) and (7.29) respect ively. In Fig

ure 7.11 we illustrate the effect of varying the gap-junctional IP3 permeability on 

the system behaviour. This plot demonstrates that arrival time of the propagat ing 

intercellular wave (at a cell boundary) is sensit ive to changes in Fp and a decrease in 

this parameter leads to a decrease in wave speed or ult imately to propagation failure. 

This is in qualitative agreement with the work of Sneyd et al. [150] for the analysis 

of intercellular waves in the Atri model [2]. 

The bifurcation diagram of the reduced DYK model in Figure 3.3 shows the existence 

of a stable limit cycle for an intermediate range of IP3 concentrations. Thus, if the IP3 

concentration is steadily increased in all cells, the cells within a specific physiological 

range of IP 3 concentrations will exhibit Ca2+ oscillations. This is clearly seen in 

space-time plot of the calcium concentration in Figure 7.12. The left most cell was 

stimulated by IP3 and the first five cells are shown. The decrease in gap-junctional 
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Figure 7.9: The critical gap-junctional permeability required f or intercellular calcium 

wave propagation found numerically for the DYK single cell model (solid curve) and 

analytically for the FDF single cell model (dashed curve) with constant IP3 concen

tration p = 0.25 and k = 0. 13 in equation (4 .20}. 

30.0 

>< '--" 

c e 22.5 ..... 
<1) 

> 
"" :3: 
'0 15.0 
c: 
0 

'.;j 
·v; 
0 
0.. 7.5 

- Fc =O.I 
....... Fc =0.08 
--- - Fc=0.06 

6 12 

, . 

18 24 
Time(t) 

30 

Figure 7.10: Position of wave front (defined to be where [ Ca2+] = 0.3) as a function 

of time for three different values of Fe in the D YK model. All other parameters are 

as in Figure 7. 8. 
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IP3 permeability makes it diffucult for IP3 to spread through the system causing 

failure of an intercellular wave. We demonstrate this in Figure 7.13. 
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F igure 7.11: Arrival time of wave in the D YK model for fou7· different values of Fp 

for the parameters given in Table 2.1 and L = 7.5, De = 1, Fe = 0.2, Dp = 15, 

Vv = 0.01, kJ.I. = 5. 

7.3.2 Intercellular Ca2+ waves using the FDF single cell model 

We now consider the FDF model defined by equation (7.1) together with ( 4.4) (for 

periodic travelling wave) and ( 4.20) and coupled to equation (7.27) describing the 

dynamics for cytoplasmic IP3 concentration. Intercellular fluxes of both Ca2+ and 

IP3 are assumed to be proport ional to the concentration differences across the gap 

junctions and given by equations (7.3) and (7.28) respectively. 

In Figure 7. 14 we illustrate how the system behaviour depends on the variation in 

the gap-junctional IP3 permeability. As for the DYK model (Figure 7.11), this plot 

demonstrates that the speed and range of propagation are sensitive to changes in 
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Figure 7.12: Space-time plot of the calcium concentration in the DYK model of inter

cellular waves for the parameters in Figure 7.11 and Fp = 7. 
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Figure 7.13: Space-time plot of the calcium concentration in the DYK model of inter

cellular waves for the parameters in Figure 7.11 and FP = 2. 
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Fp. Similar to the DYK model, we illustrate two space-time plots of the calcium 

concentration for different values of gap-junctional IP3 permeability. The left most 

cell was stimulated by IP3 and the fixst five cells are shown. Figure 7.15 demonstrates 

the propagation of intercellular periodic travelling waves via the whole system with 

the observed increase in a gap-junctional delay times farther away from the st imulated 

cell. This is caused by the process of IP3 diffusion through gap junctions. Figure 7.16 

shows a case of decreased IP3 permeability and as the result of this the failure of 

intercellular wave propagation. 
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Figure 7.14: Arrival time of wave in the FDF model for four different values of Fp 

for the following parameters a = 1, Td = 1, L = 7.5, De = 1, Fe = 0.2, Dp = 15, 

~ = 0.01, kJJ. = 5 and k = 0.1. 

Summary 

In this chapter we have investigated the subject of wave propagation failure through 

the cell tissue in two different models of Ca2+ release, DYK and FDF. In the first part 

of the analysis (analytical and numerical) the level of IP3 concentration is assumed to 
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Figure 7. J 5: Space-time plot of the calci1tm concentration in the FDF model of inter

cellular waves for the parameters in Figu1·e 1.14 and Fp = 7. 
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be constant throughout the cell culture and the mtercellular Ca2+ wave IS med1ated 

by a pass1ve Ca2+ d1ffuswn through gap JUnctions Numencal s1mulatwn of the DYK 

model shows that the cntical gap-Junctwnal calcmm permeability IS consistent w1th 

that found from the mathematical analysis of the FDF model In the second part, we 

have mcluded the dynamics of IP3 mto these two models assummg a pass1ve diffusiOn 

of IP3 from the stimulated cell as well as Ca2+ propagatiOn through the gap JUnctwn 

A qualitative comparison of the s1mulatwn results of both the DYK and FDF models 

m respect of wave propagation dependence on gap-Junctwnal permeability shows the 

sJmJlanty m behaviour of a propagatmg mtercellular wave through the cell t1ssue 



Conclusions and further work 

In th1s chapter we descnbe some natural ways to extend the work presented m th1s 

thesis F1rst, however, we briefly summanse the mam achievements of this thesis 

8.1 Conclusions 

In this thesiS we have studied oscillatiOns and waves of cytosohc Ca 2+ m smgle cells as 

well as multi-cellular systems from a mathematical perspective We have focused on 

two models of Ca2+ release (DYK and FDF) for a systematic analytical and numencal 

analysis of Ca2+ dynamics 

F1rst of all, a detailed numencal bifurcatiOn analysis together w1th a lmear stability 

analysis m the reduced DYK model was presented The dispersiOn curve for penod1c 

waves and a kmematic theory of Irregular wave propagatiOn were used to predict the 

existence of a non-periodic travelling wave connectmg penod1c orbits Th1s predictiOn 

was confirmed by direct numencal simulation We have used a detailed analysts of 

the DYK model to motivate the form of a much simpler mtmmal FDF model capable 

of exhJbJtmg qualitatively similar behaviOur to that of the more complex bwphys1cal 
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DYK model We have presented the generalised form of the ongmal FDF model 

supportmg both solitary and penod1c travelling waves and retammg mathematical 

tractability One of the Important features of this generalised model Is the mcluswn of 

an IP3 sensitive threshold The explicit constructiOn of travelling waves has allowed us 

to probe the mechamsms for propagatiOn failure m the two extremes of 1) a contmuous 

dJstnbutiOn of calcmm stores and 1i) a discrete d1stnbut10n 

Moreover, we have presented an mtegrative multi-scale framework which opens up 

new possibilities for mathematical progress in studymg the dynamics of Ca 2+ release 

m cells In particular we have &hown that the FDF model may be naturally extended 

to mclude further layers of biOlogical reahty The Important extensions presented 

m this thesis mclude more general chmces of the d1stnbut10n of release sites, the 

stochastic tnggermg of release and studymg the model m one and two dimensiOns 

The computat10nally efficient FDF framework IS Ideal for mvest1gatmg spark to wave 

transitiOns within a spatially extended cell model with a discrete distnbut10n of release 

sites. Numencal simulatiOns of the model m one and two dimensiOns (with stores 

arranged on both regular and disordered lattices) have Illustrated the spontaneous 

productiOn of Ca2+ sparks, the spreadmg of circular Ca2+ waves, spirals and more 

megular waves This highlights the ability of the model to descnbe realistic travellmg 

Ca2+ waves Furthermore, this approach allowed us to examine behavwur which can 

only be produced m stochast!C systems, and m particular AECR This phenomenon 

could play a potentially Important role m the development of ectopic beats m the 

heart For an mtracellular Ca2+ oscillatiOn to tngger an ectopic beat it IS necessary 

that It first tnggers an actiOn potentml This can only be tnggered If the sodmm

calcmm exchange current associated with a Ca2+ oscillatiOn is sufficiently large and 

rapid However, m expenments on Isolated myocytes, Ca2+ waves rarely tngger an 

actiOn potentml If Ca2+ release was Simultaneous throughout the cell ( z e If the Ca2+ 

oscillations were due to AECR) rather than m the form of a wave, the mduced sodmm

calcmm exchange current would have a larger amplitude, mcreasing the likelihood of 
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an act10n potential bemg evoked 

In numerical simulat10ns of a one-dimens10nal stochast1c FDF model It has also been 

possible to identify a cnticallevel of nOise definmg a non-eqmhbnum phase-transition 

between propagatmg and abortive structures A statistical analysis shows that this 

trans1t10n is the same as for models m the DP umversahty class The analysis of 

calcmm release and transport m the generalised stochastiC FDF model may be used 

for determmat10n of the cntical levels of extracellular Ca2+, and values of other 

controllable vanables, necessary for an expenment to exhibit the types of abortive 

waves that would signal the onset of a DP phase trans1t10n This may provide the 

first expenmental reahsat10n of the cntical exponents for the mtensely studied DP 

umversahty class m statistical physics 

8.2 Further work 

We have shown that the biophysically motivated DYK model of calcium release can 

be viewed as possessmg an IP3 sensitive threshold (Chapter 4) The use of this IP3 

sensitive threshold w1thm the stociiast1c FDF framework would allow the mveshga

tion of the effects of stochastic fluctuat10ns m IP3 levels Although not expected to 

mfluence any cntical exponents (since these should be mdependent of the details of 

the model), the background level of IP3 would be expected to mfluence the speed 

and shape of a travellmg wave Interestmgly precisely this issue has been recently 

addressed by Shua1 and Jung [147[ m a model of Ca2+ release which mcorporates a 

stochastic model of an IP 3R 

Throughout this work we have made the assumpt10n that d1ffus10n IS isotropic How

ever, the relaxat10n of this assumpt10n does not lead to any techmcal difficulties For 

example, m two dimens10ns we might consider the replacement D'il2 ---> Dx8xx + Dy8yy 

so that G(x, y, t) = exp[-t/rd] exp[-x2 /4Dxt- y2/4Dyt]/4rrJ DxDyt The remam-
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der of the formahsm we have employed then carnes over. Also as 1t stands the FDF 

framework mcorporates only a hnear model of SERCA pump, although a common 

model of such a process IS to cons1der a smk of the form unf(K + un) A p!ecewJse 

constant verswn of such a functwn (vahd as n -+ oo) may be eas1ly studied w1thm 

the FDF framework 

The stochastic phase plane analys1s used for addressmg threshold nmse [36[ may also 

be smted for estabhshmg the d1stnbutwn of release event duratwn Once this IS 

determined the d1screte time update rule can be replaced by an Iterated functwn 

system where TR is treated as a random vanable (w1th known d1stnbutwn) 

In the FDF framework 1t w1ll also be poss1ble to explore the importance of focal sztes 

on wave mitmtwn and propagatwn Focal release s1tes are d1stmguished by the1r 

h1gher sensJtlVIty to IP3 and the1r close appos1t10n to ne1ghbormg release s1tes They 

are known to be able to en tram both the temporal frequency and spatial dtrectlonahty 

of calcmm waves [107] Th1s 1ssue has recently been cons1dered by Falcke from a 

theoretical perspective [51, 52] Falcke shows that, for a stochast1c reahsatwn of the 

DYK model, large penod (nmse mduced) osCJ!latwns may be perceived as a nucleatiOn 

phenomena where the penod of osc1llatwn depends on the geometry of the array of 

release s1tes 

The recent expenmental progress m determmmg the prec1se spatio-temporal recrmt

ment pattern of sparks m rat atrial myocytes [100] prov1des an 1deal testmg ground 

for the use of a stochast1c FDF framework to understand the behaviour of real cells 

An important aspect of this particular cell that can naturally be accommodated 

w1thm our FDF framework IS the separatiOn of stores mto subsarcolemmal JUnctwnal 

SR (JSR) and central nonJunctwnal SR (NJSR) classes It 1s known that Ca2+ nse 

in atnal myocytes occurs at so-called eager-sltes m the su bsarcolemmal regwn fol

lowed by CICR wave propagatiOn mto the deeper layers of the cell It would appear 

that enchanced excJtabJhty of the eager-s1tes leads to a predetermined microscopic 
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activatiOn sequence of Ca2+ sparks whereby smgle cells produce reproducible mho

mogeneous Ca2+ release upon depolansahon Models of the VOCC channels (that 

medmte the entry of the electncal s1gnal mto the cell) may be developed usmg an 

appropnate FDF voltage dependent (rather than Ca2+) threshold function Smce 

eager-s1tes display the h1ghest frequency of spontaneous Ca2+ sparks m restmg cells 

the functwnal d1stmctwn between JSR and NJSR stores may be modelled usmg a 

non-umform d1stnbutwn of thresholds In particular the use of a stochastJc FDF 

model will allow the invest1gatwn of how the geometry of release s1tes g1ves nse to 

nucleatwn phenomena Furthermore, such a modelhng study will be able to probe 

the way m which the fmlure to recrmt Ca2+ sparks appropriately can lead to defective 

exc1tatwn-contractwn couphng m cardiac cells [64] 

In addition to forming the global Ca2+ transient underlymg contractwn, Ca2+ sparks 

can also cause depolansatwn of cardiac cells and thereby enhance or corrupt the 

rhythm of the heart Incubation of electrically-paced atrial myocytes causes the ap

pearence of spontaneous subsarcolemmal Ca2+ sparks [97], which are probably due 

to the act1vatwn of IP3Rs that co-locahse w1th RyRs m these cells The progressive 

mcrease m cytoplasmic Ca2+ caused by the summatwn of infrequent subsarcolemmal 

Ca2+ sparks promotes electrogenic forwardmode Na+ /Ca2+ exchange Because of the 

strateg1c finng of subsarcolemmal Ca2+ spark sites, only a few events may be neces

sary to create enough mward current to dnve a cell to the threshold for depolansatwn 

[68] The ab1hty of a few Ca2+ sparks to enhance card1ac automaticity (mcrease the 

frequency of spontaneous action potcntials) has potentially senous 1mphcatwns for 

the generation of cardiac arrhythmms and sudden heart fmlure. The FDF frame

work may be smted to probmg the Issue of spontaneous release from the SR from a 

theoretical perspective In particular, 1t 1s poss1ble to conSider the role of the dual 

presence of both RyRs and IP3Rs and their spatial d1stnbutwn m generatmg delayed 

after-depolansmg (DAD) currents [101] Moreover, a theoretical study of wave Imh

atwn and propagatiOn can be compared to expenments where each receptor class IS 
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pharmacologically knocked out Usmg a theoretical approach we may determme the 

conditwns that separate subthreshold DADs (associated with a non-regenerative nng 

of Ca2+ around the cell) from suprathreshold DADs (associated with a nng of sparks 

that propagates to the deep cell layers) 

Fmally, the generalised FD F model can be easily extended to a fully three dimensional 

system This IS especially relevant to the modellmg of subsarcolemmal waves m atnal 

myocytes, where release sites are arranged along one-dimenswnal lines m a three

dimensiOnal cell By generalismg the one-dimenswnal analysis and incorporatmg the 

appropnate mhomogeneous mixed boundary conditions this problem may be tackled 

usmg Founer techmques along the lines descnbed by Lemon [95[ 



Numerical Issues 

A.l XPPAUT 

The XPPAUT package has been developed by Bard Ermentrout [49] at the UmvefSlty 

of Pittsburgh and IS freely avmlable free at http / jwww p1tt edu/ ~phase/ It IS an 

mteractlve package for numencally solvmg and analysmg dJfferential equatwns It 

also provides a s1mple mterface to most of the common features of the numencal 

bifurcation software AUTO (ftp/ /ftp cs concordm cafpub/doedeljauto), ongmally 

developed by E J Doedel [46] 

We hst XPPAUT codes (* ode files) that have been used to produce some of the 

figures m Chapters 2 and 5 

Program 1. Oscillations in the two-pool model 

#Parameters 

par mu=0.2,gam=2,eps=0.04,bet=0.13,alfa=0.9,del=0.004,n=2,m=2,p=4 

#Equat1ons 
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u'=mu-u-gam*f(u,v)/eps 

v'=f(u,v)/eps 

f(u,v)=bet*((u-n)/(1+u-n))-((v-m)/((v-m)+1))*((u-p)/(alfa-p+u-p))-del*V 

done 

Program 2. Oscillations in the full DYK model of IP3R 

#Parameters 

par p=1 

#Equat1ons 

dx000/dt=-(v1+v2+v3) 

dx100/dt=-(v4+v5-v1) 

dx001/dt=-(-v2+v8+v9) 

dx010/dt=-(-v3+v11+v12) 

dx101/dt=-(-v9-v4+v15) 

dx011/dt=-(-v8+v17-v11) 

dx110/dt=-(v19-v5-v12) 

dc/dt=(r1*(x110)-3+r2)*(caer-c)-(r3*c-2)/((c-2)+(kp-2)) 

#Funct1ons 

x111=1-(x000+x100+x001+x010+x101+x011+x110) 

v1=kp1*p*x000-km1*x100 

v2=kp4*c*x000-km4*x001 

v3=kp5*C*x000-km5*x010 

v4=kp2*c*x100-km2*x101 

v5=kp5*c*x100-km5*x110 

v8=kp5*c*x001-km5*x011 

v9=kp3*p*x001-km3*x101 

v11=kp4*c*x010-km4*x011 

v12=kp1*p*x010-km1*x110 
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v15=kp5*c*x101-km5*x111 

v17=kp3*p*x011-km3*x111 

v19=kp2*C*X110-km2*X111 

#F1xed var1ables 

kp1=400,kp2=0.2,kp3=400,kp4=0.2,kp5=20 

km1=52,km2=0.21,km3=377.36,km4=0.029,km5=1.65 

caer=1,kp=0.1,r1=20,r2=0.004,r3=1 2 

done 

Program 3. Travelling waves in the reduced DYK model 

#Parameters 

par p=0.7,s=2 

#In1t1al cond1t1ons 

c(0)=0.2944 

w(O)=O 

y(0)=0.6431 

#F1xed var1ables 

k1=400,k2=0.2,k3=400,k4=0.2,k5=20 

km1=52,km2=0.21,km3=377.36,km4=0.029,km5=1.65, 

kp=0.1,D=1,caer=1, r1=20,r2=0.004,r3=1.2 

b1gKl=kml/kl 

b1gK3=km3/k3 

b1gK5=km5/k5 

b1gK2=km2/k2 

b1gK4=km4/k4 

#Equat1ons 

c'=w 

w'=(s*w-(r1*x110"3+r2)*(caer-c)+r3*c"2/(c"2+kp"2))/D 
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y'=((hlnf(c,p)-y)/tau(c,p))/s 

#Funct1ons 

alfa(c,p)=(km4*blgK2*blgK1+km2*p*blgK4)*c/(blgK4*blgK2*(p+blgK1)) 

betta(c,p)=(km2*p+km4*blgK3)/(p+blgK3) 

x110=p*c*y/((p+blgK1)*(c+blgK5)) 

hlnf(c,p)=betta(c,p)/(alfa(c,p)+betta(c,p)) 

tau(c,p)=1/(alfa(c,p)+betta(c,p)) 

done 

Program 4. Oscillations in the Atri model 

#Parameters 

par mu=1 

#Equat1ons 

c'= kflux*mu*h*(b+c*(1-b)/(k1+c)) - gam*c/(kgam+c) 

h'=(k2-2/(k2-2+c-2)-h)/tauh 

#F1xed var1ables 

b=0.111,gam=2,tauh=2,k1=0.7,k2=0.7,kgam=0.1,kflux=8.1 

done 
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Program 5. Numerical simulation for orbit connection in the reduced DYK 

model 

#Parameters 

par p=0.2622,caer=1,dx=1,nstar=200,I0=35 

par del1=30,del2=50,td=1,r1=20,r2=0.004,r3=1.2 

#In1t1al cond1t1ons 

c[0 .. 200](0)=0.00825 

y[0 .. 200](0)=0.97643 
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#Equat1ons 

dc0/dt=(rl*x110(c0,y0)'3+r2)*(caer-c0)-r3*c0'2/(c0'2+kp'2)+ 

+D*(c1-c0)/dx'2+I(t) 
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dc[1 .. 199]/dt=(rl*x110(c[J] ,y[J])'3+r2)*(caer-c[J])-r3*c[J]'2/(c[J]'2+kp'2)+ 

+D*(C[J-l]-2*C[J]+C[J+l])/dx'2 

dc200/dt=(rl*x110(c200,y200)'3+r2)*(caer-c200)-r3*c200'2/(c200'2+kp'2)+ 

+D*(c199-c200)/dx'2 

dy[0 .. 200]/dt=(hlnf(c[J])-y[J])/tau(c[J]) 

#Funct1ons 

alfa(c)=(km4*blgK2*blgK1+km2*p*blgK4)*c/(blgK4*blgK2*(p+blgK1)) 

betta(c)=(km2*p+km4*blgK3)/(p+blgK3) 

x110(c,y)=p*c*y/((p+blgK1)*(c+blgK5)) 

hlnf(c)=betta(c)/(alfa(c)+betta(c)) 

tau(c)=l/(alfa(c)+betta(c)) 

b1gKl=kml/kl 

blgK3=km3/k3 

blgK5=km5/k5 

blgK2=km2/k2 

blgK4=km4/k4 

I(t)=sum(O,nstar)of(IO*heav(t-l'*dell)*heav(td-(t-l'*dell)))+ 

+sum(nstar+1,400)of(IO*heav(t-nstar*del1-(l'-nstar)*del2)*heav(td

-(t-nstar*del1-(1'-nstar)*del2))) 

#FlXed vanables 

k1=400,k2=0.2,k3=400,km4=0.029,km5=1.65,km1=52,km2=0.21 

km3=377.36,k5=20,k4=0.2,kp=O.l,vc=0.185,D=1 

© MAXSTOR=lOOOOOO 

#dt=0.1 

done 
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Program 6. Travelling front in the continuum FDF model 

# B1stable wave s1mulat1on 

#Parameters 

par d=30,dx=0.2,s1gma=5,taur=1,taud=10000000,cth=0.1 

#In1t1al cond1t1ons 

c[O .. 100] (0)=0 

s[O .. 20] (0)=1.0 

s [21. .100] (0)=0 

#global 1 cO-cth {s0=1} 

global 1 c10-cth {s10=1} 

global 1 c20-cth {s20=1} 

global 1 c30-cth {s30=1} 

global 1 c40-cth {s40=1} 

global 1 c50-cth {s50=1} 

global 1 c60-cth {s60=1} 

global 1 c70-cth {s70=1} 

global 1 c80-cth {s80=1} 

global 1 c90-cth {s90=1} 

global 1 c100-cth {s100=1} 

#Equat1ons 

dcO/dt = s1gma*heav(s0)/2/taur-c0/taud+d*(c1-c0)/dx-2 
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dc[1 .. 99]/dt = s1gma*heav(s[J])/taur-c[J]/taud+d*(C[J-1]-2*C[J]+c[J+1])/dx-2 

dc100/dt = S1gma*heav(s100)/2/taur-c100/taud+d*(c99-c100)/dx-2 

ds[O .100]/dt = -heav(s[J])/taur 

#Aux1l1ary funct1on 

aux logc[O 100] = c[J] 

#Numer1cal method character1st1cs 

@ total=2,trans=O,dt=0.0001,xlo=O,xh1=2000,ylo=O,yh1=1 
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@ maxstore=1000000,bounds=10000 

@ xplot=x,yplot=Ca10 

done 

Program 7. Travelling front in the discrete FDF model 

# B1stable wave s1mulat1on 

#Parameters 

par d=30,dx=0.2,slgma=5,taur=0.01,taud=10000000,cth=0.1 

#In1t1al cond1t1ons 

c[O. 100] (0)=0 

s [0] (0) =1. 0 

s [1. 100] (0)=0 

#global 1 cO-cth {sO=l} 

global 1 c10-cth {s10=1} 

global 1 c20-cth {s20=1} 

global 1 c30-cth {s30=1} 

global 1 c40-cth {s40=1} 

global 1 c50-cth {s50=1} 

global 1 c60-cth {s60= 1} 

global 1 c70-cth {s70=1} 

global 1 c80-cth {s80=1} 

global 1 c90-cth {s90=1} 

global 1 c100-cth {s100=1} 

#Equatlons 

dcO/dt = Slgma*heav(s0)/2/taur-c0/taud+d*(c1-c0)/dx-2 
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dc[1 .. 99]/dt = slgma*heav(s[J])/taur-c[J]/taud+d*(C[J-1]-2*C[J]+c[J+1])/dx-2 

dc100/dt = slgma*heav(s100)/2/taur-c100/taud+d*(c99-c100)/dx-2 

ds[0 .. 100]/dt = -heav(s[J])/taur 

-- ---------------------------------------------------------------------~ 
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#Aux1l1ary funct1on 

aux logc[0 .. 100] = c[J] 

#Numer1cal method characterlStlCS 

@ total=0.5,trans=O,dt=0.0001,xlo=O,xhl=2000,ylo=O,yhl=1 

@ maxstore=1000000,bounds=10000 

@ xplot=x,yplot=Ca10 

done 

A.2 MATLAB 
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Many figures and all ammat10ns have been performed usmg the software package 

MATLAB produced by The MathWorks, Inc (http/ fwww mathworks corn) MAT

LAB provides an mteract1ve development tool for scientific and engmeenng problems 

and more generally for those areas where significant numencal compu tat10ns have to 

be generated Program codes and ammat10ns are presented on the CD prov1ded 

A.3 Fourier spectral methods 

Spectral methods are based on the global representatiOns of funct10ns, usually by 

a tngonometnc or polynomial mterpolants, whereas m other methods, such as fimte 

elements or fimte differences, the underlymg expansiOn mvolves local mterpolants such 

as p1ecew1Se polynomials In pract1ce tlus means that the accuracy of the spectral 

method IS much h1gher than others 

We have used a Founer mterpolant on a bounded domam for the generatiOn of spectral 

differentiatiOn matrices. The nodes have been determmed by 

Xk = (k- 1)h, h = 27r 
N' 

k= 1, ,N. (A 1) 

Smce the canomcalmterval for the method IS [0, 21r], we have apphed a lmear trans-
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formatwn Xk <------> ~ to convert the domam [0, L] where the dtfferentJal equation ts 

defined to [0, 27r] The dtfferenttatwn processes m the Jacobtan M of Chapter 3 has 

been represented by a first- and second - order dtfferenttatwn matnces 

dl)- {0, k = J 
k 3 - (A 2) 
, H-1)k-J cot (k-;)h, k f J 

and 

d2)- {0, 
kJ-
, -H-1)k-J csc2 (k7)h, 

k =J 
(A.3) 

cot(z) = ta;(z), csc(z) = >m~z) 

A.4 Intercellular waves in the FDF model 

The system of equations for b~, b2 and B1 as a functwn of m ts as follows 

p>..mpjb1 + p>._-mptb2 + >._m+l( J8(vl- 1)- p(Vt + 1))Bt = -pa 

>._m( J8p1 + ppt)b1 +>._-m( J8p2 + PPt)b2- p>._m+l(vt + 1)Bt = -pa (A 4) 

(v1 + 1)b1 + (v2 + 1)b2 =s-a, 

where 

pj = e11.f8v1 + e-l/V8, 

Pt = etf.f8v2 + e-I/V8, 

P1 = e11.f8vt- e-I/V8, 

P'i = etl.f8v2- e-1/.f8 

The concentratwn of calcmm m the (m+ 1) cell sattsfies the equation Um+t(O) = 
B1>..m+l +v1B1>..m+I, where B1 ts obtamed from the system of equatwns (A.4) Thus, 

Um+t(O) IS gtven by 

Um+t(O) = p(1 + Vt)[2e1/.f8>._m(a- s)(v2- Vt) + a(1 + Vt)(1- e2/V8v2)+ 

(A 5) 
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where 
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