i1 M Loughborough
 University

This item was submitted to Loughborough's Research Repository by the author.
ltems in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Oscillations and waves in single- and multi-cellular systems with free calcium
PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Yulia Timofeeva

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Timofeeva, Yulia. 2019. “Oscillations and Waves in Single- and Multi-cellular Systems with Free Calcium”.
figshare. https://hdl.handle.net/2134/33829.


https://lboro.figshare.com/

B Loughborough
. . . University
University Library

Author/Ihing Title ...T.\MOF"E":VA .

| Class Mk 0 L L. —r
Please note that fines are charged on ALL

0000000000

LT






OSCILLATIONS AND WAVES IN SINGLE
AND MULTI-CELLULAR SYSTEMS
WITH FREE CALCIUM

Yulia Timofeeva

Ph.D. in Mathematics
Mathematical Biology Group

Department of Mathematical Sciences
Loughborough University - 2003



Oscillations and Waves in Single and
Multi-cellular Systems with Free Calcium

Yulia Timofeeva

A Doctoral Thesis
Submitted in partial fulfillment of the requirements

for the award of

Ph D in Mathematics of Loughborough University
October 2003

©by Yulia Timofeeva 2003




et

Unpveran
Pas ooyt n“ary
Date S o

Class

No, 0¥0293 ot

[
4




Keywords:

Calcium

Puffs/sparks

Fire-Diffuse-Fire model

Noise

Stochastic propagation
Intracellular and intercellular waves

Non-equlibrium phase-transition

Abbreviations:

ATP - ribonucleoside 5'-triphosphate
CICR - Ca**-induced Ca?* release
DAD - delayed after-depolarising
DP - directed percolation

DYK - De Young Keizer

ER - endoplasmic reticulum

FDF - Fire-Diffuse-Fire

HB - Hopf bifurcation

HC - homochnic bifurcation

IP3 - mositol 1,4,5-trisphosphate
IP3R - IP3 receptor

JMK - Jung-Mayer Kress

LP - limit point

PLC - phospholipase C

PD - period doubling

RyR - ryanodine receptor

SERCA - sarco- and endoplasmic reticulum calcium ATPase
SR - sarcoplasmic reticulum

VOCC - voltage-operated calcium channel




Abstract

Calcium 10ns are an important second messenger 1n hiving cells Indeed calcium sig-
nals in the form of waves have been the subject of much recent experimental interest

A fundamental approach for studying cellular signalling 1s the combination of state of
the art experimental techniques, m particular high resolution fluorescence imaging,
with spatio-temporal mathematical models of intracellular calcium regulation Exper-
imental findings can be incorporated into mathematical models and, vice versa, model
predictions can be directly tested 1n expertments This approach provides a powerful

tool to clarfy the very complex mechanmisms involved m cellular Ca?* signalling

The aim of this thesis 1s to provide insight mnto oscillations and waves of cytosolic Ca?t
in both single and multi-cellular systems from a mathematical perspective We focus
on two models of Ca®" release for a systematic mathematical and numerical analysis
of Ca?* dynamics One of them 1s a biophysically detailed model which we study
usmg tools from bifurcation theory, numerical continuation and numerical simulation
The other 15 a much stumpler mimimal model of Ca?t dynamics that emphasises the
fundamental space and time scales of cellular Ca®* dynamics and allows for exact
mathematical analysis For the detailed biophysical model we calculate the speed
and stability of travelling waves as a function of physiologically significant parameters
The mimimal model of Ca?t dynamics 1s obtaned via a systematic reduction of the
biophysical model and 1its analytically obtained behaviour 1s shown to be in excellent
agreement with the original biophysical model This minmal model 1s then used to
gain insight 1nto the effects of spatial heterogeneity and biologically realistic sources
of noise on intra- and inter-cellular cell signalling. In particular we pursue issues
of wave propagation, wave propagation failure and the role of noise 1n generating

coherent whole cell rhythms
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Chapter

Introduction

Many processes 1n hiving systems are oscillatory Biological rhythms occur at all levels
of biological orgamsation, from umcellular to multi-cellular orgamsms, with periods
ranging from fractions of a second to years Besides quite obvious examples of bio-
logical oscillations such as the beating of the heart, lung respiration, the sleep-wake
cycle, central pattern generation and locomotion in amimals, there are many instances
of biological oscillations at the cellular level These rhythms find their roots in the
many regulatory mechamsms that control the dynamics of living cells For example,
neural and cardiac rhythms at the single cell level are associated with the regulation of
voltage-dependent 10n channels, metabolic osaillations originating from the regulation
of enzyme activity, pulsatile intercellular signals and intracellular calcium oscillations
assoclated with receptor activity, while regulation of gene expression in hypothalamic
neurons underhes circadian rhythms Although different cell types express markedly
different rhythms a common set of components assembled 1n a cell-specific manner
can give rise to different spatial and temporal dynamics. Thus, the spatially extended
nature of the cell and the way 1n which these components are organised into interact-
ing complexes 1s vitally important for generating physiologically sigmficant cellular

thythms In view of the large number of vanables mmvolved, the spatially extended
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nature of the cell, and the complexity of nonlinear feedback processes, mathematical
models are vital for a better understanding of how molecular and cellular mechanisms
give 11se to oscillations Importantly a mathematical approach opens up the way to
explore the role of space, heterogeneity and noise in shaping cellular rhythms Mod-
els are also useful to understand the transition from simple to complex oscillatory
behaviour and for dehneating the conditions under which they arise The strength
of a theoretical approach is that 1t clanfies the molecular and dynamical mechanisms

for cellular rhythm generation

One of the most significant findings 1n the field of intracellular signalling within the
last two decades is the discovery of Ca®* osallations This has radically affected the
way biochemical oscillations are viewed. Ca?* oscillations are of interest for a varety
of reasons First, they occur 1n a large number of cell types, either spontaneously or
as a result of stimulation by an external signal such as a hormone or a neurotrans-
nutter Second, 1t 1s now clear that, besides the rhythms encountered 1n electrically
excitable cells, they represent the most widespread oscillatory phenomenon at the cel-
lular level Third, Ca?* oscillations are often associated with the propagation of CaZ*t
waves within the cytosol, and sometimes between adjacent cells. This phenomenon
has become one of the most important examples of spatio-temporal organisation at
the cellular level Ca?* 1s a highly versatile intra- and inter-cellular signal that op-
erates over a wide temporal range that 1s now known to regulate many different cel-
lular processes, from cell division and differentiation to cell death [11] Many of the
Ca?*-signalling components are orgamised 1nto macromolecular complexes 1n which
Ca?*-signalling functions are carried out within highly localised environments These
complexes can operate as autonomous umits that can be multiplied or mixed and
matched to create larger, more diverse signalling systems, as illustrated by cardiac
Ca?* signalling. Rapid highly localised Ca®* spikes regulate fast responses, whereas
repetitive global transients or intracellular Ca®* waves control slower responses Cells

respond to such oscillations using sophisticated mechanisms including an ability to
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interpret changes in frequency. Such frequency-modulated signalling can regulate

specific responses such as exocytosis and differential gene transcription

In this thesis we shall explore oscillations and waves of eytosolic Ca?* 1n both single
and multi-cellular systems from a mathematical perspective More precisely, we focus
on two models of Ca®" release for a systematic mathematical and numerical analysis
of Ca?t dynamics One of them is a biophysically detailed model which we study
using tools from bifurcation theory, numerical continuation and numerical ssmulation.
The other 1s a much simpler minimal model of Ca?* dynamics that emphasises the
fundamental space and time scales of cellular Ca?* dynamics and allows for exact
mathematical analysis For the detailed biophysical model we calculate the speed
and stability of travelling waves as a function of physiologically signmificant parameters
The minimal model of Ca?t dynamics 15 obtamed via a systematic reduction of the
biophysical model and 1ts analytically obtained behaviour 1s shown to be mn excellent
agreement with the original biophysical model This minimal model 1s then used to
gain msight 1nto the effects of spatial heterogeneity and biologically realistic sources
of noise on intra~- and inter-cellular cell signallng In particular we pursue 1ssues
of wave propagation, wave propagation failure and the role of noise 1n generating

coherent whole cell rhythms

1.1 Experimental observations on Ca’* oscillations

It has been known for a long time that calcrum oscillations operate in periodically
contracting muscle cells (e ¢ heart cells) and neurons [115] However, they were
only first discovered in non-excitable cells 1n the mid-1980s, notably 1n cocytes upon
fertilisation by Cuthbertson and Cobbold {40] and 1n hepatocytes subject to hormone
stimulation by Woods et ol (172, 173] These direct observations of Ca%* oscillations
followed earhier theoretical predictions [89, 129] and mdirect measurements [130}.

Later, Ca®* oscillations were also found 1n many other animal cells [10, 16, 62, 82,
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142, 157) as well as 1n plant cells [111]. The progress of the experimental results on
Ca?* oscillations and the associated propagation of intracellular Ca?* waves arnsing
in recent years has been examined in a series of reviews (7, 8, 12, 14, 33, 39, 55, 76,
112, 128, 131, 167, 168] We briefly recall the main properties of Ca%* oscillations as
determined from a large number of experimental studies Cytosohc Ca?* oscillations
arise either spontaneously (72, 106] or in response to stimulation by extracellular
signals, with period ranging from nearly one second to tens of minutes, depending
on the cell type Among the most studied cells, with regard to Ca?* oscillations, are
cardiac cells, oocytes, hepatocytes, endothelial cells, fibroblasts, pancreatic acinar
cells and pituitary cells The shape of the oscillations 1s lighly variable (see Figure
11) In some cases the oscillations are quasi-sinusoidal, while 1n others they take the
form of abrupt spikes, which are often preceded by a gradual increase reminiscent
of the pacemaker depolarising potential seen in oscillatory neurons or cardiac cells
[45] It has been repeatedly observed that oscillations occur only in a certamn range of
stimulation and that the frequency of Ca?t spikes increases with the mtensity of the
stimulus Besides the induction of oscillations by external signals, 1t 1s often possible
to elicit a tramn of Ca? spikes by mcreasing the level of extracellular or intracellular
Ca?t, or the level of inositol 1,4,5-trisphosphate (IP3) [121]. The latter messenger 1s
synthesised 1n response to external signals and 1s known to raise the level of cytosolic

Ca?* through mobilisation from mtracellular stores [9, 15]

1.2 Spatial Ca’?" propagation

The spatial propagation of Ca?* waves mediated by diffusive transport of calcium 10ns
has long been observed in a variety of egg types after fertilisation [24, 60, 77, 78, 79]
In these cells, waves of Ca®* propagate over the cortex, from the site of fertilisation
The wave-like propagation of Ca?* signals has now also been observed m other cells in

which Ca?* oscillations were previously characterised (see for example [1, 13] for some
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Figure 11  Typical calcrum oscillations from a varety of cell types A Hepatoc-
tyes stumulated with vasopressin (VP) B Rat parotid gland stimulated with carbachol
(CCh) C Gonadotropes stumulated with gonadotropin-releasing hormone (GnRH)
D Hamster eqgs after fertilisation The time of fertuisation s denoted by the arrow.

E and F' Insulinoma cells stimulated with two different concentrations of carbachol

(From [14])
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reviews). Thus, Ca®" oscillations and waves appear to be closely related phenomena
[15]. The velocity of Ca?" waves varies in different cells; the wave propagates at a
rate of the order of 10 um/s on the surface of oocytes [77, 79], 30 um/s in hepatocytes
[162], and at a rate close to 100 um/s in the cytoplasm of cardiac cells [160]. The
most complex wave patterns, exhibiting hot spots, spherical, spiral and planar waves
were demonstrated in Xenopus oocytes [94]. As an example, the image of a Ca®"

spiral wave is given in Figure 1.2 . A single mammalian cell of size 10-20 pm is

46 um

50 um

Figure 1.2: Confocal image of regenerative spiral waves of free Ca®** observed in

Xenopus laevis oocytes (From [94]).

not large enough for such complex patterns, although similar patterns have been
observed in larger cardiac cells and in networks of astrocytes and glia [98]. Also other
experiments indicate that in some cell types (for example epithelia [141] and glia
(26, 27]) Ca®' triggered by mechanical stimulation may propagate from cell to cell.
This intercellular propagation appears to be mediated by the passage of Ca?* or IP;

through gap junctions [19], although extracellular messengers such as ATP may be

involved.
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Moreover, high-resolution 1imaging of Ca?* 1n a vanety of cell types shows that trav-
elling waves can vary i therr appearance. For example, the calcium wave that oc-
curs during fertihsation 1n mature Xenopus eggs appears to be continuous [57, 120],
whereas the calcium wave 1n ummature Xenopus oocytes propagates as a sequence of
bursts [25, 122, 124, 174]. It 15 commonly believed that nformation 1s encoded n
the time course of the Ca®* signal Thus, the distinction between these two modes
of propagation is hkely to be of physiclogical significance Another mteresting as-
pect of intracellular Ca?* regulation 1s the generation of global events build up from
elemental local events called puffs These elementary events m many electrically non-
excitable cells have amplitudes typically ranging from ~ 50 —600 nM, a spatial spread
of ~ 6 um and a total duration of ~ 1 second Apart from Xenopus oocytes, stich
events have subsequently been observed in HeLa cells, neurites and endothelial cells
(reviewed 1 [22]). In heart and skeletal muscle, where Ca®* release channels are
spatially organsed mn clusters, localised Ca?* release events have also been seen [31]
These events called sparks are analogous to the Ca?t puffs, although they are usually
faster in onset and decline, and have a more restricted spread (~ 1 — 3 pm). Ca?*
sparks and puffs are simple examples of the stochastic nature of intracellular Ca?t
dynamics The timescale on which stochasticity 1s observed when puffs/sparks are
triggered 1s of the order of many seconds However, the origin of the stochastic nature
of Ca’t release events lies in the individual gating of Ca?* channels, which occur on

the millisecond timescale

As regards the physiological significance of Ca?* osaillations and waves, 1t 15 concerv-
able that the rapid spatial propagation of Ca®" signals provides a useful communica-
tion mechamsm between distinct parts of the cell or between different adjacent cells m
a tissue (see (27, 141]) Calcium signals regulate a large number of cellular processes
including contraction of muscle fibers, release of hormones and neurotransmitters,
synaptic plasticity, sensory perception and adaptation in photoreceptors, exocytosis,

gene expression, gap junction regulation and others
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1.3 Overview of the thesis

In Chapter 2, we define the main components of the cell and describe important
aspects of Ca?* dynamics involved 1n the regulatory mechamsms of Ca?* signalling
m living cells We then discuss the basic approaches used in the modelling of Ca2*
oscillations, including the continuous determimstic models of Ca?* oscillations based
on a description of essential Ca?t fluxes throughout the cell. Bifurcation analysis
of various biophysical models demonstrates that oscillations are typically associated
with an instability of a fixed point i favour of a stable it cycle over a range of
parameter values Moreover, the bifurcation structure for many of the commonly
used biophysical models of Ca®* oscillations can be surprisingly rich Three of the
basic models of Ca?* oscillations 1n the presence of IP; (two-pool model of Goldbeter
et ol [63] and one-pool models of De Young Keizer et al [175] and Atr1 et al [2]) are
reviewed 1 more detail Interestingly for the DYK model we uncover an mteresting
global bifurcation structure (at least for a given set of parameter values) Because
of the success of the DYK model in reproducing experimentally observed behaviour
(such as the open probability of release) we use this as the basis for building a whole
cell model, described in Chapter 3 Chapter 2 also gives a brief overview of some
models exhibiting more complex forms of Ca?* oscillations, such as periodic bursting
and chaotic behaviour. However, detailed aspects of these types of oscillations will

not be studied 1n this thesis

In Chapter 3 we simphfy the detailed hiophysical DYK model of Chapter 2 using
a mathematical reduction process based on some biologically realistic assumptions
regarding the time scale of binding and unbinding to receptor sites Travelling wave
behaviour 1n a whole cell model 1s then studied in this reduced model We present
a detailed numerical bifurcation analysis together with a linear stability analysis of

Ca®* wave propagation. We demonstrate that the model supports an mteresting form

of bifurcation structure including global and period doubling bifurcations A variety
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of propagating patterns are sustamed by this model mcluding travelling pulses and
pertodic travelling waves, 2n-periodic orbits and 2n-homochnic orbits Moreover, a
kinematic theory of irregular wave propagation 1s used to predict the existence of a

non-periodic travelling wave (that connects two periodic wave trains)

In the DYK model, as well as in other biophysical models of Ca?" release, insight
mto behaviour is typically only possible with numerical analysis One of the mamn
ambitions of this thesis is to introduce a mimimal model of Ca?* release consistent with
more detailed biophysical models, yet 1s analytically tractable Importantly we shall
introduce a mathematical framework to address 1ssues of Ca?t release and oscillation
This framework 1s based upon the deterministic Fire-Diffuse-Fire (FDF) mode! of
Keizer et al [88] which uses a threshold process to mimic the nonlinear properties of
Ca?* channels The main advantages of studying FDF type models are the possibihity
to analyse them exactly with both continuous and discrete distnbutions of Ca?*
release sites In Chapters 4 and 5 we consider continuum and discrete distribution of

release sites respectively

In Chapter 4, we introduce the generalised version of the FDI" model. The distn-
bution of Ca?* release sites 1s continuous in this chapter The generalisation, firstly,
incorporates a time dependent threshold to mumic refractoriness of release sites and,
secondly, the notion of IP; sensitivity motivated by a reduction of the DYK model.
Mathematical analysis is used to highlight the ability of the generalised FDF model to
describe realistic Ca?* waves and 1n particular sohtary and periodic waves The pa-
rameters of the FDF model are constrained using numerical data from the biophysical

DYK model. This allows a direct comparison between these models.

In Chapter 5, we study the FDF model with a more biologically realistic distribu-
tion of release sites. In the first part of the chapter, we investigate how a regular
array of release sites influences the propagation of saltatory travelling waves (with

non-constant profile) By considering calcium stores as 1dealised pomnt sources we are
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able to explicitly construct solutions of the FDF model that correspond to saltatory
solitary and periodic travelling waves Moreover, the smphaty of the underlying
deterministic FDF model can lead to further computational improvements When
considering a discrete set of release sites and caleium puffs or sparks that have a sim-
ple on/off temporal structure the calcium profile can be solved for 1n closed form. In
the second part of the chapter, by assuming that release times occur on some regular
lattice, we ssmphfy the FDF model even further The dynamics for release events 1s
calculated via a thresholding of the calcium profile at a release site By direct nu-
merical simulation we 1illustrate that tlus computationally cheap version of the FDF
model provides an accurate representation of the original model We shall also demon-
strate that 1t 1s both natural and straightforward to generalise our one-dimensional
FDF model to two dimensions Simulations for both one and two dimensions are
presented with regular and disordered distribution of Ca?t release sites Varymg
system parameters reveals that the model supports many patterns of wave propaga-
tion behaviour including regular and irregular lurching travelling pulses, colliding and
periodic waves, travelling fronts and spiral waves as well as abortive waves These
calctum wave formations have been widely observed experimentally in a vanety of

hiving cells

Although theoretical work on Ca®t dynamics has increased 1n recent years (reviewed
1n {149)), the spatially extended nature of the cell combined with the stochastic nature
of localised calcium release and the heterogeneous distribution of Ca?t stores has

received far less attention

In Chapter 6 we introduce a model of calcium release based upon a stochastic gener-
alisation of the FDF threshold model The stochastic nature of release 1s incorporated
via the introduction of a simple probabilistic rule for the release of caleium from inter-
nal stores We 1llustrate that this 1s a natural way to mvestigate puff/spark to wave

transitions within a spatially extended cell model with a diserete distribution of re-
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lease sites By avoiding a Markov process description of channel gating we side-step
the need for computationally expensive Monte Carlo type simulations Functional
forms for the distribution of the incorporated threshold noise can be inferred from
the recent observation of Izu et al {75] that the probability of release per unit time has
a sigmoidal functional form Numerical simulations are presented for both one- and
two-dimensional cell models and demonstrate a variety of noise-sustained patterns
of wave propagation In the parameter regime where deterministic waves exist, it is
possible to 1dentify a critical level of noise defining a non-equilibrium phase-transition
between propagating and abortive structures A statistical analysis shows that this
transition is the same as for models 1n the directed percolation universality class {70]
A study of a two-dimensional cell model illustrates that not only does the model sup-
port noisy circular and spiral waves as expected but that it can also exhibit a form
of array enhanced coherence resonance (69, 73, 178] We find that coherent motion,
n the form of simultaneous and periodic release of calcium from all stores, can be

induced purely by noise

The Ca?* oscillations and waves considered 1n the previous chapters have been char-
acterised 1 single, and often isolated, cells However, because many organisms are
multi-cellular, there 1s a need for the intercellular communication of regulatory sig-
nals One such form of cellular communication 1s an ntercellular Ca?* wave that
spreads through multiple adjacent cells. These intercellular Ca®* waves were first
observed 1n epithehal and ghal cell cultures in response to mechamcal stimulation

and neurotransmitters and have been observed later in many other cell types [140].

In Chapter 7, we mvestigate the 1ssue of wave propagation failure through a cell
culture Once again we focus on two different models (DYK and FDF) The analysis
(analytical and numerical) of intercellular waves in these two models will be divided
into two parts In the first part the intercellular Ca?* wave 1s mediated by a passive

diffusion of Ca?t through gap junctions and the level of IP; concentration 1s constant
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throughout the tissue In the second part, passive diffusion of IP; from the stimulated
cell will be taken into account as well as Ca®* propagation through the gap junction
We compare both models of intercellular Ca?* waves 1n respect of wave propagation

dependence on gap-junction permeability

Fmally in Chapter 8 we present a summary of major achievements and natural

extensions of this thesis

Some unportant results of this thests were published m [37, 164, 165] and are to
appear 1n [36]




Chapter 2

Models of calcium oscillations

Cellular Ca?* dynamics involves the exchange of Ca?t ions between ntracellular
stores and the cytosol, the mterior and exterior of a cell or between cells, as well
as transport by diffusion and buffering due to the binding of Ca?* to proteins, e g
calmodulin and calbindin Intracellular stores are typrcally located within the mi-
tochondria, endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR) The ER is
an extensive membrane network of tubes and cisternae (sac-like structures) in many
eukaryotic cells, important in the synthesis of proteins and hpids The SR 1s the
specific analogue of the ER 1n the cardiac, smooth and skeletal muscle The ER/SR
1s the principle location of Ca?* storage within the cell The area between the plasma
(outside) cell membrane and the ER/SR 1s called the cytosol, where most of the cel-
lular metabolism occurs Mitochondria are membrane-enclosed organelles distributed
through the cytosol They can transiently accumulate calcium during cell stimulation
and provide the energy, for example, for cell movement, division and contraction A
schematic diagram of a cell with components relevant to Ca?* dynamics 1s shown 1n
Figure 2 1. The active elements of the 1onic exchange processes through cell mem-
branes are channels and pumps Typically channels have an open and closed state

as well as a host of intermediate states, and allow for flux of Ca?t down 1its electro-

13
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Figure 2.1: Schematic diagram of the pathways involved in the control of cytosolic

Ca*t oscillations.

chemical gradient when they are open. Pumps, on the other hand, transport Ca®*
against its electro-chemical gradient requiring a source of energy. The local dynam-
ics of Ca®t release and uptake can lead to oscillations in the free cytosolic calcium
concentration. Such oscillations are believed to arise via nonlinear interactions be-
tween various cell components, including intracellular stores, pumps and channels and
are often modelled using coupled ordinary differential equation descriptions of these
sub-systems. The complexity of this modelling approach is greatly increased when
spatial aspects, such as spatial separation of receptors, SR/ER microstructure, and
functional distinction between cell periphery and cell bulk, are brought into play. For
theorists, one of the most interesting aspects of Ca?* dynamics is that local oscil-
lations can be spread by ionic transport to form complex spatio-temporal patterns
such as oscillatory waves, spiral waves, and waves that travel from cell to cell. Not
only are these structures physiologically important (see Chapter 1), they are also

mathematically interesting and challenging to understand in their own right. The
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strength of mathematical models and analysis 1s twofold 1) mathematical models
help to quantify experimentally obtained data and n) models yield qualitative msight

mto processes which are not experimentally accessible

The deterministic modelling of Ca?* signalling has historically been based on a well-
established deterministic apparatus to describe self-sustamned oscillations m chemistry
and physics using nonlinear differential equation systems Local dynamics in these
systems 15 typically excitable, oscillatory or bistable For sufficiently large perturba-
tions, excitable dynamical systems respond to small perturbations of a hinearly stable
stationary state with a large amplitude excursion, that ultimately returns the system
to rest Oscillatory dynamical systems are different in that they exhibit sustained
oscillations, typically around an unstable fixed point Finally, bistability refers to
systems with two stable stationary states, perhaps separated by an unstable state
In the present chapter, we focus on the temporal organisation of intracellular Ca?*
signals and review some basic approaches m the mathematical modelling of Ca?t
oscillations Spatio-temporal aspects such as calcium waves are not included 1n the
mathematical treatments of Ca?* signalling 1n this chapter and will be considered
later Before discussing theoretical models of Ca?* osallations, we first overview the
regulatory mechanisms mvolved 1n the control of Ca?* concentration within a cell
This leads us to a more detailed discussion of the types of channel regulating Ca**
influx and efflux, the energetic mechanisms underlying refiling of intracellular stores
and the chermical pathways that ultimately lead to calcium release n response to an

external agonist

2.1 Calcium dynamics

The mechanism of Ca?* osellations relies on feedback processes that regulate Ca?*
levels within the cell Whilst extracellular Ca®* concentration varies between 1 and 2

mM, Ca?t concentration in the cytosol 1s maintained at a resting level between 50-100
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nM. Following cellular stimulation, cytosolic Ca®t can transiently rise to between 1
and 10 4M [17] Although increases in cytosohc Ca*t are necessary for many cellular
processes, sustained elevations n cytosolic Ca’t are cytotoxic and may lead to cell
death Thus, 1t 1s necessary for the cell to strictly regulate cytosolic Ca2* levels within
defined limits In order to achieve this the cell has developed a repertoire of Ca?*

channels, binding proteins, pumps and exchangers [17)

Two classes of oscillations are readily distinguished those that depend primarily
on the mflux of Ca?* through channels from the extracellular space, and those that
depend primarily on Ca?* release from internal stores. In this latter class, distinctions
can be made on the basis of whether the release of Ca?* 1s dominated by the ryanodine
receptor (RYR), the mositol (1,4,5)- trisphosphate receptor (IP3R) or a combination
of both IP3Rs are the predominant Ca?* release channels in non-electnically excitable
(nonmuscle) cells, whereas RYRs are predominant i excitable (muscle) tissues [74]

In response to signals at the cell membrane, Ca?* 1s released from the ER/SR into
the cytosol in the form of global or spatially localised elementary events [21, 22] The
surface cell membrane consists of several different types of Ca?' channels voltage-
operated calcium channels (VOCCs), that open 1n response to depolarisation of the
cell membrane, receptor-operated channels, that open in response to the binding of
an external ligand, second-messenger-operated channels, that open in response to the
binding of a cellular second messenger, and mechanically operated channels, that
open 1n response to mechanical stimulation The mechanism of transduction of the
signal at the cell membrane to the ER 1s dependent on the nature of the mitial
stimulus. In all cell types external ligand binding to its receptor channel mitiates a
cascade of signals which ultimately results 1n release of Ca?t from the ER The best
characterised of these signals uses the diffusible second messenger IP; The binding of
an extracellular agonist such as a hormone or a neurotransmitter to a receptor n the
surface cell membrane can cause, via a G-protein link to phospholipase C (PLC), the

cleavage of phosphotidylmositol (4,5)-bisphosphate into diacylglycerol and IP; IP3
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subsequently diffuses mto the cell and binds to an IP3R on the ER resulting in Ca?*
release [9] However, i excitable cells, 2 ¢ neurons and muscle, an action potential
or activation of receptor operated channels results in influx of Ca** across the cell
membrane which subsequently acts as the messenger to stimulate the RYRs, and also
IP3Rs, to release Ca?* through an autocatalytic process referred to as calcium-mnduced
calcium release (CICR) [47, 94] Both the RYR and IP3R are subject to several levels
of regulation on the eytosolic face where Ca?* can both promote and inhibit 1ts release
from either channel At low concentrations Ca®* stimulates Ca?* release through the
receptor, whereas at high Ca?* concentration release 15 mhibited Furthermore, at
increasing Ca?* concentration the IP3R becomes more sensitive to ligand and less
sensitive to Ca?t dependent inhibition {134] Thus, Ca?* potentiates 1ts own release
and can stimulate release from neighbouring receptors This mechanism of CICR
for generating oscillations 1n the concentration of cytosolic free Ca?* 1s believed to

underlie the waves that propagate via Ca?* diffusion 1n a variety of cell types [20]

Of equal importance to the regulation of Ca?* release from the ER/SR are the mech-
amsms of Ca?* clearance from the cytosol This function 1s performed by a number
of transporters located in the cell membrane and the ER/SR. One such transporter
1s the sarco- and endoplasmic reticulum calcium ATPase (SERCA) which 1s a Ca?*
pump located in the membrane of the SR and ER whose function 1s to accumulate
Ca®* into the internal stores using ATP as an energy source [102] ATP 1s a ribonu-
cleoside 5-triphosphate functioning as a phosphate group donor in the cell energy
cycle and carries chemical energy between pathways SERCA functions are regulated
by both cytosolic and ER/SR conditions Under resting conditions SERCA 1s rela-
tively inactive but following an increase in cytosolic Ca?* the activity of the pump
1s 1ncreased, resulting m re-sequestration of Ca®* into the ER [99] From the other
side, the Ca?" pumping activity of SERCA 15 regulated by the Ca®" content of the
ER SERCA activity 1s maximal when the store 1s depleted and decreases as the store

approaches 1ts maximal capactty [114] There 15 also a Nat/CaZ?*-exchanger in the
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cell membrane that uses the energy of the Na™ electrochemical gradient to remove

Ca?* from the cell at the expense of Na* entry.

CaZ+

Jcar+
& &

bufferin gﬂ
Cytosol/cytoplasm (\-

Ca**
ITI| Jchannel + qump
L
| CaZ+

ER/SR l

Plasma membrane

Figure 2.2: General scheme of the main processes involved in intracellular Ca** os-

cillations.

Many models of Ca?* oscillations are based on the description of essential fluxes (see
Figure 2.2). Calcium is removed from the cytosol in two principal ways: it is pumped
out of a cell and is sequestered into ER/SR. Calcium influx also occurs via two prin-
cipal pathways: inflow from the extracellular medium through Ca?* channels in the
surface membrane and release from internal stores. The construction of mathematical
models is based on the formulation of flux balance equations for the various reactions

and transport processes in the particular cell.
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2.2 Theoretical models of Ca?* oscillations

Two-pool model

One of the earhest models for IP3-dependent Ca?t release assumes the existence of
two distinct internal stores, one of which 1s sensitive to IP3, the other is sensitive
to Ca®t [62, 63, 89] The model assumes the IP; produced in response to the ago-
nist stimulation releases Ca?t from the IP3-sensitive store through IP3Rs. The Ca?t
that 1s thereby released stimulates the release of further Ca?* from the Cat-sensitive
store A crucial assumption of the model 1s that the concentration of Ca?* in the
IP;-sensitive store remains constant, as the store 1s quickly refilled from the extra-

cellular medium A schematic diagram of this model 15 shown m Figure 23 The

QOutside the cell

Infl A
m I Extrusion (kc)/I\ Cell membrane
\l/ | v
IP;-sensitive Cytosol
pool

Upta-ke (J upmke)
IP;-dependent

release (r)
Calcium-sensitive

Leak (krcy)

Calcium-induced

calcium release (Jrprease) Inside the cell (c)

Figure 23 Schematic diagram of the calcium fluzes mvolved wn the two-pool model of

Ca?* oscillations

concentrations of Ca?* 1n the cytosol and 1 the Ca?*-sensitive pool are denoted by ¢
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and ¢, respectively The model assumes that IP3 causes a steady flux » of Ca?* into
the cytosol, and that Ca?* 1s pumped out of the cell at the rate —ke Then, assuming

a homogeneous system, the model equations are

de ~
e ke — 21
- r—kc— f(e ¢s), (21)
de, e
dT = f(cJ Cs): (2 2)
where
: Vie® Vo cP
) = — s —k 23
o) = e (ngrcg%) (Kf-l—cp) Iz 23)
‘\T,—.—./ ~ r ~ - Jleak
uptake release

and 7 denotes time The function f describes the dynamics of Ca2* exchange between
the cytosol and the Ca®*-sensitive pool. The first term Jyptake 18 the rate at which
Ca?* 15 pumped from the cytosol into the Ca?*-sensitive pool by an active process,
the second terms Jiepease 15 the rate at which Ca®* 1s released from the Ca?*-sensitive
pool, and the third term 1s the rate at which Ca?* leaks from the Ca%*-sensitive pool
into the cytosol Jieease demonstrates that Ca?* stimulates 1ts own release through
the positive feedback process of CICR [48, 50] In this model r denotes the constant

concentration of IP3 and is treated as a control parameter

It 1s sumple to nondimensionalise the model equations to get

= elu— ) = 1), 2.4)
dv
‘= flu,v), (2.5)

e = 2(550) - () (255)

where u and v are the nondimensional concentrations of Ca?t m the cytosol and

in the Ca?-sensitive pool respectively, and p denotes the nondimensionahsed IP;
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concentration (for more detaled discussion see [85]) By letting w = u + yv the
two-pool model can be put into the form of a generahsed FitzHugh-Nagumo model

for deseribing exaitable membrane [56, 116]

dw

% = A=), 27)
&= ) (28)

The charactenistic of FitzHugh-Nagumo type models common to many biological
mechanisms at the cellular level 1s a linear nullchne for the slow vanable and a cubic
nullcline that has either ”N” shape or inverted ”N” shape for the fast variable The
nullclines (dw/dt = 0, dv/dt = 0) of the two-pool model in Figure 2 4 demonstrate
this well-known structure of excitable system which 1s sufficient to produce oscillatory

behaviour

The stability of the steady state (ug,vp) grven by

Up = K, (29)
flyvo) = 0 (2 10)

1s determined by the roots of the characteristic equation

1

€

/\2+H/\—%=0, H (7 fuluo, vo) — fuluo,v0) + €) (2 11)
Since f, < 0, the roots of the characteristic equation (2 11) have negative real part
(and the steady state 1s stable) if H > 0, and they have positive real part if H <0
At H = 0 the steady state changes stability through a Hopf bifurcation (HB), and at
these pomts a branch of periodic orbits appears Osallatory behaviour in dynamical
systems is most easily summarised by a bifurcation diagram For their numerical

construction we use the software package AUTO [46], as implemented in XPPAUT

(see Appendix A 1) The bifurcation diagram for the two-pool model as a function of
gr
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the main parameter y 1s shown in Figure 2 5. As u is increased, osaillations appear
at a supercritical HB and disappear in the same manner. The two bifurcation points
are connected by a branch of stable periodic orbits Oscillations ocecur for a constant
value of ¢ This shows that CICR mechanism 1s sufficient to produce osallations
in the absence of IP3 oscillations The function of IP3 here 1s to produce a steady
influx of Ca®* into the cytosol from the IP3-sensitive pool, and this steady influx
drives Ca?* oscillations A typical example of oscillations given 1in Figure 2 6 shows

pronounced spike-like behaviour, in agreement with many experiments.

l 2 T T T T T T T T

08

06

04

0 2 L A I 1 1 1 1 1 1

Figure 2 4: Nullclines (solid curves) and sample himit cycle of periodic orbit (dashed
curve) of the two-pool model wn the form gwen by equations (2 7) and (2 8) for the
followwng parameters p=04,7y=2,e=004, =013, a=09,5§ =0004, n =2,

m =2, p=4 Intersection of the nullclines corresponds to the steady state value

In the two-pool model Ca?* stimulates 1ts own release, while the flow of Ca%t from
the internal store 1s terminated when the concentration of Ca?t 1n the internal store

becomes too low However, more recent experimental evidence indicates that not

only does Ca" stimulate 1ts own release, 1t also mhibits 1t, but on a slower time
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Figure 25 Bufurcation diagram of the two-pool model for the following parameters
7=2,e=004, =013, 0=09,6=0004,n =2, m=2, p=4 Circles denote

amplitude of periodic orbit HB Hopf bifurcation
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Figure 26 An example of periodic oscillations in the two-pool model for u =032
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scale [123] It 1s believed that this sequential activation and inactivation of the IP3R
by Ca?' 1s the fundamental mechanism underlying IPs-dependent Ca?t oscillations
and waves A number of models which incorporate this hypothesis have appeared
and been reviewed, for example, m [153] and [161] Two basic modelling approaches
have been developed One of them, developed by De Young and Keizer [175], mimics
the molecular subunit configuration of the IP3R to reflect the activation/inactivation
sequence of the channel that results from the binding of Ca?* and IP; to the IP3R
An alternative approach, explored by Atr1 et al [2] 15 the construction of a model
based on the kmetic data of Ca®* release through the IP;R of the same form as
FitzHugh-Nagumo type models [56, 116] We now consider these two approaches n

more detail

The De Young Keizer model

The biophysical DYK model [175] assumes that the IP3R is composed of three in-
dependent and 1dentical subunits Each of the subunmts includes a binding site for
activating IP3, activating Ca?* and mactivating Ca?* Only binding of IP3 on the
activating IP; site and binding of Ca?* on the Ca?* activating site leads to a Ca?t
flux through the receptor Each state of the subumt 1s given by z,,x, 2,7,k € {0, 1},
where the first index refers to the IP3; binding site, the second to the Ca?* activation
site, and the third to the Ca®" inactivation site If any of the indices 2, 7 or k are
equal to 1, the binding site 1s occupied, otherwise the binding site 1s unoccupied The
model generates eight possible receptor states with correlated transitions between
them (see Figure 2 7) where p and ¢ denote IP; and Ca?* concentrations respectively
The differential equations for the receptor states are based on mass-action kinetics

For example,

dzoeo
dt

= —(v1 + vy -+ vs), (212)
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Figure 27 Schematic binding diagram for the IP; receptor model of De Young and

Kewzer

where
v, = kipTooo — k_1T100 (2 13)
vy = kgcTopo — k_4To01 (2 14)
Vg3 = k5CEE000 - k_s.’L‘om (2 15)

Since expernimental data mdicates that the receptor subumits act in a cooperative
fashion, the model assumes that the IP3R passes Ca?t current only when three sub-
unuts are in the state 119, and thus the open probability of the receptor is z3,, The
full DYK model consists of seven differential equations for the receptor states (with
the constramnt Zm,k Z,yk = 1, expressing conservation of probability) and with the
following differential equation for Ca?t dynamics

2

de T3¢

E = gTIT?IO -+ i?)(cer - C)l— m, (2 16)
Jrcccptor flux ‘v—?/
qumpmg

where ¢, denotes the concentration of Ca?t in the ER The first term mn this equation
1s the Ca?* flux through the IP3R, and 1t 1s proportional to the concentration differ-

ence between the ER and the cytosol. A constant ro characterises an IP3;-independent
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Table 2 1 Parameters of the DYK model

leak from the ER imnto the cytosol The second term describes the action of Ca?t AT-
Pases that pump Ca?* from the cytosol into the ER Experimental data shows that
the Ca?* ATPase 15 cooperative, with a Hill coefficient of 2 One of the key proper-
ties used in formulating models of the IP3R 1s the experimental analysis of the open
channel probabtlity as a function of [Ca®*] Bezprozvanny et al [18] showed that this
open probability 1s a bell-shaped function of eytosohe Ca®t. Thus, at low [Ca®t], an
mcrease m [Ca?"| increases the open probability of the receptor, while at high [Ca?*]
an increase i [Ca?t] decreases the open probability Parameters in the model are
usually chosen to obtamn agreement with this steady-state data Figure 2 8 shows the
calculated equilibrium open probability of the IP3R as a function of cytosolic Ca?*
concentration for the parameters given in Table 21 This plot demonstrates this
bell-shaped function of open probability that realistically decreases for lower levels of
[IP;] The kinetic property of the IP3R that the receptor 1s activated quickly by Ca?*,
but inactivated by Ca?* on a slower time scale, 1s incorporated in the magnitude of

the rate constants

The bifurcation diagram of the DYK model as a function of the main bifurcation pa-
rameter p 1s shown 1n Figure 29 This diagram demonstrates that the curve of steady
states folds up, forming two limit pomts (LPs) Between these LPs three solutions
exist for a small window of p values For low and lgh IP3 concentration there 1s
only one stable fixed pomt For the parameter values of p where the system has an

unstable steady state periodic oscillations occur The branch of stable periodic orbit
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Figure 28 The steady-state open probabiity of the IP;R, as a function of cytosolic
[Ca**] from the DYK receptor model at three different IP; concentrations

15 broken into two different branches, both of which arise in a homochnic hifurcation
(HC) and end in a supereritical HB A typical example of pertodic oscillations n the
DYK model 1s shown m Figure 2.10 Though for our choice of the parameters the
DYK model demonstrates a complicated form of bifurcation structure, this 1s not
always the case For some parameters in the physiological range, the model shows a
bifurcation structure similar to that seen in the two-pool model This 1s 1llustrated
in Figure 2 11 where with an mcrease 1in IP;3 periodic orbits appear via a supercritical
HB and disappear in the same manner These HB points are connected by a stable

branch of periodic orbits

The Atri model

One of the other approaches to modelling Ca?" release, suggested by Atn et al [2],
assumes that Ca?t inactivates the IPs receptor in a cooperative manner In this
model the IP3R consists of three binding domains, the first of which binds IP3, the

other two binding Ca?*, and 1t 15 assumed that the receptor passes Ca?* current only
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Figure 2.10 An ezample of periodic orbit in the DYK model for p =035
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Figure 2 11  Bifurcation diagram of the DYK model for the following parameters
71 =06,72=0108, r3 =076, c., = 1 69 Other parameters are as in Table 2 1

when IP3 1s bound to domain 1, Ca?* 1s bound to domamn 2 and 1s not bound to
domain 3 Each binding domain which is independent of the other domains consists
of a number of binding sites If p; 1s the probability that IP3 1s bound to domain 1,
p2 15 the probabihity that Ca?* 1s bound to domain 2, and 1 — p; 1s the probability
that Ca%* 1s bound to domain 3, then the steady-state Ca?* flux through the IP;R

18 given by
J = ksp1paps (217)
for some constant k;. The probabilities p,, : =1, ,3, have been chosen such that

J agrees with the steady-state experimental data Moreover, to complete the model
1t 1s assumed that p; and p, are instantaneous functions of [Ca®*] and [IP;], but that

p3 acts on a slower time scale, so that

where h 1s a time-dependent inactivation variable Thus, the model satisfies the




CHAPTER 2 MODELS OF CALCIUM OSCILLATIONS 30

b 011 ki 07 uM
002 uMs™ | ky 07 uM
2 uMs? ky 01 uM

T 28 ky 81 puMs™?

Table 2 2 Parameters of the Atri model

following equations

de (1—b)c e

dt kf‘uh(b+ kﬁ—c) k7+c+ﬁ (219)
dh %

S By 220
™ kZ+cz 7 (220)

where ¢ denotes CaZ* concentration, and b, ki, ks, 7, k and 7, are constants The first
term 1n equation (2 19) 1s the Ca?* flux through the IP; receptor In a fashion similar
to the DYK model, the second term represents pumping of Ca?* out of the cytosol
into the ER, and # represents a constant leak into the cytosol p 18 an increasing
function of IP3 concentration and is treated as the main bifurcation parameter The

values of other parameters are given in Table 2 2

In Figure 2 12 we show the nullchnes (dc/dt = 0, dh/dt = 0) of the Atr1 model for
a fixed value of 4 and the phase trajectory that corresponds to a periodic solution
Similar to the DYK model, the steady-state open probability of the IPsR in the Atri
model 15 a bell-shaped curve demonstrating a decrease in open probability for low
and high cytosolic Ca?* and increase for some mtermediate Ca?t level (see Figure
213) As expected the probability decreases with a decrease in IP; concentration
The hifurcation diagram of this model 1s shown i Figure 2 14 and a typical example
of a stable periodic oscillation 1s shown in Figure 215  Note that the Atr1 model
exhibits oscillations 1 a manner similar to the DYK model (with two HB points

and two branches of periodic orbits both of which arise in a HC bifurcation), though
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Figure 2 12 Nullelines (sold curves) and sample limat cycle of periodic orbit (dashed
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Figure 2 13. The steady-state open probabilaty of the IPsR, as a function of cytosolic
[Ca**] from the Atri receptor model at three different values of p
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Figure 214 Bafurcation disgram of the Atr model Chircles denote amplitude of
periodic orbnt. HB Hopf bifurcation, HC' homochnic bifurcation
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Figure 2 15 An ezxample of periodic oscillations in the Atri model for p =086
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there are some differences between these two models First, the Atri model does not
include the factor (cer — ¢) 1n the term desceribing the IP3-sensitive Ca®*t current.
Thus, 1t assumes that the concentration of Ca?* in the ER. 1s so high, that depletion
of the ER has only a negligible effect on ntracellular Ca%* dynamcs for most of
the physiological regime Also the form of the pumping term 1s different from that
in the detalled DYK model, which uses a Hill equation with coefficient 2 There
1s experimental evidence that the form used 1in the DYK model 15 a more accurate
description of the Ca?" ATPase found m a vanety of cell types [99] Despite these
differences, the similarities between the bifurcation structures of these two models
suggest strongly that fast activation and slow nactivation of the IP3R by Ca?* 15 a

significant mechanism underlying Ca?* oscillations
Bursting and chaos

As mentioned in the previous chapter, experimental results may show more complex
forms of Ca%" dynamics, for example, periodic or chaotic bursting Such patterns
of complex oscillations have been studied intensely i the case of transmembrane
potential oscillations 1n electrically exaitable cells [28, 29, 62, 85] and similar patterns
are seen mn Ca?* bursting  One mimor difference 1s that while often 1 electric bursting,
each active phase comprises several consecutive, large spikes with nearly the same
amphtude, m Ca?* bursting single large spikes are followed by smaller ’secondary’

oscillations

These complex Ca?* oscillations are typically believed to arise by the nterplay be-
tween two oscillatory mechamsms. Shen and Larter [144], for example, have demon-
strated regular bursting and a transition to chaos 1n a model mvolving differential
equations for cytosolic Ca?t, endoplasmic Ca?" and IP; Another model giving rise
to bursting 1s based on the previously discussed two-pool model [63] with the CaZ*

level 1n the IPs-1nsensitive pool treated as a dynamical variable [23]
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More recently another explanation of complex intracellular Ca?* oscillations has been
proposed [65, 108] where Ca®' sequestration by mitochondrna and the Ca?* binding
to cytosolic protemns is taken into account These studies extend earhier work on
modelling the possible mitochondrial modulation of Ca?* signals [109] Numerical
simulations of these models demonstrate simple Ca®* oscillations, periodic and ape-
riodic bursting and chaos under variation of parameter values A model proposed
by Kummer et al [90] uses variables for cytosolic Ca?*, endoplasmic Ca?t and the
concentrations of active subunits of a G-protein and active PLC This model shows
particularly good agreement with experimental observations in two respects First,
each oscillation period starts with a large, steep spike followed by a number of pulses
of decreasing amplitude around an elevated mean value Second, varying the model
parameters, one finds that the difference in stimulation nature can induce (periodic
or aperiodic) bursting or regular oscillations (see Figure 2 16 for an example of typical

chaotic bursting)

[Ca™1 T}

20 40 60 B0 100 120
t(s)

Figure 2.16 An example of chaotic bursting wn the Kummer model [90]
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Summary

In this chapter we have described the mamn components in a single cell such as the
ER/SR, cytosol, calcium receptor channels and pumps that are involved 1n the regula-
tory mechanisms of cellular Ca?* dynamics. We have also discussed some of the main
theoretical models proposed for intracellular Ca?* oscillations (for further reviews see
[54, 85, 143]) A numerical bifurcation analysis of these models shows that the gener-
ation of Ca?* oscillations occurs 1n a similar fashion under parameter variation, even
though the model equations differ in their particular forms. We conclude that the
major mechanism for generating oscillations in system with IP3R 1s fast activation of
IP;R by IP; and slow mactivation by Ca?t The extension of these basic models may
lead to the formation of more complex pattens of Ca?* oscillations such as bursting

and chaos observed experimentally However, we do not consider these types of Ca?*

signals 1n this thesis




Chapter

The De Young Keizer model

In the preceding chapter, some of the standard models underlying Ca?* oscillations
and a review of their properties were introduced One of the more popular of these
15 the DYK model [175] based around a detailed description of the dynamics for
IP;Rs Firstly, this model makes 1t plausible that the experimental activation and
mactivation by cytosolic Ca?t of the IP; receptor/channel 1s sufficient to produce
oscillations m calcium concentration Secondly, the complete mechamism mvolves
only a single internal pool of Ca?*, the ER/SR It 1s believed to be the first model
that explains oscillations on the basis of only the IP3 receptor/channel and a single

Ca?* pool

The present chapter 1s dedicated to a study of travelling wave behaviour in this model
using a systematic numerical bifurcation analysis For the most recent set of exper-
imentally determined parameter values the model supports an interesting form of
bifurcation structure mcluding global bifurcations We also present a limear stability
analysis of solutions and a kinematic theory of wave propagation based around dis-
persion curves for periodic waves This allows us to predict the existence of travelling

waves which connect periodic orbits The prediction 1s subsequently confirmed with

36
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direct numerical simulations

3.1 Reduction of the De Young Keizer model of Ca?*

release

The model developed by De Young and Keizer [175] describes IP3 dependent Ca*t
oscillations between the ER and the cytosol As the model has been explained in detail
in the previous chapter, we give only a brief description here The IP3R model has
eight possible receptor states Transitions between these states are shown in Figure
2 7, where p and ¢ denote IP3 and Ca?* concentrations respectively Seven differential

equations based on mass-action kinetics together with the constramnt >, . 2,0 =1

.k
(conservation of probability) form a mathematical model of the IPsR The model
assumes that IP3R releases Ca®* only when three subunmits are in the state zq1g,
2 e with one IP; and one activating Ca?t bound. Thus the open probability of the
receptor 15 x3,, The set of differential equations for the receptor states are combined
with the differential equation (2 16) for Ca?* dynamics describing fluxes from the ER

to the cytosol (Ca®t release from IP3Rs and constant leakage) and back (the action

of SERCA pumps)

The complexity of such a detailed receptor model provides motivation to simplify the
model with the retention of its essential properties One simplification of the DYK
model [175] was suggested by In and Rinzel [96] who have shown that the original
full model can be approximated by an excitable system of Hodgkin-Huxley form [71]

The Hodgkin-Huxley equations are the first quantitative model of the propagation
of an electrical signal along a squid gilant axon The model of Hodgkin and Huxley
was ongmally used to explain the action potential in the long gant axon of a squid
nerve cell, but the 1deas have since been extended and applied to a wide vartety of

excitable cells (see [85] for an excellent review) The experimental observation that
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IP; and Ca?" bind quickly to the activating site gives rise to the assumption that the
receptor 1s 1n a quasi-steady state with respect to IP3; binding and Ca?* activation
(86, 96, 161] Thus 1s implied by the parameter values for the detailed receptor model
shown in Table 2 1, where k, and k_,, ¢« = 1, 3, 5, are significantly larger than k,
and k_,, 1 = 2, 4 Thus, the receptor states can be arranged into two groups those
without Ca?* bound to the mactivating site (zono, Zo1, Z1ge and 2430) called group I
states, and those with Ca?* bound to the inactivating site (zgo1, To11, T101 and Z111)
called group II states Because the binding of IP; and the binding of Ca%* to the
activating site are assumed to be fast processes, within each group the binding states
are at quasi-steady state with respect to transitions within the group The differential

equations governing the states in group I are

d
‘3‘;00 = —Zooo (ksc + k1p + ksc) + k12100 + k—aZoo1 + k—s5Zo10, (31)
dz
d]..tm = —xloo(ksc + k_]_ + kzc) + k]pa:OOO + k—2-73101 + k‘E‘r‘EllO? (3 2) |
d |
Tiotm = —xgolk_s + k1p + ksc) + k12110 + k_sTon + ksczogo, (33) |

together with the equation for the mmactivation variable called h

h = Z::U%JO (3 4) :
.3

Assuming that the group I binding sites are all i quasi-steady state, the quasi-
steady-state equations are obtained by setting dzgoe/dt = dzige/dt = dzgig/dt = 0 |

and neglecting slow terms Thus,

Tooo(ksc + kip) = k_12100 + k—52Z010, (3.5)
Zoo(ksc + k_1) = kipzooe + k-sZ110, (3.6)
Towo (k-5 + k1p) = k_1Z110 + ks¢Togo (3.7)

These equations may be solved together with the constraint (3 4) to give the group I
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state probabilities which are found as

T o+ K)(c+ K5’ O ¥ K e+ Ks)'
Kich ch
Zow = i d (3 9)

P+ Kt Ks) T Ryt Ks)

where K, = k_,/k, An 1dentical procedure applied to the group II receptor states

gives the quasi-steady-state equations for that group

— I(SJKE(l — h) _ I(sp(l _ h)

Foot = (p+ I(S)(C + 1{5), Tio1 = (p+ 1(3)(64- 1{5)’ (3 10)
_ 1(30(1 — h) _ pc(l _ h)

To1 = (p+ K3)(c+ Ks)’ Ti = 71 K3)(c+ K3) (311)

To derive a differential equation for h, we add the differential equations for the group
I states with the inclusion of transitions between the group I and group II states and

substitute all the quasi-steady-state expressions to get

% _ [k op + k_4I{3 (k_‘;KlI{z +k_ 21{4}9)
dit N o+ Kg K2K4 P+ I{l)

h (312}
Thus, by regarding the receptor as bemg in a quasi-steady state with respect to IP;
binding and Ca?" activation the seven differential equations describing the kinetics
of IP3 receptor 1n the full DYK model 1s reduced to just one Therefore, the reduced
model 1s given by the two differential equations, one of which 1s the Ca?* dynamics
equation (2 16) with

pch

T110 = (3 13)

and another is the differential equation (3 12) for A. The dynamucs of the inactivation
variable A is reminiscent of that of the gating variables in the Hodgkin-Huxley model

of nerve membrane [71] and can be written 1n the form

7(c) i? hoo(c) — by (3 14)
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where

hoo(c) = a—(jT/,; 7(c) = m (3 15)
with

ale) = (k“‘gﬁz(;ff{g“p o 5o ———————k'gi j: ];(‘:Ke' (3 16)

In a certamn range of the parameter p, the system has an excitable steady state, 1 ¢
small (subthreshold) perturbations of the steady state decay exponentially, but larger
(superthreshold) perturbations result 1n a large transient before the return to steady
state In Figure 3 1 we show the nullchines (de¢/dt = 0, dh/dt = 0) of the reduced
DYK model for the fixed value of p and the phase trajectory that corresponds to the
periodic solution The intersection of two nullchines corresponds to the steady state
value The typical periodic behaviour 1s represented 1 Figure 3 2 showing that the

oscillations are very spike-like

Oscillatory behaviour m the model 1s most easily summarnised with a bifurcation
diagram, using p as the mam bifurcation parameter A numerically constructed bi-
furcation diagram of the reduced model 1s shown in Figure 33 The curve of steady
states 1s folded, so that for a small window of p values there are three solutions For
high and low p there 1s only stable fixed pomnt For the parameter values of p where
the system has an unstable steady state periodic oscillations occur and the figure
shows the maximum and mmimum of the periodic orbit In fact there are two dis-
connected branches of stable periodic orbits, both of which arise in a HC bifurcation
and end n a supercritical HB Oscillations of Ca?* first occur with a large period
and a very spiky profile As p increases the period of oscillations rapidly decreases,
as llustrated m Figure 34 Note that the bifucration diagram of the reduced DYK
model 1s in good qualhtative agreement with that of the full model shown in Figure

29 The main difference 1s in the amplitude of the hmt cycle oscillation close to

the second HB In the full DYK model the amplitude 1s shghtly smaller than in the
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Figure 31 Nullchines (solid curves) and the phase trajectory (dashed curve} corre-
sponding to the periodic solution of the model obtained for the parameter value p — 06
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Figure 32 An ezample of a typical pertodic orbit of the receptor model for p = 06
and the wmatial values (¢, h) = (0 24,0 61)
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reduced model Importantly, the reduced model captures the essential features of the
full model, namely a window of oscillations between two HBs, with three fixed points
near the first of these This suggests that the assumptions used 1in the mathematical

reduction process are both realistic and effective for ssmphfication of the DYK model

Figure 33 Bifurcation diagram of the reduced DYK model Curcles denote amplitude
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3.2 Travelling waves in the model

As we discussed earhier in Chapters 1 and 2, oscillations of intracellular calcium do
not often occur uniformly throughout the cell, but are organised nto repetitive intra-
cellular waves [1, 9, 79, 136] In large cells such as Xenopus oocytes, the intracellular
waves develop a high degree of spatial organisation, forming concentric cireles, plane

waves, and multiple spirals (92, 93, 94|

The observed Ca®* waves in many types of cells are beheved to be the result of Ca?*
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Figure 34 The period of the periodic orbit in the DYK model as o function of p

diffusion between Ca?t release sites Although travelling waves cannot be explamed
by diffusion 1 all types of cells, it 1s a reasonable assumption for modelling mtra-
cellular Ca?* waves According to this hypothesis, the cell cytosol forms either an
excitable or an oscillatory system In either of these cases the hinking of release sites

by diffusion can lead to coordinated waves of high Ca?* concentration

In actual physiological systems, cytosolic calcium 1s strongly buffered in the cell Free
Ca®* 10ns typically constitute only 1% of the total calcrum n the cytosol and mea-
surements 1n cells indicate that buffer-bound calctum 1s at least an order of magnmitude
less mobile than free Ca?t [91] Generally speaking, these buffers are poorly mobile,
and they reduce both the amount of {ree calcium and its ability to diffuse Detailed
models of calcium buffering have been studied by some researchers (80, 117, 119, 138}

Nowycky and Pmnter [119)], in particular, did a highly detailed study of the effects of

various types of calcium buffers
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‘The chemical reaction for calctum buffermng can be represented by the reaction
P+ Ca?t = ;T (317)

where P 1s the buffering protein and B 1s buffered calcium If we let b and ¢ denote
the concentration of buffer with Ca?t bound and the concentration of free Ca®*
respectively, then a simple model of calcium buffering 1s given by the followng system

of equations

g_‘; ~ DVPc+ f(0) + kb — kyclb, —b), (318)
% — DV —k_b+ kyc(b —b), (3 19)

where k_ and k, are the rates of Ca?* release from the buffer and uptake by the
buffer respectively; b, 1s the total buffer concentration, and f(c) denotes all the other

reactions mvolving free Ca?* (for example, channel characteristics, Ca?* pumps, Ca?*

leak etc) D, and Dj; define the diffusion coefficients of Ca?t and buffer accordingly.
If the buffer has fast kinetics, its effect on the intracellular Ca®t dynamics can be !

simply analysed. Assuming that k_ and &k, are large compared to the time constant ‘

of calaum reaction, we take b to be in the quasi-steady state k_b — kye(by — b) =0,
and so
b 2 Kk ks (3 20)
K+c
It follows that |
6C+g§ (1+V)gt Vz(Kbt%c)? (321) |

Combinming this equation with (3 18) and (3 19), we obtamn

& - (e v )
- HLV ((Dc + D)V — 2D "V|v 2+ f(e )) (322)

-
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We see that nonlinear buffering changes the model and that Ca®* obeys a nonlinear
diffusion-advection equation, where the advection 1s the result of Ca** transport by
a mobile buffer [169] The effective diffusion coefficient 1s a linear combination of the
two diffusion coefficients D, and D, and lies somewhere between the two. If the buffer
1s not mobule, 2 ¢ Dy = 0, then (3 22) reverts to a reaction-diffusion equation, with a

reduced diffusion ceoefficient.

Models with fast, immobile and unsaturated buffers have been considered by a number
of authors (85, 91, 152, 156, 169] There has been relatively little work done on Ca?*
transport by mobile buffers However, 1t 1s known that inclusion of mobile buffers does
not tend to eliminate an existing wave [152], although 1t can cause the appearance
of two stable waves 1 some cases [148] Laittle else 1s known about their effects on
quahtative wave properties In this thesis we 1gnore the complicating effects of CaZt
buffers assuming that calcium buffering 1s included impheitly in the model (in both
the cytosol and the ER) by treating all fluxes as effective fluxes, and using a small
diffusion coefficient for Ca?*. This 1s a realstic assumption 1n light of recent work
that indicates buffer mobihty has only a limited effect on wave properties [155] Thus
it is hikely that inclusion of mobile buffers would have no qualtative effects on our

results

For the generation of Ca?* waves i the model we add a term DVZc to the right
hand side of equation (2 16), where D 1s an effective diffusion coefficient. We shall
restrict our attention to one spatial dimension for a detailed understanding of wave
propagation using a mixture of analysis and numerics We also ignore any effects
of heterogeneity within a sigle cell Though this assumption cannot be justified on
physiological grounds, the effects of discreteness on wave propagation are unlikely
to be understood until wave propagation m a homogeneous medium 1s understood

Later, in Chapter 5, we relax the assumption of homogeneity

For travelling waves with fixed velocity s 1t 18 converient to rewrite the DYK model
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1n the comoving reference frame where £ = r — st A transformation into this frame

yields

dc = DOFc+ sdgc+ fi(c, h) (3 23)

Oth = sOch + fa(c, h), (3 24)
where

3 r3c?
fl(C, h) = (T'lll?no + r2)(cer — C) — C—2+_k§, (3 25)
~he(c)—h
fale, h) = — (3 26)

In the comoving frame, travelling waves with speed s correspond to stationary solu-
tions defined by ;¢ = 8;h = 0 Hence, they can be found by studying solutions to
the travelling wave ODEs

de dw dh
i W, DE = —sw — fi(c, h), SE

Travelling pulses correspond to a homoclinic orbit in these equations, whilst periodic

= —falc, h) (327)

wave-trains correspond to limit cycle oscillations Fixed points of the travelling wave

ODEs correspond to homogeneous states of the spatially extended model

We present a numerical analysis of the travelling wave ODEs for the DYK model given
by (3.27), treating p = [IP3] as the physiologically significant bifurcation parameter
Homochnic orbits are expected to arnise as the hmit of periodic orbits as the period
tends to mnfimity All numerically computed homoclinic orbits presented here are just

periodic orbits with large period, which for practical purposes we take as 10*

3.2.1 Bifurcation analysis

For any fixed value of s we can construct the bifurcation diagram similar to that m

Figure 3 3 and find the values of p at which Hopf bifurcations occur. These bifurcation

points can be continued 1n the (p, s) parameter plane In Figure 3.5 we trace the locus
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of Hopf bifurcations labeled HB, as well as three branches of homochnic orbits labeled
HC defiming solitary travelling pulses The Hopf bifurcations curve forms a distinct
loop since the curve of steady states of Ca?* oscillations has the S-shape as shown in
Figure 33 The behaviour of the system as s — o0 is exactly that of the model in the
absence of diffuston, as expected from the general theory [103] Thus, for large values
of s there are two Hopf bifurcations and only two homoclinic bifurcations (labelled
(B) and (C)) The branch of periodic orbits that originates on the right most Hopf
bifurcation ends mn a homochnic bifurcation on branch B, while the branch of periodic

orbits arisig from the left most Hopf bifurcation ends in a homoclinic bifurcation on

branch C

For ntermediate values of s only one of the three homochnic branches (labelled (A))
occuples a signficant window of p values This homoclinic branch arises from the
branch of periodic orbits that originates on the nght most Hopf bifurcation and
solitary waves on this branch fail to propagate if p is too small We now discuss some
aspects of this bifurcation diagram which are mnteresting from a dynamical systems

perspective

First of all, we take a closer look at the upper part of homochnie orbit branch A
and show a magnified view of Figure 35 in Figure 36 The homoclinic branch A
1s found to end at a T-pomnt [61] This 1s a point where a heteroclnic cycle exists
between a saddle and a saddle focus Note that global bifurcations in this model can
be directly linked to windows of parameter space where there are three fixed points.
Previous work by Glendinning and Sparrow [61] predicts the existence of a winding
homoclinic branch near a T-pomnt This phenomenon 1s clearly seen 1n Figure 3 6,
where the homoclinic branch B connects to homoclinic branch A 1n a sprral Figure
3.7 (A and B) shows the heterochnic cycle between two fixed points at the T-pomnt a
whole cycle and magnified view of the cycle in the neighbourhood of the saddle focus

and the saddle point The spiral of homoclinic orbit occurs when the homoclmic orbit
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Figure 35 Two-parameter bifurcation duagram of the travelling wave equations HB

the curve of Hopf bifurcation pownts, HC' branches of homoclinic orbits

begins and ends at the saddle point The spiral path of the branch of homoclinic orbit
18 a result of the spiral nature of the trajectory in the neighbourhood of the saddle

focus

Next we examine the lower part of homochnic orbit branch C using the magmfied
view presented in Figure 38 As the speed of travelling wave decreases, folds in the
homoclimie branch C occur before the branch intersects a curve of Hopf hifurcation
pomnts Balmforth et al [5] have shown that the resulting oscillations 1n the branch of
homoclinic ortats correspond to homoclinic orbits that make multiple loops around
one of the other steady states before returning to the starting pomt Just such an
orbit 1s presented in Figure 3 9, which 1s taken from branch C at a point near where
the branch mtersects the locus of Hopf points For comparison Figure 3 10 shows a

homoclinic orbit from branch C before the branch starts to fold. This orbit goes once

around another steady state before returning to the rest.
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Figure 36 Magnified view of the upper part of Figure 3 5 where homoclinic branch

A connects to homoclinic branch B at a T-pownt

This form of Wifurcation structure has also been observed by Sneyd et ol [154] 1z a
numerical analysis of travelling waves 1n a model of pancreatic acinar cells We briefly
present the main physiology of their model The model of Sneyd et al assumes that
there are two different shut states, $ and S, and Ca2* regulates the mterconversion
of the receptor between these two states Similary, there are two open, O and 5, and
two mactivated states, I; and :’1 Their model of an IP3R 15 based on the binding
diagram shown 1n Figure 3 11, where p and ¢ denote IP; and Ca?t concentrations
respectively Since IP3 can bind to either shut state, and convert 1t to an open state,
the concentration of Ca?* will determine the rate at which receptors are opened by
IP;. In a simular fashion, [Ca**| controls the rate of receptor mactivation, and the
rate of recovery from inactivation. By using a standard assumption that opening
of the receptor by IP3 binding 1s a fast process compared to receptor mmactivation
and recovery from mactivation, the model of Sneyvd et al reduces to two equations

Similar to the Li-Rinzel reduced DYK model, one equation expresses conservation

of calcium 1n the cytoplasm, and the other describes the gating dynamics of the
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Figure 37 The heteroclinic cycle at the T-pomnt (A) the whole cycle, (B) magnified
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Figure 38 Magnified mew of the lower part of homochnic branch C, showing the
folding of the branch as it approaches a locus of Hopf bifurcation points
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Figure 3 11: A schematic diagram of the full receptor model of Sneyd et al [15{]
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IP3R The concentration of Ca?* 1s affected by diffuston, IP3Rs, caletum pumps, and

leakage,? e
atc = Dagc + JT(C! h’:p) - JP(C) + Jh (3 28)

with the diffusion coefficient D; J;(c, k, p) denotes the influx through IP3Rs, J,(c) the
ATPase-driven Ca?* flow from the cytoplasm to the ER (SERCA pumps) as in the
DYK model (see equation (2 16)), and J; indicates the constant calcium leaking into
the cell The vanable h = hA{z,t) in the model of Sneyd et al represents the fraction

of the IP;Rs that are active The portion of active IP3Rs varies according to

— oy ¢1(c)da(c)p
aih' — ¢3(C)(1 h) ¢1(C)p+ ¢ﬁ1(C)’ (3 29)
where
R
¢$1(c) = %, $_1(c) = Z;Jr”c, (3 30)
a(c) = %&‘E, $3(c) = ;:i*”c (331)

and R, =r_,/r, for : = 1, 3, 5. Their model assumes that the IP3R 1s made up of
four independent, 1dentical subunits and can only release calcium when all four of its
subunits are open. Thus the influx of calcium 1s proportional to the probabihity that

each of four subunits are open

B phe(c) !
Jr(c’ h p) B kf (¢1(C)P + ¢-1(C)) (3 32)

Although the structure of IP3R differs to the one 1n the DYK model, the Sneyd et
al model possesses a qualitatively similar ifurcation structure Sneyd et al have
discussed the bifurcation diagram in some detail, although without an exphcit deter-
mmation of wave stability We further develop their arguments and determine the
stability of numerically constructed solution branches in the DYK model using linear

stability analysis. Our results are consistent with the recent paper of Romeo and
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Jones [135], who nvestigate the stability of travelling pulse solutions in the Sneyd
et al model of pancreatic acinar cells [154] Note that our stability analysis in [165]

pre-dates that of Romeo and Jones [135]

3.2.2 Stability

Linearisation of (3 23) and (3 24) around a stationary (travellmg wave) solution {¢o(£),
ho(€)) and considering small perturbations of type (r(€,t), s(€,¢)) « (r(£), s(£)) exp(At)

yields an eigenvalue problem given by

MmO o [FO] [pErser e e |
5(6) Be) s+ Ba(f)

where

A1(£) = Befi(co(€), ho(€)),  A2(§) = Bnfilco(§), hol€)),
Bl(‘f) = 8cf2(cﬂ(§)v hD(‘E))! B2(§) = 8hf2(cﬂ(£)! hg(f))

The hnear stability of a travelling wave 1s then determined by an examination of the
spectrum of the Jacobian M 1n (3 33) The eigenvalues associated with perturba-
tions around the homogeneous steady state (g1ving the essential spectrum) can easily
be found by substituting solutions of the form u(€,t) = exp(At + 1k€)uo into the
linear equation v, = Mu. Hence, the continuous spectrum of M 1s defined by a

characteristic polynomial of the form det[M (k) — AI] = 0, where

—DE? +isk+ A A
M(k) = R A ? (3 34)
B1 18k + B2
Here Ay, A2, By and B; are the forms taken by A;(£), A2(€), B1(€) and By(€) when

(co(£), ho(€)) = (€, h) 15 a homogeneous steady state Assumung that Re(A) = o and

Im(A) = 3, gives us the following system for the continuous spectrum

—DByk?* 4 Dk*c — s°k® + 25k + A1By — (A1 4+ Boa+a® — 32 — 4;,B, =0
~Dsk® + Dk*8 + sBok — 2skae + s Ark — (A1 + By)B + 208 = 0,
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which may be solved simultaneously to give the pair (a(k), 3(k)) To find the full
spectrum of the linearised system it remains to determine the point spectrum of M
In particular the eigenvalue spectrum of a single pulse 1n an mfinite system contams
a continuous part which can be identified with the spectrum of the stable rest state,

as well as a discrete part related to eigenfunctions localised near the pulse solution

Since, 1n general, solutions ¢g(€), ho(€) and the eigenfunctions of the Jacobian M
are not available 1n closed form, the eigenspectrum of M has to be determined nu-
merically We have used Fourier spectral methods on a bounded domain with a dis-
cretization of N = 28 points to do preasely this A brief description of these methods
1s given m Appendix A 3 and a more detailed discussion may be found m [166] and
[170] The zero eigenvalue, which always exists due to the translational symmetry
of the problem, 1s used as a numerical accuracy check and has been obtamned with a
precision of 107* Figure 3 12 shows the eigenspectrum for travelling pulse solutions
on the upper and lower part of homoclinic branch A 1 Figure 35 We see that, in
both cases, the continuous spectrum lies completely 1 the left complex half-plane
The discrete spectrum for the solution on the upper branch remains in the left half-
plane However, the discrete spectrum for the solution on the lower branch crosses
the imaginary axis and has an 1solated eigenvalue 1n the right half-plane Hence, we
conclude that of the two possible coexisting solitary pulses 1t 1s the faster one that is

stable

3.2.3 A kinematic theory of spike trains

By treating the period of oscillations as a parameter it 1s also possible to construct
dispersion curves showing the speed of a wave as a function of its period In Figure
3.13 we present a typical dispersion curve, s = s(A), for a periodic orbit A numerical

calculation of the eigenspectrum of M shows that 1t 1s the faster of the two branches

that 1s stable Knowledge of dispersion curves opens the way for the development of
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Figure 312 (A) FEwgenvalues of the linearised system wn the complex plane for the
pulse solution at p = 02363 and s = 2 (B) Ewgenspectrum at p = 02408 and
s =06 The solid lines correspond to the analytically obtamned continuous spectrum

at the same parameter values
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Figure 3 13 The dispersion curve for periodic travelling waves when p = 0 2622

a kinematic theory of regular wave propagation that attempts to follow irregularly
spaced spikes of activity [132] Miller and Rinzer [113] considered mpulse propa-
gation along the Hodgkin-Huxley cable equations [71] using numerical experiments
and deduced that the kinematic approximation provides a reasonable estimate for the
variation 1n mterspike intervals and the influence of dispersion durmg propagation
Using their approach the dynamics of Ca®* spikes are considered to evolve according

to

drm 1 n _ qm n—1
T A" (z) = T™(z) — T" (z), (3 35)

where s( ) 1s the velocity as a function of interspike interval given by the disperston
relation for periodic wave trains The tune at which the nth spike occurs at position

z 18 defined 1n terms of a threshold parameter ¢, as

dc(z, t)

T™z) = mf{ t | c(z,t) > e, g

>0, t > T \(z)} (3 36)

We shall call A®(z) the instantaneous interspike interval (IST), as 1t measures the time

between spikes of activity at position z When the instantaneous ISI 1s constant, we
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recover a singly periodic wave Importantly, this framework 1s 1deally suited for the

analysis of irregular spike trains

For linear stability analysis we consider local perturbations of the firing times as
T*(z) — T™(z) + g"(z) A general propagating wavetram 1s stable if under the
perturbation the system converges to the unperturbed solution during propagation
(ze , g"(z) > 0asz — o0) Inserting the perturbed solution m (3 35) gives

= @ -l (a0

Thus, a lnear stability analysis of the kinematic equations shows that solutions are
stable 1f s'(A™) > 0 for all n. For a periodic orbit with A™ = A for all n the stability
predictions of the kinematic theory (solutions are stable if s'(A) > 0, 1 e on the upper
branch) are in complete agreement with those obtamed from the eigenspectrum of
M Interestingly 1t has been shown that when the stable branch of the dispersion
curve has an exponential shape then there are solutions to the kinematic equations
that describe stable connections to periodic orbits [35] This form of wave may also
be regarded as a travelling front 1 the ISIs such that A™(z) = A{kz — wn) for some
£ and w where A( ) has a sigmoidal shape To confirm this prediction we perform a
direct numerical simulation of the DYK model Since we are looking for a travelling
front in the instantaneous ISIs we choose 1mtial data (at one end of a cell of length
L) with a spike train that has a step change 1n the interspike intervals (changing from

Ay to Ag) after n* ISIs of Agy)) given by

*

I() =) Plt-nAw)+ Y, Plt—n'dg—(n—n")Agy) (3 38)

n=n*+1
with general rectangular stimulus of the form I(t) = >° P(t —T™(0)) with P(t) =
Io8(t)8(m4 —t), where Iy 1s the magmitude of an apphed pulse, 74 1ts duration and 6(z)

15 a step function with 8(z) = 1 for z > 0 and 1s zero for z < 0

Figure 3 14 gives an illustration of this signal An example of direct numerical sim-

ulation 1s shown in Figure 3 15 We can see a transition from period Ay to Ay as
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Figure 3 14: A stimulus signal I(t) for a connection between orbits with differing
wmstantaneous ISIs The follounng parameters are used Iy = 35, 74 = 1, L = 200,

A(l) - 30, A(Q) = 50, n* = 200

time increases Another way to visualise these connections between periodic orbits 1s
to plot the ISIs at various values of x as a function of the number of spiking events
at those position, as shown 1n Figure 3 16 (where we have used values of Ay) to Ay
that best 1illustrate the sigmoidal nature of the front) Here, 1t 1s clearly seen that the
step change can smooth out to form a transition layer of the form predicted by the

kinematic theory

3.2.4 Period doubling bifurcations

Using direct numerical simulations Sneyd et al [154] also show that secondary waves
and 1rregular travelling wave behaviour can arise near the pomnt where homoclinic
branch A disappears at a T-point Such waves are also expected mn the DYK model
Sneyd et al conclude that homochnic branch A 1s the one that generates physiologi-
cally significant travelling waves. Our stability analysis would also suggest that one

may restrict attention to the faster branch However, when broadening the discussion
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Figure 315 Stimulation of a cell of length L == 200 and p = 026 with a spike

traan wnput at x = 0 with mstantaneous IST changing from Any = 30 fo Ap) = 50

after 200 spikes Dynamucs of Ca®t 15 shoun at a positron of 3L/4 from the pownt of

stimulation, showing a connection between perrodic orbits wnth ISI Ayy and A
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Figure 3 16. Travelling front i the ISIs, showing a connection between periodic orbits

Inatal data 15 wn the form of a spike tran with a step wn the ISIs after 200 spikes from

Aqy = 30 to Ay = 31 Here, p = 026 and ¢y, = 03 Data 15 represented at the
following positions 0, L/4, L/2 and 3L /4, unth L = 200
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of waves to cover periodic travelling waves 1t 1 possible that there are other interest-
ing bifurcation structures present With this in mind we turn our attention to period

doubling bifurcations of the orbits arising at Hopf bifurcation points in Figure 3 3

We have found that 1t 1s possible for period doubling bifurcations to occur for slow
waves arising when branches of periodic orbits connect to each other as in Figure
317 In this figure, period doubling pomnts of a primary periodic orbit are labelled
PD1, period doublings of secondary orbits as PD2 etc Orbuits of type PD2 and PD4
are destroyed 1n global homochnic bifurcations n favour of homochnic orbits which
we denote as HC2 and HC4. Figure 3 18 (A, B and C) demonstrates typical examples
of double periodic orbit and double homoclinic orbit as well as 4-periodic solution It
15 likely that there exists a famly of 2n-periodic orbits which arise from n-periodic

orbits (through period doublings) and end in 2n-homochnic bifurcations

L)
>
o

0022

=
.,
4.

0018 |

0014 |

001

03 0305 031 0315

Figure 3 17. Buyfurcation diagram of the reduced DYK model for s =02 and D =1
shownng period doubling bifurcations HB Hopf bifurcation, PDn  period-doubling of

an n-periodic orbits, HC2 homochnic bifurcation to a doubly periodic orbit

In Figure 3 19 we show the branches of 2- and 4-homoclinie orbits HC2 and HC4
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Figure 3 18 Ezamples of (A) double periodic orbit for p = 03034, (B) double homo-
clinic orbat for p = 0306 and (C) 4-periodic orbit for p = 03055 and s =02
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together with the lower part of homoclinic branch A This figure suggests the pos-
sibility of a homoclinic-doubling cascade arising from the unstable solitary pulse of
branch A Since, however, these bifurcations are those of an unstable wave they are

not expected to be physiologically sigmficant

034}
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027 028 029 03 0131

Figure 319 Two parameter hifurcation diagram of the travelling wave equations
showing homoclinic-doubling cascade HCn branches of n-homochnic orbits; HB
Hopf bifurcation, PDn  period-doubling bifurcation curves of n-pertodic orbits (dashed

curves)

Summary

In this chapter we have presented a detailed numerical bifurcation analysis of travel-
ling waves 1n the reduced DYK model of calcium release The hinear stability of these
waves has been found by numerically solving an appropriate eigenvalue problem A
by-product of this mvestigation 1s the observation that this model has qualitatively
the same dynamics as the recently mtroduced two-state model of IP3 receptor dy-
namics for pancreatic acinar cells [154] We have also presented a kmematic theory of

wave propagation based around numerically computed dispersion curves for periodic
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waves We have used this to predict the existence of a non-periodic wave that may

be regarded as a travelling front that connects two different periodic orbits Direct

numerical simulation of the DYK model has confirmed this prediction




Chapter I

The continuum Fire-Diffuse-Fire model

The analysis of travelling waves, even in reduced DYK model presented in the previous
chapter, 1s typically only possible with the use of numerical bifurcation techniques In
this chapter we 1ntroduce a much simpler FDF type model which provides an 1dealised
model of Ca?t release within living cells This model was originally intended as a
model of cardiac myocytes in which calcium release occurs via RyR Ca?* channels
located 1n a regular array in the SR [88] The discreteness of release sites leads to a
wave of increased Ca?t concentration that travels with a lurching quality (saltatory
propagation) However, one of the major successes of the FDF model is that it can be
analysed both in the discrete and continuous hmits This chapter 1s concerned with
the continuum description where waves propagate with a constant profile Saltatory

waves will be considered 1 Chapter 5

We generalise the original FDF model to incorporate dependence on IP3 concentra-
tion and also refractoriness of release sites This allows a direct comparison between
numerically obtained properties of the DYK model in Chapter 3 and new exact ana-
lytical results for travelling waves in the FDF model We demonstrate that travelling

wave solutions of the continuum FDF model exhubit many qualtative and quanti-

65
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tative features of the waves we have described for the DYK model under parameter

variation

4.1 The Fire-Diffuse-Fire model

The propagation of Ca2* waves in cardiac myocytes are often along the longitudi-
nal axis where Ca?* release sites are aligned in regular arrays with a characteristic
separation of ~ 2um This structure of cardiac myocytes 1s amenable to modelling
and leads to an idealised model of spark-mediated Ca?* waves (FDF model), onig-
mnally mtroduced by Keizer et al [88] They suggested a simplified model of Ca?*+
release that mimics the properties of CICR from 1solated sites to explore the nature
of saltatory wave propagation In this model a site releases Ca?t instantaneously
("fires”) when the value of [Ca®*| at the site exceeds a threshold value To mimic a
long-lasting refractory state, once a site has released Ca?*, 1t can no longer fire again
The release sites are located with a fixed separation d and Ca?* released at one site
diffuses contimuously with an effective diffusion constant I}, due to the presence of
myoplasmic buffers The original FDF model was decribed by the single-evolution

equation

Ju
8t_D_ —25:1:—:12z (t—t,)0(t + 718 — ), (41)

where u(z,t) 15 the average concentration of calcium, & 1s the Dirac delta function,
©( ) 1s the Heaviside step function (©(t) =0 for t < 0, ©(t) = 1 for £ > 0), ¢, is the
first time at which the :th site takes on the threshold value, o 1s the source amplhitude
and 7g 1s the "rise time” for the receptor (2 e , the length of time the receptor 1s open
during a relcase event) In contrast to the kinetic biophysical models, the FDF model
leads to analytical expressions for the wave shape and the wave speed Moreover, this
model reproduces the full range of wave propagation, from saltatory to continuous,

whereas homogeneous reaction diffuston models predict only continuous propagation

We 1llustrate this in Figure 4 1 where we show the propagation of continuous and
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saltatory Ca?' signals in the original FDF model In panel A, the time constant
for Ca®t release TR = 1 s and the propagating signal 1s a travelling front Panel
B presents a simulation using 7r = 10 us where spark-like Ca?* release leads to a
propagating signal that 1s distinctly saltatory In this model the speed of the wave
front 1s determined by the time 1t takes Ca®' released by the site at the front to
diffuse to the next active site and raise the value of [Ca®*] there to the threshold
Note, that the continuous wave travels at ~ 113 pum/s while the saltatory wave
travels at ~ 67 um/s The long duration of Ca?* release in the continuous case
appears to slow the velocity of the propagating signal The works of Keizer et al [88]
and other researchers [44, 126, 127] give a simple criterion for distinguishing saltatory
and continuous propagation modes When D7g/d? < 1, propagation 1s saltatory and
the wave speed 1s proportional to 17 In the saltatory lumt, propagation consists of
1solated bursts of Ca?* that occur as each consecutive site fires When Drg/d? > 1,
propagation 1s continuous, the velocity 1s proportional to \/5, and many sites are
releasing Ca?* simultaneously The effect of Ca?t pumps, which resequester the 1ons
back nto the stores was neglected 1n these studies (assuming that the pumps operate
on a very slow time-scale) The analysis of the FDF model was extended later by

Coombes [34] to mclude linear SERCA pumps

Here we generalise the FDF model to mclude multiple Ca?* release events for de-
scribing more reahistic travelling Ca?t waves The generalised version of the model
sustains both solitary and periodic travelling wave propagation The Ca*" signal 1s
generated by the mechanism of CICR, 2z e the receptor channel is activated at low
cytosolic Ca?* levels and inhibited at high cytosolic Ca®* levels Thus, for low Ca?"
levels, an 1ncrease in Ca®* stimulates a further increase At higher levels the receptor
inactivates and cannot reopen for some time during which 1t 1s in a refractory state
Thus, the release of Ca?* by intracellular stores 1s self-regulating The release events

(Ca?* puffs or sparks) lead to the propagation of traveling waves via diffusion of

Ca?t The model mcorporates descriptions of the two major fluxes between the ER
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Figure 4.1: Continuous (A) and saltatory (B) travelling wave propagations for the
following parameters: D = 30 uym?/s, d =2 um, 0 =5 pM - pm, uy, = 0.1 uM and
Tr = 1 s for panel A and 10 us for panel B.

and the cytosol. The first is due to a pump which drives the Ca*" up the gradient
from the cytosol back into the ER and the second arises when the Ca?" channel opens
and causes a large flux from the ER into the cytosol. Denoting the concentration of
Ca?* ions by wu(z,t), the generalised FDF model is given by the following partial

differential equation

du U Pu o
é?_—aﬁ-D@—l—p(:c)Zn(t—T (), zeR, t>0. (4.2)

m

The decay time 7,4 describes the action of the Ca?" pumps that resequester the Ca?*
back into the stores. Note that in comparison to the DYK model, the model of a
pump is linear and is one of the reasons why the generalised FDF model is mathemat-
ically tractable. The other reason is that there is no explicit inclusion of a receptor
dynamics. Rather, Ca®* puffs are triggered from the release site at position z at
times T™(z), m € Z. These release times are defined in terms of a threshold process
according to

Ju(z, t)

TR) =inf{ £ |l 8 > & 50

=0 =T ). (4.3)




CHAPTER 4 THE CONTINUUM FIRE-DIFFUSE-FIRE MODEL 69

However, as 1t stands the FDF model ignores the significantly mportant process
of being 1n a refractory state and cannot therefore be sensibly used to understand
pertodic travelling waves It 1s of course perfectly satisfactory when studying solitary
waves, since single release events are not affected by refractoriness To remedy this
lack of refractormess we introduce a tune dependent threshold The 1dea 1s to mmuie
refractoriness, whilst retaining analytical tractability, with a threshold which 1s high
just after a release event but gradually decays back to some more normal level Such
a process may be written

uth—h
T

h

+ fyz 3(t — T™(z)), with imtial data h(0) = wup, (44)

where 7 determunes the refractory time-scale and +y 1s some large positive constant
Using this scheme A decays towards a constant threshold uy, at arate 771 and h — ~h,
whenever a Ca?* puff 1s trniggered The function n(t) describes the shape of the puff
and 1s often considered to be a simple rectangle

n(t) = —6()0(rx — 1), (45)

TR

where ©( ) 15 a step function, o 1s the strength of the puff and 75 1ts duration For a
simple continuum model we consider the density distribution of the calcium sources

p(z) = 1 (the discrete FDF model 1s discussed in Chapter 5)

4.2 Solitary travelling pulse

Before discussing periodic travelling waves we first review some properties of solitary
wave propagation 1n the continuum FDF model [34] Solitary travelling waves may be
described 1n the form T%(z) = x/s, where s denotes the speed of the wave Assuming

u(z,t) = u(€), where £ = st — x, gives the following travelling wave ODE

Duge — sug — % = —%@(6)@(8'&5 — &), (4 6)
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where u; = du/dé For travelling pulse solutions which satisfy hmg_, y o u(€) = 0 the

solution to (4 6) takes the form

'4

o etté —0<£<0
u(é) =  ae?é + aget-S o/t 0 < £ < sTR (47)
\C].’4€A_E £ > s7p
with
Ay = e [s + /5% + 4D/Td] (48)
2D

By ensuring the continuity of the solution and its first derivative at £ = 0 and € = s7g

the unknown coefficients o,. , @4 may be found as follows
@ = agi—;[l — g AR (49)
A —A4+STR
Gy = '—013:\:6‘ (4 10)
T A
oy = j—R/\_ W (4 11)
ay = a3l —e ATE] (4 12)

The self-consistent speed of the travelling pulse can be found by demanding that
u(x, T(z)) = ten, ¢ ¢ m the travelling frame system 4(0) = uy, This gives from (4 7)

that the speed of a travelling pulse satisfies the impliait equation

A
Ao — Ay

1= e, (113)

Ue =

where v, = un7Tr/07y It 18 straightforward to show from (4 13) that the speed
of the wave scales with the square-root of the diffusion coefficient [34] Figure 4 2
demonstrates the speed of the constant profile travelling pulse as a function of the
dimensionless threshold parameter u, = uywTr/07y The two waves coalesce at a LP
and propagation failure can result for too large a choice of the threshold parameter

Figures 4 3 and 4 4 demonstrate exactly this When we are in the parameter regime
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to the left of the LP, solitary travelling wave in the model propagates through the
whole cell (Figure 43) To the right of the LP, travelling pulses fail to propagate
and we observe an abortive wave (Figure 4 4) Figure 4 5 demonstrates a numerical
continuation of the LP in Figure 4 2 This figure specifies the area of parameters mn

the (u.,75') plane where stable travelling pulse exists

5 T L] T T

025

Figure 42 Speed s as a function of the dimensionless threshold parameter u, wn the
continuum FDF model for the parameters gy =7 = D =1 A linear stability analysis

shows that the fast branch s stable [34]

4.3 Periodic travelling wave

In this section we consider periodic travelling waves in the generalised FDF model
We construct periodic travelling waves by writing release times m the form T™(z) =
(m + kz)A, where k is the wavenumber and s = 1/(kA) the wave veloaity The
travelling wave ODE 1n the travelling frame co-ordinate system (€ = st — z) 1s given

by equation (46) The periodic travelling wave solution to (4 6) takes the form
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Time (1)

0 5 10 15
Distance (x)

Figure 4.3: Space-time plot of the calcium concentration showing the solitary travelling
wave propagation in the continuum FDF model with the parameters from Figure 4.2

and u, = 0.1.

Time (1)

0 5 10

Distance (x)

Figure 4.4: Space-time plot of the calcium concentration showing the propagation

Jailure of solitary travelling wave in the continuum FDF model with the parameters

Jrom Fligure 4.2 and u. = 0.25.
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Figure 4 5° Continuation of the limat pownt shown wn Figure 4 2 wn the (u, Tgl )

parameter plane

u(§) = u(§ +mA):

Atrg A€
are™Mt + qgetS o /TR 0 < €< sTR
u() = (4 14)

azerd 4 auer-€ TR < € < SA,

with Ay given by equation (48) By demanding continwuty of the solution and 1its

first derivative the coefficients a4, . , oy may be found as follows
o Aps(A—TR)
o = oA (-e ) (4 15)
(o —A) (@A)
_ ar—s{DA-TR)
g = 7 A+ (1-e ) (4 16)
TR (A —Ay) (X2 -1)
b 1 — — AL 8TR
oy = 27 (1—e ) (417)

TR (A= Ay) (B —1)

_ Te A (I—etm)
=~ AT e (418)

The self-consistent speed of the periodic travelhing wave may be found by demanding

u(sA) = b This generates an implicit equation for the dispersion relation s = s(A):
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— AT A=A STR e a—A—STR
" l—e A (L—e?emr) Ay (l1-—e ), (419)
T—7e 27 Do —2y) @F8—1) (O —Ay) (@ A1)

where u, = uy7r/7qc We plot a typical dispersion curve in Figure 4 6, showing a

sinilar shape to that of the DYK model (see Figure 3 13). No attempt has been made
to tune free parameters of the FDF model to obtain a quantitative fit to data from the
DYK (or other) model We mmvoke the model independent kinematic theory presented
earlier to establish that it 1s the faster of the two possible branches that is stable
Moreover, smce the stable branch of the dispersion curve has an exponential shape
stable waves representing connections to periodics are also expected If we neglect
refractoriness and consider a constant threshold the resulting dispersion curve exhibits
unphysical divergent speeds This 15 expected in the absence of a refractory process

since release events can occur arbitranly close in time In Figure 4 7 we 1llustrate an

S
14} stable
1

1
[}
1

06} \ junstable ]

0 2 | i 1

0 5 10 15 20

A

Figure 46 The dwispersion curve obtawned from (4 19) whenu, =02, 1 =2, y=3,

TR=1,Td=1andD=].

example of a periodic travelling wave it the continuum FDF model Solitary pulses

constructed in section 4 2 may also be defined from periodic solution by taking the

Imit A — o0
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Figure 4.7: Space-time plot of the calcium concentration showing the periodic travel-
ling wave propagation in the continuum F'DF model with the parameters from Figure

4.6 and A = 10.

A weakness of the FDF model is that it is independent of IP; concentration, which
as we have seen is an important parameter of the DYK model. To include a notion of
[P3 sensitivity within an FDF model it is natural to modify the threshold parameter,
such that release events are easier to generate in the presence of high IP3;. We suggest
that the level of Ca?* in the ER, c., required to generate a periodic travelling wave
is a good candidate for determining a threshold function wuy, = u(p). In Figure 4.8
we continue Hopf points of Figure 3.5 that define the borders of such a region in the
(p, cer) parameter plane. This figure shows that for small values of IP3 waves fail to
propagate and that lower levels of ¢, are required to generate waves with increasing
[IP3], as observed experimentally. We approximate the threshold function of Figure

4.8 using

B*BP
un(p) =k [U() iR A}'J = C} ; (4.20)

where k = 1, up = 0.48, A = 0.1627, B = 0.5583 and C' = 0.055 are fitted numerically.
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Figure 4 8. Concentration of calcium wn the ER, c.,, as a function of IP3 concentra-

ton, p, mn the DYK model, required to generate travelling waves

The 1nclusion of an IP; dependent threshold level in the FDF model makes 1t sensitive

to IP3 and allows a more direct comparison with results from the DYK model

In Figure 4 9 we plot the wave speed of a pulse as a function of the IP; concentration
In the same figure we plot the homochnic branch A of the DYK model from Figure 3 5
for better visualisation For a comparison between the DYK model and the generalised
FDF model we choose the same diffusion coefficient and adjust the remaining time
and strength scales appropriately A value for 7 18 chosen siumply by readmmg off the
temporal duration of a calcium spike 1 the DYK model The time scale of the hinear
pump in the FDF model is chosen so as best to agree with that of nonlinear pump
term 1n equation (2 16) This term 1s sigmoidal with a slowly varying gradient for
intermediate levels of calcium concentration The gradient 1in this intermediate regime
provides a reasonable estimate for 7y This leaves only one free parameter, namely
k, which we choose 50 as to give the best quantitative agreement of the generalised

FDF and DYK models Note that both curves mm Figure 4 9 are very simular In the
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absence of an IP3 dependent threshold function no such comparison would have been

possible.

HC (branch A)

FDF model
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Figure 49 Speed of the travelling pulse i the FDF continuum model as a function
of [IP3] with k = 017, 7R = 05, 74 = 029 and D = 1 The second curve s the
homoclinic branch A of the DYK model from Figure 3 5

Summary

In this chapter we demonstrated that much of the travelling wave behaviour of the
biophysical DYK model in Chapter 3 can be reproduced by a much simpler FDIF
type model We presented a generalised form of continuum FDF mode] with an 1P;
dependent threshold and a simple refractory process Parameters of the FDF model
are constrained using numerical data from the DYK model The main advantage
of studying FDF type modcls 1s their mathematical tractability A mathematical
analysis of solitary and periodic travelling waves shows the ability of the generalised
FDF model to describe realistic travelling Ca?* waves The analytical tractability of

the model also opens up the possibility to study more reahstic distributions of release

sites and this 1s discussed 1n the next chapter




Chapter

Discrete Fire-Diffuse-Fire model

Our discussion of the FDF model in the previous chapter began with the 1ssue of
cellular heterogeneity in a vartety of cell types The majonity of the spatial whole-cell
models (see Chapter 2) are based on the assumption that the ER can be represented
as a compartment continuously distributed throughout the cytosol Although it can
sometimes be rigorously justified, this assumption 1s made largely for convenience
The 1mages of Ca?t activity in cardiac myocytes confirm the facts of cellular inhomo-
geneity (see Figure 5 1), demonstrating 1solated Ca?t sparks, wave mitiation and a
spark-mediated propagating Ca?* wave Skeletal muscle and cardiac cells are invaded
by T-tubules, which allow communication with the extracellular space T-tubules have
VOCCs allowing the influx of calcium mto the cell in response to an action potential
The RyRs through which calcium is released are located directly opposite the calcium
channels The physical arrangement of calcium release sites means that in these cell
types 1t may not be appropnate to view the release of calcium as spatially umform
In cardiac cells, calcium waves do not normally propagate without T-tubule stimulus
The discreteness of calcium release sites in these cell types prevents the spontaneous

propagation of a calcium wave, which would lead to spontaneous (uncontrolled) mus-

cular contraction This 1s a possible situation i which the discreteness of release sites
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(A)

(B)

(©)

Figure 5.1: Confocal line-scan images of isolated Ca** sparks, wave initiation, and
a spark-mediated propagating Ca** wave in cardiac myocytes. Horizontal scale bar
(space): 5 um except for panels B, C and E in (C) which is 10 um; vertical scale bar

(time): 100 ms except for (C) and second panel in (A) which is 200 ms. (From the
work of Cheng et al. [30]).
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could have major negative consequences For example, 1n hypertension, cardiac cells
compensate for increased pressure by growing larger (hypertrophy). It 1s possible that
in this hypertrophied state, the separation between RyRs and T-tubules 1s increased,
leading to less effective coupling between action potentials and calcium release, and

impaired contraction [176]

The generalised FDF model may be naturally extended to include the discrete nature
of calcium stores within a cell In this chapter we consider the FDEF model defined
i Chapter 4 with a discrete distribution of calcium release sites This simple change
to any continuum model destroys translation invarience and invalidates many of the
standard tools of analysis However, within the FDF framework analytical progress
1s still possible To illustrate this point we investigate how a regular array of release
sites influences the propagation of saltatory travelling waves. Making the further
assumption that release events occur on a regular temporal lattice we simplhfy the
FDF model so that it may be re-written in the language of binary release events We
introduce a dynamics for the release events that are calculated via a thresholding of
the calcium profile at a release site  Thus, under the assumption that release times
occur on some regular temporal lattice the model does not have to be evolved as a
discontinuous PDE with a self-consistent search for the times of threshold crossing
that define release events. Direct numerical simulations are used to show that this
computationally cheap version of the FDF model provides an accurate representation

of the original model

5.1 Spatially discrete FDF model

One of the major advantages of the generalised FDF model given by equation (4 2) 1s
that 1t may be naturally extended to account for saltatory travelling wave propaga-

tion Continuous and discrete limits 1n the model are achieved by specifying the form

of the distribution function of Ca?* release sites p(z) The discrete approximation
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in the FDF model may be obtamed by modelling Ca®* release sites as point sources,
that 1s, an array of Dirac delta functions é(xz — z,), where z, 1s the spatial position of
the nth release site For simplicity we consider an 1dealised set of point sources so that
the function of the distribution of Ca?* release sites 1s given by p(z) = >, §(z —nd),
where d 1s the spacing between stores The general structure of the model 1s given by
the simple schematic diagram of Figure 52 The FDF model provides a caricature
of Ca?t release events which mteract via diffusion of Ca?*t and the triggering of a

CICR-like mechamism Ca?' puffs or sparks m the model are triggered from the re-

puff
u=[Ca?®*|

CiCR a®*
store

Iigure 5 2 Schematic representation of the FDF model

lease site z,, = nd at times T™(z,), m € Z, according to a threshold process defined
by (43) The shape of the puff 1s assumed to be the same as in the continuum FDF
model and 1s given by equation (4 5).

5.1.1 Periodic travelling wave

The solution of the FDF model given by equation (4 2) with a discrete distribution of
Ca?* release sites can be expressed in the terms of the Green’s function for the cable

equation as

dt’ dr’'Gz—=2',t—t)o(z' — N ~T™(z, 51
ey [af o/ —n) Do =T"e), 5

n=—co
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where
e—t/‘rd

G(z,t) = me—xz/(zlm)@(t) (52)

The substituting of the function 5(¢) into equation (5 1) gives

u(z,t) = — Zf dtf dz'G(x - tY(z' — zy,)
x Ze(t'—T”*(xn))e(m—(t’—Tm(:cnm (53)
T'"(xn)+1'n

- = Z Z/ — Zn,t —t)dt’

—oom=0¥ T™(xx)

We consider periodic travelling waves that satisfy T™(z,) = nd/s+mA = nA;+mA,
m > 1, where s 1s the speed of threshold crossing events given by s = d/A; and A
15 the time between successive Ca?t release events at a store For simplicity we shall
consider A to be sufficiently large that we do not have to worry about the inclusion of
refractory process and take the threshold for release to be uy,(p) defined by equation
(420) Then the solution describing saltatory periodic travelling waves i the FDF
model 1s
a

min{f—nA—md, 1)
u(z, t) = — Z/o G(z — nd,t —t' — nA; — mA)dt'. (54)

TR n,m

This can be rewritten as

u(z,t) =0 H(r—nd,t—nA; —mA), (5 5)
where
1 min(¢,7g)
Hizt) =~ f Glz,t - ¢)d¥ (56)
TR Jo

We determine the speed of the travelling waves 1n a self-consistent manner by de-

manding that

Im  u(nd, nA; + mA) = uw(p) (57)

=00
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Then using mmtial data such that »(0,0) = 0 the speed of the wave is impheitly
determined by

un(p) =0 > H(nd,nd; +mA), (5 8)
n=0 m=1
with
1 [mn
H(z,t)=— Gz, t - t)dt’ (59)
TR Jo

A saltatory periodic travelling wave determined by (5 4) and (5 8) 1s shown 1n Figure
53 This nicely 1llustrates that waves propagate with a non-constant profile and that
large increase 1n Ca?* concentration occurs just after a release event The saltatory
nature of the wave may be directly attnibuted to the fact that release sites are not

spread continuously throughout the system

ud/c
16}

12}

08} ¥

04r

208 0 200 a0d
Distance (x)

Figure 53 An example of a stable saltatory periodic travelling wave The period A,

18 determaned self-consistently as Ay =02 Other parameters are 74 = 1, d*/D = 1,

TR =01, A =42 and u. = up(p)dfo =01 The system 13 sampled at some large

release time ty, then at ty + 7 and tg + Ay

We now demonstrate how the period of travelling waves depends on the main system
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parameters. In the special case T — 0 we see from equation (59) that H(z,t) —
G(z,t), which 1s given 1n closed form by (5.2) Hence, the speed of the wave can be
found by solving

o0 o0
Uan(P = 4> 5 G(nd,nA; + mA) (5 10)
=0 m=1
X0 oc

2 Zl \/47r n/.\l TmA) P (—n [—é—; + Z—(—qm??;m&]) exp (—mT_c‘:‘\‘)

n= =

where 7p = d?/D For fimite 7, the function H(z, ) 1s evaluated 1n [34} as H(z,t) =
Alz,t — 7r) — A(x,t), where

V1D —|z| || t
Alz,t) = fe [ = =
(z,%) 1Drn exp D erfc iD: -+ ™

+ exp (%) erfc (—\/II—|_M + }%)} (511)

In Figure 5 4 we show how the period of travellng waves depends on the value of 77

for the case that T, = 0 We see that there 1s propagation failure at some critical
value of 74, where two branches of the solutions coalesce To illustrate the effects of
a finite width for the calcium puff on the speed of the periodic travelling wave we
continue the LP of the bifurcation diagram in Figure 5 4 as a function of 4. The
results of a numencal continuation are shown in Figure 55 This plot shows the
parameter region where saltatory periodic travelling waves can exist and highlights
the fact that with increasing 7p the LP 1n Figure 5 4 occurs at increasingly larger

values of 74

The fact that there are two solution branches for a periodic travelling wave rases
the question of stability To determine the stability of saltatory waves we consider

perturbation of the release times where T™(nd) — T™(nd) + ¢™, A € C, and examine

the linearised evolution of these perturbations Solutions are hinearly stable if Re A <




CHAPTER 5 DISCRETE FIRE-DIFFUSE-FIRE MODEL 85

2 r
]
AT L
\
16 \
A
i \
\
\
12+ \
\
B \
hY
N
08 \\unstable
~
L ey
~ S
04 \.‘.“'-___
~——
- stable P
0 L (‘-’l-— 1 L 1 1
0 1 2 3 4

Figure 5 4 Perwod A1 as a function of the parameter 771 unth 7 = 0 Other param-

eters as mn Figure 5 3

Tr
08 |
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Saltatory travelling wave
0 .
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Figure 55 Continuation of the LP of Fugure 5 4 wn the (1] I,TR) plane
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0 After substituting into equation (5 8) and expanding to first order we obtain

O(a, ) = Zem“e'mﬁH’(nd, nA; +mA) =0, (5 12)

nm
where we have set A = a+13, o, 3 € R Here, H'(z,t) = 0H(z,t)/8t Differentiation
of equation (59) shows that H'(x,t) = [G(z,t) — G(z,t — 7r)]/7e To find the
stability of the solution as a function of parameters the system of two equations
Re®(a,5) = 0 and Im ®(e, 8) = 0 has to be solved simultancously for & and 3
along the solution branch Two possible types of bifurcation pomnt are defined by the
conditions « =0, f=0and a =0, § # 0 For the first case a change in stabihity

occurs when ®(0,0) = 0 The second type of instability arises when a complex

2 T T T L§ T T T

Figure 56 A plot of the function ®(0,7) along the solution of Figure 5 4, showing

that there 1s a change wn stabidity at the LP where propagation failure occurs

elgenvalue crosses the imaginary axis Then a change of stability occurs when 8 =«
A plot of the function ®(0, ) 1n Figure 5 6 shows that the change of stability for the
solution shown 1n Figure 5 4 occurs at the LP defining propagation failure A direct
examination of @ = ReA, along the two solution branches, shows that the faster

branch 1s stable, while the slower one 1s unstable.
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5.1.2 Solitary travelling pulse

In the absence of multiple Ca®t release events from an individual store, ¢ e considering
the case when m = 0, we recover the discrete FDF model of solitary travelling wave
propagation [34] A saltatory travelling pulse solution 1s analytically determined by

-

the following equation

o e min{t—ndy,7r) , ,
u(z, t) = - Z /0 Glx —nd,t —t' —ndy)dt (5 13)

n=--0C

and 1s 1llustrated in Figure 57 The speed of the solitary wave can be found mm a

ud/c | 8

15 |

0 5d Distance (x) 10d

Figure 57 An ezample of a stable saltatory solitary travelling wave The period A,

18 determined self-consistently as Ay =017  Other parameters as mn Figure 5 3

self-consistent manner similar as in the periodic case by demanding that

Iim u(nd, nA;) = uw(p) (5.14)

n—oo

and for the special case when 75 — 0 this gives

= tn(p)d =§: I N B (5 15)
¢ g s 47TTLA1 P 4A1 Td
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In Figure 58 we show how the speed of solitary travelling pulse depends on the

dimensionless threshold parameter u, In common with the periodic wave solution

there 1s the co-existence of two travelling waves with speeds that approach each other

as the threshold parameter increases Eventually the two solitary waves coalesce at

the LP such that propagation failure can result for too large a choice of the threshold

parameter
03 T
\
vt
02 \\
N unstable
~
~
0L}
™~
LP
0 A 1 1 1 1 A
0 01 02 03
U

Figure 5 8 Perzod Ay as a function of the dimensionless threshold parameter u, unth

Tr = 0 Other parameters as i Figure 5 7.

5.2 Discrete-time FDF model

5.2.1 One-dimensional model

The analytical tractability of the discrete FDF model 1s not only useful for gaining

mnsight ito the dependence of wave speed on system parameters, but can help m

reducing the computational demands on a numerical scheme for the self-consistent
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evolution of the model equation Consider for the moment the class of solutions where
all release times occur at integer multiples of 7, the rise-time of the receptor In this

case we may write
> 0@ =" nprr)aa(p), (5 16)
m P

for all n, where we define the release function a,(p) as

1 T = TR
an(p) = " , (5 17)

0 otherwise
and T;* = T™(x,) 15 the time of release of the mth puff at the nth release site In
general the release times will not occur at multiples of 7, However, by restricting
the system so that release times do occur on a regular temporal lattice and choosing

T = Rrp (the refractory time scale) for some R € Z, we may write

min(R,p)

an(p) = O(un(p) —uw) [[ Ol —ualp—m)), (518)

m=1

where u,(p) = w(zn, prr) The first term on the night 1s a simple threshold condition
for the determination of a release event whilst the second term ensures that release
events are separated by at least the refractory time scale 7. This restriction of the
model eliminates the need for the precise determination of release times The FDF

model then takes the particularly simple form

Qu(z,f) = > ap)d(z —2.),  prR<t<(p+Dra (519)

nel

where @ 1s the linear differential operator
1
Q:6t+""_Da:m:: (5 20)
T4

with Green’s function given by equation (5 2) and I' 1s a discrete set that indexes the

stores.
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The dynamics for prp < t < (p + 1)7g 15 completely determined 1n terms of imtial

data u,(x) = u(x, prr) as

u(@,8) = =3 aulp) H(z — 7t~ p7r) + (G ® ) (0,1), (5 21)
where -

H(z,t) = /0 et — 5)ds, (522)
and

(G @) (,8) — fm Glz — ot — pra)uy(z')de’ (523)

Compared to the original FDF model the one we have described here 1s computation-
ally cheap to solve Release events defined by a,(p) = 1 are easily calculated simce
un(p) = u,(x,) may be written as a sum of two terms that are both amenable to
fast numerical evaluation In particular u,(z) may be written in terms of the basis
functions H,(z) = cH(x — ,,7r) /7R, so that

up(T) = Zan(p = 1) Hn(z) + (G ® up-1)(z, pTR) (5 24)
nel

Since the basis functions H,(z) are fixed for all time they need only be computed
once For small 7z we also have the useful result that H(z, 7g) — G(z, Tg), which 1s
given 1n closed form by (5 2) The convolution 1n (5 24) may be performed efficiently
using Fast Fourier Transform (FFT) techniques Once agamn the FFT of G(z,7g)
need only be computed once, so that 1t 1s only necessary to successively construct the
FFT of u,(z) for p=0,1,2, . We then have that GQu, = F (F[G]F[u,]), where
F denotes the FFT Hence, under the assumption that release times occur on some
regular temporal lattice the model does not have to be evolved as a discontinuous
PDE with a self-consistent search for the times of threshold crossings that define

release events

Of course the above approach 1s only useful 1if the restricted class of solutions that

we have focused on 1s 1n some sense close to solutions of the full model To illus-

trate that this 1s the case for practical applications we compare the exact solution
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of a saltatory travelling pulse with that from this model In Figure 59 we plot the
speed of a lurching solitary pulse for the full FDF mode! discussed m the previous
section On the same figure we plot numerical results obtained from our reduced FDF
model. It can be seen that there is excellent agreement between the two, justifying
the practical assumption that release events can be considered to oceur only at integer
multiples of the calcium puff duration From experimental data 1t is apparent that
the refractory time-scale 1s typically 50 times that of the release duration (see {87] for
a discussion) so we assume R = 50 i our simulations 1f 1t 1s not specified. Typically

Tg 18 approximately 10 — 20 ms

100 ¢

S

80

60

40

20

Uth

Figure 59 Speed of a solitary pulse as a function of the threshold level uw wn the
FDF model Crosses denote results from simulations of the reduced FDF model with
500 reqularly spaced stores Parameters d = 2 ym, D = 30 um?2/s, T = 10 ms,
Ta =02 uM/s

The best way to illustrate the sort of behaviours that can be generated by this reduced

model 1s with a space-time density plot for calcium concentration In real cells release
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sites are not likely to be arranged on a perfectly regular lattice, although for cardiac
myocytes release sites are in fact regularly spaced along the longitudinal axis of the
cell In our simulations we focus both on regular and disordered distribution of
release sites Free boundary conditions are assumed in model simulations, 1 e wave

propagation n the system 1s restricted only by cell size

First of all, we present simulation results 1n one dimension for a regular lattice of
release sites, with lattice spacing d In Figure 5.10 we show a solitary lurching pulse
arising from an mitially activated release site in the muddle of the cell This nicely
lustrates that a discrete set of release sites can lead to a wave that propagates with a
non-constant profile, but with a well defined speed Expernimentally observed calcium
waves, for example 1n immature Xenopus oocytes, evoked by stimuli just above the
wave threshold do not propagate in a smoothly continuous manner either The confo-
cal lmescan 1maging of intracellular Ca?* signal done by Callamaras et al [25] clearly
shows this in Figure 5.11 In the case when two waves are imtiated at well separated
release sites, two lurching pulses will propagate toward each other In Figure 5 12, we
show that they are destroyed in wave-wave colhisions just after the observed increase
in Ca?t concentration caused by their interaction. This phenomenon of wave-wave
annihilation may be directly attributed to the refractoriness of the underlying release
dynamics Interestingly, by varying the parameters of the system we may also observe
the propagation of periodic travelling waves In practice this may be easily achieved
by decreasing the refractorimess of the system, so that the Ca?" concentration at the
mitially activated release site 1s still above the threshold after the refractory time and
the system 1s ready to imtiate a new travelling pulse We demonstrate this behaviour
m Figure 513 A similar effect may be obtamed, for example, by mncreasing the

diffusion or decreasing the threshold parameter in the model

Now we consider a disordered distribution of release sites In this case the position

of release sites m a regular array 1s perturbed by a small random vector (of size
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[Ca™]
1.2

0.8

Time (sec)

0

Distance (pm)

Figure 5.10: An ezample of two lurching pulses moving out from the center of a
deterministic one-dimensional FDF model with 50 regularly spaced release sites. Pa-

rameters as in Figure 5.9 for a cell of linear dimension 100 pum and wgy, = 0.1.

II()um

500 ms

Figure 5.11: The confocal linescan image of saltatory wave propagation evoked by

flash photolysis of IPs in immature Xenopus oocytes [25].
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Figure 5.12: An example of colliding pulses moving out from the release sites located

apart on the distance of 60 pum. Other parameters as in Figure 5.10. The interaction

between two waves causes the propagation failure.
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Distance (LLm)

Figure 5.13: An example of periodic travelling wave moving out from the center of a

deterministic one-dimensional FDF model with 50 reqularly spaced release sites with

R = 48. Other parameters as in Figure 5.10.
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ed). Simulation results indicate that regular waves give way to more irregular waves,
with the degree of irregularity increasing with the amount of spatial disorder. The
irregularity of these waves is directly attributable to the quenched disorder of the
release sites. Ultimately, if the degree of spatial disorder is sufficiently large we see
propagation failure. Figure 5.14 shows an example of a periodic travelling wave in
the system with a disordered distribution of release sites. This disorder gives rise
to irregular activity, though with well defined periodicity. An example of disorder
induced propagation failure is shown in Figure 5.15. The reason for this failure is that
the average distance between release sites appears to be too large for the spreading

of activity.

5.2.2 Two-dimensional model

The generalisation of our FDF model to two dimensions is both natural and straight-
forward by introducing a continuous spatial coordinate r € R? and a discrete set of
vectors r, € R?, n € Z, indicating the positions of release sites. The basis functions

H(r —r,) can be computed numerically from equation (5.22) with
e—t/‘rd

o el —r2/(4Dt) 5.25
4Dt (5-28)

G(r,1)

and r = |r|. However, it is also possible to compute the basis functions in closed form
for two special cases. i) In the limit 7y — oo then H(r) = Ey(r?/4D71g)/4nD, where

Ei(z) is the exponential integral function

By () = /'m dzg. (5.26)

This corresponds to the limit of zero pumping, where calcium is not removed from the
cytosol. ii) For small 75 we also have that H(r,t) — G(r,t) (as already noted in sec-
tion 5.1.1). Since the puff duration is very small compared to 7 this is a very accurate

approximation, and so has been used in numerical simulations for this section.

First of all, we present simulation results on a regular square lattice, with release
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Figure 5.14: An example of periodic travelling wave moving out from the center of a
one-dimensional FDF model with irreqularly spaced release sites when ¢ = 0.4d and

R = 48. Other parameters as in Figure 5.10
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[Ca™]
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Figure 5.15: An example of travelling wave propagation failure in a one-dimensional
FDF model with irregularly spaced release sites when € = 0.6d and R = 48. Other

parameters as in Figure 5.10.
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site spacing d. An example of behaviour in the deterministic two-dimensional FDF
model with an initially active release site in the center of the cell is shown in Figure
5.16. Here a sequence of snap shots shows nucleation of a wave and subsequent
propagation of the wave through the cell. Repetitive nucleations occur in the middle
of the cell with the period of oscillation largely determined by the refractory time-
scale. Note that the octagonal shape of the wave (rather than a circular one) is due
to the underlying square array of release sites. Animations of this figure and others
may be found on the CD provided, where the corresponding file name is indicated
in the caption of each figure (also see Appendix A.2). Different choices of initial
conditions give rise to more complex patterns of wave propagation. For example, in
Figure 5.17 we show spiral wave propagation, similar in structure to that observed
in the work of Dallon and Othmer [41]. In common with our model these authors
also consider a discrete/continuum model for signalling in Dictyostelium discoideum
in which cells (rather than release sites) are treated as discrete points in a continuum

of chemoattractant.

Now we consider a disordered distribution of release sites in two-dimensions, in the
same manner as in the one-dimensional model. Figure 5.18 demonstrates an example
of wave propagation in the presence of an irregular square lattice with an initially
active single release site in the center of the cell. Comparing to Figure 5.16, the
irregularity of the release sites causes the propagation of more circular waves with
unequal activities. As expected, the degree of disorder in the distribution of release
sites may change the pattern of wave propagation. To illustrate this we present two
figures with different perturbations on the release site positions. Figure 5.20 shows an
irregular wave that fails to propagate, whilst Figure 5.19 shows one that propagates
and ultimately gives rise to a periodic spread of activity. In Figure 5.21 we show the
propagation of spiral wave similar as in Figure 5.17, but with an irregular distribution

of release sites.
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Figure 5.16: Temporal sequence snapshots for the deterministic two-dimensional FDF
model on the reqular square lattice cell 120 pm x 120 wm. Other parameters as in
Figure 5.9 and uy, = 0.1. Frames are presented every 0.1 s starting in the top left
corner and mowing rightward and down. An initial seed in the center of the cell
model leads to the formation and propagation of the well defined wave front. After
the refractory time in 0.5 s a new release event appears in the middle of the square

lattice giving rise to a new propagating front of activity. (File: reg_prop.avi)
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Figure 5.17: Initiation of a spiral wave in the deterministic two-dimensional FDF
model on the reqular square lattice cell via activation of a line of release sites. Other

parameters as in Figure 5.16. (File: reg_spiral.avi)
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[Migure 5.18: Temporal sequence snapshots for the two-dimensional FDF model on
the irregular square lattice cell 120 pum x 120 pum with € = 0.4d. Other parameters
as in Figure 5.16. Frames are presented every 0.1 s starting in the top left corner
and moving rightward and down. An initial seed in the center of the cell model leads

to the formation and propagation of the periodic irreqular circular wave front. (File:

irreg-propl.avi)
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Figure 5.19: Temporal sequence snapshots for the two-dimensional FDF model on
the irregular square lattice cell 120 um x 120 pum with € = 0.6d. Other parameters
as in Figure 5.16. Frames are presented every 0.08 s starting in the top left corner
and moving rightward and down. This example demonstrates the propagation and

ultimate rise to a periodic spread of activity. (File: irreg_prop2.avi)
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Figure 5.20: Temporal sequence snapshots for the two-dimensional FDF model on
the irreqular square lattice cell 120 pm x 120 pym with € = 0.8d. Other parameters as
in Figure 5.16. Frames are presented every 0.1 s starting in the top left corner and
moving rightward and down. This example demonstrates the propagation failure in

the model. (File: irreg_failure.avi)
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Figure 5.21: [Initiation of a spiral wave in the deterministic two-dimensional FDF
model on the irreqular square lattice with € = 0.2d. Other parameters as in Figure

5.17. (File: irreg-spiral.avi)
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Summary

In this chapter we have studied the generalised FDF model with a discrete distribu-
tion of calcium release sites The discrete FDF model 1s still mathematically tractable
and solutions that correspond to saltatory solitary and penodic travelling waves have
been exphaitly constructed Moreover, we have shown that this minimal model of
Ca?* release can be further ssmplhified Assuming that release times occur on some
regular lattice leads to a computationally inexpensive deterministic model where re-
lease events are calculated via a thresholding of the calcium profile at a release site
We have shown by direct numerical simulation that this computationally effective ver-
ston of the FDF model provides an accurate representation of the origimnal model It 1s
also natural and straightforward to generalise our FDF model to two dimensions The
model has been extensively numerically simulated in both one and two dimensions
with regular and irregular distribution of release sites  Simulation results demonstrate
that under parameter variation the model supports many patterns of wave propaga-
tion including regular and irregular solitary and periodic travelling waves, colliding
waves, travelling fronts, spirals and abortive waves Besides this, the ssmphfied ver-
sion of the FDE model 1s 1n an tdeal form to be generalised to mcorporate stochastic

effects




Chapter

Stochastic FDF model

Ca?* signalling within and between living cells arises through complex mechanisms
which have evolved to the specialised needs of particular cell types It 1s important not
to forget that the release of Ca?* 1s controlled by the stochastic opening and closing of
Ca?* channels and the transitions between these two conductance states are random
n time [31, 118, 124] As we have previously emphasised, Ca?t waves are composed
of elementary stochastic release events Ca** (puffs or sparks) through single channels
or several channels 1n a cluster [104, 105, 159, 163] The stochastic nature of the
release kinetics appears to play a sigmificant role in 1nitiation and propagation of the
wave both m systems based on the IP3R [107] and the RyR [30] Hence, stochastic

effects need to be taken into acount when waves are modelled mathematically

Most of the theoretical research on calcium waves has focused on determimistic models
of intracellular Ca?* release (see Chapter 2) Only relatively recently has the stochas-
tic nature of intracellular Ca®* release been considered [51, 52, 53, 87, 145, 146]
Keizer and Smith [87] and Falcke et al [53] have both emphasized the importance

of modelling stochastic release kinetics when considering mmtiation and subsequent

propagation of waves Both have observed waves that abort in the presence of noise
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and also shown how noise may generate a spark-to-wave transition Keizer and Smth
[87] introduced a spatially one-dimensional stochastic model with a clustered distr-
bution of RyR release channels for cardiac myocytes The numerical simulation of
their model requires combining the evolution of a nonlimear PDE with a continuous
time Markov process describing the transition between the open, closed and several
itermediate states of the RyR The model of Falcke et al [53] considers a stochastic
version of the DYK IP3R model, but with channel clusters at lattice points coupled
by fast diffusion The assumption of fast diffusion and Linearity of the equation for
calcium transport allows an adiabatic elmination of the calcium dynamics in favour
of a purely stochastic continuous time Markov process for the channel configurations
of the IP3R A recent numerical study of the spark to wave transition in cardiac cells

may be found 1n [75]

In this chapter we introduce a model of calcium release based upon a stochastic
generalisation of the FDF threshold model We show how this leads to a natural
description of release events using a probabilistic rather than a determimstic update
rule Sunulation results are presented for both a one and two-dimensional cell model
These simulations illustrate that stochastic calcium release leads to the spontaneous
production of calcium puffs/sparks that may merge to form saltatory waves Suf-
ficiently large threshold ncise 1s able to terminate a wave prematurely suggesting
that for some critical noise level there 1s a non-equilibrium phase transition between
propagating and abortive waves A statistical analysts shows that the model exhibits
properties consistent with behaviour of other models from the umiversality class of
drrected percolation [70] In a two-dimensional cell model, we show that not only
does the model support noisy circular and spiral waves as expected but that 1t can
also exhibit a form of array enhanced coherence resonance (AECR) [69, 73, 178] We

find that coherent motion, in the form of sstmultaneous and periodic release of calcium

from all stores, can be induced purely by noise
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6.1 One-dimensional stochastic model

The discrete-time FDF threshold model defined by equations (5 18), (5 21) and 1n-
troduced 1n the previous chapter 1s 1n an 1deal form to be generahsed to incorporate
stochastic effects The simplicity of the underlying deterministic model means that
the calcium profile can be solved for 1n closed form, without the need for assump-
tions such as fast diffusion This obwviates the need to numernically evolve a PDE to
obtain calcium profiles Moreover, the FDF threshold 1s a natural point at which to
introduce a source of noise in the system By avoiding a Markov process description
of channel gating we side-step the need for computationally expensive Monte Carlo

type simulations

We consider the stochastic gating of receptor channels to give rise to an effective
threshold that can be modelled under the replacement wy, — wy, + & where € 1s an

additive nowse term with distribution p(§) The probability that a,(p) = 1 1s then

given by
min(R,p}
P(an(p) = 1) = P(un(p) > um) [[ Plunlp —m) < uw), (6.1)
where
Plu> ) = [ ) u = )3 (62)

For convenience we choose p(€) = f/(£) so that

Plu> uyp) = flu— uy) (6 3)

In work by Izu et al [75] 1t has been argued that the probabihity of release per umt
time follows a functional form given by u™/( K™+ ™) with the Hill coefficient n = 1.6
and Ca®t sensitivity parameter K = 15 uM Moreover, recent work described n [36]

shows that such functional forms can be derived from stochastic models of channel
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clusters This also suggests that natural choices for f(u) are sigmoidal functions

Here we shall make the choice

s ={ | (L o), (64)

1+e B 14 efum
so that the probability of release 1s zero when « = 0 and tends to one as u — co In

summary, the stochastic FDF model 1s defined by equation (5 21) with the a,(p) €
{0,1} treated as random variables such that P(a = 1) 1s given by (6 1) In Figure
6 1 we 1llustrate the release probability function f{u —wuy,) Note, that in the lint
3 — o0, this function approaches a step function so that P(u > uy) = O(u — wy)
and we recover our original deterministic model Thus we interpret 3 as a parameter
describing the level of noise For sigmoidal forms of f the noise distribution p = f'
15 bell-shaped with the width of the bell controlled by 7 (see Figure 6 2) In this
framework the refractory time-scale can also be thought of as being drawn from some
distribution, since release events are no longer bound by the constrant that they be

separated by at least 7

large B

fu-uy) ap
sm

Oo6r

02t

0 0?2 04 06 08

Figure 6 1 The release probability function f(u — uuy) suggested experimentally [75]

Here we 1llustrate the sort of behaviors that can be generated by this stochastic model
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Figure 6 2 The function of nowse distrbution p(€) for the gwen sygmoidal form of

function f

A space-time density plot of a solitary lurching pulse arising i the deterministic limit
3 — oo has already been shown in Figure 5 10 (for a regular array of release sites)
As we have already noted this 1s qualitatively the same as that seen in experimental
line scans, hke that of Figure 5 11 Both these plots are useful for comparison with
results from the stochastic model In Figure 6 3 we plot the corresponding behaviour
to Figure 5 10 in the presence of a finite amount of noise Imitial release from the

central site leads to a local elevation of Ca?t which imitiates a propagating Ca?t wave

via activation of nearby sites, as in the deterministic case However, the stochastic
nature of the wave 1s evident from the fact that 1t does not propagate symmetrically
away from the imitial event A similar type of behaviour can be observed m the
determimstic FDF model with an irregular distribution of release sites (see Figures
514 and 515) However, in this mstance (without threshold noise), mitial data

always leads to the same wave form, whereas in the stochastic FDF model this 1s

not the case Another example of a stochastic travellng wave 1s given in Figure 6 4
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for a higher level of threshold noise Although rather well defined to start with the
leftward propagating wave terminates at around 14 s. Activity mn the wake of the
primary stochastic front can also be sufficient to prime release sites for subsequent
spark production, seen at around 1 6 s and again at around 3 2s It 1s also possible for
propagating pulses to lead to the creation (in their wake) of oppositely propagating
pulses This so-called back-firing has been observed m a number of models (see for
example [3, 58]) including the stochastic calcium release models of Keizer and Smmith
[87] and Falcke [53] Simulation results demonstrate that this model captures the mam
qualitative features of the experimentally observed caletum puff/sparks and waves 1n
a variety of cell types [25, 30, 107] (see, for example, the confocal linescan image of

Ca’* signalling in Figure 6 5)

6.1.1 Directed percolation

From Figure 59 1t 1s easy to see that the determimistic FDF model can support
travelling waves 1If the threshold for release 1s not too hugh, ¢ e , 1f uy, < ug,, where
uy, 18 defined by the saddle-node bifurcation where the fast and slow branches of
s = s{uy,) coalesce However, 1n the regime where uy, < ufj, 1t 15 possible that noisy
versions of these waves will fail to propagate if noise levels are too high This leads

to the mteresting possibility of a critical noise that defines a border between waves

which survive or eventually go eztinct Indeed Bar et ol [6] have produced numerical
evidence that the model of Falcke ef al [53] for stochastic calclum waves exhibits a
non-equilibrium phase-transition belonging to the so-called directed percolation (DP)

uniwversality class

DP 1s a d 4+ 1-dimensional dynamic process that 1s often treated as a testing ground
for new 1deas in non-equilibrium statistical mechanics [4, 110, 158] Models within

the DP umiversality class are interesting because they exhibit non-equilibrium phase

transitions In particular they can exhibit transitions from absorbing states, 2 e
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[Ca?*)

Time (sec)

100

-100 0
Distance (1Lm)

Figure 6.3: Stochastic travelling wave for the model of Figure 5.10 with o finite amount

of noise. Here 3 = T70.
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Figure 6.4: Stochastic travelling wave for the model of Figure 5.10 with a finite amount

of noise. Here 3 = 10.

150 ms

Figure 6.5: The confocal linescan calcium image in immature Xenopus oocytes show-

ing that puffs tend to occur randomly between different release sites [25].
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=0 «—— initial configuration

t=| W

t=2

t=3 . <+—— final configuration
=1 2 N

Figure 6 6 DP mn 14-1 dimensions interpreted as a time-dependent stochastic process
Open (closed) bonds are indicated by sohd (dashed) lines and black (white) circles
denote actwe (mactwe) sites Starting from a fully occupred wmitial state the model
evolves according to the dynamic rules of equation (6 5) and reaches a final state at

t=3

configurations that can be reached by the dynamics but cannot be left, under variation
of parameters controlling the level of noise 1n the model As an example, a (1 + 1)-
dimensional directed bond percolation process 1s llustrated m Figure 6 6, where the
lattice sites are enumerated honizontally by a spatial coordinate 1 and vertically by a
discrete time variable ¢ A local binary variable s,(t) 1s attached to each site s, =1
means that the site 1s active (occupied) while s, = 0 denotes an mactive (unoccupied)
site We define a cluster m this context as a group of neighbouring occupied sites
On the contrary, 1f all nearest neighbours of an occupied site are nactive, this site
18 wsolated For a given configuration at time ¢, the next configuration at time ¢ + 1
can be determined as follows For each pair of bonds between the sites (1 +1,¢) and
(2,1) two random numbers z* € (0, 1) are generated. A bond 1s considered to be open

(with probability p) if z* < p, leading to the update rule

4

1, 1if s1(t)=1 and z <p,
31(t+1)= < 1, if Sg+1(t)=]- and z:'<p, (6 5)

0, otherwise

\

Percolation theory deals with the clusters that are formed 1n this process When the




CHAPTER 6 STOCHASTIC FDF MODEL 116

probability p 1s very small, most sites are either 1solated or form small clusters which
contain a finite number of sites Clearly, there 1s no continuous cluster between the
two limits of the lattice As p increases, there appear on the average more and more
clusters of larger size When a certain value of p = p, 1s reached, there suddenly
appears the possibility of a cluster connecting continuously the two limits of the
lattice This cluster 1s usually called the nfinite cluster in the percolation hiterature,
even though the system 1s fimte For all values p > p., there 1s a continuous path
of active sites exists connecting the extremes of the lattice (from past to future) A
phase transition 1s defined to occur at the pomnt where p = p. and there is a qualitative
change 1n the system behaviour (from an absorbing state to an infinite cluster) as p
1s varied through p, Numerical simulations of the (1 4 1) directed bond percolation
process show that the temporal evolution of a DP process changes significantly at
the phase transition Typical space-time histories for random 1mtial conditions and
a single active seed are shown in Figure 6 7 For p < p. the number of occupied sites
decreases exponentially until the system reaches the absorbing state (no occupied
sites), whereas for p > p, there 1s a finite probability that the resulting cluster 1s
infimte At the critical point when p = p., the mean active site number decays very
slowly and the critical cluster 1s generated with certain scaling properties Precisely
at the critical point the survival probability, II(¢), that a wave imtiated from a single
site has not aborted after ¢ time steps, 1s expected to scale asymptotically as t~¢,
where § 1s a universal scaling parameter (see [70] for a review) The analysis of the
DP umnrversality class 1s highly non-trivial and 1t has only been possible to obtain
crifical exponents for models in this class numerically The best current estimate for

d comes from the work of Jensen [81], who finds that é ~ 0 159464

According to the Janssen-Grassberger DP conjecture, any spatio-temporal stochastic
process with short range mteractions, fluctuating active phase and unique nonfluctu-
ating (absorbing) state, single order parameter and no additional symmetries, should

belong to the DP class. Since these are almost the defining characteristics of a minimal
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position i
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time t

P<Pc

Figure 6 7 DP wn 141 dimensions starting from random wnitial conditions (top) and

from a single active seed (bottom)

model for stochastic caleium release we should not be too surprised if our stochastic
FDF model also belongs to the DP class. To explore this possibility we consider the
behaviour of our model under variation of the noise parameter 7 We denote the
critical value of 7 at the phase transition between propagating and abortive waves
by 8. To obtain a good estimate of the critical exponent § we construct the effective
exponent

.. InflI(rt)/TI(®))
Inr

a(t) : (6 6)

where Inr 1s the distance used for estimating the slope of I1(t) For 8 # G, 8(¢) will
deviate from a straight line (1n the large ¢ imit) so that plots of §(¢) for various choices
of 3 may be used to predict 5.. An estimate of 6 1s obtained by extrapolating the
behaviour of §() to ¢t~ = 0 In Figure 6 8 we plot d(t) for various /3, showing that for

our choice of system parameters 3, ~ 047 In Figure 6 9 we plot the corresponding

distribution of survival times I1(¢) for the activation process started from a single
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site. Using our value of 3. we find d ~ 0.159, suggesting that our model does indeed
belong to the DP universality class. Whether or not a DP transition will be seen in
a living cell is another matter entirely. As pointed out by Hinrichsen [70], the size
of a living cell is only a few orders of magnitude larger than the diffusion length,
leading to strong finite size effects. Moreover, inhomogeneities as well as internal
cellular structures are a source of disorder that may further complicate matters. To
date there is no clear experimental evidence that there is a phase transition between

survival and extinction of propagating calcium waves in living cells.

Till now we have illustrated the properties of the stochastic FDF model with one-
dimensional studies in the regime where wave propagation is possible in the limit of
zero threshold noise. In the next section we turn to two-dimensional studies and also
explore the parameter regime where an initial disturbance could not propagate in the

deterministic regime.

o
-0(t)
005

S -\\\w
-0.15 r‘__j—"—"-f 5
-0.2 -f/_’_-/’
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03F

0 0.005 0.01
1/t

Figure 6.8: A plot of —46(t) as a function of 1/t for three different level of threshold
noise, 3 = 0.49 (upper curve), B = 0.47 (middle curve) and @ = 0.45 (lower curve).
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Figure 6.9: The distribution of survival times for the stochastic FDF model at the
critical noise defining the transition between propagating and abortive waves. For

t—0.159

large t, T1(t) scales as , indicating that our model belongs to the DP universality

class.

6.2 Two-dimensional stochastic model

In this section we consider a two-dimensional FDF model discussed in section 5.2.2
in the presence of threshold noise. For simplicity we focus only on a regular square
lattice of release sites, with lattice spacing d. A single active site is placed in the centre
of the square lattice at the beginning of simulations. An example of behaviour in the
two-dimensional stochastic FDI' model is shown in Figure 6.10. Here a sequence
of snap shots shows nucleation of a circular front, subsequent propagation and the
emergence of noisy spiral waves. These waves can be annihilated in collisions with
other waves and created by spontaneous nucleation. The long time behaviour of the
system is dominated by the interaction of irregular target and spiral waves. This is
typical of dynamics in noisy spatially extended excitable systems. In fact the role

of fluctuations for the generation and propagation of patterns in spatially extended
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excitable media is a subject of increasing attention and can be traced back to work
by Jung and Mayer-Kress (83, 84]. We note that both the stochastic FDF model and
the Jung and Mayer-Kress (JMK) model describe the interaction of threshold devices
with spatially decaying connectivity (fixed in the JMK model, but determined by
the calcium profile in ours). In the JMK model noise is added to the state variable,

whereas in the stochastic FDF model it is added to the threshold.

Importantly it is possible for noise to sustain spatio-temporal structures that could
not otherwise occur. In this case a removal of all noise would lead to a deterministic
system which could not support travelling waves. Since noise sustained target waves
may collide with each other this typically limits their growth to a finite region, whose
size is expected to decrease with increasing noise. Indeed the scale of noisy spiral
waves has been shown to be dominated by the ratio of longitudinal (normal to the
front of high activity) and the traversal (parallel to the front) speed of propagation
[84]. As noise levels increase the transversal propagation speeds up, yielding a spiral
wave with larger curvature. For increasing noise it is possible that the breakup of
spirals and increased spontaneous nucleation of other spirals may destroy any coherent
motion. However, it is also possible to see coherent motion for high levels of noise.
In fact coherence can actually be enhanced in regions of high noise and it is possible
to observe synchronized global release events. This type of behaviour has recently
been termed array enhanced coherence resonance (AECR) and is typical of the way
in which noise can lead to structured activity in spatially extended excitable systems
(69, 73, 178]. In Figure 6.11 we show an example of this type of phenomenon in
the stochastic FDF model. Here an initial disturbance leads to the propagation of
a circular target wave. In the wake of the wave there is then subsequent release
from a set of neighbouring sites. After this one sees near simultaneous release from
a large number of sites. This process of simultaneous release repeats and at every
stage recruits more and more stores. After only a few cycles of this process one sees

an almost simultaneous release from all sites. This causes an oscillation in the global
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Figure 6.10: Temporal sequence snapshots for the two-dimensional stochastic FDF
model with § = 100 (low noise). Other parameters as in Figure 5.9. Frames are
presented every 0.45 s starting in the top left corner and moving rightward and down.
An initial seed in the center of the cell model leads to the formation and propagation of
a circular front. Spiral waves form in the wake of the wave by spontaneous nucleation.
These can be destroyed in wave-wave collisions and created by spontaneous nucleation.

(File: noisy_prop.mpg)
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Figure 6.11: Temporal sequence snapshotls for the two-dimensional stochastic FDF
model with 3 = 10 (high noise). Other parameters as in Figure 5.9. Frames are
presented every 0.45 s starting in the top left corner and moving rightward and down.
An initial seed leads to the formation of a circular travelling front. In the wake of the
wave there is periodic and near simultaneous release from a large number of stores,

typical of systems exhibiting array enhanced coherence resonance. (File: AECR.mpg)
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signal U(t) defined by
u(tn, t), (6.7)

where |I'| is the number of release sites. An example of this oscillation is shown in
Figure 6.12 for the data of Figure 6.11. In this figure we also plot the variation of
U(t) for the data presented in Figure 6.10. Although showing some level of periodic
behaviour, it is clearly not as regular as that of the AECR example. The frequency
of the AECR oscillation (as measured by variation in U(t)) increases monotonically
with the noise level 3! (above a cut-off below which AECR fails), and is shown in

Figure 6.13.

U
0.6F
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04F
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02pF

0.1

Figure 6.12: Plot of the global signal U(t) for the data of Figure 6.11 (solid line) and
also that of Figure 6.10 (dashed line).

We emphasize that the coherent motion illustrated in Figure 6.11 is induced purely by
noise without an external periodic signal. This is very reminiscent of the behaviour
of an excitable activator-inhibitor medium recently discussed by Hempel et al. [69].

They also consider a model with threshold noise (but with fixed Gaussian spatial
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0.08 | 012 l 0.I16 B.'l 02
Figure 6.13: Frequency f of oscillation of U(t) for the system exhibiting AECR as a
function of 3~'. Note that frequency increases monotonically with increasing noise

levels. Parameters as in Figure 6.11.

interactions) and note that when the nucleation time becomes much smaller than the
intrinsic refractory time of the system, all cells fire and come back to rest essentially

at the same time.

Finally we demonstrate that the stochastic FDF model may generate Ca®* sparks and
waves in the fashion similar to that seen in experiments. In Figure 6.14 we illustrate
the visual similarity between our model results and those of Marchant and Parker
[107]. Figure 6.14 (B) demonstrates the summation of activity from many stochastic
puff sites generating regularly repetitive Ca?* waves in Xenopus oocytes. The similar
behaviour of wave propagation in the stochastic FDF model is shown in Figure 6.14
(A) for the low level of noise and by decreasing the refractoriness of the system.
Experimental results in Figure 6.14 (C) illustrate an example of disruption of CICR

resulting from Ca?* diffusing between release sites, thereby functionally uncoupling

individual sites. By increasing the level of noise and refractoriness in the stochastic
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FDF model we observe the continued rise of individual puffs without generation of

repetitive waves (Figure 6.14 (D)) similar to that in Figure 6.14 (C).

(A)

(B)

(C)

(D)

Figure 6.14: (B) and (C): I'mage sequences illustrating the patterns of Ca** liberation
evoked in immature Xenopus oocytes by a photolysis flash of IP3. Each image sequence
was captured at intervals of 0.1 s. (From [107]). (A) and (D): An ezample of
generated Ca*" puffs/sparks and propagating waves in the stochastic two-dimensional

FDF model of Ca*t release for 3 = 70, R = 5 and 8 = 5, R = 50 respectively.

Frames are presented every 0.25 s.

Summary

In this chapter we have introduced a stochastic generalisation of the FDF model for
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Ca?' release One of the main advantages of our model 1s that 1t is computationally
mexpensive. The stochastic nature of the release events 1s modelled by the inclusion
of additive noise to the threshold For high noise we observe spontaneous Ca®* sparks
and the possibility of global coherent signals in the form of simultaneous and periodic
release from all sites  For low noise Ca?t sparks can reinforce each other and propagate
as waves. A statistical analysis of the model shows the interesting possibility of a
non-equilibrium phase transition between propagating and non-propagating waves

suggesting that the model belongs to the directed percolation universality class




|Chapter 7

Intercellular calcium waves

In many cell types, an nitiated wave of increased intracellular calcium can spread
from cell to cell to form an intercellular wave Distinct from the previous chapters
where we studied intracellular waves, this chapter considers some aspects of intercel-
lular calcium signal propagation In particular we are interested in the 1ssue of wave
propagation failure through the cell culture as a function of cell-cell coupling parame-
ters The focus 1s on the detailed biophysical DYK model discussed in Chapter 3 and
the much simpler FDE model discussed in Chapter 4 Both of these models are ex-
tended to the tissue level by connecting model cells with gap junctions In the case of
the deterministic and continucus FDF model precise analytic statements about inter-
cellular wave propagation failure are made as a function of gap junction permeability
The important effect of IP3 regulation and transport on mtercellular wave propaga-
tion 1s explored numerically for both FDF and DYK models, and in both instances 1s
shown to severely restrict wave propagation Moreover, comparisons between the two
models show both qualitative and quantitative agreement, lending further support to
the notion that the FDF model with an IPs dependent threshold provides a realistic

caricature of the more complicated DYK model

127



CHAPTER 7 INTERCELLULAR CALCIUM WAVES 128

7.1 Mechanisms of intercellular calcium wave propa-

gation

There 15 considerable experimental evidence to show that intracellular calcium signals
can mediate intercellular communication by activating calcium signals 1n surrounding
cells [19, 26, 42, 43, 59, 139, 140, 177] It has been proposed that interccllular Ca?*
waves can serve to coordinate a multicellular response to a local stimulus In some
systems, such as the airway epithelium, the cell culture forms a thin layer of cells,
connected by gap junctions When a cell in the middle of the culture 1s mechanically
stimulated, the Ca®* m this cell increases quickly generating an intracellular wave
After a time delay of a second or so, the neighbours of the stimulated cell also show
an mcrease 1 Ca?t, and this increase spreads sequentially through the culture An
intracellular wave moves across each cell and after a short delay at the cell bound-
ary mitiates a similar intracellular wave m the neighbouring cell Repetition of this
process results in an intercellular wave moving across the culture The distance the

wave propagates appears to depend on the magnitude of the mitial stimulus

IP; can play the role of a second messenger, releasing Ca?* from ER wia IP;R Ca?t
channels that are sensitive to both Ca?' and IP; (discussed in detail in Chapter
2) Ewvidence also mdicates that intercellular waves are mediated by the movement
of IP3 through gap junctions When tercellular signalling of this type was first
discovered, several qualitative models of the underlying mechanisms were proposed
[19, 140, 150, 151, 153] The main 1dea of these models 1s based on the passive-
diffusion hypothesis which 1s shown as a schematic diagram m Figure 7.1. Mechanical
stimulation of a single cell imtiates the production of IP3 1n that cell and consequent
release of Ca?* Some of this IP3 moves through gap junctions to neighbouring cells,

releasing Ca?* from internal stores there A small amount of IP; can stimulate a

large release of Ca?t via a positive-feedback process The subsequent transport of
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Ca?* through neighbouring cells stimulates further release resulting 1n an intercellular
Ca?t wave This hypothesis for the propagation of intercellular Ca?" waves relies on

the passive diffusion of IP3 between cells via gap junctions

It 1s important to emphasise that this diffusional hypothesis of wave propagation

cannot fully account for the observed behaviour of all Ca?* waves For example, the

Mechanical stmulation

~
Ca2+ Caz+
N
vy

Figure 7.1 Schematic dragram of the passive diffusion hypothesis for the propagation
of wtercellular Ca** waves GJ gap juncton, IP3R IP; receptor/ Ca**t channel

The @ sign denotes Ca*t- mduced Ca** release (From [140])

intercellular Ca?* waves observed 1n the liver [125, 133] and the astrocyte networks of
the central nervous system [38, 59] propagate over large distances and cannot simply
rely on the diffusion of a messenger from a single pomnt or cell In these cases, 1t
1s likely that a process of regeneration 1s required to actively propagate the wave
This can be explained by the fact that both the calcium-releasing messenger [P3 and

calcrum can participate in the gap-junctional mode transmission [32, 137] In some
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systems, an external signal 1s apphed globally, so that IP3 concentration mncreases in
practically all cells Under these conditions, calcium release in the presence of IPgR
and RyR calcium channels can be activated by the CICR mechanmsm (discussed in
detail in Chapter 2) Thus, caleium imnflux through gap junctions may trigger calcium
release 1n a cell acting as an intercellular mediator and 1n this way a regenerative

mtercellular caleium wave could spread

CICR and gap-junctional calcium diffusion may be considered as a basic mechanism
of intercellular calcium signalling Recently, models based on a CICR/gap-junctional
calcium diffusion mechamism have been developed for the formation of mtercellu-
lar spiral waves of calcium in hippocampal slices [171], for the synchromsation of
calcium oscillations 1 hepatocyte couplets [66] and for the propagation of calcium
wavefronts m a model of calcium elevation through CICR coupled to cytoplasmic
and gap-junctional calcium diffusion [67] A common finding 1n these studies 1s the
existence of a critical junctional calcium permeability which must be exceeded for
itercellular wave propagation or synchromsation to occcur Our mtention in the
investigation of intercellular wave signalling 1s to begin with a simple mathematical
model and focus on the conditions under which intercellular calcium waves can occur,
and on how the occurence and properties of the waves depend on the parameters of
the calcium transport processes i the cell The FDF model of intracellular calcium
waves discussed m Chapter 4 can be considered as a good canditate to start the

analysis of intercellular wave propagation.
7.2 Intercellular Ca?’" waves in the Fire-Diffuse-Fire
model

A detailed analysis of the previously presented FDF model demonstrates the for-

mation of mtracellular travelling pulse of caleium propagating via the iteraction of
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CICR and calcium diffusion  Considering multiple cells with gap-junctional connec-
tions and calcium fluxes across the gap junctions, we may study the characteristics of
intercellular Ca?* wave propagation in the FDF type model n terms of basic cellular

parameters

7.2.1 Model equations

We introduce a Imear cell array connected by the gap junctions shown in Figure 7 2.

The change n the concentration of cytoplasmic calcium i the +-th cell, «,(z,t) =

[Ca?*],1=0,1, ,n,1s given usmg a contmuum FDF model 1n the following form
Su, &, U

_ St - T () - = <z<L 71

pr D8x2+ mn(t T™(z)) ot 0<z<L, (71)

where L denotes the length of a cell and x 1s mapped for each cell individually to

the mterval (0, L). A detailed discussion of this equation can be found m Chapter 4

0 x L

Figure 72 Linear array of cells of uniform length L, coupled by the gap junciions

We only mention here that the function n(£) describing the shape of the Ca?t puff 1s
given by

n(t) = 08()6(rr — 1), (72)

where ©(-) 1s the Heaviside step function, o 1s the strength of the Ca®* puff and 5
1ts duration Note that m comparison to Chapter 4 we do not consider the puff shape

to be normalised
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The mtercellular calcium fluxes through gap junctions are assumed to be proportional
to the concentration differences across the gap junctions so that
—DZx| = Flu_1(L,t) — w(0, 1)),
(73)
DEs| _ = Felua(0,8) — w(L, 1)),
where F; 1s the effective gap-junctional calcium permeability. We study the case
of a solitary travelling pulse From the analysis of Chapter 4 (section 4 2) we may
write the following implicit equation for the speed of sohitary travelling pulses in an

mnfinitely long single FDF cell model as

Uth A —dy8TR
= — 74
el ] 7 4)

where s denotes the speed of the wave, wy, 18 the FDF threshold and Ay = [s +
\/m] /2D The bifurcation diagram 1 Figure 7 3 shows the speed of the
travelling pulse as a function of the caleium puff duration 7. One notes that the
speed of the stable solution branch 1s constant for almost the whole parameter region
of T where solitary travelling pulse can exist This imphes that large values of Tg
do not sigmficantly influence the speed of the propagating pulse (at least for a large
cell). In this respect we assume that the duration of a Ca®* puff 1s large enough so
that 1ts shape can be approximated by the simple threshold condition o©(u — ugy)
Thus, to carry out mathematical analysis of a single pulse, we consider the simplified

equation for the concentration of cytoplasmic calcium in the form

du, &u, Uy
ot b dx? + O'e(uz uth) Tda 0<z< L! 1=0, 1, » T (7 5)

together with equations (7 3) for the intercellular calcium fluxes across the gap junc-

tions.

7.2.2 Analysis of the model

The analysis of wave propagation in the model follows a similar approach to that

of Hofer et al [67] For convenmence we non-dimensionalise the model equation by
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Figure 73 Speed of the wtracellular travelling pulse in the FDF model as a function
of the Ca** puff duration Tg for the chowce of parameters D=1, 174=1,0 =1 and

uth:()l

mtroducing the scaled time ™ = #/7y4, space § = x/L and calcium concentration
% = u/uy, In the remainder of this chapter we will use the symbol «(£, 7) instead of

@ for the scaled concentration Hence, the model takes the following form

du, &u,
aT_6652+oée(uz—1)—m, 0<E<, (7 6)
—5% o plu,-1(1,7) — 4,{0,7)],
(77)
5% ee1 = p[uerl(O:T) - ’U,E(I,T)],

with the three dimensionless parameters

5= Dy o oTy _ Fery
— L2 ? - uth) p_ L M

Provided that a > 1 the kinetics of CICR and calcium removal given by f(u) =
@@y —1) —u exhibat bistability Figure 7 4 shows that a calcium signal is represented
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by the transition from the rest state of low cytoplasmie caleium u = 0 to the excited
state uw = a which corresponds to the elevated calcium level following the triggering
of CICR We suppose that a local stimulus 1s applied 1in cell 0, at position £ = 0,

10
f(u)

Figure 7 4. Bistable kinetics of ER calcium release and removal f(u) wnth step-
function CICR when oo = 10

1uo(0,7) = cg, T >0, (7.9)

and that mitial calcium concentration m all cells 1s at the rest state, u,(£,0) = 0. If
the stimulus triggers a regenerative mtercellular calcium wave, 1t may be that all cells
of the array become activated However, 1t 1s also possible that signal propagation
fails at some distance from the pomnt of imitiation, because the gap-junctional calcium
influx into a cell becomes too small to excite CICR and limits the spatial range of the
signal Regenerative intercellular calcium waves and spatially limited calcium signals

can be expressed 1n terms of the asymptotic behavior, 7 — o0, as

lim u,(§) = « (7.10)

1—00
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and

lim u,(§) =0 (711)

1—00

respectively, where u,(¢), 0 < 1 < o0, denote stationary concentrations Thus, if
the u,(£,7) approach the solution given by equation (7 11) after application of a
local stimulus ¢y we observe the failure of regenerative intercellular wave propagation
Stationary solutions to equations (7 6) and (77) may satwsfy equations (7 9) and
(7 11), if caletum m cells up to cell m, m > 0, 1s above the CICR threshold, while 1n

the remaining cells 1t is below

u(§) = - (712)

Letting Ou, /0t = 0 1n equation (7 6) yields the following solution for the calcium

profile
w(&) =, + BV 4 8VE 0< g <, (7 13)
where

a, 0<1<m
Q= (7 14)

0, otherwise

By connecting the solutions for neighbouring cells using equations (7 7), one may

obtain a linear system of difference equations for g, and ~, in the form

ﬂz =A ;Bz—l (715)

Y Y11

The matrix A results from evaluating equations (7 7) for calcium fluxes with equation

(7 13) for 2 < m and : > m + 1 and 15 found as

— VO —1/VE VB 1/VE
1 e e
A= ( 2p) 2p (7 16)
\/36—1/\/3 (14 \2/3)81/\/3

7
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The system of difference equations (7 15) can be exphatly solved for in closed form

in terms of (5, vo) as

i X0
%l pi (] (7 17)

T 0 Ai Yo

where Ay are the eigenvalues of matrix A and P 15 a modal matrix with linearly

independent eigenvectors as 1ts columns The system of equations (7 17) 1s solved by

B, = AN+ AT = N+ mbA™ for 0<1<m, (7 18)
B = BN, m=uvBN for m+1<1<00, (7.19)

with the following spectrum for A

_=A=T(1-/1=1/T%

720
A =1/ (120)

where

T = cosh (%) + \z/—gsmh (%) (7 21)
We note that T' > 1 and, therefore, 1t 1s straightforward to 1dentify that A 1s real and
0 <A <1 The terms A" are excluded from equations (7 19) because of the use of
the boundary condition given by equation (7 11) Substituting the expressions for 3,
and -+, given by (7 18) into the system of difference equations (7 15) and solving this
system 1n respect of v and 1, show that

e~ V6 _ ) e~ 1VE) 1

=

Using equations (7.18) and (7 19) with equation (7.13) the gap-junctional flux condi-
tions (7 7) between cells m and m+ 1 and the left boundary condition (7 9) mntroduce

a linear system of equations for by, b, and By as a function of m This system 1s

given 1 Appendix (A 4) and has a unique solution In this way, the calcium profile
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1, (€) given by equation (7 13) is found 1n terms of the model parameters with the
spatial range of signal m to be determined The relation (7 12) yields m such that

the conditions to the sclution
Um(0) > 1,  ump1(0) <1 (7 23)

are satisfied A critical situation occurs if the calcium concentration in cell m + 1
Just reaches the CICR threshold, ¢ e #;,+1(0) =1 This condition separates the case
when the (m+ 1)st cell 1s not excited from the case when 1t 1s excited The expression

for tm41(0) 18 simply defined by
’U-m_|_]_(0) = B]Am-l-l “+ VlBlAm+1, (7 24)

and 1s derived in Appendix A 4 For the spatially imited calcium signals wp,1q < 1
for some fimte value of m The other case is when lim,, .o tmn+1(0) > 1 and we
expect the stimulus to induce nondecaying mtercellular calclum waves The critical

condition separating the two cases 1s
m w9 (0) = 1 (7 25)

Taking the himit m — oo 1 equation {7 24) (and correspondingly in equation (A 5)),

we find that the condition for propagation depends on the cellular parameters «, p

and ¢ and does not depend on the size of the mitiating stimulus s This critrcal

condition 1s given by the following equation
Mcosh(Zz) — A) 1
1—A2 o

(7 26)

This equation implicitly defines a critical value of permeability, Fiiica, which defines
a border between propagating and non-propagating mtercellular travelling waves In
fact condition (7 26) may be regarded as a special case of that considered by Hofer
et al [67] (who treat a more general scenario where gap junctions occupy a finite
fraction of the size of each cell) As Figure 75 demonstrates the critical junctional

permeability 1s a monotonically increasing function of the effective caleium diffusiv-

ity In this figure the physical variables F, and D have been plotted (rather than




CHAPTER 7 INTERCELLULAR CALCIUM WAVES 138

08 r Y Y r Y T

Fe

06}

04}

02t

Figure 75 Critical gap-junctional permeability Fonpea required for wntercellular cal-
cwum wave propagation according to equation (7 26) for the chowce of parameters
c=1,14=1,uy =01 and L =75 Crosses indicate the results from numer:-
cal stmulation of the full FDF model of wtercellular waves with the same parameters
and TR = 1 Increasing agreement between numerical experiments end theory s found

with wncreasing T, as expected

therr non-dimensionalised counterparts, p and §) It 1s worth remembering that the
mathematical analysis for deriving the implicit equation (7 26) was only carried using
an approximate puff shape To test the validity of this approximation, the critical
permeability in the full FDF model of intercellular Ca?* waves (equation (7 1)) was
found numerically The results of this numerical analysis 1s shown by crosses in Figure
75 It can be seen that there 1s good, but not precise, agreement between the two
models, justifying the assumptions of the simphfied model Figure 7 6 demonstrates
the calcium concentration for intercellular waves 1n two cases of being just above or

below the numerically found critical curve For F > Fyca), 2 local stimulus triggers

a regenerative intercellular calcium wave It consists of a series of intracellular waves
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punctuated by gap-junctional delays (Figure 7.6 a). The spatial range of propagation
is potentially arbitrarily large, only limited by system boundaries, and the intracel-
lular speed of propagation is constant. Very long-ranging calcium waves of constant
speed were reported for systems in which PLC-activating agonist has been applied
globally, and junctional calcium diffusion has been hypothesised as a coupling mech-
anism (38, 133, 179]. If F' < Fyiical, nO regenerative intercellular waves exist and the
signal does not propagate beyond the stimulated cell (Figure 7.6 b). Thus, regener-
ative calcinm waves are triggered if the propagation condition is satisfied; otherwise

the signal remains restricted to the first cell. Moreover, the permeability of Ca?* at

(a) (b)
25 25 [ca
20 20
> E1s
Q 15 Q
E k=
= =
10 10
5 5 /
0.0 T:5 15.0 22.5 30.0 37.5 0.0 7.5 15.0 2255 30.0 37.5
Distance (x) Distance (x)

Figure 7.6: Space-time plot of the calcium concentration in the FDF model of intercel-
lular waves for the following parameters: o =1, 7y =1, Tp =1, uy, = 0.1, L = 7.5,
D =1 and (a) I, = 0.18 (regenerative intercellular wave), (b) F. = 0.16 (propagation

failure). In both cases the left most cell was stimulated and the first 5 cells are shown.

the gap junction controls a delay in the transmission of the wave between cells. In
Figure 7.7 we plot the position of the wave front against time. The wave front is
defined to be the place at which [Ca?*]= 0.3. The rising portion of the curves corre-
spond to the movement of the wave across a cell, whereas the flat portion correspond

to the intercellular delay. As F, decreases, the intercellular wave moves more slowly,

]
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due principally to an increase m the intercellular delay

— F=033 /
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Figure 77 Position of wave front as a function of time for 3 different values of F,

wn the FDF model All other parameters ave as wn Figure 76

We have investigated a basic model of intercellular calcium signal propagation based
on CICR via ryanodine reccptors and gap-junctional calcium diffusion This fype of
wave propagation cannot fully account for the observed behaviour of all Ca?t waves
In the presence of IP3R calcium release channels both the calclum-releasing messenger
IP; and calcium can participate in the gap-junctional mode of transmission. The
next section introduces some features of intercellular caleium waves 1n IP3 sensitive

systems.

7.3 Intercellular Ca®" waves in the presence of mobile

1P

Expernimental evidence supports the hypothests that mechanically-stimulated inter-

cellular Ca?t waves 1n some systems can result from the diffusion of IP3 through
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gap-Junctions (see Figure 7.1) In this case a model based on the dynamic properties
of IP3 15 essential for the representation of these processes We assume that IP3 moves
through the culture by passive diffusion, moving from cell to cell via gap junctions,
and decays at the same time Then, within each cell equation for the cytoplasmic IP3

concentration denoted by p =[IP;3] 1s

o _p 9 Vop
ot~ TPox? k,+p’

(7 27)

where D, 1s the diffusion coefficient of IP3, V}, 1s the maximal rate of IP; degradation,
and k, 1s the concentration at which IP; degradation is half-maximal The ntercel-
lular fluxes of IP3 are assumed to be proportional to the concentration differences

across the gap junctions, 1 e

=D, 2|, _ = Fplpi-1(L,t) — p.(0,1)],
(7 28)
Dp% x=I = FP[pH'l(O! t) - pl(L1 t)])

where L denotes the length of a single cell and p, 1s the IP; concentration in cell 2

F, defines the gap-junctional IP; permeability coefficient

The Ca?* dynamics within each cell can be described by the reduced DYK model
given by equations (2 16) and (3 14). The detailed derivation of these equations has

been given in Chapter 3 with the parameter values listed in Table 2 1

Similar to the 1P3, the intercellular Ca?t fluxes are assumed to be proportional to

the concentration differences across the gap junctions

—ch—;‘ =0 = FC[CI—I(Lvt) - Ct(07t)]a
(7 29)

Dcaa_‘::c‘ o=L Felew1(0,8) — ¢, (L, 1)]
with the gap-junctional calcium permeabihity F, We are now 1n a position to consider
the effects of mobile IP3 on intercellular calcium waves in both DYK and FDF based

models
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7.3.1 Intercellular Ca’* waves using the DYK single cell model

Before we analyse intercellular signal propagation in the presence of diffusing IP3
we first consider the simpler case when the value of IP; concentration throughout
the culture 1s constant We assume that the wave spreads from cell to cell only by
the Ca?t fluxes given by equations (7 29) The extended analysis of mtracellular
oscillations and waves in the DYK model represented in Chapter 3 determines the
IP3; concentration, which 1s required for the wave generation in a single cell This
generated intracellular wave may propagate through the culture with propagation
controlled by gap-junctional calcium permeability. From Chapter 4 we expect that
a DYK model, with constant level of IP; throughout the tissue, will behave quali-
tatively like an FDF model with an appropriate IP3 dependent threshold This 1s
lustrated in Figure 7 8, where the calcium concentration of intercellular waves 1s
shown for two different values of calcium permeability Figure 7 8 shows exactly the
same qualitative features as that for the FDF single cell moedel, shown in Figure 7 6
For both single cell models intercellular calclum wave propagation 1s favoured with
increasing gap-junctional coupling. The critical calcium permeability for wave prop-
agation can be found numerically for the DYK single cell model and analytically for
the FDF single cell model, using (7 26) and (4 20) In Figure 79 we plot the eritical
F, dependence on the effective Ca?* diffusivity for both single cell models It 15 seen
to be a monotomecally mcreasmg function For completeness the wave front position
as a function of F, for the DYK model 1s shown in Figure 710 As expected the
variation of permeability through the gap junctions causes a delay time in the trans-
mission of the wave between cells, precisely of the type already found for the FDF

model (see Figure 7.7)

We now consider the full dynamics for IP; concentration defined by equation (7.27),
coupled to equation (2 16) describing the dynamics of mtracellular Ca?* Both IP3

and Ca%* fluxes through the gap junctions are assumed to be proportional to the
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Figure 7.8: Space-time plot of the calcium concentration in the DYK model of inter-
cellular waves with the constant I[Py concentration p = 0.25 for the parameters given
in Table 2.1, L=17.5, D. =1 and (a) F. = 0.07 (intercellular wave propagation), (b)
F, = 0.04 (propagation failure). In both cases the left most cell was stimulated and

the first & cells are shown.

concentration differences, given by equations (7.28) and (7.29) respectively. In Fig-
ure 7.11 we illustrate the effect of varying the gap-junctional IP3; permeability on
the system behaviour. This plot demonstrates that arrival time of the propagating
intercellular wave (at a cell boundary) is sensitive to changes in F}, and a decrease in
this parameter leads to a decrease in wave speed or ultimately to propagation failure.
This is in qualitative agreement with the work of Sneyd et al. [150] for the analysis

of intercellular waves in the Atri model [2].

The bifurcation diagram of the reduced DYK model in Figure 3.3 shows the existence
of a stable limit cycle for an intermediate range of IP3 concentrations. Thus, if the IP3
concentration is steadily increased in all cells, the cells within a specific physiological
range of IP; concentrations will exhibit Ca?* oscillations. This is clearly seen in
space-time plot of the calcium concentration in Figure 7.12. The left most cell was

stimulated by IP3 and the first five cells are shown. The decrease in gap-junctional
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Figure 7.9: The critical gap-junctional permeability required for intercellular calcium
wave propagation found numerically for the DYK single cell model (solid curve) and
analytically for the FDF single cell model (dashed curve) with constant IP3 concen-

tration p = 0.25 and k = 0.13 in equation (4.20).
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Figure 7.10: Position of wave front (defined to be where [Ca**] = 0.3) as a function
of time for three different values of F, in the DYK model. All other parameters are

as in Figure 7.8.
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[P3 permeability makes it diffucult for IP3; to spread through the system causing

failure of an intercellular wave. We demonstrate this in Figure 7.13.

-4 Fp=1
100 - - =2

8- =4

- =7
80t

60

Arrival time (1)

40}

3 4 5
Cell number

(ST

Figure 7.11: Arrival time of wave in the DYK model for four different values of F,
for the parameters given in Table 2.1 and L = 7.5, D. = 1, F, = 02, D, = 15,
¥ =001, &, =6.

7.3.2 Intercellular Ca’* waves using the FDF single cell model

We now consider the FDF model defined by equation (7.1) together with (4.4) (for
periodic travelling wave) and (4.20) and coupled to equation (7.27) describing the
dynamics for cytoplasmic IP; concentration. Intercellular fluxes of both Ca?* and
[P; are assumed to be proportional to the concentration differences across the gap

junctions and given by equations (7.3) and (7.28) respectively.

In Figure 7.14 we illustrate how the system behaviour depends on the variation in
the gap-junctional IP3 permeability. As for the DYK model (Figure 7.11), this plot

demonstrates that the speed and range of propagation are sensitive to changes in
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Figure 7.12: Space-time plot of the calcium concentration in the DYK model of inter-

cellular waves for the parameters in Figure 7.11 and F, = 7.
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Figure 7.13: Space-time plot of the calcium concentration in the DYK model of inter-

cellular waves for the parameters in Figure 7.11 and F, = 2.




CHAPTER 7. INTERCELLULAR CALCIUM WAVES 147

F,. Similar to the DYK model, we illustrate two space-time plots of the calcium
concentration for different values of gap-junctional IP3 permeability. The left most
cell was stimulated by IP3 and the first five cells are shown. Figure 7.15 demonstrates
the propagation of intercellular periodic travelling waves via the whole system with
the observed increase in a gap-junctional delay times farther away from the stimulated
cell. This is caused by the process of IP3 diffusion through gap junctions. Figure 7.16
shows a case of decreased IP; permeability and as the result of this the failure of

intercellular wave propagation.

- Fy=1
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Figure 7.14: Arrival time of wave in the FDF model for four different values of F),
for the following parameterse =1, 74 =1, L =15, D, =1, F, = 0.2, D, = 15,
V,=0.01, k, =5 and k = 0.1.

Summary

In this chapter we have investigated the subject of wave propagation failure through
the cell tissue in two different models of Ca?* release, DYK and FDF. In the first part

of the analysis (analytical and numerical) the level of IP3 concentration is assumed to
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Figure 7.15: Space-time plot of the calcium concentration in the FDF model of inter-

cellular waves for the parameters in Figure 7.14 and F, = 7.
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Figure 7.16: Space-time plot of the calcium concentration in the FDF model of inter-

cellular waves for the parameters in Figure 7.14 and F, = 2.
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be constant throughout the cell culture and the intercellular Ca?t wave 1s mediated
by a passive Ca?* diffusion through gap junctions Numerical simulation of the DYK
model shows that the critical gap-junctional calcium permeability 1s consistent with
that found from the mathematical analysis of the FDF model In the second part, we
have included the dynamics of IP; into these two models assuming a passive diffusion
of IP; from the strmulated cell as well as Ca?* propagation through the gap junction
A qualitative comparison of the simulation results of both the DYK and FDF models
1n respect of wave propagation dependence on gap-junctional permeability shows the

similarity 1n behaviour of a propagating intercellular wave through the cell tissue



Chapter

Conclusions and further work

In this chapter we describe some natural ways to extend the work presented 1n this

thesis First, however, we briefly summanse the main achevements of this thesis

8.1 Conclusions

In this thesis we have studied oscillations and waves of cytosohc Ca?t 1n single cells as
well as multi-cellular systems from a mathematical perspective We have focused on
two models of Ca?* release (DYK and FDF) for a systematic analytical and numerical

analysis of Ca?* dynamics

First of all, a detailed numerical bifurcation analysis together with a linear stability
analysis n the reduced DYK model was presented The dispersion curve for periodic
waves and a kinematic theory of wrregular wave propagation were used to predict the
existence of a non-periodic travelling wave connecting periodic orbits  This prediction
was confirmed by direct numerical simulation We have used a detailed analysis of

the DYK model to motivate the form of a much simpler minimal FDF model capable

of exlibiting qualitatively similar behaviour to that of the more complex biophysical
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DYK model We have presented the generalised form of the onginal FDF model
supporting both solitary and periodic traveling waves and retaining mathematical
tractabihty One of the important features of this generalised model 1s the inclusion of
an IP; sensitive threshold The explicit construction of travelling waves has allowed us
to probe the mechamsms for propagation failure in the two extremes of 1) a continuous

distribution of calcium stores and 1i) a discrete distribution

Moreover, we have presented an integrative multi-scale framework which opens up
new possibilities for mathematical progress in studymng the dynamics of Ca®* release
in cells In particular we have shown that the FDF model may be naturally extended
to mmclude further layers of biological reality The important extensions presented
in this thesis include more general choices of the distribution of release sites, the
stochastic triggering of release and studymg the model in one and two dimensions
The computationally efficient FDF framework 1s 1deal for investigating spark to wave
transitions within a spatially extended cell model with a discrete distribution of release
sites. Numerical simulations of the model m one and two dimensions (with stores
arranged on both regular and disordered lattices) have illustrated the spontaneous
production of Ca?* sparks, the spreading of circular Ca?t waves, sprrals and more
uregular waves This highlights the ability of the model to describe realistic travelling
Ca?* waves Furthermore, this approach allowed us to examine behaviour which can
only be produced 1n stochastic systems, and mn particular AECR This phenomenon
could play a potentially important role in the development of ectopic beats in the
heart For an mtracellular Ca?* oscillation to trigger an ectopic beat it 1s necessary
that 1t first triggers an action potential This can only be triggered 1f the sodium-
calcium exchange current associated with a Ca®* osallation is sufficiently large and
rapid However, 1n experiments on 1solated myocytes, Ca?* waves rarely trigger an
action potential If Ca?* release was simultaneous throughout the cell (z e if the Ca?+
oscillations were due to AECR) rather than in the form of a wave, the induced sodium-

calcium exchange current would have a larger amplitude, increasing the hikelihood of
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an action potential being evoked

In numerical simulations of a one-dimensional stochastic FDF model 1t has also been
possible to identify a critical level of noise defining a non-equilibrium phase-transition
between propagating and abortive structures A statistical analysis shows that this
transition is the same as for models in the DP umversality class The analysis of
calcium release and transport in the generalised stochastic FDF model may be used
for determination of the critical levels of extracellular Ca?t, and values of other
controllable variables, necessary for an experiment to exhibit the types of abortive
waves that would signal the onset of a DP phase transition This may provide the
first experimental realisation of the critical exponents for the mtensely studied DP

universality class in statistical physics

8.2 Further work

We have shown that the biophysically motivated DYK model of calcium release can
be viewed as possessing an IP; sensitive threshold {Chapter 4) The use of this IP;
sensitive threshold within the stochastic FDF framework would allow the mvestiga-
tion of the effects of stochastic fluctuations in IP3 levels Although not expected to
influence any cnitical exponents (since these should be independent of the details of
the model), the background level of IP; would be expected to influence the speed
and shape of a travelling wave Interestingly precisely this issue has been recently
addressed by Shuai and Jung [147] in a model of Ca** release which incorporates a

stochastic model of an IP;R

Throughout this work we have made the assumption that diffusion 1s isotropic How-
ever, the relaxation of this assumption does not lead to any techmical difficulties For

example, in two dimensions we might consider the replacement DV? — D,8,,+D,8,,

so that G(z,y,t) = exp|—t/7q4] exp|—2?/4D,t — y*/4D,t]/4w\/D,D,t The remain-
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der of the formalism we have employed then carries over. Also as 1t stands the FDF
framework incorporates only a linear model of SERCA pump, although a common
model of such a process 1s to consider a simk of the form w™/(K + u®) A piecewise

constant version of such a function (valid as n — o) may be easily studied within

the FDF framework

The stochastic phase plane analysis used for addressing threshold nose [36] may also
be suited for establishing the distribution of release event duration Once this 1s
determined the discrete time update rule can be replaced by an 1terated function

system where 75 is treated as a random variable (with known distribution)

In the FDF framework 1t will also be possible to explore the importance of focal sites
on wave Initiation and propagation Focal release sites are distinguished by their
higher sensitivity to IP3 and their close apposition to neighboring release sites They
are known to be able to entrain both the temporal frequency and spatial directionality
of calerum waves [107] Thus 1ssue has recently been considered by Falcke from a
theoretical perspective [51, 52] Falcke shows that, for a stochastic realisation of the
DYK model, large period (noise induced) oscillations may be perceived as a nucleation
phenomena where the period of oscillation depends on the geometry of the array of

release sites

The recent experimental progress in determning the precise spatio-temporal recruit-
ment pattern of sparks 1n rat atrial myocytes [100] provides an 1deal testing ground
for the use of a stochastic FDF framework to understand the behaviour of real cells
An important aspect of this particular cell that can naturally be accommodated
withm our FDF framework 1s the separation of stores mto subsarcolemmal junctional
SR (JSR) and central nonjunctional SR (NJSR) classes It 1s known that Ca®* rise
in atrial myocytes occurs at so-called eager-sites in the subsarcolemmal region fol-
lowed by CICR wave propagation nto the deeper layers of the cell It would appear

that enchanced excitability of the eager-sites leads to a predetermined microscopic
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activation sequence of Ca®* sparks whereby single cells produce reproducible inho-
mogeneous Ca®t release upon depolarisation Models of the VOCC channels (that
mediate the entry of the electrical signal into the cell) may be developed using an
appropriate FDF voltage dependent (rather than Ca?*) threshold function Since
eager-sites display the highest frequency of spontaneous Ca?"* sparks m resting cells
the functional distinction between JSR and NJSR stores may be modelled using a
non-uniform distribution of thresholds In particular the use of a stochastic FDF
model will allow the investigation of how the geometry of relcase sites gives rise to
nucleation phenomena Furthermore, such a modelling study will be able to probe
the way 1n which the failure to recruit Ca?+ sparks appropriately can lead to defective

excitation-contraction coupling in cardiac cells [64]

In addition to forming the global Ca2* transient underlying contraction, Ca?* sparks
can also cause depolansation of cardiac cells and thereby enhance or corrupt the
rhythm of the heart Incubation of electrically-paced atrial myocytes causes the ap-
pearence of spontaneous subsarcolemmal Ca?* sparks [97], which are probably due
to the activation of IP3Rs that co-localise with RyRs n these cells The progressive
increase 1n cytoplasme Ca®t caused by the summation of infrequent subsarcolemmal
Ca®* sparks promotes electrogenic forwardmode Na*/Ca?* exchange Because of the
strategic firing of subsarcolemmal Ca?* spark sites, only a few events may be neces-
sary to create enough inward current to drive a cell to the threshold for depolarisation
[68] The ability of a few Ca?* sparks to enhance cardiac automaticity (increase the
frequency of spontaneous action potentials) has potentially serious implcations for
the generation of cardiac arrhythmias and sudden heart failure. The FDF frame-
work may be suited to probing the 1ssue of spontaneous release from the SR from a
theoretical perspective In particular, 1t 15 possible to consider the role of the dual
presence of both RyRs and IP3Rs and their spatial distribution in generating delayed
after-depolanising (DAD) currents [101] Moreover, a theoretical study of wave miti-

ation and propagation can be compared to experiments where each receptor class 1s
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pharmacologically knocked out Using a theoretical approach we may determine the
conditions that separate subthreshold DADs (associated with a non-regenerative ring
of Ca®* around the cell) from suprathreshold DADs (associated with a ring of sparks

that propagates to the deep cell layers)

Finally, the generalised FDF model can be easily extended to a fully three dimensional
system This 1s especially relevant to the modelling of subsarcolemmal waves 1 atrial
myocytes, where release sites are arranged along one-dimensional lines 1n a three-
dimensional cell By generalising the one-dimensional analysis and incorporating the
appropriate imnhomogeneous mixed boundary conditions this problem may be tackled

using Fourler techniques along the lines described by Lemon [95]




Appendix A

Numerical Issues

A.1 XPPAUT

The XPPAUT package has been developed by Bard Ermentrout [49] at the University
of Pittsburgh and 1s freely available free at http //www pitt edu/~phase/ It 1s an
interactive package for numerically solving and analysing differential equations It
also provides a simple mterface to most of the common features of the numerical
bifurcation software AUTO (ftp //ftp es concordia ca/pub/doedel/auto), origimally
developed by E J Doedel {46]

We list XPPAUT codes (* ode files) that have been used to produce some of the
figures 1n Chapters 2 and 5

Program 1. Oscillations in the two-pool model
#Parameters

par mu=0.2,gam=2,eps=0.04,bet=0.13,alfa=0.9,del=0.004,n=2,m=2,p=4

#Equations

156
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u’=mu-u-gam*f (u,v)/eps
v’=f (u,v)/eps
f(u,v)=bet*((u™n)/(1+u"n))-((v'm)/((v m)+1))*{(u~p) /(alfa p+u~p) ) -del*v

done

Program 2. Oscillations in the full DYK model of IP;R.

#Parameters

par p=1

#Equations
dx000/dt=-(v1i+v2+v3)
dx100/dt=~(v4+v5-v1)
dx001/dt=-(-v2+v8+v9)
dx010/dt=-(-v3+v11+v12)
dx101/dt=-(-v9-v4+v15)
dx011/dt=-(-v8+v17-v11)
dx110/dt=-(v19-v5-v12)
dc/dt=(r1*(x110) "3+r2)* (caer-c) - (r3*¢c~2) / ((c"2)+{kp~2))
#Functions
x111=1-(x000+x100+x001+x010+x101+x01 14+x110)
v1=kp1*p*x000-kmi*x100
v2=kp4*c*x000-km4*x001
v3=kp5*c*x000-km5*x010
v4=kp2*c*x100-km2*x101
v5=kpb*c*x100-kmb*x110
v8=kpb*c*x001-kmb*x011
v9=kp3*p*x001-km3+x101
v11=kpd*c*x010-km4*x011
v12=kpl*p*x010-km1*x110
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v15=kpb5*c*x101-kmbS+*x111
v17=kp3*p*x011-km3+*x111
v19=kp2#c*x110-km2+x111

#Fi1xed variables
kp1=400,kp2=0.2,kp3=400,kp4=0.2,kp5=20
km1=52,km2=0.21,kn3=377.36,km4=0.029 ,km5=1.65
caer=1,kp=0.1,r1=20,r2=0.004,r3=1 2

done

Program 3. Travelling waves in the reduced DYK model

#Parameters

par p=0.7,s8=2

#In1tial conditions

c(0)=0.2944

w(0)=0

y(0)=0.6431

#Fixed variables
k1=400,k2=0.2,k3=400,k4=0.2,k5=20
km1=52,km2=0.21,km3=377 .36 ,km4=0.029,km5=1.65,
kp=0.1,D=1,caer=1, ri=20,r2=0.004,r3=1.2
bigKl=kml/k1

b1gK3=km3/k3

b1gK5=km5/k5

b1gK2=km2/k?2

bigK4=km4/k4

#Equations

cl=y

w’={g*xw-(r1*x110"3+r2) * (caer—c) +r3*c~2/(c"2+kp~2) } /D
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y’=((hanf{(c,p)-y)/taulc,p))/s

#Functions
alfa(c,p)=(kmé*b1gK2*b1gK1+km2+p*bi1gK4) *c/ (bagKd*b1gK2* (p+bigK1))
betta(c,p)=(km2*p+km4*b1gK3} / (p+b1gK3)

x110=pxc*y/ ((p+b1gK1l)* (c+b1gK5))
hanf(c,p)=betta(c,p)/(alfa(c,p)+bettalc,p))
tau(c,p)=1/(alfa(c,p)+bettalc,p))

done

Program 4. Oscillations in the Atri model

#Parameters

par mu=1

#Equations

c’= kfluxsmush*(b+cx(1-b)/(ki+c)) - gam*c/(kgamtc)
h’=(k2~2/(k2*2+c"~2)-h)/tauh

#Fixed variables

b=0.111,gam=2,tauh=2,k1=0.7,k2=0.7 ,kgam=0.1,kflux=8.1

done

Program 5. Numerical simulation for orbit connection in the reduced DYK

model

#Parameters

par p=0.2622,caer=1,dx=1,nstar=200,10=35

par dell=30,del2=50,td=1,r1=20,r2=0.004,r3=1.2
#Initial condations

c[0..200] (0)=0.00825

y[0..200](0)=0.97643
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#Equations
dc0/dt=(r1*x110(c0,y0) "3+r2) * (caer-cQ)-r3*c0~2/(cO0"2+kp~2)+

+D* (c1-¢0) /dx"2+I(t)
dcl1..199]/dt=(r1*x110(c[3],y[3]) "3+r2) *(caer-c[31)-r3*c[3]"2/(c[j]1 "2+kp~2)+
+Dx(c[j-11-2*cjI+c[3+1]) /dx"2
dc200/dt=(r1*x110(c200,y200) “3+r2) *(caer-c200) -r3+c200°2/(c200"2+kp~2) +
+D*(c199-¢200) /dx~2

dy [0..200] /dt=(hinf (c[j]1)~y[31)/taulc[3])

#Functions
alfa(c)=(knd*b1gK2xb1gK1+km2*p*bigK4)*c/(bigK4*bigK2* (p+b1gKl))
betta(c)=(km2*p+km4d*bigK3)/(p+b1gK3)

x110(c,y)=pxc*y/ ((p+bigK1l)* (c+bigK5))

hanf (¢)=betta(c)/(alfa(c)+bettalc))

tau(c)=1/(alfa(c)+betta(c))

b1gK1=<kmi/k1

b1gK3=km3/k3

b1gK5=kmb/k5

b1gK2=km?2/k2

bigK4=km4/k4
I(t)=sum(0,nstar) of (I0*heav(t-1’*dell)*heav{td-{t-17*dell))})+
+sum(nstar+1,400) of (I0*heav{(t-nstar*dell-{1’-nstar) *del2) *heav(td-
-(t-nstar*dell-(1’-nstar)*del2)))

#Fi1xed variables
k1=400,k2=0.2,k3=400,km4=0.029,kn5=1.65,km1=52 ,km2=0.21
km3=377.36,kb=20,k4=0.2,kp=0.1,vc=0.185,D=1

@ MAXSTOR=1000000

#dt=0.1

done
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Program 6. Travelling front in the continuum FDF model

# Bistable wave simulation

#Parameters

par d=30,dx=0.2,s1gra=5,taur=1,taud=10000000,cth=0.1
#Initial conditions

c[0..1001(0)=0

s[0..20]1(0)=1.0

s[21..100] (0)=0

#global 1 cO-cth {s0=1}

global 1 c10-cth {s10=1}

global 1 ¢20-cth {s20=1}

global 1 c30-cth {s30=1}

global 1 c40-cth {s40=1}

global 1 c50-cth {s50=1}

global
global
global

c60-cth {s60=1}
¢70-cth {s70=1}
c¢80-cth {s80=1}

- =

[y

global 1 c90-cth {s90=1}

global 1 c100-cth {s100=1}

#Equations

dcO/dt = sigmasxheav(s0)/2/taur-c0/taud+d*(cl-c0)/dx"2

dc[1..99]1/dt = sigmaxheav(s([j])/taur-c[jl/taud+d*(c[j-1]1-2*c[j]+c[3+1]1)/dx"2
dc100/dt = saigmaxheav(s100)/2/taur-c100/taud+d*(c99-c100)/dx"2

ds[0 .100]/dt = -heav(s[j])/taur

#Auxiliary function

aux logc[0 1001 = clj]

#Numerical method characteristics

@ total=2,trans=0,dt=0.0001,x10=0,xh1=2000,ylo=0,yh1=1
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Q@ maxstore=1000000,bounds=10000
@ xplot=x,yplot=Call

done

Program 7. Travelling front in the discrete FDF model

# Bistable wave simulation

#Parameters

par d=30,dx=0.2,s1gma=5,taur=0.01,taud=10000000,cth=0.1
#Initial conditions

c[0. 1001(0)=0

s[0]1(0)=1.0

s[1. 100](0)=0

#tiglobal 1 cO-cth {s0=1}

global 1 c10-cth {s10=1}

global 1 c20-cth {s20=1}

global 1 c30-cth {s30=1}

global 1 c40-cth {s40=1}

global 1 c50-cth {s50=1}

global 1 c60-cth {s60=1}

global 1 c70-cth {s70=1}

global 1 c80-cth {s80=1}

global 1 ¢90-cth {s90=1}

global 1 c100-cth {s100=1}

#Equations

dc0/dt = sigmaxheav(s0)/2/taur-c0/taud+d*(ci-¢c0)/dx"2
dc[1..99)/dt = sigma*heav(s(j])/taur-c(j}/taud+d*(c[3-1]-2*c[j]+c[3+1])/dx"2
dc100/dt = sigmatheav(s100)/2/taur-c100/taud+d* (c99-c100)/dx"2
ds[0..100]/dt = -heav(s[jl)/taur
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#Auxiliary function

aux logc[0..100] = c[3]

#Numerzcal method characteristics

@ total=0.5,trans=0,dt=0.0001,x10=0,xh1=2000,yl0=0, yhi=1
@ maxstore=1000000,bounds=10000

Q@ xplot=x,yplot=Call

done

A.2 MATLAB

Many figures and all amimations have been performed using the software package
MATLAB produced by The MathWorks, Inc (http //www mathworks com) MAT-
LAB provides an mteractive development tool for scientific and engineering problems
and more generally for those areas where significant numerical computations have to

be generated Program codes and amimations are presented on the CD provided

A.3 Fourier spectral methods

Spectral methods are based on the global representations of functions, usually by
a trigonometric or polynomal interpolants, whereas in other methods, such as finite
elements or finite differences, the underlying expansion mvolves local interpolants such
as plecewise polynomials In practice this means that the accuracy of the spectral

method 1s much higher than others

We have used a Fourter imnterpolant on a bounded domain for the generation of spectral

differentiation matrices. The nodes have been determined by

2 = (k — 1)k, h=2§, k=1, ,N. (A1)

Since the canonical interval for the method 1s [0, 27], we have apphed a linear trans-
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formation zx «— £ to convert the domain [0, L] where the differential equation 15
defined to [0,27] The differentiation processes in the Jacobian M of Chapter 3 has

been represented by a first- and second - order differentiation matrices

(
0, k=y
Diy = 4 - (A2)
\%(—1)"“‘J cot =0t _2’) , k#y
and
0, k=
D2 = (A-3)
(1) resc? B2l kot g

\

1

cot(z) = ———tanl(z), cse(z) = Y]

A.4 Intercellular waves in the FDF model

The system of equations for b, b, and B, as a function of m 1s as follows

(

PATpT b1+ pAT™pfby + A (VO (1) — 1) — p(11 + 1)) By = —par

{ (Vo1 +pol )b+ AT™(Vops +ppg )by — pX™ (1 + 1)By = —pa (A 4)

(1/1 + 1)b1 + (1/2 + l)bg =8—q,

\

where

p-li— = e1/\/3”1 + e_lh/g’ p; = el/\/El/l - eﬂll\/ga
o = el/\/ﬁyz + 8—1/\/3’ p; = el/\/SV2 RS VY

The concentration of calcium n the (m + 1) cell satisfies the equation u;,41(0) =
ByA™ 4141 B where B 1s obtained from the system of equations (A.4) Thus,

Unm+1(0) 18 given by

Umt1(0) = p(1 + 14)[26VVEA™ (& — 8) (12 — 11) + (1 + 1) (1 — ¥/ Vo) +
(A 5)
oA (1 4 1) (¥ Vo0, — 1))/D,

]
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where

D = A2 (1 4 1) [V(1 — 11) (e Y30y — 1) + 2p1n (e¥Y3 — 1)+

V(1 — v2)(1 — /Vou) + 2p(1+ 11) (11 — e/ Vouy).
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