

This item was submitted to Loughborough University as a PhD thesis by the author and is made available in the Institutional Repository (<a href="https://dspace.lboro.ac.uk/">https://dspace.lboro.ac.uk/</a>) under the following Creative Commons Licence conditions.



COMMONS DEED

### Attribution-NonCommercial-NoDerivs 2.5

# You are free:

· to copy, distribute, display, and perform the work

# Under the following conditions:



Attribution. You must attribute the work in the manner specified by the author or licensor.



Noncommercial. You may not use this work for commercial purposes.



No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

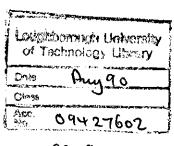
This is a human-readable summary of the Legal Code (the full license).

Disclaimer 🗖

For the full text of this licence, please go to: <a href="http://creativecommons.org/licenses/by-nc-nd/2.5/">http://creativecommons.org/licenses/by-nc-nd/2.5/</a>

# LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY LIBRARY AUTHOR/FILING TITLE EVANS, G. A ACCESSION/COPY NO. O9427602 VOL. NO. CLASS MARK LOAN COPY

009 4276 02


# Numerical Quadrature

# and its Applications

# **Software Section**

by

G. A. Evans



y9319708

# Contents

| Prog           | Title                               | Reference                       |
|----------------|-------------------------------------|---------------------------------|
| 1              | Multiple Precision Arithmetic       | Algol 68 NAG library            |
| $\overline{2}$ | Interval arithmetic package         | Algol 68 NAG library            |
| 3              | General standard multidimensional   | •                               |
| Ū              | integrator                          | *                               |
| 4              | An adaptive integrator              | *                               |
| 5              | Newton-Cotes oscillatory integrator | C. J. 18, No. 2, (1975)         |
| 6              | Bessel functions                    | Maths. Res. 53, (1975)          |
| 7              | Finite range oscillatory integrals  | C. J. 19 No. 3, (1976)          |
| 8              | Infinite range oscillatory          | , , ,                           |
| •              | integrals                           | J. Comp. Phys. 13, (1973)       |
| 9              | The routine infint                  | J. Comp. Phys. 13, (1973)       |
|                |                                     | J. Comp. Phys. 22, (1976)       |
| 10             | Singular quadrature with            | - , , , ,                       |
|                | accelerators                        | Int. J. Comp. Math. 12, (1983)  |
| 11             | Singular quadratures by             | Int. J. Comp. Maths. 15, (1984) |
|                | transformation                      | Int. J. Comp. Math. 27,(1989)   |
| 12             | Two dimensional singular            | Int. J. Comp. and               |
|                | quadrature                          | Appl. Math. 24, (1988)          |
| 13             | Three dimensional singular          | Int. J. Comp. and               |
|                | quadrature                          | Appl. Math., (1989)             |
| 14             | Non-linear integral equations       | Int. J. Comp. Math. 11,(1982)   |
| 15             | Non-linear integral equations       |                                 |
|                | variational method                  | Int. J. Comp. Maths. 22, (1987) |
| 16             | Hartree-Fock atomic systems         | Int.J. Quantum Chem. 12, (1977) |
| 17             | Ion beam model                      | Vacuum 34,(1984)                |
|                |                                     | Vacuum 36,(1986)                |
| 18             | Eddy current model                  | Proc. Eddy current sem.,(1988)  |
|                |                                     | 1 11 1 1 1                      |

<sup>\*</sup> These routines implement standard methods and have been used extensively to generate comparative results throughout the work.