This item was submitted to Loughborough University as a PhD thesis by the author and is made available in the Institutional Repository (https://dspace.Iboro.ac.uk/) under the following Creative Commons Licence conditions.

(c) creative

C O M M O N S D E E D

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

BY Attribution. You must attribute the work in the manner specified by the author or licensor

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer $\left.{ }^{[}\right]$

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Numerical Quadrature

and its Applications

by
G. A. Evans

Acknowledgements

In a period of eighteen years many people influence one's academic development, especially remembering that in the early years one is setting off on a career as a junior lecturer and at the end onehas enjoyed senior status for almost a decade.

I have been fortunate to have had continuing support from Professor Storey who has been my head of department throughout almost the whole period of this work. He has provided an environment to allow research development despite at times departmental pressure caused by high teaching loads.

Of equal importance has been the close co-operation and support I have had from David Hogg and his computer centre and staff. Again he has been in office throughout the period of research, and the machines employed range from an early 32K 1900 through to Primes and a Honeywell system. Some work was also done on the 2900 at Nottingham and the regional CDC at Manchester. A large number of micros have been employed in recent years (even electronic calculators were not available in the early stages), in particular the presentation was made using TEX on a Macintosh.

It is the personal contacts which keep work progressing on a day to day basis, and result in considerable influence. One man stands out in this respect. Dr. John Hyslop became a friend and colleague and a provider of suberb problems in his area of quantum mechanics in the early stages of this work. He died tragically in February,1985.

Contents

Ch 1. Introduction and philosophy1. Introduction2. Philosophy
Ch 2. Oscillatory integrals -finite range1. Introduction
2. Introduction to the structure ofNewton-Cotes formulae
3. Use of interpolatory polynomials4 Use of Taylor series
5 Comparison of the error terms
6 Derivation of Newton-Cotes
formulae using Taylor series
7. Classical methods - finite range C. J. 18No.2,(1975)
8. Automatic generation of Newton-Coteslike quadrature rules for9. Results
10. Algorithm for σ
11. Computing Bessel functions Math.Res. 53 (1975)
12. A direct algorithm usingChebyshev seriesC. J. 19 No.3,(1976)
13. Stability of the algorithm
14. Computational procedure andnumerical application

Ch 3. Oscillatory integral - infinite range

1. Introduction
2. Introduction
3. Introduction
4. Introduction
5. Introduction
6. Introduction J. Comp. Phys. 13 (1973) J. Comp. Phys. 13 (1973) J. Comp. Phys. 13 (1973) J. Comp. Phys. 13 (1973) J. Comp. Phys. 13 (1973) J. Comp. Phys. 13 (1973)
7. The use of accelerators
8. The use of accelerators
9. The use of accelerators
10. The use of accelerators
11. The use of accelerators
12. The use of accelerators
13. A comparison with other approaches
14. A comparison with other approaches
15. A comparison with other approaches
16. A comparison with other approaches
17. A comparison with other approaches
18. A comparison with other approaches J.Comp. Phys. 22 (1976) J.Comp. Phys. 22 (1976)
19. Implementation of the
20. Implementation of the
21. Implementation of the
22. Implementation of the
23. Implementation of the
24. Implementation of the acceleration techniques acceleration techniques acceleration techniques acceleration techniques acceleration techniques acceleration techniques
25. Numerical comparison and
26. Numerical comparison and
27. Numerical comparison and
28. Numerical comparison and
29. Numerical comparison and
30. Numerical comparison and discussion discussion discussion discussion discussion discussion
31. Two special examples
32. Two special examples
33. Two special examples
34. Two special examples
35. Two special examples
36. Two special examples
37. Conclusions and physical applications
38. Conclusions and physical applications
39. Conclusions and physical applications
40. Conclusions and physical applications
41. Conclusions and physical applications
42. Conclusions and physical applications Appendix A Appendix A Appendix A Appendix A Appendix A Appendix A
Chebyshev based quadrature formulae
Chebyshev based quadrature formulae for trigonometric integrals for trigonometric integrals
Appendix B
Appendix B
Appendix B
Appendix B
Appendix B
Appendix B
Gaussian formulae for trigonometric
Gaussian formulae for trigonometric integrals integrals integrals integrals integrals integrals
J.
J.
J.
J.
J.
J.
Int.J.Math.Educ.
Sci. Tech. 5, (1974)
.

oscillatory functions
and practical recommendations

Ch 4. Singular quadrature

1. Introduction
2. Generation of quadrature sequences
3. Acceleration methods
4. Results and discussion
5. Introduction
6. Polynomial transformations
7. Further tests and discussion
8. Introduction to the tanh transformation
9. Derivation of the quadrature rules
10. Truncation strategies and error estimates
11. Results for singular integrals using Schwartz's optimum h
12. Automatic quadrature procedure
13. Introduction to generalized transformations
14. Generating the transformation
15. Implementation of the quadrature rules
16. Results and conclusion

Ch 5. Multiple integrals

1. Introduction
2. The formulation of the rule
3. The precision of the integrand
4. Results and Conclusions
5. Introduction
6. Extension to three dimensions
7. Tests and results

Int. J. Comp.Maths. 12 (1983)
-

Int. J. Comp. Maths. 14 (1983)

Int. J. Comp. Math. 15 (1984)

Int. J. Comp. Math. 27 (1989)
-•
-•
J.Comp. App. Maths. 24 (1988)
.
J. Comp. App. Maths. (1989)

Ch 6. Integral equations and a numerical differentiator

1. Introduction to the iterative solution of Volterra integral equations
J. Comp. Phys. 40 (1981)
2. Integral equations for the slowing down of neutrons
3. Other examples of integral equations
4. Numerical integration formulae
5. Results and discussion
6. Introduction to the solution of non-linear Fredholm equations
7. The tubular reactor equation and and its integral form
8. Iterative solution of the integral equations
9. Modified iterative scheme
10. Conclusion
11. Introduction to the variational solution of integral equations
12. Formulation of the iterative scheme
13. Variational solution
14. Implementation
15.Examples and results
16.Introduction
17.The differentiation formulae
18.Errors
19.Results and conclusions

Int. J. Comp. Maths. 11(1982)
..
..
\because
-

Int.J. Comp. Math. 22 (1987)
-.
..
J. Comp. Phys. 32 (1979)
.
-
.

Ch 7. Applications

Quantum mechanics

1. Introduction
2. The variational functionals and formulation of the integrals
3. Direct numerical evaluation of the integrals
4. The use of Shanks' non-linear transformations to accelerate convergence
5. Fourier transform techniques
6. Evaluation of the auxiliary integrals $A_{1}, A_{2}, A_{3} \ldots$
7. Analytic reduction of the integral I
8. Analytic reduction of the integral I^{\prime}
9. Numerical evaluation of the analytically reduced integrals I and I^{\prime}
10.Results arising from the semi-analytic methods
11.Introduction to the use of Slater orbitals
12.Separated atom trial functions
13.Evaluation of the integrals
10. The integrals $v_{a a}$ and $v_{a b}$
15.The integral $g_{a a}$
16.The integral $g_{a b}$
17.Application to the H_{2}^{+}molecule

Ch 7 Appendix A
Definition of the spherical harmonics $Y_{l, m}(\theta, \phi)$
18. Introduction to the implementation of variational procedures
19. Formulation of the unscaled equations and optimization
20.Numerical applications and discussion
21. Introduction to a numerical integration scheme for atomic systems
22.Basic equations and the numerical integration scheme
23.Applications and discussion
24.Conclusions

Appendix B
25. Introduction to the variation-iteration solution of the Hartree-Fock equation
26.The variation-iteration solution of the Hartree-Fock equations
27.Applications and numerical results
28. Conclusions

Int. J. Quantum. Chem. 11 (1977)
*
-
"
-

Int. J. Quantum. Chem. 12 (1977)
-
..

Ch 8. Applications II physical models

1. Introduction
2. Introduction to low Reynolds' number flow
3. The matching procedure and results
4. Introduction to computational model of liquid metal ion sources
5. The geometric modelling and solution of Poison's equation
6. Determination of the ion velocities and charge densities
7. Discussion
8. Introduction to high accuracy ion optics computing
9. The geometric modelling and solution of Laplace's equation
10. Trajectory analysis and analytical comparisons
11. Instrument design applications
11.1.Individual ion lenses
11.2.SIMS extraction optics
11.3.Lithography columns
12. Conclusions
13. Introduction to eddy current computations
14. Formulation of the problem
15. The numerical process
16. Results

Appendix A

Vacuum 34 (1984)

Proc. Eddy
J. Aerosol Sci. 3 (1972)

Vacuum 36 (1986)
current sem. (1988)
.

