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Summary. In this paper we study interface equations associated to the Darcy-Stokes problem
using the classical Steklov-Poincaré approach and a new one called augmented. We compare
these two families of methods and characterize at the discrete level suitable preconditioners
with additive and multiplicative structures. Finally, we present some numerical results to as-
sess their behavior in presence of small physical parameters.

1 Introduction and problem setting

Let Ω ⊂ Rd (d = 2,3) be a bounded domain decomposed into two non intersecting subdo-
mains: Ω f , filled by a viscous incompressible fluid, and Ωp, formed by a porous medium,
separated by an interface Γ = Ω̄ f ∩ Ω̄p. The fluid in Ω f has no free surface and it can filtrate
through the adjacent porous medium. The motion of the fluid in Ω f is described by the Stokes
equations:

−ν4u+∇p = f, div u = 0 in Ω f (1)

where ν > 0 is the kinematic viscosity, while u and p are the velocity and pressure. In Ωp we
describe the fluid motion by the equations:

up =−K∇ϕ, div up = 0 in Ωp (2)

where up is the fluid velocity, ϕ the piezometric head and K the hydraulic conductivity tensor.
The first equation is Darcy’s law that provides the simplest linear relation between velocity and
pressure in porous media. We can equivalently rewrite (2) as the elliptic equation involving
only the piezometric head:

−div(K∇ϕ) = 0 in Ωp. (3)

Besides suitable boundary conditions on ∂Ω , we supplement the Darcy-Stokes problem
(1), (3) with the following coupling conditions on Γ :

−K∇ϕ ·n = u ·n, −n ·T(u, p) ·n = gϕ, −ετττ ·T(u, p) ·n = νu · τττ, (4)

where T(u, p) is the fluid stress tensor, τττ denotes a set of linear independent unit tangential
vectors to Γ and ε is a coefficient related to the characteristic length of the pores of the porous
medium. Conditions (4)1 and (4)2 impose the continuity of the normal velocity and of the nor-
mal component of the normal stress on Γ . The so-called Beavers-Joseph-Saffman condition
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(4)3 does not yield any coupling but provides a boundary condition for the Stokes problem
since it involves only quantities in the domain Ω f . For more details we refer to [9, 11, 12, 14].

2 Interface equations associated to the Darcy-Stokes problem

In [7, 8], we showed that the coupled Darcy-Stokes problem can be reformulated in terms of
the solution of equations defined only on the interface Γ involving suitable Steklov-Poincaré
operators associated to the subproblems in Ω f and Ωp. We formally briefly review this ap-
proach referring to the cited works for more details.

If we select as interface variable λ ∈ H1/2
00 (Γ ) to represent the normal velocity across Γ :

λ = u ·n =−K∇ϕ ·n on Γ , we can express the solution of the Darcy-Stokes problem in terms
of the solution of the interface equation: find λ ∈ H1/2

00 (Γ ) such that

〈Ssλ ,µ〉+ 〈Sdλ ,µ〉= 〈χs,µ〉+ 〈χd ,µ〉 ∀µ ∈ H1/2
00 (Γ ). (5)

Equation (5) imposes the continuity condition (4)2. The linear continuous operators χs and χd

depend on the data of the problem and 〈·, ·〉 denotes the duality pairing between H1/2
00 (Γ ) and

its dual (H1/2
00 (Γ ))′. Concerning Ss and Sd , we remark that

• the operator Ss : H1/2
00 (Γ )→ (H1/2

00 (Γ ))′ maps the space of normal velocities on Γ to
the space of normal stresses on Γ through the solution of a Stokes problem in Ω f with
boundary condition u ·n = λ on Γ .

• Sd maps the space of fluxes of ϕ on Γ to the space of traces of ϕ on Γ via the solution of
a Darcy problem in Ωp with the boundary condition −K∇ϕ ·n = λ on Γ . The operator
Sd should be a map between H−1/2(Γ ) and H1/2(Γ ), but in (5) we are applying it to
H1/2

00 (Γ ), a space with a higher regularity than needed where we cannot guarantee the
coercivity of the operator.

On the other hand, if we choose as interface unknown η ∈H1/2(Γ ) the trace of the piezo-
metric head on Γ : η = gϕ|Γ =−n ·T(u, p) ·n on Γ , the Darcy-Stokes problem can be equiv-
alently reformulated as find η ∈ H1/2(Γ ):

〈〈S f η ,µ〉〉+ 〈〈Spη ,µ〉〉= 〈〈χ f ,µ〉〉+ 〈〈χp,µ〉〉 ∀µ ∈ H1/2(Γ ), (6)

where χ f and χp are linear continuous operators depending on the data of the problem. Equa-
tion (6) imposes the coupling condition (4)1. Here:

• the operator S f maps the space of normal stresses on Γ to the space of normal velocities
on Γ via the solution of a Stokes problem with the boundary condition−n ·T(u, p) ·n=η

on Γ . This operator would naturally be defined from H−1/2(Γ ) to H1/2
00 (Γ ) so that in (6)

we are applying it to functions with a higher regularity than needed.
• The operator Sp : H1/2(Γ )→ (H1/2(Γ ))′ maps the space of traces of ϕ on Γ to the

space of fluxes of ϕ on Γ by solving a Darcy problem in Ωp with the Dirichlet boundary
condition gϕ = η on Γ .
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3 Augmented interface equations

The classical approach summarized in Sect. 2 leads to reformulate the Darcy-Stokes problem
as interface equations depending on a single interface unknown: either λ , the normal velocity
across Γ , or η , the piezometric head on Γ . We have remarked that the Steklov-Poincaré opera-
tors Sd and S f are not acting on their natural functional spaces, but they are assigned functions
with higher regularity than expected. This prevents us from guaranteeing their coerciveness
(see [7]). In this section we present a different approach based on [5, 3, 4, 6] consisting in
writing the coupled Darcy-Stokes problem as a system of linear equations on Γ involving
both variables λ and η .

3.1 The augmented Dirichlet-Dirichlet problem

To obtain the augmented Dirichlet-Dirichlet (aDD) formulation assume that λ ∈ H1/2
00 (Γ ) is

equal to the normal velocity u ·n on Γ , but not necessarily to the conormal derivative of ϕ on
Γ . On the other hand, let η ∈ H1/2(Γ ) be equal to the trace of ϕ on Γ but not to the normal
component of the Cauchy stress of the Stokes problem on Γ . Then, to recover the solution of
the original Darcy-Stokes problem we have to impose both the continuity of normal velocity
and of normal stresses:

−∫Γ n ·T(u(λ ), p(λ )) ·n µ =
∫

Γ ηµ ∀µ ∈ H1/2
00 (Γ )

−∫Γ K∇ϕ(η) ·nξ =
∫

Γ λξ ∀ξ ∈ H1/2(Γ ).

Using the definition of the Steklov-Poincaré operators, we can rewrite these conditions as:
find (λ ,η) ∈ H1/2

00 (Γ )×H1/2(Γ ) such that

〈Ssλ ,µ〉+ 〈η ,µ〉= 〈χs,µ〉 ∀µ ∈ H1/2
00 (Γ )

〈〈Spη ,ξ 〉〉−〈〈λ ,ξ 〉〉= 〈〈χp,ξ 〉〉 ∀ξ ∈ H1/2(Γ ),
(7)

or, in operator form: (
Ss I
−J Sp

)(
λ

η

)
=

(
χs
χp

)
(8)

where I : H1/2(Γ )→ (H1/2
00 (Γ ))′ and J : H1/2

00 (Γ )→ (H1/2(Γ ))′ are linear continuous
maps.

We call (8) augmented Dirichlet-Dirichlet (aDD) formulation because both functions λ

and η play the role of Dirichlet boundary conditions for the Stokes and the Darcy subproblems,
respectively. Notice that we are imposing the equalities (8) in the sense of dual spaces and that
the operators Ss and Sp still act on their natural functional spaces.

3.2 The augmented Neumann-Neumann problem
We follow now a similar approach to Sect. 3.1, but we assume that λ ∈ H−1/2(Γ ) is equal to
the conormal derivative of the piezometric head −K∇ϕ ·n on Γ and η ∈ H−1/2(Γ ) is equal
to the normal component of the fluid Cauchy stress on Γ . Then, to recover the solution of the
original problem we impose the following equalities:∫

Γ u(η) ·n µ =
∫

Γ λ µ ∀µ ∈ H−1/2(Γ )∫
Γ ϕ(λ )ξ =−∫Γ η ξ ∀ξ ∈ H−1/2(Γ ).

Using the definition of the Steklov-Poincaré operators, we can rewrite these conditions as:
find (λ ,η) ∈ H−1/2(Γ )×H−1/2(Γ ) such that
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〈S f η ,µ〉∗−〈λ ,µ〉∗ = 〈χ f ,µ〉∗ ∀µ ∈ H−1/2(Γ )

〈〈Sdλ ,ξ 〉〉∗+ 〈〈η ,ξ 〉〉∗ = 〈〈χd ,ξ 〉〉∗ ∀ξ ∈ H−1/2(Γ ),
(9)

corresponding to the operator form:(
Sd I∗
−J∗ S f

)(
λ

η

)
=

(
χd
χ f

)
. (10)

Here I∗ : H−1/2(Γ )→H1/2(Γ ) and J∗ : H−1/2(Γ )→H1/2
00 (Γ ) are linear continuous maps,

while 〈·, ·〉∗ and 〈〈·, ·〉〉∗ denote the corresponding pairing.
We call this formulation augmented Neumann-Neumann (aNN) because both functions λ

and η play the role of Neumann boundary conditions for the Darcy and the Stokes subprob-
lems, respectively.

The aNN formulation may be regarded as the “dual” of the aDD approach. Notice that
the operators S f and Sd are now acting on their natural spaces, differently form the classical
setting of Sect. 2. The analysis of problems (8) and (10) can be carried out following the
guidelines of [5].

4 Algebraic formulation of the interface problems
We consider a finite element discretization of the coupled problem using conforming grids
across the interface Γ . The discrete spaces for the Stokes problem satisfy the inf-sup condition.
In this way we obtain the linear system:

F D 0 0
DT AΓ Γ 0 −MΓ

0 0 Cii CiΓ
0 MT

Γ
CΓ i CΓ Γ




uuui
uuuΓ

ϕϕϕ i
ϕϕϕΓ

=


fff f i
fff fΓ

fff pi
fff pΓ

 (11)

where uuuΓ is the vector of the nodal values of the normal velocity on Γ while uuui is the vector
of the remaining degrees of freedom (velocity and pressure) in Ω f . On the other hand, ϕϕϕΓ is
the vector of the (unknown) values of ϕ on Γ while ϕϕϕ i corresponds to the remaining degrees
of freedom in Ωp.

The discrete counterpart of the Steklov-Poincaré operators can be found computing the
Schur complement systems corresponding to either uuuΓ or ϕϕϕΓ . Precisely, we find:

Σs = AΓ Γ −DT F−1D, Σ f = MT
Γ

Σ−1
s MΓ ,

Σp =CΓ Γ −CΓ iC−1
ii CiΓ , Σd = MΓ Σ−1

p MT
Γ
.

(12)

The characterization of these discrete operators in terms of the associated Darcy or Stokes
problems in Ωp and Ω f allows us to provide upper and lower bounds for their eigenvalues.
Assuming ν and K constants in Ω f and Ωp, respectively, and the computational mesh to be
uniform and regular, we can find (see [7, 13, 15]) (� indicates that the inequalities hold up to
constants independent of h, ν , K):

hν � σ(Σs)� ν , h2ν−1 � σ(Σ f )� hν−1

hK� σ(Σp)� K, h2K−1 � σ(Σd)� hK−1 (13)

The discrete counterparts of the interface problems (5), (6), (8), (10) read:

• Discrete interface equation for the normal velocity: find uuuΓ such that

ΣsuuuΓ +ΣduuuΓ = χχχs +χχχd . (14)
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• Discrete interface equation for the piezometric head: find ϕϕϕΓ such that

Σ f ϕϕϕΓ +ΣpϕϕϕΓ = χχχ f +χχχ p. (15)

• Discrete aDD problem: find (uuuΓ ,ϕϕϕΓ ) such that(
Σs −MΓ

MT
Γ

Σp

)(
uuuΓ

ϕϕϕΓ

)
=

(
χχχs
χχχ p

)
. (16)

• Discrete aNN problem: find (uuuΓ ,ϕϕϕΓ ) such that(
Σd MΓ

−MT
Γ

Σ f

)(
uuuΓ

ϕϕϕΓ

)
=

(
χχχd
χχχ f

)
. (17)

The augmented approach allows to compute both interface variable at once but it requires
to solve a system whose dimension is twice the one of the classical methods.

5 Iterative solution methods and numerical results
We present now some numerical methods to solve problems (14)-(17) focusing on cases where
the fluid viscosity ν and the hydraulic conductivity K are small. These are indeed situations of
interest for most practical applications. In [10] a Robin-Robin method was proposed to solve
effectively (14). Here we adopt the generalized Hermitian/skew-Hermitian splitting (GHSS)
method of [2] for (14) and (15) and the HSS method of [1] for (16) and (17). We start consid-
ering (14).

The matrix Σs+Σd has no skew-symmetric component being symmetric positive definite,
but thanks to the estimates (13) we can mimick the splitting proposed in [2] considering Σs as
a matrix multiplied by a coefficient (ν) which may become small. Thus, we can characterize
the preconditioner for (14):

P1 = (2α1)
−1(Σs +α1I)(Σd +α1I). (18)

Proceeding analogously for (15), we can characterize the preconditioner

P2 = (2α2)
−1(Σp +α2I)(Σ f +α2I). (19)

Preconditioners P1 and P2 involve suitable acceleration parameters α1 and α2 and can be
used within GMRES iterations. Remark that they can be regarded as generalizations of the
Robin-Robin method introduced in [7, 10].

On the other hand, as the matrices in (16) and (17) are positive skew-symmetric with sym-
metric positive definite diagonal blocks, we apply the HSS splitting proposed in [1] separating
the symmetric and the skew-symmetric parts of the matrices. Thus, we can characterize the
following preconditioners for GMRES iterations for (16) and (17), respectively, with α3, α4
suitable acceleration parameters:

P3 = (2α3)
−1
(

Σs +α3I 0
0 Σp +α3I

)(
α3I −MΓ

MT
Γ

α3I

)
(20)

P4 = (2α4)
−1
(

Σd +α4I 0
0 Σ f +α4I

)(
α4I MΓ

−MT
Γ

α4I

)
. (21)

According to [2] these preconditioners are effective when either the skew-symmetric or the
symmetric part dominates. Thanks to (13) we can expect that for small ν and K the skew-
symmetric part dominates in (16) and the symmetric one in (17).
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All preconditioners Pi require the solution of a Stokes problem in Ω f and of a Darcy
problem in Ωp. However, P1 and P2 have a multiplicative structure while in P3 and P4 the two
subproblems may be solved in a parallel fashion. They are all effective when ν and K be-
come small. A thorough study of these preconditioners will make the object of a future work,
where also the choice of the parameters αi will be analyzed. For the tests reported in table 1,
following [2], we set α1,α3 '

√
ν , α2 '

√
K and α4 ' 10−1. However, a better characteri-

zation of such parameters is necessary to have a more robust behavior of the preconditioners,
independent of both the mesh size and of the coefficients ν and K.

In the numerical tests, both the Stokes and the Darcy subproblems are solved via direct
methods. The matrices in (20) and (21) involving MΓ and I are assembled explicitly and the
associated linear systems are solved using direct methods. We consider Ω f = (0,1)× (1,2),
Ωp =(0,1)2 with interface Γ =(0,1)×{1} and the analytic solution: u=((y−1)2+(y−1)+
1,x(x−1)), p = 2ν(x+ y−1), ϕ = K−1(x(1− x)(y−1)+(y−1)3/3)+2νx. A comparison
with preconditioners Σs for (14) and Σp for (15) studied in [7] is also presented. Although
such preconditioners are optimal with unitary ν and K, they perform quite poorly when small
viscosities and permeabilities are considered.
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