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Quantum ordering for quantum geodesic functions of orbifold

Riemann surfaces

Leonid O. Chekhovab and Marta Mazzoccoc

September 16, 2013

We determine the explicit quantum ordering for a special class of quantum geodesic functions
corresponding to geodesics joining exactly two orbifold points or holes on a non-compact Riemann
surface. We discuss some special cases in which these quantum geodesic functions form sub–
algebras of some abstract algebras defined by the reflection equation and we extend our results
to the quantisation of matrix elements of the Fuchsian group associated to the Riemann surface
in Poincaré uniformization. In particular we explore an interesting relation between the deformed
Uq(sl2) and the Zhedanov algebra AW (3).

For the 75th birthday of Sergei Petrovich Novikov

1 Introduction

Convenient Darboux coordinates for Riemann surfaces with holes were identified in [4] with the shear
coordinates for an ideal triangle decomposition obtained in [14] by generalising the results obtained
for punctured Riemann surfaces in [34].

These coordinates were quantized in [4] and, in a parametrization related to Liouville-type models,
in [22]. In all cases, the quantum mapping-class group (MCG) transformations (or, the quantum flip
morphsms) that satisfy the quantum pentagon identity involve the quantum dilogarithm function [13].
Almost simultaneously, the corresponding Darboux coordinates were identified with the Y -type cluster
variables [18], [19], and the cluster systems for bordered Riemann surfaces were considered in [17].
The above construction was generalized further to the case of Riemann surfaces with holes and with
orbifold points for the case of Z2 and Z3 orbifold points in [2], [3] and for the case or orbifold points
of any integer order in [9].

The principal object of investigation for 2D Riemann surfaces are geodesic functions: they are
invariant under the MCG action thus constituting the set of observables; in the classical case, the
set of lengths of these functions can be identified with the spectrum of a Riemann surface, whereas a
quantum Riemann surface is characterized by an algebra of quantum geodesic functions. A simple and
explicit construction of the corresponding classical geodesic functions in terms of Darboux coordinates
of decorated Teichmüller spaces for Riemann surfaces with holes was proposed in [5]: it was shown

aSteklov Mathematical Institute and Laboratoire Poncelet, Moscow, Russia. email: chekhov@mi.ras.ru.
bMathematics Department, Loughborough University, UK. email: l.chekhov@lboro.ac.uk.
cMathematics Department, Loughborough University, Leicestershire, UK. email: m.mazzocco@lboro.ac.uk.

http://arxiv.org/abs/1309.3493v1


there that all geodesic functions are Laurent polynomials of exponentiated coordinates with positive
integer coefficients; the same remains true for Riemann surfaces with Z2 and Z3 orbifold points whereas
the integrity condition breaks in general in the case of orbifold points of arbitrary order [9].

The problem of quantum ordering of a product of noncommuting operators appeared almost si-
multaneously with the rise of quantum mechanics. In the context of quantum geodesic functions it
was first mentioned in [5] where the crucial conditions of mapping-class-group (MCG) invariance and
satisfaction of the quantum skein relations were formulated. The compatibility of these two condi-
tions was implicitly proved by Kashaev [23] who constructed unitary operators of quantum Dehn
twists whose action on operators of quantum geodesic functions obviously preserves their quantum
algebra. It remained however the problem of formulating a recipe for obtaining a quantum operator
in an explicit form, likewise the Kulish, Sklyanin, and Nazarov recipe (see [25], [30]) for constructing
Yangian central elements extended to the case of reflection equation by Molev, Ragoucy, and Sorba
(the quantum ordering for twisted Yangians was constructed in [28] for the O(n) case and in [29] for
the Sp(2n) case).

In the present paper, we revise the classical and quantum MCG transformations for Riemann
surfaces with holes and orbifold points and, using the results of [8], construct the proper quantum
ordering for a special class of geodesic functions corresponding to geodesics going around exactly
two orbifold points/holes. We use the same quantum ordering for quantizing matrix elements of the
Fuchsian group associated to the Riemann surface. In the case of monodromy matrices, Korotkin
and Samtleben in [24] proposed an r-matrix structure of the Fock–Rosly type [16] which did not
however satisfy Jacobi relations on monodromy matrices themselves but became consistent on the
level of adjoint invariant elements. The quantum algebra of entries of the matrices considered in this
paper is free of this discrepansy and it is a well-defined quantum algebra. We were able to construct
these algebras for matrices in two important cases: in the case of An-algebra related to Schlesinger
systems [10] and in the case of the algebra related to the Painlevé VI equation [7]. In the former case,
for each fixed geodesic, the matrix entries of the corresponding element in the Fuchsian group satisfy
the quantum universal enveloping algebra Uq(sl2) relations, and matrix entries coming from different
matrices satisfy quantum commutation relations which obey r-matrix type relations, thus endowing
Uq(sl2)× . . .×Uq(sl2) with a well defined quantum algebra structure. We also prove that this structure
is preserved by the quantum braid group action.

In the case of the algebra related to the Painlevé VI equation, for each fixed geodesic, the matrix
entries of the corresponding element in the Fuchsian group satisfy a deformed version of the quantum
universal enveloping algebra Uq(sl2) relations. This result is quite interesting as it sheds light on the
relation between the quantum universal enveloping algebra Uq(sl2) and the Zhedanov algebra AW (3)
already explored in [38, 35]. Indeed, in a recent paper by M.M. [26], it was shown that there is a natural
quantisation of the monodromy group associated to the sixth Painlevé equation which leads to the
Cherednik algebra of type Č1C1. When restricted to the spherical sub-algebra the same quantization
corresponds to the isomorphism between quantum geodesic functions on a Riemann sphere with four
holes and Zhedanov algebra AW (3) [7, 21].

We leave the case of Dn-algebras related to the reflection equation with the spectral parameter to
subsequent publications.

The structure of the paper is as follows. Section 2 contains a brief review of the fat-graph descrip-
tion of Teichmüller spaces of Riemann surfaces with holes and orbifold points. In Sec. 3, we quantize
the MCG transformations for orbifold Riemann surfaces proposed in [9] thus introducing a new class
of quantum MCG transformations. In Sec. 4.1, we prove that the corresponding transformations are
homogeneous for matrix products of quantum operators. This enables us to prove in Sec. 4.2 the in-
variance w.r.t. the quantum MCG transformations for the quantum geodesic functions corresponding
to geodesics that are homeomorphic to curves separating two orbifold points/holes from the rest of a



Riemann surface. This class of geodesic functions is of particular interest: for example, it was shown in
[6] that such geodesic functions can be identified with elements of particular Poisson leaves of twisted
Yangians (see [27] and references therein). Then, in Sec. 5, we construct quantum matrices on rooted
fat graphs that are MCG-invariant w.r.t. all transformations that leave the root edge intact. The
quantum algebra for the An case is constructed in Sec. 5.1 and we represent it in the R-matrix form in
Sec. 5.2 thus constructing the consistent quantum algebra for monodromy matrices. We present the
action of the quantum braid group transformations on the level of monodromy matrices in Sec. 5.3.
In Sec. 5.4, we find the quantum algebra for monodromy matrices of the Painlevé VI equation.

2 Combinatorial description of TH
g,s,r

2.1 Fat graph description for Riemann surfaces with holes and Zp orbifold points

Definition 1. We call a fat graph (a graph with the prescribed cyclic ordering of edges entering
each vertex) Γg,s,r a spine of the Riemann surface Σg,s,r with g handles, s > 0 holes, and r orbifold
points of the corresponding orders pi, i = 1, . . . , r, if

(a) this graph can be embedded without self-intersections in Σg,s,r;

(b) all vertices of Γg,s,r are three-valent except exactly r one-valent vertices (endpoints of “pending”
edges), which are placed at the corresponding orbifold points;

(c) upon cutting along all edges of Γg,s,r the Riemann surface Σg,s,r splits into s polygons each
containing exactly one hole and being simply connected upon contracting this hole.

Because every pending edge “protrudes” towards the interior of some face of the graph and every face
contains exactly one hole, the above fat graph determines a natural partition of the set of orbifold
points into nonintersecting (maybe empty) subsets δk, k = 1, . . . , s of orbifold points incident to the
corresponding face (boundary component, or hole). Edges of the above graph are labeled by distinct
integers α = 1, 2, . . . , 6g − 6 + 3s + 2r, and we set a real number Zα into correspondence to the αth
edge.

The first homotopy groups π1(Σg,s,r) and π1(Γg,s,r) coincide because each closed path in Σg,s,r can
be homotopically transformed to a closed path in Γg,s,r (taking into account paths that go around
orbifold points) in a unique way. The standard statement in hyperbolic geometry is that conjugacy
classes of elements of a Fuchsian group ∆g,s,r are in the 1-1 correspondence with homotopy classes of
closed paths in the Riemann surface Σg,s,r = H

2
+/∆g,s,r and that the “actual” length ℓγ of a hyperbolic

element γ ∈ ∆g,s,r coincides with the minimum length of curves from the corresponding homotopy
class; it is then the length of a unique closed geodesic line belonging to this class.

The real numbers Zα in Definition 1 are the h-lengths (logarithms of cross-ratios) [34]: they are
called the (Thurston) shear coordinates [36],[1] in the case of punctured Riemann surface. Below we
identify these shear coordinates with coordinates of the decorated Teichmüller space TH

g,s,r.

2.2 The Fuchsian group ∆g,s,r and geodesic functions

We now describe combinatorially the conjugacy classes of the Fuchsian group ∆g,s,r. Every time the
path homeomorphic to a (closed) geodesic γ passes along the edge with the label α we insert [14] the
so-called edge matrix, i.e. the matrix of Möbius transformation:

XZα =

(
0 − e Zα/2

e−Zα/2 0

)
(1)
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X Y
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Figure 1: Part of a graph with a pending edge. Its endpoint with the orbifold point is directed toward the
interior of the boundary component this point is associated with. The variable Z corresponds to the respective
pending edge. We present three typical examples of geodesics undergoing single (a), double (b), and triple (c)
rotations at the Zp orbifold point.

into the corresponding string of matrices. We also have the “right” and “left” turn matrices to be set
in proper places when a path makes corresponding turns at three-valent vertices,

R =

(
1 1

−1 0

)
, L = R2 =

(
0 1

−1 −1

)
. (2)

When orbifold points are present, the Fuchsian group contains besides hyperbolic elements also
elliptic elements corresponding to rotations about these orbifold points. The corresponding generators
F̃i, i = 1, . . . , r, of the rotations through 2π/pi are conjugates of the matrices

F̃i = UiFωi
U−1
i , Fω :=

(
0 1

−1 −w

)
, w = 2cos π/p for some p ≥ 2. (3)

New elements of the Fuchsian group correspond to rotations of geodesics when going around orbifold
points indicated by dot-vertices; for a Zp orbifold point we then insert the above matrix Fω into the
corresponding string of 2 × 2-matrices (when we go around the orbifold point counterclockwise as in
Fig. 1(a)). When going around an orbifold point k times we insert the matrix (−1)k+1F k

ω into the
product of 2× 2-matrices. For example, parts of geodesic functions in the three cases in Fig. 1 read

(a) . . . XXLXZFωXZLXY . . . ,

(b) . . . XXLXZ(−F 2
ω)XZRXX . . . ,

(c) . . . XY RXZ(F
3
ω)XZLXY . . . .

(4)

Note that for ωp = 2cos π/p, F p
ωp = (−1)p−1

E, so going around the Zp orbifold point p times merely
corresponds to avoiding this orbifold point due to the simple equality (note that X2

S = −E and
L2 = −R)

XXLXZ(−1)p−1F p
ωp
XZLXY = XXLX2

ZLXY = −XXL2XY = XXRXY .

(For the Z2 orbifold points this pattern was first proposed by Fock and Goncharov [15]; the graph
morphisms were described in [3].)

An element of a Fuchsian group has then the typical structure

Pγ = LXYnRXYn−1
· · ·RXY2

LXZ1
(−1)k+1F k

ωi
XZ1

RXY1
, (5)

where Yi are variables of “internal” edges and Zj are those of pending edges. In the corresponding
geodesic function

Gγ ≡ trPγ = 2cosh(ℓγ/2), (6)

ℓγ is the actual length of the closed geodesic on the Riemann surface.



Remark 2. Note that the combinations

RXY =

(
e−Y/2 −eY/2

0 eY/2

)
, and LXY =

(
e−Y/2 0

−e−Y/2 eY/2

)
,

RXZFωXZ =

(
e−Z + ω −eZ

−ω eZ

)
and LXZFωXZ =

(
e−Z 0

−e−Z − ω eZ

)
,

as well as products of any number of these matrices have the sign structure

(
+ −

− +

)
, so the trace

of any of Pγ with first powers of Fω is a sum of exponentials with positive integer coefficients; this
sum always include the terms

eY1/2+···+Yn/2+Z1+···+Zs and e−Y1/2−···−Yn/2−Z1−···−Zs

being therefore always greater or equal two thus describing a hyperbolic or parabolic element; the
latter is possible only if Y1 + · · ·+ Yn + Z1 + · · · + Zs = 0 and only if all the turn matrices in (5) are
left-turn ones (for our choice of Fω; when going in the opposite direction we must insert F−1

ω , and all
the turn matrices must be right-turn ones), which corresponds to a path going along the boundary
of a face; all such paths are homeomorphic to the hole boundaries, and the condition that the sum
of Yi and Zj equals zero along this path indicates the degeneration of a hole into a puncture. Fot
the complete proof of hyperbolicity of all elements not homeomorphic to going several times around
a single orbifold point, see [9].

The group generated by elements (3) together with translations along A- and B-cycles and around
holes not necessarily produces a regular (metrizable) surface because its action is not necessarily
discrete. The necessary and sufficient conditions for producing a regular surface in terms of graphs
were formulated as a theorem in [9]. (We call a Riemann surface regular if it is locally a smooth
constant-curvature surface everywhere except exactly r orbifold points.) Essentially, it was proved
that we obtain a regular Riemann surface for any choice of real numbers Yi and Zα from Definition 1
and vice versa, for any regular Riemann surface Σg,s,r = H

2
+/∆g,s,r and for any fat graph that is a

spine of this surface we find a set of real numbers Yi and Zα that are the shear coordinates for an
ideal triangle decomposition of the above surface. This set is not unique; however the equivalent sets
are related by discrete modular group action, and we can therefore identify the (6g − 6 + 3s + 2r)-
tuple of real coordinates {Yi, Zα} with the coordinates of the decorated Teichmüller space TH

g,s,r (the
decoration assigns positive or negative signs to every hole with nonzero perimeter). The lengths of
geodesics on Σg,s,r are given by traces of products (5) corresponding to paths in the corresponding
spine.

We see that every spine Γg,s,r provides a parameterization of the (decorated) Teichmüller space
TH
g,s,r. Transitions between different parameterizations are formulated in terms of flips (mutations) of

edges: any two spines from the given topological class are related by a finite sequence of flips. We
therefore identify flips of edges with the action of the MCG to be constructed in the next section.

3 Quantum mapping class group transformations for surfaces with
orbifold points

3.1 Poisson structure

One of the most attractive properties of the graph description is a very simple Poisson algebra on the
set of parameters Zα, α = 1, . . . , 6g−6+3s+2r (we do not distinguish here the parameters of internal



and pending edges).

Theorem 1. In the coordinates Zα on any fixed spine corresponding to a surface with or without
orbifold points, the Weil–Petersson bracket BWP reads

{f(Z), g(Z)} =

4g+2s+|δ|−4∑

3-valent
vertices α = 1

3mod3∑

i=1

(
∂f

∂Zαi

∂g

∂Zαi+1

−
∂g

∂Zαi

∂f

∂Zαi+1

)
, (7)

where the sum ranges all the three-valent vertices of a graph and αi are the labels of the cyclically
(clockwise) ordered (α4 ≡ α1) edges incident to the vertex with the label α. The formula (7) is
insensitive to whether these edges are internal or pending edges. This bracket gives rise to the Goldman
bracket on the space of geodesic length functions [20].

The center of the Poisson algebra (7) is generated by elements of the form
∑

Zα, where the sum
ranges all edges of Γg,s,r belonging to the same boundary component taken with multiplicities. This
means, in particular, that each pending edge, irrespectively on the type of orbifold point it corresponds
to, contributes twice to such sums. The dimension of this center is obviously s.

Note that for the path homeomorphic to the hole boundary, for any number of insertions of matrices
Fpi with any pi, we have

tr [LXZ1
LXZ2

· · ·LXZk
FωXZk

L · · ·LXZn−1
LXZn ]

= 2 cosh[Z1/2 + Z2/2 + . . . + Zk + . . . + Zn−1/2 + Zn/2].

3.2 Flip morphisms of fat graphs

We now describe all mapping class group transformations that enable us to change numbers |δk| of
orbifold points associated with the kth hole, change the cyclic ordering inside any of the sets δk, flip
any inner edge of the graph and, eventually, change the decoration, i.e., orientation of the geodesic
spiraling to the hole perimeter (in the case where we have more than one hole). We can therefore
establish a morphism between any two of the graphs belonging to the same class Γg,s,r with the same
(unordered) sets of orbifold point orders {pi}

r
i=1.

3.2.1 Flipping inner edges

Given a spine Γ of Σ and assuming that the internal edge α has distinct endpoints, we may produce
another spine Γα of Σ by contracting and expanding edge α of Γ, the edge labeled Z in Figure 2. We
say that Γα arises from Γ by a Whitehead move (or flip) along the edge α. A labeling of edges of the
spine Γ implies a natural labeling of edges of the spine Γα; we then obtain a morphism between the
spines Γ and Γα.

It was shown in [4] that setting φ(Z) = log(1 + eZ) and adopting the notation of Fig. 2 for shear
coordinates of nearby edges, the effect of a flip is

WZ : (A,B,C,D,Z) → (A+ φ(Z), B − φ(−Z), C + φ(Z),D − φ(−Z),−Z)

:= (Ã, B̃, C̃, D̃, Z̃). (8)

In various cases where the edges are not distinct, we have: if A = C, then Ã = A+ 2φ(Z); if B = D,
then B̃ = B − 2φ(−Z); if A = B (or C = D), then Ã = A+Z (or C̃ = C +Z); if A = D (or B = C),
then Ã = A + Z (or B̃ = B + Z). Any subset of edges A, B, C, and D can be pending edges of the
graph.

We have the lemma establishing the properties of invariance w.r.t. the flip morphisms [5].



A B

Z

CD D − φ(−Z) C + φ(Z)

B − φ(−Z)A+ φ(Z)

−Z

1
2

3

1 2

3

Figure 2: Flip on the shear coordinates Zα. The outer edges can be pending, but the edge undergoing the flip
must be an internal edge with distinct endpoints. We also indicate the correspondences between geodesic paths
under the flip.

A

Z

B B − φ(−Z + iϕ) − φ(−Z − iϕ)

A+ φ(Z + iϕ) + φ(Z − iϕ)

−Z

3

2

1
1

2

3

Figure 3: The transformation of dual variables (h-lengths) when flipping a pending edge; w = 2 cos(π/p) and
ϕ = π/p. We indicate the orbifold point by the bullet and demonstrate the changing of geodesic functions upon
flipping the edge.

Lemma 2. Transformation (8) preserves the traces of products over paths (6) (the geodesic func-
tions) and transformation (8) simultaneously preserves Poisson structure (7) on the shear coordinates.

The proof of this lemma is based on the following useful matrix equalities, which are valid without
taking the trace (they correspond to three geodesic cases in Fig. 2):

XDRXZRXA = XÃRXD̃, (9)

XDRXZLXB = XD̃LXZ̃RXB̃, (10)

XCLXD = XC̃LXZ̃LXD̃. (11)

3.2.2 Flipping pending edges

Lemma 3. The transformation in Fig. 3

{Ã, B̃, Z̃} := {A+ φ(Z + iϕ) + φ(Z − iϕ), B − φ(−Z + iϕ)− φ(−Z − iϕ),−Z}, (12)



where φ(x) = log(1 + ex) and w = eiϕ + e−iϕ, is the morphism of the space TH
g,s,r. These morphisms

preserve both Poisson structures (7) and the geodesic functions. In Fig. 3 any (or both) of variables
A and B can be variables of pending edges (the transformation formula is insensitive to it).

In this case, again, verifying the preservation of Poisson relations (7) is simple, whereas for traces
over paths we have three different cases, and in each of these cases we again obtain 2 × 2-matrix
equalities to be verified directly.a We let

Ω =

(
a c

−c a− wc

)
, ∀a, c ∈ C,

denote any matrix commuting with Fp (in particular, F k
p , k ∈ Z). We then have the following matrix

equalities:

XALXZ(FpΩ)XZLXB = XÃRXZ̃(−Ω)XZ̃RXB̃ , (13)

XALXZΩXZRXA = XÃRXZ̃(−Ω)XZ̃LXÃ, (14)

XBRXZΩXZLXB = XB̃LXZ̃(−Ω)XZ̃RXB̃ . (15)

Using flip morphisms in Fig. 3 and in formula (8), we establish a morphism between any two
algebras corresponding to surfaces of the same genus, same number of boundary components, and same
numbers of Zp-orbifold points of each sort p; the distribution of latter into the boundary components
as well as the cyclic ordering inside each of the boundary component can be arbitrary.

It is a standard tool that if, after a series of morphisms, we come to a graph of the same com-
binatorial type as the initial one (disregarding labeling of edges but distinguishing between different
orbifold types of pending vertices), we associate a mapping class group operation to this morphism
therefore passing from the groupoid of morphisms to the group of modular transformations.

3.2.3 Changing the decoration (spiraling direction)

The last class of mapping class group transformations pertains to changing the “decoration,” i.e., the
sign of the hole perimeter:

Y
P

Y + P
−P

.

(16)

That this transformation preserves the Poisson brackets is obvious because the variable P Poisson
commutes with all other variables, whereas the preservation of geodesic functions follows from two
matrix equalities:

XY LXPLXY = XY+PLX−PLXY+P ,

XY RXPRXY = XY+PRX−PRXY+P .

We can therefore extend the mapping class group of TH
g,s,r by adding symmetries between sheets

of the 2s-ramified covering of the “genuine” (nondecorated) Teichmüller space Tg,s,r.

We can summarize as follows.

Theorem 4. The whole mapping class group of Σg,s,r is generated by morphisms described by
Lemmas 2 and 3 and formula (16).

aIn [9], the powers of the matrix Fp were incorrect in the corresponding formula.



3.3 Quantum MCG transformations

Recall that a quantization of a Poisson manifold equivariant w.r.t. a discrete group action is a family of
∗-algebras A~ depending smoothly on a positive real parameter ~, acting on G by outer automorphisms
and having the following relation to the Poisson manifold.

1. For ~ = 0, the algebra is isomorphic as a G-module to the ∗-algebra of complex-valued function
on the Poisson manifold.

2. The Poisson bracket on A0 given by {a1, a2} = lim~→0
[a1,a2]

~
coincides with the one generated

by the Poisson structure of the manifold.

We now quantize a Teichmüller space TH
g,s,r equivariantly w.r.t. the mapping class group action.

Let T~(Γg,s,r) be a ∗-algebra generated by the generator Z~
α (one generator per one unoriented

edge α) and relations
[Z~

α, Z
~

β ] = 2πi~{Zα, Zβ} (17)

with the ∗-structure
(Z~

α)
∗ = Z~

α. (18)

Here zα and {·, ·} stand for the respective coordinate functions on the classical Teichmüller space and
the Weil–Petersson Poisson bracket on it. Note that according to formula (7), the right-hand side of
(17) is merely a constant which may take only five values 0, ±2πi~, ±4πi~.

For the notation simplicity in what follows we omit the superscript ~ for the quantum operators;
the classical or quantum nature of the object will be always clear from the context.

3.3.1 Quantum flip morphisms for inner edges

It was proved in [4] that the quantum flip morphisms

{A,B,C,D,Z} → {A+ φ~(Z), B − φ~(−Z), C + φ~(Z),D − φ~(−Z),−Z}

:= {Ã, B̃, C̃, D̃, Z̃}, (19)

where A, B, C, D, and Z are as in Fig. 2 and φ~(x) is the real function of one real variable,

φ~(z) = −
π~

2

∫

Ω

e−ipz

sinh(πp) sinh(π~p)
dp, (20)

(the contour Ω goes along the real axis bypassing the singularity at the origin from above) satisfy the
standard two-, four-, and five-term relations. The quantum dilogarithm function φ~(z) was introduced
in this context by Faddeev in [13] and used in [12] for constructing quantum MCG transformations
for the Liouville model.

As in the classical case, the center of the algebra is generated by the sums Z~

f :=
∑

α∈f Z
~
α ranging

all edges α surrounding a given face f .

Important properties of the quantum flip morphisms are

• In the limit ~ → 0, morphism (19) coincides with the classical morphism, that is,

lim
~→0

φ~(z) = log(ez + 1).

• The morphism of the commutation relations is ensured by the relation

φ~(z)− φ~(−z) = z.



• The Hermiticity of the transformed operators is ensured by the conjugation condition

φ~(z) = φ~(z).

• Eventually, we have the double quasi-periodicity conditions responsible for the satisfaction of
the five-term relation:

φ~(z + iπ~)− φ~(z − iπ~) =
2πi~

e−z + 1
, (21)

φ~(z + iπ)− φ~(z − iπ) =
2πi

e−z/~ + 1
. (22)

• The function φ~(z) is meromorphic with poles at the points {πi(m+n~)|m,n ∈ N} and {−πi(m+
n~)|m,n ∈ N}.

We also have conditions of the modular double, 1
~
φ~(z) = φ1/~(z/~) and the first quasi-periodicity

condition (21), which are irrelevant when we discuss geodesic functions on which half of the modular
double generators act trivially.

Remark 3. Note that exponentiated algebraic elements Ui = e±Zi , which obey homogeneous
commutation relations qnUiUj = UjUiq

−n with [Xi,Xj ] = 2niπ~ and q := eiπ~ transform as rational
functions: for example,

eA+φ~(Z) = exp

(
1

2πi~

∫ A+2iπ~

A
φ~(z)dz

)
eA =

= exp

(
1

2iπ~

∫ A

−∞
(φ~(z + 2iπ~)− φ~(z))dz

)
eA =

= exp

(∫ A

−∞

dz

e−z−πi~ + 1

)
eA = (1 + qeZ)eA, (23)

where we have used the standard formula

eA+Φ(B) = exp

{
1

[A,B]

∫ B+[A,B]

B
Φ(z)dz

}
eA,

which is valid for all A and B such that the commutator [A,B] is a nonzero scalar.

3.3.2 Quantum flip morphisms for pending edges

We now present the new formula, which is the quantization of the MCG transformation in Fig. 3.

Lemma 5. The transformation in Fig. 3

{Ã, B̃, Z̃} := {A+ φ~(Z + iϕ) + φ~(Z − iϕ), B − φ~(−Z + iϕ)− φ~(−Z − iϕ),−Z}, (24)

with φ~(x) from (20) and w = eiϕ + e−iϕ, is the morphism of the quantum ∗-algebra T~
g,s,r.

Verifying the preservation of the commutation relations is simple, the most difficult part is to
verify the preservation of geodesic function operators. We devote a special section to follow to the
verification of this condition.



4 Operator ordering for quantum geodesics

4.1 Transformation properties of quantum geodesic functions

The quantum analogues of matrix relations (9)–(11) were found in [8]. Here and hereafter, for the
rest of the paper, we assume that the ordering of quantum operators in a product is natural, i.e., it
is determined by the order of matrix multiplication itself. Then, amazingly enough, all four entries of
the corresponding 2 × 2-matrices transform uniformly: applying the quantum MCG transformation
to curves 1,2, and 3 in Fig. 2, we obtain the respective quantum matrix relations:

XDRXZRXA = q1/4XD̃RXÃ, (25)

XDRXZLXB = XD̃RXZ̃LXB̃ , (26)

XDLXC = q1/4XD̃LXZ̃LXC̃ . (27)

We prove here the third relation; the remaining relations can be verified analogously. In the left-hand
side, we obtain, after reducing the matrix elements to the Weyl-ordered form, that

XD̃LXZ̃LXC̃ =

[
eD̃/2−C̃/2−Z̃/2 + eD̃/2−C̃/2+Z̃/2 −q−1/2eD̃/2+C̃/2+Z̃/2

−q−1/2e−D̃/2−C̃/2−Z̃/2 0

]

=

[
eD/2−C/2 −q−1/2eD/2+C/2

−q−1/2e−D/2−C/2 0

]
,

where we have used the relation D̃ + C̃ + Z̃ = D + C and the chain of equalities

eD̃/2−C̃/2−Z̃/2 + eD̃/2−C̃/2+Z̃/2 = eZ+D/2−C/2−φ~(Z) + eD/2−C/2−φ~(Z)

= exp
{ 1

2πi~

∫ Z−2πi~

Z
[−ξ + φ~(ξ)]dξ

}
eD/2−C/2 + exp

{ 1

2πi~

∫ Z−2πi~

Z
φ~(ξ)dξ

}
eD/2−C/2

=
[
eZ−iπ~ + 1

]
exp
{ 1

2πi~

∫ Z

−∞

−2πi~dξ

e−ξ+iπ~ + 1

}
eD/2−C/2

=
[
eZ−iπ~ + 1

] 1

eZ−iπ~ + 1
eD/2−C/2 = eD/2−C/2.

In the right-hand side, we have

XDLXC =

[
q1/4eD/2−C/2 −q−1/4eC/2+D/2

−q−1/4e−C/2−D/2 0

]

and, comparing powers of q standing with each of the four matrix entries, we come to the matrix
equality (27).

We now formulate the new lemma concerning quantum versions of MCG transformations (13)–(15).

Lemma 6. We have the following quantum matrix relations:

XALXZ(FpΩ)XZLXB = q−1XÃRXZ̃(−Ω)XZ̃RXB̃ , (28)

XALXZΩXZRXA = XÃRXZ̃(−Ω)XZ̃LXÃ, (29)

XBRXZΩXZLXB = XB̃LXZ̃(−Ω)XZ̃RXB̃ . (30)

The proof is again a direct calculation.



Remark 4. A closer look on transformation laws (25)–(27) and (28)–(30) yields a “mnemonic”
rule for the powers of q: the “proper” power of q is always one fourth of the difference between
the number of matrices R and L in the matrix chain. Although for the general geodesic functions
this property presumably does not lead to meaningful answers coming into contradiction with the
Hermiticity condition, for a special class of geodesic functions in the next section it enables us to solve
the problem of quantum ordering completely.

4.2 Quantum ordering for special class of geodesic functions

Quantum matrix MCG relations turn out to be very useful when we consider special geodesic func-
tions that correspond to geodesics going around exactly two orbifold points or holes. Fortunately,
many important geodesic functions fall into this class, including those appearing in the description
of Poisson leaves of twisted Yangian systems of An and Dn types [6] and those pertaining to the
description of Painlevé VI equation [7]. Our aim in this and the next section is to introduce a proper
quantum ordering not only for quantum geodesic functions but for more general monodromy matrices
of Schlesinger systems (we then obtain geodesic functions as traces of products of these monodromy
matrices).

We first take one of these points (the zeroth orbifold point) as a root, let S := Z0 be the variable of
the pending edge terminating at this point, and consider 2×2-monodromy matrices Mi corresponding
to going around an ith orbifold point. These matrices have the structure

Mi = XSRXY1
L · · ·RXYpLXZi

Fωi
XZi

RXYpL · · ·RXY1
LXS , i 6= 0, M0 = Fω0

, (31)

where Zi is the variable of the pending edge terminating at the ith orbifold point and Y1, . . . , Yp are
variables of the intermediate (not necessarily internal) edges. In the general situation we require the
path joining the root and the orbifold point neither to be unique (this is true only for fat graphs without
loops) nor to have no self-intersections. Whatever is this path, from the transformation properties of
quantum geodesic functions we can immediately conclude that any product of quantum matrices of
the form (31) is invariant under all the quantum MCG transformations that do not mutate the root
edge. For a path without self-intersections, using quantum MCG transformations we can reduce any
string of quantum matrices (31) to

Mi = XS̃LXZ̃i
Fωi

XZ̃i
RXS̃ =

(
qe−Z̃i + ωi −e−Z̃i+S̃ − eZ̃i+S̃ − ωie

S̃

e−Z̃i−S̃ −q−1e−Z̃i

)
, [Z̃i, S̃] = 2πi~. (32)

Introducing the notation

ai := e−Z̃i , bi = e−Z̃i+S̃ + eZ̃i+S̃ + ωie
S̃ , ci := e−Z̃i−S̃ , (33)

where ai, bi, and ci are Hermitian operators, we eventually construct from the entries of the monodromy
matrix (32) (or (31)) the quantum geodesic function that is invariant also w.r.t. mutations of the root
edge (at the end of which we set the orbifold point with the parameter ω0):

G0,i = bi + ci + ω0ai. (34)

We have thus completely solved the problem of quantum ordering for the product of quantum edge
matrices entering the geodesic functions corresponding to geodesics separating exactly two orbifold
points from the rest of the Riemann surface.
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Figure 4: The domain bounded by an infinite geodesic line (a side of a triangle in an ideal triangular decompo-
sition of the Riemann surface) inside which all geodesics γ0,i joining orbifold points p0 and pi, i = 1, . . . , n− 1,
and constituting the An system must be contained.

5 Quantum relations for monodromy matrices

We know that for some special cases of orbifold Riemann surfaces, the algebra of geodesic functions
can be closed. We demonstrate that, in the very same cases, we are also able to close the algebras
of elements the Fuchsian group, or monodromy matrices. In this paper, we consider only two such
cases: the first one is the An-algebra of a sphere with one hole and with n Z2-orbifold points (in this
case, all ωi are zeros, and XZFXZ = X2Z); the second one is the algebra of geodesic functions on
a sphere with four holes/orbifold points of arbitrary orders. We leave to a separate publication the
most interesting but also the most difficult case of Dn-algebras related to reflection equations with
the spectral parameter.

5.1 An-algebra of monodromy matrices

From the geometry side, we consider a pattern in which n Z2-orbifold points are separated from the
rest of the Riemann surface by an infinite geodesic line (a side of an ideal triangle from an ideal
triangle decomposition of a finite part of the Riemann surface) whose both ends wind to the perimeter
line of the same hole as shown in Fig. 4. The relevant geodesic lines joining the root orbifold point
p0 with other n − 1 orbifold points pi, i = 1, . . . , n − 1, and constituting the An set must then have
no (self)intersections and must be contained inside this (simply connected) domain. We then have a
natural linear ordering of these n− 1 orbifold points ordered counterclockwise.

Given two quantum monodromy matrices M1 and M2 corresponding to paths joining p0 with two
other Z2-orbifold points, one of which (p1) precedes the other (p2) in the corresponding linear ordering,
we can always, using the quantum MCG transformations from the previous sections, reduce them to
the case in which (see Fig. 5)

M1 = XSLXXLX2ZRXXRXS , (35)

M2 = XSLXXRX2Y LXXRXS , (36)

with the nontrivial quantum commutation relations

eXeS = qeX+S , eXeY = qeX+Y ,

eY eZ = qeY+Z , eZeX = qeZ+X .

The both matrices Mi have the same structure,

Mi =

[
qai −bi

ci −q−1ai

]
; (37)
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Figure 5: The graphical representation for the monodromy matrices M1 and M2.

in which we have explicit formulas for ai, bi, and ci:

a1 = e−X−Z + e−Z

b1 = e−X−Z+S + (q + q−1)e−Z+S + eX−Z+S + eX+Z+S

c1 = e−X−Z−S,

and

a2 = e−X−Y + e−X+Y + eY

b2 = e−X−Y+S + (q + q−1)eY+S + e−X+Y+S + eX+Y+S

c2 = e−X−Y−S + e−X+Y−S .

In what follows, all ai, bi, and ci are Hermitian operators.

Note that the matrices M̃i := F0Mi corresponding to closed geodesics (F0 is the matrix with ω = 0)
satisfy the Uq(sl2) relations. We have

qaibi − q−1biai = 0

q−1aici − qciai = 0, i = 1, 2

bici − cibi = (q2 − q−2)a2i in fact bici = q2a2i + 1,

(38)

where 1 is the unit element. So, we are in the situation of a quantum algebra with the unity. The
above matrices satisfy the quantum relation

M2
i = −E. (39)

Interestingly, we can find the complete set of quantum algebraic relations between entries of M1

and M2, thus leading to a nice algebraic structure on Uq(sl2) × Uq(sl2) (we present it in the form
closest to the R-matrix one):

q−1b1b2 = qb2b1,

q−1c1c2 = qc2c1,

a1b2 = b2a1,

b1a2 = a2b1 + (q2 − q−2)a1b2 = a2b1 + (q2 − q−2)b2a1,

c1a2 = a2c1, (40)

a1c2 = c2a1 + (q2 − q−2)c1a2 = c2a1 + (q2 − q−2)a2c1,

qc1b2 = q−1b2c1,

a1a2 = a2a1 + (1− q−2)b2c1 = a2a1 + (q2 − 1)c1b2,

qb1c2 + q[q−2 − q2]a1a2 = q−1c2b1 − q−1[q−2 − q2]a2a1.



Since we are in a general position case, we can formulate the algebra for any system of 2 × 2-
matrices Mi, i = 1, . . . , n − 1 such that the paths between the root and all orbifold points are drawn
on a tree-like fat subgraph; for simplicity we assume that there exists such a choice of a fat graph in
which all these paths are graph-simple, i.e., in representation (31) Yq 6= Yr for 1 ≤ q < r ≤ p. We
have then the natural linear ordering of the orbifold points from the root of the tree counterclockwise.
The algebra of entries ai, bi, ci is given by (38) For i < j, we then have the algebra (40) in which we
merely substitute i and j for the respective indices 1 and 2 of the elements of monodromy matrices:

q−1bibj = qbjbi,

q−1cicj = qcjci,

aibj = bjai,

biaj = ajbi + (q2 − q−2)aibj = ajbi + (q2 − q−2)bjai,

ciaj = ajci, (41)

aicj = cjai + (q2 − q−2)ciaj = cjai + (q2 − q−2)ajci,

qcibj = q−1bjci,

aiaj = ajai + (1− q−2)bjci = ajai + (q2 − 1)cibj,

qbicj + q[q−2 − q2]aiaj = q−1cjbi − q−1[q−2 − q2]ajai.

Proposition 7. The abstract quantum algebra for ai, bi, ci , i = 1, . . . , n − 1 defined by the
relations (38) and (41) satisfies the quantum Jacobi relation.

Proof. This is a consequence of the fact that the formulae defining ai, b,ci , i = 1, . . . , n − 1 in
terms of the Darboux coordinates are invertible in a large open set.

It is interesting to compare these algebras with the known algebras of traces of products of mon-
odromy matrices like in [6]. Recalling that the monodromy matrix around the root is M0 := F0 =[

0 1

−1 0

]
, the obvious candidates for G0,i = trMiM0 are linear combinations

G0,i = bi + ci. (42)

A more subtle question is what is Gi,j , which is the quantum analogue of the trace of product of Mi

and Mj? Here, we encounter the problem of quantum ordering. From the comparison with the known
answer (G1,2 = eY+Z + e−Y+Z + e−Y−Z) after some algebra we obtain

Gi,j = qbicj + q3cibj − (q3 + q)aiaj , 1 ≤ i < j ≤ n− 1. (43)

Let us verify the Hermiticity condition:

G∗
1,2 = q−1c2b1 + q−3b2c1 − (q−3 + q−1)a2a1

= qb1c2 − [q2 − q−2][qa1a2 + q−1a2a1] + q−1c1b2 − (q−3 + q−1)a2a1

= qb1c2 + q−1c1b2 − q3a1a2 − qa2a1 + q−1[a1, a2]

= qb1c2 + q−1c1b2 − q3a1a2 + q−1[q − q−1]qc1b2 − qa2a1

= qb1c2 + qc1b2 − q3a1a2 − qa2a1

= qb1c2 + qc1b2 − q3a1a2 − qa1a2 + q2[q − q−1]c1b2 = G1,2.

Using Matematica NCAlgebra package [31] we have verified all the relations of the Nelson–Regge
algebra [32], [33], [37]:

[Gi,j , Gk,l] = 0 for 0 ≤ i < j < k < l ≤ n− 1 and 0 ≤ i < k < l < j ≤ n− 1;



[Gi,k, Gj,l] = [q2 − q−2][Gi,jGk,l −Gi,lGj,k] for 0 ≤ i < j < k < l ≤ n− 1;

qGi,jGj,k − q−1Gj,kGi,j = [q2 − q−2]Gi,k for 0 ≤ i < j < k ≤ n− 1, etc.

Remark 5. Note that each monodromy matrix Mi, i = 1, . . . , n − 1, brings two independent
quantum operators because we always have one relation (the last formula in (38)) on three additional
operators. The same is true for the geometric system: our rooted fat subgraph contains exactly 2n
edges, so in this case the geometric system parameterizes the general leaf of the quantum algebra (38),
(41).

5.2 R-matrix representation for the quantum monodromy An-algebra

The relations (38), (41) can be presented in the R-matrix form. Assuming the standard notation of
the tensor product of matrix spaces 1 and 2, we have

R12[q]
1
M iR12[q

−1]
2
M j =

2
M jR12[q]

1
M iR12[q

−1], i < j (44)

RT
12[q

−2]
2
M i

1
M i =

1
M i

2
M iR12[q

−2], (45)

where

R12[q] := q(E11 ⊗ E11 + E22 ⊗ E22) +E11 ⊗ E22 + E22 ⊗ E11 + (q − q−1)E12 ⊗ E21 (46)

is the standard 4× 4 quantum R-matrix by Kulish and Sklyanin (see [25]),

R12[q] =




q

1 q−q−1

1

q



.

This matrix possesses the properties

R12[q
−1] = R−1

12 [q], RT
12[q] = R21[q], (47)

where we let the superscript T denote the total transposition.

Note that the reflection equation (44) results in the Jacobi identities for all distinct indices i, j, k
provided R12[q] satisfies the quantum Yang–Baxter equation

R12[q]R13[q]R23[q] = R23[q]R13[q]R12[q]. (48)

This follows from the chain of equalities for i < j < k (for brevity, we omit the argument q assuming
R12 := R12[q]):

[R12

1
M iR

−1
12

2
M j ]R

−1
13 R

−1
23

3
Mk =

2
M jR12

1
M i[R

−1
12 R

−1
13 R

−1
23 ]

3
Mk

=
2
M jR12R

−1
23 [

1
M iR

−1
13

3
Mk]R

−1
12 =

2
M j [R12R

−1
23 R

−1
13 ]

3
MkR13

1
M iR

−1
13 R

−1
12

= R−1
13 [

2
M jR

−1
23

3
Mk]R12R13

1
M iR

−1
13 R

−1
12 = R−1

13 R
−1
23

3
MkR23

2
M j[R

−1
23 R12R13]

1
M iR

−1
13 R

−1
12

= R−1
13 R

−1
23

3
MkR23R13[

2
M jR12

1
M i][R

−1
23 R

−1
13 R

−1
12 ]

= R−1
13 R

−1
23

3
Mk[R23R13R12]

1
M iR

−1
12

2
M jR12R

−1
12 R

−1
13 R

−1
23

= [R−1
13 R

−1
23 R12][

3
MkR13

1
M i]R23R

−1
12

2
M jR

−1
13 R

−1
23

= R12R
−1
23 R

−1
13 R13

1
M iR

−1
13 [

3
Mk[R13R23R

−1
12 ]

2
M j]R

−1
13 R

−1
23

= R12R
−1
23

1
M i[R

−1
13 R

−1
12 R23]

2
M jR

−1
23

3
Mk = R12

1
M iR

−1
12

2
M jR

−1
13 R

−1
23

3
Mk.



The proof of Jacobi identities for the triple product of entries of the same matrix Mi follows from the
standard Yang–Baxter equation (48) for the matrices R12[q

−2].

It seems however doubtful that we can write a similar R-matrix proof of Jacobi identities in the
case where we have two matrices Mi and one Mj with i 6= j. In fact if we did, then we would be able
to prove the Jacobi identities for arbitrary matrices Mi, which is obviously impossible since no such
closed algebra exists except a special case of the Painlevé VI algebra considered in Sec. 5.4 below.

5.3 Braid group action

As in [6], for q = 1, we identify the matrices Mi with the monodromy matrices of the Fuchsian
2× 2-matrix system:

∂λΦ(λ) =

n−1∑

i=0

Ai

λ− ui
Φ(λ); eigenAi = {1/4,−1/4}. (49)

Here Mi are monodromy matrices of the 2-vector Φ(λ) when going around the ith singular point ui.
Choosing M0 = F0 corresponds to choosing a special basis in the space of solutions: in the vicinity of
every singular point ui, we have two special solutions Φ±

i (λ) = (λ − ui)
±1/4f±

i (λ), with f±
i (λ) being

analytic in the neighborhood of ui. Then, obviously, on the classical level our choice of monodromy
matrices corresponds to choosing ΦT (λ) = (Φ+

0 (λ) + Φ−
0 (λ),Φ

+
0 (λ) − Φ−

0 (λ)). The quantum algebra
(44), (45) is then the (consistent) quantum analogue of the Korotkin–Samtleben Poisson algebra [24].

The action of the braid group on monodromy matrices was proposed by Dubrovin and M.M. [11].
We have the following lemma in the quantum case.

Lemma 8. The transformations βi,i+1, i = 1, . . . , n− 2, such that

βi,i+1[Mj ] =





Mj j 6= i, i+ 1

Mi j = i+ 1

−MiMi+1Mi j = i

(50)

is an automorphism of the quantum algebra (44), (45) and satisfies the quantum braid-group iden-
tities βi,i+1βi+1,i+2βi,i+1 = βi+1,i+2βi,i+1βi+1,i+2. We again assume the natural ordering of quantum
operators in (50).

Proof. The proof of that transformations (50) satisfy the braid group relation repeats the proof
of these relations in the classical case (see [11]) provided we have the natural ordering of quantum
operators. The proof of that the transformation (50) is an automorphism of the quantum algebra of
monodromy matrices is the direct calculation in course of which we have found another nice represen-
tation of the braid group action in terms of the quantum geodesic function (43).

The following results can be proved by straightforward computations:

Proposition 9. The quantum determinant relations bici−q2a2i = 1, i = 1, . . . , n−1, are preserved
by the quantum braid-group action (50).

Lemma 10. We can present the braid-group action (50) in the form

βi,i+1[Mj ] =





Mj j 6= i, i + 1

Mi j = i+ 1

qMiGi,i+1 − q2Mi+1 = q−1Gi,i+1Mi − q−2Mi+1 j = i,

(51)



and the quantum geodesic operator Gi,i+1 has the following commutation relations with the mon-
odromy matrices Mj:

q−1Gi,i+1Mi − qMiGi,i+1 = (q−2 − q2)Mi+1,

qGi,i+1Mi+1 − q−1Mi+1Gi,i+1 = (q2 − q−2)Mi, (52)

Gi,i+1Mj −MjGi,i+1 = 0, j 6= i, i + 1.

In general, the quantum geodesic functions Gi,j, 1 ≤ i < j ≤ n − 1, have the following commutation
relations with the quantum monodromy matrices Mk, k = 1, . . . , n− 1:

q−1Gi,jMi − qMiGi,j = (q−2 − q2)Mj ,

qGi,jMj − q−1MjGi,j = (q2 − q−2)Mi, (53)

Gi,jMk −MkGi,j = (q2 − q−2)[MiGk,j −Gi,kMj ], i < k < j,

Gi,jMk −MkGi,j = 0, i < j < k or k < i < j.

Corollary 11. The relations (52) together with the invertibility condition (39) imply that

Gi,i+1MiMi+1 = MiMi+1Gi,i+1 and Gi,i+1Mi+1Mi = Mi+1MiGi,i+1. (54)

Therefore the product M1M2 · · ·Mn−2Mn−1 and its inverse Mn−1Mn−2 · · ·M2M1 are the braid-group
invariants.

Remark 6. The fact that we have the braid-group invariants (54) besides the “genuine” Casimirs
given by Proposition 9 is due to that we consider here only the subgroup of the total braid group that
leaves invariant the rooted edge.

5.4 Riemann sphere with four holes/orbifold points

In the case of a Riemann sphere with four holes/orbifold points, the fat graph has a tree-like structure,
where the corresponding orbifold points are now of arbitrary orders; we therefore have arbitrary
parameters ω0, ω1 and ω2. Fixing the zeroth hole/orbifold points as root, the arrangement is as in
Fig. 6 and we are left with three matrices: Fω0

and another two, more complicated ones, which we
call M1 and M2. The quantum expressions for M1 and M2 read:

M1 = XXLXZFω1
XZRXX =

[
qa1 + ω1 −b1

c1 −q−1a1

]
, (55)

where a1 = e−Z , b1 = eX−Z + eX+Z + ω1e
X , and c1 = e−X−Z , and

M2 = XXRXY Fω2
XY LXX =

[
qa2 + ω2 −b2

c2 −q−1a2

]
, (56)

where a1 = eY , b1 = eX+Y , and c1 = e−X−Y + e−X+Y + ω2e
−X . The entries of both these matrices

satisfy the deformed Uq(sl2) relations:

qaibi = q−1biai, (57)

q−1aici = qciai, i = 1, 2 (58)

bici = 1 + ωiqai + q2a2i , cibi = 1 + ωiq
−1ai + q−2a2i . (59)
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Figure 6: The graphical representation for the monodromy matrices M1 and M2 in the PV I case.

The algebraic relations between entries of M1 and M2 are

q−1a1a2 = qa2a1, (60)

q−1b1b2 = qb2b1, (61)

q−1c1c2 = qc2c1, (62)

b1a2 + q−2a1b2 + ω1q
−1b2 = a2b1 + q2b2a1 + ω1qb2, (63)

a1b2 = b2a1, (64)

a1c2 + q−2c1a2 + ω2q
−1c1 = c2a1 + q2a2c1 + ω2qc1, (65)

c1a2 = a2c1, (66)

qc1b2 = q−1b2c1, (67)

qb1c2 − q−1c2b1 = [q2 − q−2][qa1a2 + q−1a2a1 + ω1a2 + ω2a1] + [q − q−1]ω1ω2. (68)

These relations in general are not consistent (otherwise we were be able to formulate a monodromy
algebra of An-type for arbitrary parameters ωi). They become consistent if we supply them with an
additional condition

a1a2 = q2c1b2. (69)

We call the algebraic relations (57)–(59), (60)–(68), and (69) the monodromy algebra for the PV I

equation.

Note that we have three relations, (59) for i = 1, 2 and (69), on six variable ai, bi, ci, which implies
that our algebra must have an additional central element. It is not difficult to find that the elements

K1 := a1c2 − q2c1a2 − qω2c1 (70)

K2 := a2b1 − q−2b2a1 − q−1ω1b2 (71)

are central and they are related:
K1K2 = 1. (72)

We can thus identify the parameter ω3 corresponding to the fourth hole/orbifold point:

ω3 := K1 +K2. (73)

Remark 7. It is interesting to mention that the monodromy matrices M1 and M2 given by the
respective expressions (55) and (56) satisfy the very same relation (44) with i = 1 and j = 2 and with
exactly the same R-matrix (46) provided the relations (60)–(68) and (69) be satisfied.

We now define the three geodesic functions of the PV I system:

GXZ = c1 + b1 + ω0a1, (74)

GXY = c2 + b2 + ω0a2, (75)

GY Z = qb1c2 − q3a1a2 − q2(ω1a2 + ω2a1)− qω1ω2, (76)



where we have introduced the last missing parameter ω0. For these quantities we then obtain the
system of algebraic relations of the PV I algebra of geodesic functions:

qGXY GXZ − q−1GXZGXY = [q2 − q−2]GY Z + [q − q−1][ω1ω2 + ω0ω3],

qGXZGY Z − q−1GY ZGXZ = [q2 − q−2]GXY + [q − q−1][ω2ω0 + ω1ω3], (77)

qGY ZGXY − q−1GXY GY Z = [q2 − q−2]GXZ + [q − q−1][ω0ω1 + ω2ω3].

Remark 8. In [26], it was proved that Fω0
,M1,M2 and a fourth matrix corresponding to the

quantization of their product satisfy the Cherednik algebra H relations of type Č1C1. The algebra
(77) corresponds to the spherical subalgebra eHe of H. In this paper we have shown that M1 and
M2 satisfy the deformed Uq(sl2) relations (57), thus providing an interesting relation between the
Cherednik algebra of type Č1C1 and the deformed Uq(sl2).

6 Conclusion

In conclusion, we recall the main new results obtained in this paper.

We have quantized the MCG transformations (or flip morphisms) for flipping pending edges of
graphs corresponding to open Riemann surfaces with orbifold points.

Using the fact that elements of Fuchsian groups transform uniformly under the action of quantum
MCG transformations, we were able to provide the explicit quantum ordering for a special class of
quantum geodesic functions corresponding to geodesics joining exactly two orbifold points or holes on
a non-compact Riemann surface.

We have used the same quantum ordering for quantizing matrix elements of the Fuchsian group
associated to the Riemann surface. Interestingly, in all the cases where it is possible to close the
Poisson algebra of geodesic functions, such as the An-algebra related to Schlesinger systems [10] and
in the case of algebra related to the Painlevé VI equation [7], we have obtained a well defined quantum
algebra for the elements in the corresponding Fuchsian group.

In the case of the An-algebra, for each fixed geodesic, the matrix entries of the corresponding
element in the Fuchsian group satisfy the quantum universal enveloping algebra Uq(sl2) relations,
while in the case of algebra related to the Painlevé VI equation they satisfy a deformed version of
Uq(sl2).

This result is quite interesting as it sheds light on the relation between the quantum universal
enveloping algebra Uq(sl2) and the Zhedanov algebra AW (3) already explored in [38, 35]. We have
also obtained the quantum generalisation of the Korotkin–Samtleben r-matrix Poisson algebra for the
Schlesinger system and constructed the action of the quantum braid group on the entries of quantum
monodromy matrices.

In a separate publication, we shall consider the last remaining case of Dn-algebras of matrix
elements of the Fuchsian group for an annulus with n Z2-orbifold points. The corresponding algebra
of quantum geodesic functions is related to the reflection equation with the spectral parameter.
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