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Abstract. Unsupervised learning techniques, such as clustering and sparse cod-
ing, have been adapted for use with data sets exhibiting nonlinear relationships
through the use of kernel machines. These techniques often require an explicit
computation of the kernel matrix, which becomes expensive as the number of in-
puts grows, making it unsuitable for efficient online learning. This paper proposes
an algorithm and a neural architecture for online approximated nonlinear kernel
clustering using any shift-invariant kernel. The novel model outperforms tradi-
tional low-rank kernel approximation based clustering methods, it also requires
significantly lower memory requirements than those of popular kernel k-means
while showing competitive performance on large data sets.
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1 Introduction

Most existing high-performing neural networks rely on offline learning and perform
poorly in online learning from streamed data. Biological systems, on the contrary, learn
from continuous streams of data providing inspiration principles on how to accomplish
this task efficiently. Two bio-inspired principles that can be implemented into artificial
neural networks are synaptic plasticity [1], hypothesized to be a key factor for human
learning and memory, and sparse coding [2, 3] stating that the brain encodes the sen-
sory inputs within the smallest number of active neurons. These two principles can be
modeled in machine learning using Oja’s [1] and Sanger’s [4] rules. These rules are in-
spired by the Hebbian principle, which states that connections between two units, e.g.,
neurons, are strengthened when simultaneously activated, and can be implemented by
feed-forward and lateral inhibitory connections as shown in [5]. The continuous update
dynamic of Hebbian learning makes this rule suitable for learning from a continuous
stream of data. The system learns from one input at a time with memory requirements
that are independent of the number of samples.

To achieve good clustering and classification performance with data that are not
linearly separable in their original Euclidean coordinates, offline systems have largely
employed kernel methods. However, such methods come with a large computational
cost when the data size increases, especially in the case of unbounded streams of data.
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To address this problem, an online linear kernel clustering and sparse coding method
was recently proposed in [6]. That method used Hebbian/anti-Hebbian learning rules
derived from a cost-function minimization based on the kernel associated with the inner-
product on Euclidean spaces, which is therefore restricted to linearly separable data sets.

The primary innovation of this paper is the introduction of nonlinear online kernel
clustering by means of a Hebbian/anti-Hebbian neural network. This is implemented
through the use of Random Fourier Features and Classical MultiDimensional Scaling
(CMDS). The proposed model has been evaluated against existing online k-means on
both artificial and real nonlinear publicly available data sets and has been benchmarked
against a set of offline kernel methods. The results demonstrate that the proposed model
achieves for the first time efficient online kernel clustering using a neural network
trained by Hebbian/anti-Hebbian rules.

2 Background and Related Work

The Hebbian/anti-Hebbian learning rules implemented in the proposed model derive
from a generalization of CMDS, originally used for low-dimensional embedding of
data [7]. The formulation of CMDS is given as follows: for a set of inputs xt ∈ Rn for
t ∈ {1, . . . , T}, the concatenation of the inputs defines an input matrix X ∈ Rn×T .
The output matrix Y of embeddings is an element of Rm×T where m < n for low-
dimensional embedding. The objective function of CMDS is:

Y ∗ = argmin
Y ∈C

‖X ′X − Y ′Y ‖2F . (1)

where F is the Frobenius norm, X ′X is the Gram matrix of the inputs that combines
the information of similarity and norm of the vectors, and the space C encodes the
constraints, which depends on the problem to solve. This has been generalized to sparse
coding [6] using a non-negativity constraint on the output matrix, Y ∈ Rm×T+ , called
Non-negative CMDS (NCMDS).

A solution to the optimization problem for online NCMDS was introduced in [6],
which led to a neural implementation and Hebbian learning rules for this method. The
model in [6], based on Eq.1, however, has a linear structure encoded in the inner-product
term X ′X , which fails to capture the often nonlinear structure of real world data.

A way to address this problem can be found in kernel methods since they allow
algorithms to be applied to implicit high-dimensional nonlinear feature spaces. The
matrix X ′X , in Eq.1, with i, jth entries given 〈xi, xj〉Rn , can be replaced with any
nonlinear kernel matrix K := K(xi, xj):

Y ∗ = argmin
Y ∈Rm×T+

‖K − Y ′Y ‖2F . (2)

A version of Kernel MDS was suggested in [8], but the approach is for offline training
only and does not perform clustering or sparse coding but dimensionality reduction.
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2.1 Random Fourier Features

The increase in performance using kernel methods comes at a large computational cost
when the number of samples increases. Two main approaches address this problem:
1) data dependent procedures based on a low-rank approximation of the kernel ma-
trix, e.g. the Nyström method [9]; 2) data independent procedures based on integral
representations of the kernel function, e.g., Random Fourier Features (RFF) [10]. This
second approach is used in this study to approximate shift-invariant kernels such as the

Gaussian kernel, where K(xi, xj) := e
−‖xi−xj‖2

2σ2 .
Assume thatK is a continuous positive-definite, shift-invariant kernel, i.e.,K(x, y) =

k(x− y) with x and y vectors of Rn, and is scaled such that k(0Rn) = 1. Because K is
positive semi-definite, Aronszajn’s theorem [11] implies that there exist a Hilbert space
H and a mapping Φ : Rn → H such that for any x and y ∈ Rn, then

K(x, y) = 〈Φ(x), Φ(y)〉H. (3)

For general kernels, explicitly defining Φ andH can prove challenging. However, when
K is shift-invariant and scaled as above, Bochner’s theorem [12] states that the Fourier
transform of k, k̂, is a probability density function in the Fourier dual space, in this case
again Rn, with the property that for w ∈ Rn:

K(x, y) = Ek̂[f(w, x)
′f(w, y)] where f(w, x) = (cos(w′x), sin(w′x)). (4)

Thus, K may be approximated by averaging over d Fourier components {w1, . . . , wd}
sampled from the distribution k̂ to obtain an embedding of the point x into R2d :

φ(x)′ :=
1√
d
(cos(w′1x), . . . , cos(w

′
dx), sin(w

′
1x), . . . , sin(w

′
dx)). (5)

In particular, when K is the Gaussian kernel defined above, the Fourier transform k̂
is also a Gaussian of variance 1/σ2. Using these results, the kernel matrix K can be
approximated by

K̃ = Φ′XΦX , where ΦX = {φ(x1), . . . , φ(xT )}. (6)

The authors of [13] proved that ∀δ ∈ (0, 1), with probability 1− δ,

‖K − K̃‖F ≤
2 ln(2/δ)

d
+

√
2 ln(2/δ)

d
= O(

1√
d
), (7)

proving that the convergence is uniform and not data dependent.

2.2 Kernel NCMDS and Kernel K-means

When an orthogonality constraint Y Y ′ = I is added to Eq.2, the algorithm is equivalent
to a kernel k-means clustering method. When this constraint is relaxed to non-negativity,
we obtain the Symmetric Non-negative Matrix Factorization [14] (SNMF) performing
sparse coding, which is a soft-clustering task. Such a model was developed in [6] and
evaluated in [15] but was limited to the linear kernel clustering and sparse coding us-
ing K = X ′X . This motivates the choice the kernel NCMDS as a viable nonlinear
clustering and sparse coding method using nonlinear kernels.
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3 Online kernel NCMDS Using Random Fourier Features

The method proposed here extends the applicability of a Hebbian/anti-Hebbian neural
network proposed in [6] to nonlinear kernel methods, where data relationships are not
described by distances in Euclidean spaces but by similarity values in an implicit high-
dimensional space to which data is nonlinearly mapped.

We propose an algorithm and a neural architecture to perform online kernel NCMDS
for any shift-invariant kernel. They bypass the difficulty of storing a similarity matrix
by approximating the kernel with RFFs, and using a set of online learning rules that are
Hebbian/anti-Hebbian in that they only depend on pre- and post- synaptic activations.
The approximate kernel matrix K̂ defined in Eq.6 replaces K in Eq.2 . Thus, the offline
optimisation problem is defined as:

min
Ỹ≥Rm×T+

‖K̃ − Ỹ ′Ỹ ‖F = min
Ỹ≥Rm×T+

‖Φ′XΦX − Ỹ ′Ỹ ‖F . (8)

If Y ∗ is an optimal solution of the exact kernel NCDMS such that ε is the distance from
K to the subspace spanned by Y ′Y s, and Ỹ ∗ an optimal solution of the approximated
problem (8), such that ε̃ is the distance from K̃ to the subspace spanned by Ỹ ′Ỹ s, then
with probability 1− δ,

‖Y ∗
′
Y ∗ − Ỹ ∗

′
Ỹ ∗‖2F ≤ ‖K − Y ∗

′
Y ∗‖2F + ‖K̂ − Ỹ ∗

′
Ỹ ∗‖2F + ‖K − K̃‖2F

≤ ε+ ε̃+
2 ln(2/δ)

d
+

√
2 ln(2/δ)

d
. (9)

Thus, the solution of the original problem is approximated by minimising the approx-
imated problem. The quality of the approximation depends on the number of RFFs. In
order to ensure the convergence of the model, an improvement to this theoretical bound
should find ε̃ as a function of (ε, d). However, in practice, the quality of the solution
depends also largely on the implementation and in fact performs well in practice as will
be discussed in Section 4.

3.1 Online Kernel NCMDS

Using the method in [6], Eq. 8 can be solved online as explained in the following. For
every new input xT presented, the model must find an optimal vector (yT )∗ based only
on information about K for the first T inputs, KT := K(xi, xj), i, j ≤ T and on the
previous determined vector y1, . . . , yT−1. The problem can be formulated as follow:

(yT )∗ = argmin
yT≥0

‖KT − Y ′Y ‖F . (10)

Note in particular that y1, . . . , yT−1 are not updated at the T th step and each yT is based
only on x1, . . . , xT and not on the full {x}, which is unbounded in the case of streamed
data. A standard development of the Frobenius norm gives the following equation:

(yT )∗ = argmin
yT≥0

T∑
t=1

T∑
s=1

(K(xs, xt)− 〈ys, yt〉Rm)2. (11)
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Then ∀s, t ∈ {1, . . . , T} × {1, . . . , T} using the approximation Eq.7 we obtain

(K(xs, xt)− 〈ys, yt〉R2d)2 ≈
[

−2φ(xs)′ φ(xt)ys′ yt+
(〈ys, yt〉Rm)2 + (〈φ(xs), φ(xt)〉R2d)2

]
. (12)

After replacing the kernel by its approximation in the online kernel NCMDS (Eq.10),
one can prove as in [6] that the components of the optimal vector can be found using
coordinate descent:

(yTi )
∗ = max

(
WT
i φ(x

T )−MT
i y

T , 0

)
, (13)

with WT
ij =

T−1∑
t=1

ytiφ(x
t)j

T−1∑
t=1

(yti)
2

; MT
ij =

T−1∑
t=1

ytiy
t
j

T−1∑
t=1

(yti)
2

1i 6=j ∀i ∈ {1, . . . ,m}. (14)

WT and MT can be found using recursive formulations:

WT
ij =WT−1

ij +

(
yT−1i

(
φ(xT−1)j −WT−1

ij yT−1i

)/
Ŷ Ti

)
(15)

MT
ij 6=i =MT−1

ij +

(
yT−1i

(
yT−1j −MT−1

ij yT−1i )

/
Ŷ Ti

)
(16)

Ŷ Ti = Ŷ T−1i + (yT−1i )2 . (17)

The matricesWT andMT are sequentially updated using only the relationship between
φ(xT−1) and yT−1, which are analogous to pre- and post-synaptic activities, thus satis-
fying the Hebbian principle. The model presented here can be interpreted as a two-layer
feed-forward neural network with lateral synaptic connections. Each new element, xT ,
presented to the model is first transformed by passing through a neural network com-
posed of d nodes, associated with the synaptic weights {w1, . . . , wd} and with cosine
and sine activation functions, generating φ(xT ). Secondly, an output yT is generated
after competition between neurons in a second layer according to Eq.13, where the
weight matrices WT and MT can be interpreted respectively as feed-forward synaptic
and lateral synaptic inhibitory connections (Fig.1). The schema in Fig.1 represents the
two-layer neural network derived from the minimization of Eq.10.

One advantage of the approach presented here is that, although specifically relying
on RFF, the results would hold for any inter-distance that may be approximated by
inner-products [16]. Also, unlike spectral clustering methods that require eigenvalue
decompositions to obtain hard clusters, this model finds cluster membership according
to the output neuron with the largest activation for that input. In particular, the number
of clusters is determined by the number of output neurons, m.

4 Results

In this section, the algorithm is tested on clustering tasks on synthetic and real data sets.
The clustering accuracy of the models is evaluated in terms of the Normalized Mutual
Information (NMI) between the estimated clusters and the true clusters.
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Random Fourier
Features

Feed-forward
connections WT

Lateral synaptic
connections MT

xT
1

xT
2

...
...

xT
n

cos(w′
1x

T )

cos(w′
2x

T )

...

cos(w′
dx

T )

max((Wφ(xT )−MyT )1, 0)

max((Wφ(xT )−MyT )2, 0)

...

max((Wφ(xT )−MyT )m, 0)
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...
...
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m

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Fig. 1: Two-layer neural network performing online kernel clustering (Eq.10) for clus-
ters defined by neurons in the output layer.

4.1 Artificial Data Set

We evaluate the proposed model on the following toy example: let us consider xt ∈ R2

such that with probability 0.5, xt ∈ C1 = {x ∈ R2, ‖x‖2 = R2
1 + ε1}, and probability

0.5, xt ∈ C2 = {x ∈ R2, ‖x‖2 = R2
2+ ε2}, where C1 and C2 represent two concentric

circles, which are also the two clusters of interest.
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(a) The two clusters in the in-
put space colored according to
the estimation of the model.
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Fig. 2: Evaluation of the model on a toy example of two concentric circles composed
of 500 points each. (a) The clusters estimated in the input space, (b) the activity of the
output neurons, (c) the average NMI over 20 trials.

The simulation proves that the model learns to separate the two nonlinear
1-dimensional manifolds that are C1 and C2 (Fig2a and Fig2b), which is not possible
if the linear kernel is used. The activities of the output neurons are recorded in Fig.2b,
showing a clear separation between the two clusters in terms of neuronal activities. The
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average NMI over 20 trials is recorded in Fig.2c showing that the model effectively
clusters the data with high probability after 12,000 points are streamed.

4.2 Empirical Analysis: Large Scale Clustering

In this section, the model is evaluated against four models: the kernel k-means [17],
which is an offline method requiring to compute and store the entire kernel matrix,
the approximate kernel k-means algorithm [18, 13], the Nyström approximation-based
spectral clustering algorithm [9], and the k-means algorithm in terms of their NMI.

Two public domain data sets are used: the MNIST [19] and the Forest Cover Type
[20]. The MNIST [19] contains 60,000 training images and 10,000 test images from
10 classes. In this experiment, training and test images are combined into one data set.
The Forest Cover Type [20] contains 581,012 data points from 7 classes. The number
of output neurons m is fixed and equal to the true number of classes in the data set. The
number of RFFs, d, is set to vary from 100 to 2000. In the results below we present the
results obtained for the optimal parameters of the Gaussian kernel.

Fig.3a shows that the proposed model largely outperforms the standard k-means
clustering technique, which is the only other model that also admits an online version,
and the Nyström-based spectral clustering model [9]. The best performances on the
MNIST are obtained by the kernel k-means algorithm and approximated kernel k-means
[18, 13]. The latter can be efficiently implemented on large scale data sets or streams of
data but relies on storing a sub-sample of the input data: in this case at least a 100 data
points to perform batch training. Thus, the RFF Hebbian/anti-Hebbian method achieves
the best fully online performance. As emphasized earlier, the kernel k-means could
not be applied to the Forest Cover Type because of its large size, which would require
computing and storing a kernel matrix of size 581, 012×581, 012 largely exceeding the
memory of any standard computer. In this data set, the proposed model reached similar
performances as the approximated kernel k-means, outperforming the Nyström-based
method and the standard k-means.
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Fig. 3: Evaluation of the neural network against other models on the MNIST (a), and on
the Forest CoverType (b).
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The advantage of the model proposed is that it only requires storing the weight ma-
trices, {w1, . . . , wd},WT , andMT as it is designed to be used for online learning from
streamed data. Although the model does not outperform the offline kernel k-means,
it requires the least amount of memory and computation while showing better perfor-
mance than offline linear clustering techniques such as k-means, to which it directly
compares.

5 Conclusion

This study introduced an online learning algorithm for nonlinear clustering based on
kernel Non-negative Classical Multidimensional Scaling and Hebbian learning rules.
The proposed model is effective for clustering data sets from non-linearly clusterable
data. This kernel version introduced here to extend the Hebbian/anti-Hebbian networks
[6] is shown to perform well on real world data sets such as the MNIST and the Forest
Cover Type. One possible limitation in the computation of the model, and topic of
further investigations, is the convergence of the hidden layer with recurrent inhibitory
connections when a large number of clusters is required. Preliminary results indicate
that the model is also suitable for implementing sparse coding, an important property
for unsupervised learning algorithms that is worth future investigations.
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