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Integrable systems and their singularities

Symplectic manifold (M2n, ω)

Hamiltonian system ẋ = XH(x) = ω−1(dH(x))

Liouville integrability: there exist f1, . . . , fn : M2n → R which:

I first integrals of XH(x);

I commute;

I independent almost everywhere.

Momentum mapping Φ = (f1, . . . , fn) : M2n → Rn

Singular Lagrangian fibration on M whose generic fibers La (i.e., connected
components of Φ−1(a), a ∈ Rn) are Liouville tori with quasi-periodic dynamics

Set of critical points S = {x ∈ M | rank(df1(x), · · · , dfn(x)) < n}

General problem: Describe S and its properties

SINGULARITIES ARE IMPORTANT! Why?
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Singularities for Stability Analysis

Theorem (A. Borisov, I. Mamaev, AB (2010))

Two degrees of freedom

Let γ(t) be a stable periodic solution. Then γ is singular, i.e., belongs to the
singular set S (unless the system is resonant). Moreover, in the real analytic
case γ(t) is stable if and only if γ(t) coincides with the common level of the
integrals H and f :

{γ(t), t ∈ R} = {H(x) = H(x0), f (x) = f (x0)}, x0 = γ(t0)

Theorem
Let P ∈ M2n be an equilibrium point of a non-resonant integrable system.
If P is stable then P is a critical point of Φ and, moreover, rank Φ(P) = 0,
i.e., P is a common equilibrium point for all the integrals f1, . . . , fn.

Strange conclusion: for stability analysis of integrable systems, we do not need
to consider the Hamiltonian equations, the only important thing is the
momentum mapping and its singularities (or, equivalently, the corresponding
singular Lagrangian fibration).
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Non-degenerate singularities



Non-degenerate singularities

Definition
Let x0 ∈ M2n be a singular point of rank zero, i.e., dfi (x0) = 0, i = 1, . . . , n.
It is called non-degenerate, if the quadratic parts d2f1(x0), . . . , d2fn(x0) are
linearly independent and for a generic linear combination f =

∑
ai fi , the roots

of det(ω−1d2f (x0)− t · Id) = 0 are all distinct.

Theorem (Vey, Eliasson: neighbourhood of a singular point)

The algebraic type of a non-degenerate singularity is its complete topological,
smooth and even symplectic invariant.

Topological interpretation: every non-degenerate singularity can be represented
as the product of the simplest singularities, i.e., elliptic, hyperbolic and focus.

Theorem (Nguyen Tien Zung: neighbourhood of a singular fiber)

Every non-degenerate singularity (under some natural assumptions) can be
topologically represented as an almost direct product type of elementary
singularities.
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Basic Poisson geometry

Definition
A Poisson bracket { , } on M is a bilinear operation on C∞(M) defined by:

f , g 7→ {f , g} =
n∑

i,j=1

Aij(x)
∂f

∂x i

∂g

∂x j
,

and satisfying the Jacobi identity. Here A = (Aij) is a skew-symmetric
(2, 0)-tensor field called a Poisson structure.

Important!
We do not assume that A is non-degenerate (in the sense detA 6= 0). We do
not assume that A is or constant rank either.

I Casimir functions f ∈ C∞(M) such that

{f , g}A = 0 for any g ∈ C∞(M).

I M is foliated into symplectic leaves

I Singular set of A:

SA = {x ∈ M | rankA(x) < rankA = max
x∈M

rankA(x)}.



Example 1

so(3)–bracket: A =

 0 z −y
−z 0 x
y −x 0


Casimir function: F = x2 + y 2 + z2

Symplectic leaves are spheres centered at the origin + one singular leaf {0}

Singular set is SA = {rankA < 2} = {0}, codimSA = 3



Example 2

sl(2,R)–bracket: A =

 0 y −z
−y 0 2x
z −2x 0


Casimir function: F = x2 + yz

Symplectic leaves: hyperboloids, two halves of the cone + one singular leaf {0}

Singular set is SA = {rankA < 2} = {0}, codimSA = 3



Example 3

Heisenberg–Lie bracket: A =

 0 z 0
−z 0 0
0 0 0


Casimir function: F = z

Symplectic leaves: planes {z = const 6= 0} + points on {z = 0}

Singular set is SA = {rankA < 2} = {z = 0}, codimSA = 1

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •



Compatible Poisson brackets and bi-Hamiltonian systems

Definition
Two Poisson structures A and B are compatible if µA + λB is again a Poisson
structure.

Let M be a manifold endowed with a linear family Π = {Aλ = A + λB} of
compatible Poisson brackets. Assume that all Aλ ∈ Π are degenerate so that
each of them possesses non-trivial Casimir functions.

Proposition

Let ẋ = v(x) be a dynamical system which is Hamiltonian w.r.t. each generic
Aµ ∈ Π, then
1) the family of functions

FΠ = {all Casimir functions of all generic Aµ}

consists of its first integrals;
2) these integrals commute (w.r.t. every Aλ ∈ Π)

Natural questions to discuss: PROPERTIES of FΠ

I Completeness
I Set of critical points
I Equilibrium points
I Non-degeneracy conditions, types
I Stability
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General scheme

Family of compatible Poisson brackets

↓
Commuting integrals

↓
Lagrangian fibration

↓
Its singularities

↓
Dynamical properties and stability analysis



Zero-order theory

Theorem
FΠ is complete iff Π is of Kronecker type, i.e. at a generic point x ∈ M,
the rank of A(x) + λB(x) is the same for all λ ∈ C̄.

Let Π = {A + λB} be of Kronecker type, so that FΠ is complete and defines
the structure of a Lagrabgian fibration on M.
Consider the singular set for this fibration

SΠ = {x ∈ M | dim dFΠ is not maximal}

and singular sets for each Poisson structure

Sλ = {x ∈ M | rankAλ(x) < rank Π}.

Theorem SΠ =
⋃
λ∈C̄

Sλ

Theorem
x ∈ M is a common equilibrium point for FΠ if and only if the kernels of all
generic brackets at this point coincide: KerAλ(x) = KerAµ(x), for all Aλ(x)
and Aµ(x) generic.
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Linearisation of a Poisson structure

According to the splitting theorem (A.Weinstein), locally each Poisson
structure A splits into direct product of a non-degenerate Poisson structure
Asympl and the transversal structure Atransv which vanishes at the given point:

A = Asympl × Atransv

The transversal Poisson structure Atransv is well defined and we can consider its
linearisation just by taking the linear terms in the Taylor expansion

Atransv(x) =
∑

ckij xk + . . .

Definition
From the algebraic viewpoint, the linearisation of A at a point x ∈ M is
a Lie algebra gA defined on KerA(x) as follows. Let ξ, η ∈ KerA(x) and f , g
be smooth functions such that df (x) = ξ, dg(x) = η. Then, by definition,

[ξ, η] = d{f , g}(x) ∈ KerA(x)
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Linearisation of a Poisson pencil

Π = {Aλ = A + λB} is a pencil of compatible Poisson brackets and x ∈ M.
Let us take x ∈ M, fix λ 6=∞ and consider the kernel KerAλ(x).

On KerAλ we can introduce two natural structures:

I the Lie algebra gλ = gAλ , the lineraisation of Aλ at the point x ,

I the restriction of B onto KerAλ.

We can think of them as two Poisson structures on g∗λ:

I the first on is linear, i.e., the standard Lie-Poisson structure related to gλ,

I the second one is constant B|gλ .

Proposition

These two Poisson structures are compatible, i.e. generate, a Poisson pencil
dλΠ(x).

Definition
This Poisson pencil dλΠ(x) is called the λ-linearisation of the pencil Π at
x ∈ M.
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Linear pencils

Consider two compatible Poisson brackets on a vector space V :
linear A + constant B.

What are “compatibility conditions” for this kind of brackets?

Standard situation is “shift of argument” (Manakov, Mischenko, Fomenko) :

The brackets {f , g}(x) =
∑

ckij xk
∂f

∂xi

∂g

∂xj
, {f , g}a(x) =

∑
ckij ak

∂f

∂xi

∂g

∂xj
are

compatible for each a = (ai ) ∈ V ' g∗.
Situation can be different:

For {f , g}A(x) =
∑

ckij xk
∂f

∂xi

∂g

∂xj
there may exist constant compatible brackets

{f , g}B(x) =
∑

Bij
∂f

∂xi

∂g

∂xj

which are not of the above type. The compatibility condition can be written as

B([ξ, η], ζ) + B([η, ζ], ξ) + B([ζ, ξ], η) = 0.
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Non-degenerate linear pencils

Thus, a linear pencil is defined as a pair (g,B) where

I g is a finite-dimensional Lie algebra

I B : g× g→ R is a skew-symmetric form compatible with g (2-cocycle).

Notation: Πg,B

For this special kind of Poisson pencils Π = Πg,B we can construct the family
of commuting functions FΠ and ask the question about the structures of
singular points. We will say that Π is complete, if FΠ is complete.

Definition
We say that a complete linear pencil Πg,B is non-degenerate, if 0 ∈ g∗ is a
non-degenerate singular point for the family FΠ.

Problem. Describe all pairs (g,B) such that the pencil Πg,B is non-degenerate.
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Examples: semisimple case so(3)

Example

If g ' so(3) and B is arbitrary, then Πg,B is non-degenerate.

A =

 0 z −y
−z 0 x
y −x 0

 and B =

 0 c −b
−c 0 a
b −a 0


Casimir functions: F1 = x2 + y 2 + z2, F2 = ax + by + cz



Examples: semisimple case sl(2,R)

g ' sl(2,R) and the constant bracket B is defined by an element
ξ ∈ sl(2,R) ' sl(2,R)∗:

ξ =

(
a b
c −a

)

A =

 0 y −z
−y 0 2x
z −2x 0

 and B =

 0 c −b
−c 0 2a
b −2a 0


Casimir functions: F1 = x2 + yz , F2 = 2ax + by + cz



Examples: semisimple case sl(2,R)



Classification of non-degenerate pencils

Theorem (A. Izosimov)

Complex case. A linear pencil Πg,B is non-degenerate iff

g '
(⊕

so(3,C)
)
⊕
((⊕

D
)
/h0

)
⊕
(⊕

C
)

where D is the diamond Lie algebra, h0 is a commutative ideal which belongs
to the center of (

⊕
D), and KerB is a Cartan subalgebra of g.

Real case. A linear pencil Πg,B is non-degenerate iff

g '
(⊕

so(3,R)
)
⊕
(⊕

sl(2,R)
)
⊕
(⊕

so(3,C)
)
⊕(((⊕

gell
)
⊕
(⊕

ghyper
)
⊕
(⊕

gfoc
))

/h0

)
⊕
(⊕

R
)

I gell and ghyp are the non-trivial central extensions of e(2) and e(1, 1)
(equivalently, they are real forms of D),

I efoc = D treated as real Lie algebra,

I h0 is a commutative ideal which belongs to the center.

and KerB is a Cartan subalgebra of g. The type of the singularity is naturally
defined by the “number” of elliptic, hyperbolic and focus components in the
above decomposition.
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General criterion

Let Π = {A + λB} be an arbitrary pencil of compatible Poisson brackets.
We consider the family of commuting Casimirs FΠ and a singular point x ∈ SΠ.
This means that at this point for some λi ∈ C̄, the rank of A(x) + λiB(x)
drops. The set of such λi ’s is called the spectrum of the pencil Π at x ∈ M.
Notation: Λ(x).

For each λi ∈ Λ(x) we can consider the λi -linearisation.

Is x non-degenerate?

Theorem
The singular point x is non-degenerate if and only if for every λi ∈ Λ(x),

1. the λi -linearisation of Π at x is non-degenerate;

2. the corank of the λi -linearisation equals to corank Π.

The Williamson type of x is just the “sum” of the types of all λi -linearisations.
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Stability of stationary rotations for n-dimensional rigid body

Consider a stationary rotation of an 2n-dim rigid body.

Let R2n =
⊕2

i=1 Vi be the decomposition of R2n into 2-dimensional subspaces
spanned by the eigenvectors of the inertia tensor J, ωi be the angular velocity
of rotation in the plane Vi and Ji and J ′i the eigenvalues of J (principal
moments of inertia) that correspond to Vi . Consider the function

y = fi (x) =
(x − J2

i )(x − J ′i
2
)

ω2
i (Ji + J ′i )

2
,

which defines a parabola on the (x , y)-plane. The collection of all these
parabolas is called the parabolic diagram P of the stationary rotation.

Theorem (A.Izosimov)

1. The equilibrium point (stationary rotation) X ∈ so(n) is non-degenerate if
and only if the parabolic diagram P is generic.

2. If P is generic, all intersections are real and located in the upper half
plane, then the equilibrium is stable.

3. If there is either a complex intersection or an intersection point in the
lower half plane, then the equilibrium point is unstable.
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Below are some additional slides which
might be helpful



What is the diamond Lie algebra D?

D is a four dimensional Lie algebra generated by e, f , t, h with the following
relations

[t, e] = f , [t, f ] = −e and [e, f ] = h, [h,D] = 0. (1)

In other words, D (as a complex Lie algebra) is the non-trivial central extension
of e(2,C).
Matrix representation:

αe + βf + θt + γh 7→


0 α β 2γ
0 0 −θ β
0 θ 0 −α
0 0 0 0


Casimir functions: F1 = f 2 + e2 + 2th, F2 = h.

The complex diamond Lie algebra D has 2 different real forms

I gell defined by (1) and

I ghyp defined by [t, e] = e, [t, f ] = −f , and [e, f ] = h.



Fundamental example: Lie-Poisson structure

Let g be a finite-dimensional Lie algebra and g∗ its dual space.
The Lie-Poisson bracket on g∗ is defined by:

{f , g}(x) = 〈x , [df (x), dg(x)]〉 =
∑

ckij xk
∂f

∂xi

∂g

∂xj
,

where f , g ∈ C∞(g∗), df (x), dg(x) ∈ g ' (g∗)∗ and 〈 , 〉 denotes the pairing
between g and g∗.

In Cartesian coordinates, the Poisson structure A is linear:

Aij =
∑
k

ckij xk

and this property is characteristic for all Lie-Poisson brackets.

corankA = ind g

Symplectic leaves = coadjoint orbits

Casimir functions = coadjoint invariants



Jordan–Kronecker decomposition

Theorem
Let A and B be two skew-symmetric bilinear forms. Then by an appropriate
choice of a basis, their matrices can be simultaneously reduced to the following
canonical block-diagonal form:

A 7→


A1

A2

. . .

Ak

 B 7→


B1

B2

. . .

Bk


where the pairs of the corresponding blocks Ai and Bi can be of the following
three types (see next slide)



Jordan–Kronecker decomposition

Theorem
Let A and B be two skew-symmetric bilinear forms. Then by an appropriate
choice of a basis, their matrices can be simultaneously reduced to the following
canonical block-diagonal form:

A 7→


A1

A2

. . .

Ak

 B 7→


B1

B2

. . .

Bk


where the pairs of the corresponding blocks Ai and Bi can be of the following
three types (see next slide)



Types of blocks

A B

Jordan block
(λ ∈ R)

 J(λ)

−J>(λ)

  Id

−Id


Jordan block
(λ =∞)

 Id

−Id

  J(0)

−J>(0)



Kronecker
block



1 0
. . .

. . .

1 0

−1

0
. . .

. . . −1
0





0 1
. . .

. . .

0 1

0

−1
. . .

. . . 0
−1





Types of blocks

A B

Jordan block
(λ ∈ R)

 J(λ)

−J>(λ)

  Id

−Id



Jordan block
(λ =∞)

 Id

−Id

  J(0)

−J>(0)



Kronecker
block



1 0
. . .

. . .

1 0

−1

0
. . .

. . . −1
0





0 1
. . .

. . .

0 1

0

−1
. . .

. . . 0
−1





Types of blocks

A B

Jordan block
(λ ∈ R)

 J(λ)

−J>(λ)

  Id

−Id


Jordan block
(λ =∞)

 Id

−Id

  J(0)

−J>(0)



Kronecker
block



1 0
. . .

. . .

1 0

−1

0
. . .

. . . −1
0





0 1
. . .

. . .

0 1

0

−1
. . .

. . . 0
−1





Types of blocks

A B

Jordan block
(λ ∈ R)

 J(λ)

−J>(λ)

  Id

−Id


Jordan block
(λ =∞)

 Id

−Id

  J(0)

−J>(0)



Kronecker
block



1 0
. . .

. . .

1 0

−1

0
. . .

. . . −1
0





0 1
. . .

. . .

0 1

0

−1
. . .

. . . 0
−1





Argument shift method

On the dual space g∗ of an arbitrary Lie algebra g there are two natural
compatible Poisson brackets:

{f , g}(x) =
∑

ckij xk
∂f

∂xi

∂g

∂xj
and {f , g}a(x) =

∑
ckij ak

∂f

∂xi

∂g

∂xj

where a = (ai ) ∈ g∗ is a fixed element.

Proposition

For each λ ∈ R, the bracket { , }λ = { , }+ λ{ , }a is isomorphic to { , } (by
means of translation x → x + λa). In particular,

I the Casimir functions of { , }λ are of the form f (x + λa), where f is a
coadjoint invariant of g;

I the singular set of { , }λ is Sing + λa, where Sing is the set of singular
coadjoint orbits of g;

I the kernel of { , }λ at the point x ∈ g∗ is the ad ∗-stationary subalgebra
of x + λa, i.e., ann(x + λa) = {ξ ∈ g | ad ∗ξ(x + λa) = 0}.

Mischenko-Fomenko: The family of functions
Fa = {f (x + λa) | λ ∈ R, f is a Casimir of g} is in bi-involution.



What about non-singular fibers?

Simplest case:

dimM = 2, f1 = H and
La = {H(x) = a} is compact and regular. Then topologically, La is just a circle.
Moreover, its neighborhood U(La) is fiberwise symplectomorfic to:

M2
reg = D1 × S1, where D1 is an interval, ω = ds ∧ dφ

and the Hamiltonian of the system is F = F (s), i.e., fibers are circles S1 × {s},
s ∈ D1.

General case: dimM = 2n.

Theorem (Arnold–Liouville)

1) Let La be regular, compact and connected. Then La is an n dimensional
torus and the dynamics of XH on La is quasi-periodic.
2) There exists a neighborhood U(La) which is fiberwise symplectomorphic to
the canonical model

M2n
reg = M2

reg × · · · ×M2
reg︸ ︷︷ ︸

n times
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La = {H(x) = a} is compact and regular. Then topologically, La is just a circle.
Moreover, its neighborhood U(La) is fiberwise symplectomorfic to:

M2
reg = D1 × S1, where D1 is an interval, ω = ds ∧ dφ

and the Hamiltonian of the system is F = F (s), i.e., fibers are circles S1 × {s},
s ∈ D1.

General case: dimM = 2n.

Theorem (Arnold–Liouville)

1) Let La be regular, compact and connected. Then La is an n dimensional
torus and the dynamics of XH on La is quasi-periodic.
2) There exists a neighborhood U(La) which is fiberwise symplectomorphic to
the canonical model

M2n
reg = M2

reg × · · · ×M2
reg︸ ︷︷ ︸

n times


