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1 Introduction

Diffusion tensor imaging (DTI), introduced by Basseret al.(1994), is a specific magnetic resonance
imaging (MRI) method for brain and many body studies which characterises microscopic structural in-
formation of oriented tissue in vivo.

DTI assumes that molecular displacement follows a zero-mean trivariate Gaussian distribution (Alexan-
der, 2005), and its covariance matrix is proportional to thediffusion tensorD ( seeTable 1). The eigen-
structure ofD gives the picture of molecular diffusion along different directions (Basseret al., 1994). In
particular, the principal eigenvectorv1 corresponding to the largest eigenvalue represents the fibre direc-
tion, i.e., DTI can provide a 3-dimensional vector field, andeach vector presents the fibre orientation.

The diffusion tensor can be visualised by a diffusion ellipsoid defined by the eigenstructure ofD (Basser
et al., 1994). The diffusion isisotropic when water molecular motion is equal and unconstrained in all
directions. But, anisotropy may result from the barriers ofbiological tissue (Le Bihanet al., 2001) where
water molecules move along some preferred directions. To quantitatively measure and monitor diffusion
anisotropy, scalar quantities derived fromD have been produced (Le Bihanet al., 2001), such as the
mean diffusivity (MD) and Fractional anisotropy (FA) mentioned inTable 1.

Term Meaning

Diffusion tensor (D) D =





Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



 is symmetric (semi)positive-definite.

Dxx, Dyy andDzz represent molecular diffusivities along axes.
Eigenvalues (λ1, λ2 andλ3) λ1, λ2 andλ3 are positive. Conventionally, letλ1 ≥ λ2 ≥ λ3.
Eigenvectors (v1, v2 andv3) Unit vectorsv1, v2 andv3 are orthogonal. The eigenvectors and

eigenvalues coincide with the main diffusion directions and
associated diffusivities respectively in the tissue.

Mean diffusivity (MD) MD = λ1+λ2+λ3

3 reflects the isotropic or average degree of diffusion.

Fractional anisotropy (FA) FA =





3×
3

P

k=1

(λk−MD)2

2×
3

P

k=1

λ2

k





1

2

describes the degree of anisotropy.

Table 1: Glossary of terms
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2 Models and Methods of diffusion tensor imaging

2.1 Traditional diffusion tensor models

Under the 3D Gaussian assumption of molecular displacement, the meanµi of the resulting diffusion-
weighted signalSi corresponding to theith diffusion gradient directiongi (unit vector) can be obtained
from the Fourier transform of the molecular displacement distribution as shown in the diffusion tensor
model (Basseret al., 1994).

µi = S0 exp(−bgT
i Dgi), i = 1, ...,N, (1)

whereS0 is the signal without diffusion gradient applied (i.e.b = 0). Roughly,b (b-value) characterises
the gradient pulses used in the MRI sequence. For each voxel,the noise of the measured signal is denoted
asεi. It is assumed thatεi’s are independent and identically distributed (i.i.d.) Gaussian variables,εi ∼
N(0, σ2). Thus, the measured signalsSi’s are independent Gaussian variables, i.e.,Si ∼ N(µi, σ

2), i =
1, ..., N .

A generalisation of the diffusion tensor model is the multiple-compartment model (Alexander, 2005),
which is proposed to describe the diffusion behaviour in a voxel containingm ≥ 1 distinct compartments
(each compartment has one dominant fibre orientation). Modelling diffusion within thejth compartment
by a Gaussian distribution with convariance matrixDj and assuming no molecular exchange between
compartments, a mixture of them Gaussians for the overall diffusion process is obtained. The mean of
ith diffusion-weighted signal can be modelled as:

µi =

m
∑

j=1

ajS0 exp(−bgT
i Djgi), i = 1, ...,N. (2)

where the weightsaj ∈ (0, 1],
∑

aj = 1, i = 1, ...,N , of the individual compartments are also known
as ’volume fractions’. Hence, by assuming that the noiseεi’s are i.i.d. Gaussian, i.e.N(0, σ2), the
measured signalsSi’s are independentN(µi, σ

2), i = 1, ...,N .

However, we find the parameter set (a1, a1, ......, am, D1, D2, ......, Dm ) is not identifiable, i.e., distinct
settings of parameters can result in an identical model (Zhou et al., 2008).

2.2 Multi-tensor model

By reparameterising Alexander’s (2005) multiple-compartment model, we set up a new multi-tensor
model which is identifiable:

µi =

{ m
∑

j=1
S0 exp(−bgT

i D∗

jgi) if b > 0

S0 if b = 0

(3)

whereD∗

j is defined asD∗

j = Dj + qjI3×3 , and ifb > 0, qj = − log aj/b, qj ≥ 0. Obviously, ifb = 0,
thenµi =

∑

ajS0 = S0, j = 1.....m. It can be shown that any (D∗

1, D∗

2, ......, D∗

m) with symmetric
(semi) positive-definiteD∗

j , j = 1...m, is identifiable as parameters of the multi-tensor model (Zhou et
al., 2008). Then, the measured signalSi can be modelled by addingi.i.d. N(0, σ2) noise,εi, into the
model.
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2.3 Bayesian multi-tensor estimation

Least-squares estimation methods have been employed to fit the parameters in traditional diffusion tensor
models. Cholesky parametrisation has been explored for guaranteeing positive eigenvalues ofD (Koay
et al., 2006).

For our multi-tensor model, we have developed a Bayesian estimation framework with a new param-
eterisation ofD∗, which takes into account the symmetry and (semi)positive-definiteness ofD∗ and
incorporates the parameter constraints in the prior beliefs.

The new parameterisation isD∗ = QQT whereQ is a general 3x3 matrix. Note thatQj andQjRj

whereRj ∈ O(3) result in the same model. Cholesky decomposition is then a special case of our
parameterisation. However, we shall actually keep the highdimensional embedding and the matrixRj

is then a nuisance parameter matrix, which will be controlled through specification of the prior in a
Bayesian model.

If there areN acquisitionsS = (S1, S2, ...SN ) , then Bayesian inference is set up for multi-tensor models
with one tensor(m = 1) and two tensors(m = 2).

Model 1: Model 2:
Si = S0 exp(−bgT

i QQT gi) + εi. Si = S0 exp(−bgT
i Q1Q1gi) + S0 exp(−bgT

i Q2Q2gi) + εi.
Likelihood : Likelihood :

L(Q, σ2) =
N
∏

i=1
f(Si|Q, σ2). L(Q1, Q2, σ

2) =
N
∏

i=1
f(Si|Q1, Q2, σ

2).

Priors: Priors:
vec(Q) ∼ N9(vec(I 3x3), ξ

2I9x9), vec(Q1) ∼ N9(vec(I 3x3), ξ
2
1 I9x9),

σ2 ∼ Inv − Gamma(α, β). vec(Q2) ∼ N9(vec(I 3x3), ξ
2
1 I9x9),

vec(Q1 − Q2) ∼ N9(vec(03x3), ξ
2
2 I 9x9),

σ2 ∼ Inv − Gamma(α, β).

Table 2: Bayesian frameworks for multi-tensor models with one tensor (m = 1) and two tensors (m = 2).
vec(Q) vectorisedQ by stacking the columns ofQ. I3x3 and I9x9 are 3x3 and 9x9 identity matrices,
respectively.

We will assume largeξ, and so the prior uncertainty aboutQ is high. According to Bayes’ theorem,
we can obtain the posterior distributionP (Q, σ2|S). By maximisingP (Q, σ2|S), Q and σ2 can be
estimated. Alternatively, the posterior distribution canbe sampled using Markov chain Monte Carlo
(MCMC) simulation.

2.4 DTI fibre tractography

Once fibre orientations have been determined from the estimated diffusion tensors for the voxels in a
region of interest (ROI), tractography can be used to deriveinferences regarding the overall geometry
of white matter in the brain. In this paper, we focus on deterministic tractography for the multi-tensor
model with one tensor (m = 1). Deterministic tractography connects neighboring voxels by propagating
the ends of fibre tracts from user-defined seed voxels until termination criteria are met, such as excessive
angular deviation of the fibre tracts or subthreshold voxel anisotropy. FA is used as the stopping threshold
in the results of this paper.
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3 Results

3.1 Simulations

The purpose of this simulation study is to compare three spherical schemes: Philips 15 (N = 15),
Philips 32 (N = 32) and Uniform 32 (N = 32) (Sotiropouloset al., 2008) schemes. The accuracy of
DTI measurements depends on diffusion gradient direction scheme applied. A gradient direction scheme
is a collection ofgi = (gix, giy, giz) ∈ R3 whereN is the number of total directions. For the single
tensor model (multi-tensor model withm = 1), the definedD∗ is a diagonal matrix with 1,2 and 3 as its
eigenvalues and three eigenvectors are along x, y and z axis.We allowM = 1, 5, 10, 15, 30 replicates
for each of theN directions, and according to the multivariate Gaussian distribution N(µ, σ2IN×N ),
n = 100 Monte Carlo simulations were performed for each value of M. The root mean squared errors
(RMSE) of LLS and Bayesian estimators of singleD∗ are shown inFigure 1.

Figure 1: Plots of RMSE ofD∗ for three Direction Schemes(M =sample size): (a) RMSE for LLS
estimator, (b) RMSE for Bayesian estimator.

3.2 Real data

A set of the MR images with Uniform 32 diffusion gradient direction scheme from a healthy human
brain is provided by The Academic Radiology Department of Queen’s Medical Centre, University of
Nottingham. In this section, the DTI model and multi-tensormodel with the Bayesian method are applied
for a ROI which is the crossing part of corpus callosum and corona radiata (Figure 2(a)). Figure 2(b) is
the diffusion ellipsoid map from Bayesian single tensor model (m = 1) with FA as background. We also
carry out the Bayesian estimation for double tensor model (m = 2) in Figure 2(c).

Figure 2: (a) Coronal view of ROI, (b) Ellipsoid map from Bayesian single tensor fitting (m = 1) with
FA background, (c) Principal eigenvector map from Bayesiandouble tensor fitting (m = 2) with FA
background.

3.3 Bayesian tractography

Figure 3 shows the fibre tractography with Bayesian single tensor fitting for the corpus callosum. Such
pictures are useful for determining connectivity in the brain.
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Figure 3: (a) 3D view of fibre tractography for corpus callosum, (b) Coronal view (back-front)of the
tractography.
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