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1 Introduction

Diffusion tensor imaging (DT]I), introduced by Bassatral(1994), is a specific magnetic resonance
imaging (MRI) method for brain and many body studies whichralterises microscopic structural in-
formation of oriented tissue in vivo.

DTI assumes that molecular displacement follows a zeroan@aariate Gaussian distribution (Alexan-
der, 2005), and its covariance matrix is proportional todtiision tensoD ( seeTable 1). The eigen-
structure oD gives the picture of molecular diffusion along differenteditions (Bassegt al., 1994). In
particular, the principal eigenvectef corresponding to the largest eigenvalue represents theeditec-
tion, i.e., DTI can provide a 3-dimensional vector field, @adh vector presents the fibre orientation.

The diffusion tensor can be visualised by a diffusion etligslefined by the eigenstructure Df(Basser

et al, 1994). The diffusion igsotropic when water molecular motion is equal and unconstrained!in al
directions. But, anisotropy may result from the barrierbiofogical tissue (Le Bihaet al., 2001) where
water molecules move along some preferred directions. @atitatively measure and monitor diffusion
anisotropy, scalar quantities derived frainhave been produced (Le Bihat al, 2001), such as the
mean diffusivity (MD) and Fractional anisotropy (FA) manted inTable 1

Term Meaning
D$$ Da:y sz

Diffusion tensor D) D= | D.,, Dy, D, | issymmetric (semi)positive-definite.
Da:z Dyz Dzz

D,., D,, andD_ . represent molecular diffusivities along axes.

Eigenvalues X1, Ao and\3) | A1, A2 and\3 are positive. Conventionally, 18t > Ay > As.

Eigenvectors\(;, vo andvs) | Unit vectorsvy, v, andvs are orthogonal. The eigenvectors and

eigenvalues coincide with the main diffusion directions an

associated diffusivities respectively in the tissue.

Mean diffusivity (MD) MD = % reflects the isotropic or average degree of diffusion.
I

3x i (Ar—M D)2
Fractional anisotropy (FA) | FA = | —=~——— | describes the degree of anisotropy.

3
2x > A2
k=1

Table 1: Glossary of terms
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2 Models and Methods of diffusion tensor imaging

2.1 Traditional diffusion tensor models

Under the 3D Gaussian assumption of molecular displacertieimeary.; of the resulting diffusion-
weighted signal; corresponding to thé” diffusion gradient directiory; (unit vector) can be obtained
from the Fourier transform of the molecular displacemestritiution as shown in the diffusion tensor
model (Basseet al., 1994).
( ) Hi = SoeXp(—bg;TDgl),Z - 17"'7N7 (1)
whereS is the signal without diffusion gradient applied (be= 0). Roughly,b (b-value) characterises
the gradient pulses used in the MRI sequence. For each tbgeaipise of the measured signal is denoted
aseg;. Itis assumed that;’s are independent and identically distributédd.) Gaussian variables; ~
N(0,0?). Thus, the measured signalss are independent Gaussian variables, B4 N(u;, 0%),i =
1,..,N.

A generalisation of the diffusion tensor model is the migtipompartment model (Alexander, 2005),
which is proposed to describe the diffusion behaviour inxa@Voontainingn > 1 distinct compartments
(each compartment has one dominant fibre orientation). Mogeliffusion within the;j** compartment

by a Gaussian distribution with convariance mafix and assuming no molecular exchange between
compartments, a mixture of the Gaussians for the overall diffusion process is obtained mMikan of

ith diffusion-weighted signal can be modelled as:

Wi = ZajSO exp(—bg! D;g;),i = 1,..., N. 2)
=1

where the weights; € (0,1], > a; = 1,i = 1,..., N, of the individual compartments are also known
as 'volume fractions’. Hence, by assuming that the neis&eare i.i.d. Gaussian, i.eN(O,o—Q), the
measured signalS;’s are independen¥ (u;,02),i = 1,..., N.

However, we find the parameter set (a1, ...... ,am,D1,Do, ... ,D,, ) is not identifiable, i.e., distinct
settings of parameters can result in an identical model#tal., 2008).

2.2 Multi-tensor model

By reparameterising Alexander’s (2005) multiple-compeamt model, we set up a new multi-tensor
model which is identifiable:

> Soexp(—bg! Djg;) if b>0
Hi =g j=1

®3)

whereDj is defined a®; = D; + ¢;l3x3 , and ifb > 0, ¢; = —loga; /b, ¢; > 0. Obviously, ifb = 0,
theny; = > ajSy = So,j = 1....m. It can be shown that anyD{, D3, ...... ,D;,) with symmetric
(semi) positive-definitd7, j = 1...m, is identifiable as parameters of the multi-tensor modeb (¥t
al., 2008). Then, the measured sigisalcan be modelled by addirig.d. N(0,0%) noise,¢;, into the
model.
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2.3 Bayesian multi-tensor estimation

Least-squares estimation methods have been employedte fistameters in traditional diffusion tensor
models. Cholesky parametrisation has been explored faagteeing positive eigenvalues Df(Koay
et al, 2006).

For our multi-tensor model, we have developed a Bayesiamatsbn framework with a new param-
eterisation ofD*, which takes into account the symmetry and (semi)posidefniteness oD* and
incorporates the parameter constraints in the prior Islief

The new parameterisation B* = QQ’ whereQ is a general 3x3 matrix. Note th@; andQ;R;
whereR; € O(3) result in the same model. Cholesky decomposition is theneaiapcase of our
parameterisation. However, we shall actually keep the Higrensional embedding and the matiRx

is then a nuisance parameter matrix, which will be contdotterough specification of the prior in a
Bayesian model.

If there areNV acquisitionsS = (.51, Se, ...Sn) , then Bayesian inference is set up for multi-tensor models
with one tensofm = 1) and two tensorgm = 2).

Model 1: Model 2;

Si = So eXP(—bgiTQQTQi) +ei. | Si= 50 eXP(—bgiTQ1Q19i) + S0 exp(—bngQQQ2gi) + &
Likelihood: Likelihood:

N N
L(Q702) = ljlf(SZ‘Qng) L(Q17Q2702) = 1:[1 f(Si‘Q17Q2702)'

Priors: Priors:
vec(Q) ~ Ng(vec(laxz), E2loxg), | vec(Qq) ~ No(vec(laxs), Eloxg),
0% ~ Inv — Gammal(a, 3). vec(Qy) ~ No(vee(l3x3), E2loxg),

’UBC(Ql - Qz) ~ NQ(UGC(03x3),§%|9x9)1
o2 ~ Inv — Gamma(a, 3).

Table 2: Bayesian frameworks for multi-tensor models with @nsor{: = 1) and two tensorsig = 2).
vec(Q) vectorisedQ by stacking the columns @. 1343 and lgyg are X3 and %9 identity matrices,
respectively.

We will assume large, and so the prior uncertainty aboQtis high. According to Bayes’ theorem,
we can obtain the posterior distributidR(Q, ¢2|S). By maximising P(Q, ¢%|S), Q and ¢* can be
estimated. Alternatively, the posterior distribution daa sampled using Markov chain Monte Carlo
(MCMC) simulation.

2.4 DTl fibre tractography

Once fibre orientations have been determined from the eihdiffusion tensors for the voxels in a
region of interest (ROI), tractography can be used to dernferences regarding the overall geometry
of white matter in the brain. In this paper, we focus on deteistic tractography for the multi-tensor
model with one tensom{ = 1). Deterministic tractography connects neighboring vexsi propagating
the ends of fibre tracts from user-defined seed voxels untilitetion criteria are met, such as excessive
angular deviation of the fibre tracts or subthreshold vor&l@ropy. FA is used as the stopping threshold
in the results of this paper.
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3 Results

3.1 Simulations

The purpose of this simulation study is to compare three rigieschemes: Philips 15N = 15),
Philips 32 (v = 32) and Uniform 32 (V = 32) (Sotiropouloset al,, 2008) schemes. The accuracy of
DTl measurements depends on diffusion gradient directberee applied. A gradient direction scheme
is a collection ofg; = (giz, iy, 9i=) € R? where N is the number of total directions. For the single
tensor model (multi-tensor model with = 1), the defined* is a diagonal matrix with 1,2 and 3 as its
eigenvalues and three eigenvectors are along x, y and z\adsallow M = 1,5, 10, 15, 30 replicates
for each of theN directions, and according to the multivariate Gaussiatribigion N (u, o2l yx v ),

n = 100 Monte Carlo simulations were performed for each value of ke ot mean squared errors
(RMSE) of LLS and Bayesian estimators of singléare shown irFigure 1.
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-©- Uniform 32|
- Philips 32

8 8 8 & 8

RMSE(D)

10
Sample Size

10
(@ Sample Size

Figure 1: Plots of RMSE oD* for three Direction Schemek( =sample size): (a) RMSE for LLS
estimator, (b) RMSE for Bayesian estimator.

3.2 Real data

A set of the MR images with Uniform 32 diffusion gradient ditien scheme from a healthy human
brain is provided by The Academic Radiology Department o€€us Medical Centre, University of
Nottingham. In this section, the DTI model and multi-tensmdel with the Bayesian method are applied
for a ROI which is the crossing part of corpus callosum andwrcaradiataKigure 2(a)). Figure 2(b) is
the diffusion ellipsoid map from Bayesian single tensor midch = 1) with FA as background. We also
carry out the Bayesian estimation for double tensor maaeH 2) in Figure 2(c).

Figure 2: (a) Coronal view of ROI, (b) Ellipsoid map from Bajen single tensor fittingnt = 1) with
FA background, (c) Principal eigenvector map from Bayeddanble tensor fitting¢ = 2) with FA
background.

3.3 Bayesian tractography

Figure 3 shows the fibre tractography with Bayesian single tensamdifor the corpus callosum. Such
pictures are useful for determining connectivity in theitora
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Figure 3: (a) 3D view of fibre tractography for corpus callasu(b) Coronal view (back-front)of the
tractography.
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