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This paper illustrates how the singularity of the wave action flux causes
the Kadomtsev-Petviashvili (KP) equation to arise naturally from the
modulation of a two-phased wavetrain, causing the dispersion to emerge
from the classical Whitham modulation theory. Interestingly, the coef-
ficients of the resulting KP are shown to be related to the associated
conservation of wave action for the original wavetrain, and so may be
obtained prior to the modulation. This provides a universal form for the
KP as a dispersive reduction from any Lagrangian with the appropri-
ate wave action flux singularity. The theory is applied to the full water
wave problem with two layers of stratification, illustrating how the KP
equation arises from the modulation of a uniform flow state and how its
coefficients may be extracted from the system.

keywords: modulation, Lagrangian dynamics, nonlinear waves, Wa-
ter waves and fluid dynamics, asymptotic analysis.

1. Introduction

In the study of nonlinear waves in two spatial dimensions, one of the
fundamental equations which arises is the Kadomtsev-Petviashvili (KP)
equation, (

UT + UUX + UXXX
)
X
± UY Y = 0 , (1)

for scalar function U(X,Y, T ). The equation itself models waves for
which dispersion balances nonlinear steepening effects and weak trans-
verse effects, and is a generalisation of the one spatial dimension
Korteweg-de Vries (KdV) equation. First arising within the context of
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plasma physics [1], it has since been recognised to be a universal equation
in the sense that it arises across a variety of different applications such as
water waves [2, 3], nonlinear optics [4, 5] and Bose-Einstein condensates
[6, 7].

The principal aim of this paper is to illustrate how the KP equa-
tion (1) arises naturally from a phase dynamical perspective utilising
solutions parameterised by multiple phase variables, such as wavetrains.
Although the reduction will be presented for the case of general multi-
phase periodic wavetrains, the emphasis will be to illustrate how the the-
ory suggests the KP equation emerges from the full water wave problem
with stratification via the modulation of a uniform flow state. This has
been previously accomplished for zero velocity states in [8, 9]), the out-
come of this paper provides not only a new mechanism for its emergence
but also demonstrates how it arises from nontrivial uniform background
states.

The method of phase dynamics has a rich history, and has been de-
veloped over several years within multiple fields. The first use of the
technique stems from the original studies of modulation undertaken by
Whitham [10] and their extension by Hayes into higher dimension [11],
deriving nonlinear equations governing the wavenumbers and frequency
of the wave to determine the evolution of the wave. The strategy has
been utilised and developed by several authors since, with a review of
various contributions appearing in [12] and the references therein. Addi-
tionally, an analogous system being derived for reaction diffusion systems
by Cross and Newell [13]. The ideas of phase dynamics were further de-
veloped within the works of Kuramoto [14, 15], which demonstrated how
the degeneracy of the phase diffusion equation, the linearisation of the
Cross-Newell system, led to the emergence of nonlinearity and higher
order dissipation. These concepts were later used by Doelman et al. [16]
to derive Burgers’ equation in similar settings. The ideas of Whitham,
Kuramoto and Doelman et al. were combined within the Lagrangian
setting by Bridges [17, 18], demonstrating that the degeneracy of the
linearised Whitham equations could be formulated in terms of conserva-
tion law criticality. Ultimately, through using ideas similar to Kuramoto
and Doelman et al., the KdV equation arose from the modulation and
thus the emergence of dispersion from the breakdown of the dispersion-
less Whitham equations via modulation. The approach of Bridges forms
the principal methodology to obtain the KP within this paper.

To best see how the phase dynamics considered in this paper ties into
classical Whitham modulation theory, we start with the generic family
of PDEs generated from a Lagrangian,

L (V ) =

∫∫∫
L(V, Vx, Vy, Vt, . . .) dx dy dt , (2)
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for state vector V (x, y, t) ∈ Rn and Lagrangian density L. The modula-
tion of wavetrains with multiple phases is of a similar nature to those of
a single phase. We assume that there exists a doubly periodic wavetrain
solution to the Euler-Lagrange equations associated with (2) with two
phases, which take the form

V = V̂ (θ; k,m,ω) , θ =

(
θ1

θ2

)
=

(
k1x+m1y + ω1t
k2x+m2y + ω2t

)
,

k =

(
k1

k2

)
, m =

(
m1

m2

)
, ω =

(
ω1

ω2

)
,

V̂ (θ1 + 2π, θ2) = V̂ (θ) = V̂ (θ1, θ2 + 2π) .

(3)

The dependence of V̂ on the wavenumbers k, m and frequencies ω is
parameter-like in nature, as expressed by the semicolon, however deriva-
tives with respect to these may be taken and are meaningful [16]. One
may then follow the strategy of Whitham and Hayes by imposing that
the phases are slowly varying functions of space and time, so that in-
stead θ = ε−1Θ(X,Y, T ) with X = εx, Y = εy, T = εt and small
parameter 0 < ε � 1. As such, the wavenumbers and frequencies be-
come defined as the slow derivatives of this slow phase, giving that now
k = ΘX , m = ΘY and ω = ΘT , so that

V = V̂ (ε−1Θ; ΘX , ΘY , ΘT ) . (4)

By substituting the above slowly varying wave into the Lagrangian (2)
and taking variations with respect to Θ, one obtains a system of equa-
tions

A(k,m,ω)T + B(k,m,ω)X + C(k,m,ω)Y = 0 ,

with kY = ωX , mX = kY , mT = ωY ,
(5)

which form the multiple phase analogue of the Whitham modulation
equations. It transpires that the vector valued function A, B and C have
the surprising property that their elements are related to the components
of the conservation of wave action associated with each phase of the
wavetrain. Although the Whitham equations are typically derived for
wavetrains, they may also be obtained for any solution which are steady
with respect to some group action. Such solutions are known as relative
equilibria and can be considered as the generalisation of periodic waves
(see [18] and references therein). This dramatically increases the range
of solutions whose slow evolution can be modelled by the system (5), as
well as the number of problems for which the Whitham equations may
be used to gain insight.

In general, the Whitham modulation equations (5) are robust, how-
ever an interesting case arises when one of the functions A, B or C fail to
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be injective. Throughout this paper it will be assumed that this occurs
in B in the variable k, leading to a loss of injectivity when its Jacobian
is singular,

det
[
DkB

]
= 0 , (6)

along some curve k = k0(ω,m). Throughout this paper, this condi-
tion will be referred to as criticality. There is an interesting connec-
tion between this condition and the stability of the original solution V̂
[19, 20, 21], which gives a physical interpretation of criticality. Assuming
that the zero eigenvalue arising from the condition (6) is simple, we may
define the eigenvector ζ,

DkBζ = 0 .

The emergence of this eigenvector is the key difference between the mul-
tiphase modulation and that of single phase solutions, where no such
object arises, and highlights the increased role criticality plays in the
multiphase case. The consequence of criticality in the modulation ap-
proach is to lead to the appearance of dispersive terms from the phase
dynamics, which will be illustrated within this paper. As such, (6) may
also be viewed as a diagnostic for when one expects dispersion to enter
the phase dynamics of the wavetrain.

At points where the criticality condition (6) holds, the Whitham ap-
proach must be altered via a rescaling in order to rebalance the degen-
erate X component of the equation. The strategy to do is to introduce
new scalings to account for the singularity in DkB. To derive the KP
equation within the setting of this paper, this is achieved by constructing
a modulation ansatz of the form

V = V̂ (θ + εΦ(X,Y, T ; ε); k + ε2ΦX , m + ε3ΦY , ω + ε4ΦT

)
+ ε3W (θ, X, Y, T ; ε) , (7)

for the slow variables

X = εx , Y = ε2y , T = ε3t ,

and the modulation function Φ. There is a clear parallel between this
ansatz and the one used for the Whitham modulation theory (4), but
instead perturbs about fixed wave variables k, m, ω. The various criteria
arising within the analysis will impose conditions on these in order for
certain reductions to emerge, for example (6). The scalings are chosen
in anticipation of the KP equation arising from the modulation analysis,
whereas the form of the ansatz is inspired by the previous work on single
phase wavetrains [17, 22], as well as from the initial studies into the
modulation of multiphase wavetrains [23, 24, 25]. In particular, the
presence of an additional spatial dimension requires one to split up the
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modulation function Φ as

Φ = φ(X,Y, T ; ε) + εψ(X,Y, T ; ε) ,

inspired by the latter multiphase works. This represents another major
divergence from the modulation of single phases, in particular from pre-
vious studies in which the KP equation was obtained [28], where only
one phase perturbation was required. Full details of the role of this de-
composition in the derivation of the KP will be presented within the
manuscript. The overall strategy of the modulation approach presented
here is to substitute this ansatz into the Euler-Lagrange equations asso-
ciated with the Lagrangian (2), Taylor expand around ε = 0 and then
to solve the resulting system at each power of ε.

There are several benefits to using the above modulation approach
over the standard asymptotic series expansion technique. Firstly, by per-
turbing the independent variables of the wave, derivatives of the original
wave solution are naturally introduced into the analysis, leading to sev-
eral unimportant terms which do not contribute cancelling automatically.
Secondly, this approach most readily leads to the connection between the
system’s conservation laws and the various solvability conditions which
arise, as well as the final coefficients appearing in the KP equation. Fi-
nally, the consideration of an abstract Lagrangian and wavetrain allow
the results derived here to be applicable to any Lagrangian possessing
the relevant solution and meeting the criterion necessary for the KP to
emerge, without any further asymptotics.

By following the phase dynamical procedure, the result is the vector
equation

(DkA + DωB)ζUT + D2
kB(ζ, ζ)UUX + K UXXX + DmCφY Y

+ (DkC + DmB)ψXY + DkBαXX = 0 (8)

for the scalar function U(X,Y, T ), arising from the theory due to the
criticality condition (6) through the relation

φX = ζU ,

and an additional solvability condition imposes that

ψXX = −ηUY with DkBη = (DkC + DmB)ζ .

The way in which this condition arises from the analysis will be dis-
cussed within the manuscript. The system (8) possesses the surprising
property that the majority of its coefficients are formed from derivatives
of the conservation law components evaluated along the original wave-
train. The only one that isn’t, K , appears from a Jordan chain analysis
arising from the theory. The equation (8) is almost the vector form of
the KP equation, except for the presence of an inhomogeneity, owing to
the arbitrary function α(X,Y, T ). This is yet another element of the
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analysis unique to the modulation of multiple phases, which is required
to prevent U from being trivial. This vector equation can in fact be
projected to form a scalar PDE to remove the inhomogeneity, achieved
by multiplying on the left by ζ, as DkB is symmetric. Doing so, and
then differentiating with respect to X, leads to the scalar KP equation

[
ζT (DkA + DωB)ζUT + ζTD2

kB(ζ, ζ)UUX + ζTK UXXX
]
X

+ ζT
[
DmCζ − (DkC + DmB)η

]
UY Y = 0 . (9)

Thus, the key result of this paper will be to show how through use of
the ansatz (7) about points where (6) holds the KP equation arises as
the dispersive correction to the Whitham equations.

The principal example to illustrate the application of the theory will
be to show that the full water wave problem with two stratified layers
may be reduced to the KP equation. As a nonlinear wave equation, the
KP equation already has a central role in the modelling of water waves
[8, 26, 27]. The theory presented within this paper offers several additions
to the existing literature on the KP equation. Firstly, it provides a
new mechanism for the equation to arise from water wave problems via
phase modulation. Secondly, the result of this paper shows how the
KP equation is obtained for finite uniform velocity flows, extending the
existing literature which obtains it about zero velocity flows (for example,
see [8, 9]). The final major contribution this paper presents is that arising
from the modulation approach is a condition, which acts as a diagnostic
to determine scenarios when the KP is expected to appear from the
water wave problem, which is formulated using properties of the flow
itself. This will be illustrated within the manuscript, and the example
will demonstrate how the relevant criticality may be assessed for the full
stratified water wave problem and how the relevant coefficients of the
KP equation may be constructed via the conservation laws.

An outline of the paper is as follows. In §2 the relevant abstract
setup required for the modulation approach is developed. This includes
a discussion of the multisymplectic structure, the geometric form of the
conservation law and the linearisation about the basic state which gen-
erates the Jordan chain structures. Following this, the details of the
reduction procedure leading to the KP equation are given in §3, demon-
strating how the multisymplectic structure leads to the coefficients of the
KP equation having a form tied to the conservation laws for the system.
Using these ideas, §4 provides the details for how the full two-layered
water wave problem can be reduced to the KP equation about a uniform
flow background state. Concluding remarks, as well as extensions to the
results presented here, are discussed in §5.
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2. Abstract Set-up

We begin by considering the abstract Lagrangian (2), although it is more
desirable to recast it into multisymplectic form. The process to do so is
to take a sequence of Legendre transforms in time (which transforms the
original Lagrangian into its Hamiltonian representation) and in both of
its spatial components. This then leads to the multisymplectic formula-
tion of the Lagrangian,

L =

∫∫
1

2
〈Z,α(Z)t + β(Z)x + γ(Z)y〉 − S(Z) dx dy dt , (10)

for new state vector Z, which is the previous state vector V along with
the relevant conjugate state variables, and 〈·, ·〉 denotes the standard
inner product on R2. The vectors α, β and γ are two-forms, which
are typically nonlinear. In the previous analyses involving modulation
within multisymplectic frameworks, these were assumed linear so that
α = MZ, β = JZ and γ = KZ for constant skew-symmetric matrices
M, J and K [17, 23, 28]. Many cases are covered by this assumption,
such as shallow water hydrodynamics and various nonlinear Schrödinger
models, however this is not generic. There are Lagrangians of physical
interest, such as those associated with the water wave problem, whose
two-forms are nonlinear. Thus, the paper will proceed with the nonlinear
case so that the results generated here will apply to such systems. In
cases where these two-forms are indeed nonlinear, similar structures to
those in the linear case emerge by defining

M(Z) =
1

2

(
Dα−DαT

)
, J(Z) =

1

2

(
Dβ−DβT

)
, K(Z) =

1

2

(
Dγ−DγT

)
,

This guarantees that M, J and K are skew-symmetric. Variation of the
multisymplectic Lagrangian (10) leads to the Euler Lagrange equation

M(Z)Zt + J(Z)Zx + K(Z)Zy = ∇S(Z) (11)

A key assumption which allows the theory of this paper to proceed
is that the above equation has a doubly periodic wavetrain solution Ẑ
with periods 2π and wave variables θi = kix+ωit+miy+ θ0

i of the form

Z = Ẑ(θ; k,m,ω) , (12)

with

θ =

(
θ1

θ2

)
, k =

(
k1

k2

)
, m =

(
m1

m2

)
, ω =

(
ω1

ω2

)
.

The formulation of the abstract results in this paper will be outlined
for the two phased wavetrain case, however one should note that these
results also apply to relative equilibria providing suitable modifications
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are made (for example, to the inner product used), which is discussed
within §2.1.

The doubly periodic wavetrain (12) satisfies the PDE

2∑
i=1

(
ωiM(Ẑ) + kiJ(Ẑ) +miK(Ẑ)

)
Ẑθi = ∇S(Ẑ). (13)

For convenience in the later modulation reduction, we may define the
linear operator about this wavetrain solution as

L = D2S(Ẑ)−
2∑
i=1

[(
ωiM(Ẑ) + kiJ(Ẑ) +miK(Ẑ)

)
∂θi

+
(
ωiDM(Ẑ) + kiDJ(Ẑ) +miDK(Ẑ)

)
Ẑθi

]
.

Immediately we see that the following hold:

LẐθi = 0, LẐki = J(Ẑ)Ẑθi , LẐωi = M(Ẑ)Ẑθi , LẐmi
= K(Ẑ)Ẑθi .

(14)
The first of these suggests that the kernel of L contains at least two
elements, which within the setting of this paper we assume that this is
no larger. This means that inhomogeneous problems have the following
solvability condition:

LQ = R is solvable if and only if 〈〈Ẑθ1 , R〉〉 = 〈〈Ẑθ2 , R〉〉 = 0 , (15)

and 〈〈·, ·〉〉 is a suitable inner product for the problem. For doubly periodic
waves, this takes the form

〈〈V,W 〉〉 =
1

4π2

∫ 2π

0

∫ 2π

0
〈V,W 〉 dθ1 dθ2 .

The remaining expressions in (14) highlight the presence of Jordan chains
arising from the linearisation. The focus of this paper will be the one
involving the matrix J, as this will be the mechanism for which dispersive
terms enter the phase dynamics. Details of the necessary Jordan chain
theory for the modulation theory which leads to the KP equation are
given in §2.3.

2.1. From Periodic Wavetrains to Relative Equilibrium

Classically, modulation analyses are undertaken for periodic wavetrains
and utilise the invariance of phase translations (associated with the un-
derlying toral symmetries) to proceed. However, it is the case that one
may treat a more generic family of solutions with the modulation ap-
proach, requiring only that these are associated with a continuous sym-
metry group which leaves the Lagrangian invariant. Such solutions are
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known as relative equilibria, and can be thought of as a generalisation
of periodic solutions. The modulation of these proceeds in an almost
identical way to the wavetrain case, with a few modifications and inter-
pretation of the solution parameters k, m and ω.

For the purposes of this paper, we need only be concerned with rel-
ative equilibrium arising from continuous group actions with two (inde-
pendent) parameters. These are most naturally taken to be the classical
wave variables as defined in (3), so that the solutions traverse the group
orbit at a constant rate in each of the spatial and time variables. Most
readily, such actions are associated with some combination of affine (in-
variance under translation), toral (invariance under rotation) or phase
translational symmetries. The case of doubly periodic wavetrains falls
within the remit of combining two actions that represent phase transla-
tions, but other Lagrangians may possess different and more exotic com-
binations. For example, stratified shallow water systems have relative
equilibrium solutions associated with a combination of affine symme-
tries [23] and is also the case considered in the stratified Euler equations
of this paper, presented in §4. Other interesting cases include systems
like the Dysthe equation [29, 30], the Benney-Roskes equation [31] or
current-wave couplings [32, 33] which have mixed group actions which
result from both an affine and toral symmetry being present.

Denote such actions by Gθ1,θ2 ∈ G, for some Lie group G. We assume
invariance of (11) under the actions of G, so that for each Gθ1,θ2 ∈ G

Gθ1,θ2J = JGθ1,θ2 , Gθ1,θ2K = KGθ1,θ2 ,

Gθ1,θ2M = MGθ1,θ2 , S(Gθ1,θ2Z) = S(Z) ,

so that if Z solves (11) then so does Gθ1,θ2Z. From these notions, we
may define relative equilibria solutions as

Z = Gθ1,θ2 ẑ(k,m,ω) ≡ Ẑ(θ; k,m,ω) ,

for a suitable equilibrium ẑ of (11). Thus, like periodic wavetrains, one is
able to think of these solutions as equilibrium with respect to the group
orbit in the same way that travelling waves are equilibrium within the
moving frame. From here, the majority of the abstract set-up presented
before follows through identically, with only the inner product requiring
further consideration for the case of relative equilibria. For example, in
the case of a doubly affine symmetry one does not need to average over
each θi and instead the standard inner product suffices, but averaging
is required for each variable that is associated with a toral symmetry.
More complicated inner products may also be required for more complex
systems. This is the case for the primary example this paper uses to
apply the modulation theory, where an inner product which utilises depth
averaging is required, which is detailed within §4.
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In the setting of relative equilibria, the parameters k, m, ω can resp-
resent more general quantities aside from wavenumbers and frequencies.
For example, Whitham [10, chapter 16] presents a case of multiphase
modulation where the wavenumber of the second phase (denoted as the
pseudophase) represents the mean value of the flow velocity. This is simi-
lar to the case with the example presented in this paper, where the vector
k assumes the role of the velocity in each layer of the stratified fluid and
ω represents a quantity akin to the Bernoulli head of each flow, similar
to the psuedophase used in the case of Whitham [32]. Other settings are
likely to relate these parameters to traditional modulation variables, such
as the amplitude of the wave (see [12] and references therein), but this
is likely to depend on the problem being considered and its symmetries.

2.2. Conservation of Wave Action

Conservation laws have a substantial role in the emergence of the KP
equation from modulational arguments. Not only can the criteria for
the KP equation to emerge be formulated using the singularity of the
wave action flux, but the coefficients of the final PDE are formed from
the derivatives of the conservation laws. This occurs because the multi-
symplectic formulation of the Lagrangian makes an explicit connection
between the structure of the Euler Lagrange equation (11) and the con-
servation laws for the system through the skew-symmetric matrices M, J
and K.

We may extract two conservation laws associated with the conserva-
tion of wave action from the Lagrangian, one associated with each phase
θi. The components of these take the form

Ai(x, y, t) =
1

2
〈〈Z,αθi〉〉 , Bi(x, y, t) =

1

2
〈〈Z,βθi〉〉 , Ci(x, y, t) =

1

2
〈〈Z,γθi〉〉 ,
(16)

obtained either using multisymplectic Noether theory [34, 35] or by dif-
ferentiation of the Lagrangian evaluated along the wavetrain and aver-
aged over the phases. Herein, denote

A(x, y, t) =

(
A1

A2

)
, B(x, y, t) =

(
B1

B2

)
, C(x, y, t) =

(
C1

C2

)
,

so we may write the conservation law

At +Bx + Cy = 0 ,

for any solution satisfying (11).
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Central to the theory of this paper are the conservation law compo-
nents evaluated for the wavetrain solution Ẑ,

Ai(k,m,ω) = 1
2〈〈Ẑ,α(Ẑ)θi〉〉 ,

Bi(k,m,ω) = 1
2〈〈Ẑ,β(Ẑ)θi〉〉 ,

Ci(k,m,ω) = 1
2〈〈Ẑ,γ(Ẑ)θi〉〉 ,

(17)

which comprise the following vectors:

A(k,m,ω) =

(
A1

A2

)
, B(k,m,ω) =

(
B1

B2

)
, C(k,m,ω) =

(
C1

C2

)
.

These components then can be differentiated with respect to their pa-
rameters:

∂kjAi =〈〈Ẑkj ,M(Ẑ)Ẑθi〉〉 = 〈〈Ẑωi ,J(Ẑ)Ẑθj 〉〉 = ∂ωiBj ,

∂ωjAi =〈〈Ẑωj ,M(Ẑ)Ẑθi〉〉 ,
∂kjCi =〈〈Ẑkj ,K(Ẑ)Ẑθi〉〉 = 〈〈Ẑmi

,J(Ẑ)Ẑθj 〉〉 = ∂mi
Bj ,

∂mj
Ci =〈〈Ẑmj

,K(Ẑ)Ẑθi〉〉 ,
∂mj

Ai =〈〈Ẑmj
,M(Ẑ)Ẑθi〉〉 = 〈〈Ẑωi ,K(Ẑ)Ẑθj 〉〉 = ∂ωiCj ,

∂kjBi =〈〈Ẑkj ,J(Ẑ)Ẑθi〉〉 ,
∂ki∂kjBl =〈〈Ẑkikj ,J(Ẑ)Ẑθl〉〉+ 〈〈Ẑki ,J(Ẑ)Ẑθlkj + DJ(Ẑ)(Ẑθl , Ẑkj )〉〉.

and overall gives the tensors to be considered as

DkA =

(
∂k1A1 ∂k2A1

∂k1A2 ∂k2A2

)
= DωBT , DkB =

(
∂k1B1 ∂k2B1

∂k1B2 ∂k2B2

)
,

DkC =

(
∂k1C1 ∂k2C1

∂k1C2 ∂k2C2

)
= DmBT , DωA =

(
∂ω1

A1 ∂ω2
A1

∂ω1
A2 ∂ω2

A2

)
,

DmA =

(
∂m1

A1 ∂m2
A1

∂m1
A2 ∂m2

A2

)
= DωCT , DmC =

(
∂m1

C1 ∂m2
C1

∂m1
C2 ∂m2

C2

)
,

as well as the tensor

D2
kB =

[(
∂k1k1B1 ∂k1k2B1

∂k1k1B2 ∂k1k2B2

)(
∂k1k2B1 ∂k2k2B1

∂k1k2B2 ∂k2k2B2

)]
We are now in a position to introduce the notion of criticality, which

is fundamental to the emergence of nonlinearity and dispersion from the
phase dynamics. We say that a conservation law component is critical
when it fails to be injective with respect to one of its arguments. The
particular case this paper concerns itself with is when the wave action
flux B is no longer injective in k. This means that there exists some
curve k = k0(m,ω) along which one has

det
[
DkB

]
= 0 . (18)
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The above condition can be shown to be the criterion for the emergence
of a zero characteristic from the linear Whitham equations associated
with the Lagrangian considered [24], but also has recently been shown
to relate to stability boundaries emerging from physical problems [19,
20, 21]. Thus, there are both abstract and physical interpretations for
this condition. Throughout this paper it will be assumed that the zero
eigenvalue arising from (18) is simple, so that we may introduce a unique
eigenvector ζ associated with the zero eigenvalue, with

DkBζ = 0 . (19)

This eigenvector has a central role in the modulation theory, both within
the modulation procedure as well as in the generation of the coefficients
of the resulting KP equation. This differs from the modulation of single
phase wavetrains, where no such term emerges from the corresponding
scalar criticality, and presents one of the novel components within the
modulation of multiphase wavetrains.

Due to the presence of an additional spatial dimension, there is a
second condition which arises from the reduction procedure that must
also be satisfied. This is related to the conservation law component C,
and takes the form

ζT (DkC + DmB)ζ = 0 , (20)

which may be understood as the condition for the linear system

DkBη = (DkC + DmB)ζ ,

to be solvable. The fact that one must impose an additional condition
in order for the KP to emerge seems surprising, given that only one is
required for the KdV to arise, thus the KP equation is expected to be
just as prevalent. It transpires, however, that one can show that if the
governing equations are transverse reversible (that is, invariant under
the mapping y 7→ −y) it is sufficient to choose m = 0 in order to satisfy
(20). The argument illustrating this adapts the reasoning from §7 in
[28] to the multiphase case. Start by introducing a reversor symmetry
operator R, defined as

RZ(x, y, t) = Z(x,−y, t)

and is isometric and an involution. Supposing the system is transverse
reversible in the y direction means that whenever Z(x, y, t) is a solution
of 11), then so is Z(x,−y, t). It follows that this reversor must have the
properties

MR = RM, JR = RJ, RK = −KR, ∇S(RZ) = R∇S(Z).

This means that whenever Z is a solution, RZ(x,−y, t) is also a solution

as expected. An immediate implication of this is that RẐ(θ; k,m,ω) =
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Ẑ(θ; k,−m,ω). Now we observe how Ci is affected under the reversor
symmetry:

Ci(k,−m,ω) =
1

2
〈〈KẐθi(θ; k,−m,ω), Ẑ(θ; k,−m,ω)〉〉

=
1

2
〈〈KRẐθi(θ; k,m,ω), Ẑ(θ; k,−m,ω)〉〉

=− 1

2
〈〈RKẐθi(θ; k,m,ω), Ẑ(θ; k,−m,ω)〉〉

=− 1

2
〈〈KẐθi(θ; k,m,ω),RẐ(θ; k,−m,ω)〉〉

=− 1

2
〈〈KẐθi(θ; k,m,ω), Ẑ(θ; k,m,ω)〉〉 = −Ci(k,m,ω)

Thus, whenever a reversor symmetry is present, C is an odd function of
m. A similar calculation verifies that Ai,Bi are even in m. A conse-
quence of this is that the parameter derivatives of Ci other than those
with respect to mi are automatically zero when m = 0. Consequently,
it follows that

DkC|m=0 = 0 . (21)

Therefore, the condition (20) will automatically hold at m = 0 whenever
the system is transverse reversible.

2.3. Review of the Jordan Chain Theory for Multiple Phases

It is clear from (14) that multiple Jordan chains emerge from the lin-

earisation about the wavetrain solution Ẑ, each associated with one of
the skew-symmetric matrices. The one of importance within this paper
is the one involving J, which has the form

Lξ1 = 0, Lξi = Jξi−1, i > 1.

Two such chains exist, each starting with a θi derivative and are followed
by the respective ki derivative. We denote these in the following way:

ξ1 = Ẑθ1 , ξ2 = Ẑk1 , ξ3 = Ẑθ2 , ξ4 = Ẑk2 ,

so that the first two indices form the first chain, and the latter two the
second. It will be made clear within the modulation analysis that these
two chains must coalesce in order for dispersion to arise and the KP
equation emerge. Consider the equation

Lξ5 =

2∑
i=1

ζiJẐki . (22)
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Assessing the solvability of the above according to (15) generates the
system(
〈〈Ẑθ1 ,JẐk1〉〉 〈〈Ẑθ1 ,JẐk2〉〉
〈〈Ẑθ2 ,JẐk1〉〉 〈〈Ẑθ2 ,JẐk2〉〉

)(
ζ1

ζ2

)
≡ −

(
∂k1B1 ∂k2B1

∂k1B2 ∂k2B2

)
ζ ≡ −DkBζ = 0 .

(23)
Therefore, if DkB has a zero eigenvalue with associated eigenvector ζ,
which is precisely when (18) holds, then one is able to solve (22). This
allows the definition of ξ5 with

Lξ5 =

2∑
i=1

ζiJẐki .

The other eigenvalue for the system (23) is given by the trace of DkB,
which results in the eigenvalue problem

DkB

(
ζ2

−ζ1

)
= (∂k1B1 + ∂k2B2)

(
ζ2

−ζ1

)
.

It follows that the equation

LF = ζ2JẐk1 − ζ1JẐk2 ,

cannot be solved for, due to the assumption that the zero eigenvalue of
DkB is simple.

One may show that the zero eigenvalue of L is of even algebraic
multiplicity [36, chapter 3], and as a consequence the existence of ξ5

guarantees the existence of ξ6 with

Lξ6 = Jξ5 .

Within this paper we will assume that this chain is no longer. This
imposes that

Lξ7 = Jξ6 ,

is not solvable. This facilitates the definition of the nontrivial vector

K =

(
K1

K2

)
:= −

(
〈〈Ẑθi ,Jξ6〉〉
〈〈Ẑθ2 ,Jξ6〉〉

)
6= 0 . (24)

This vector arises directly from the modulation theory and ultimately
forms the dispersive term in X appearing in (33).

3. Modulation Leading to the KP equation

The strategy to obtain the KP equation in this paper is to utilise
the method of phase modulation. In particular we use the multiphase
method developed by Bridges and Ratliff [23, 24, 25], which itself is an
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extension of the approach used by Kuramoto [14, 15], Doelman et al.
[16] and Bridges [17, 28] for single phase wavetrains. The ansatz taken
to obtain the KP equation is

Z(x, y, t) = Ẑ
(
θ + εφ(X,Y, T ; ε) + ε2ψ(X,Y, T ; ε);

k + ε2q(X,Y, T ; ε) + ε3p(X,Y, T ; ε),

m + ε3r(X,Y, T ; ε) + ε4s(X,Y, T ; ε),

ω + ε4Ω(X,Y, T ; ε) + ε5Γ(X,Y, T ; ε)
)

+ ε3W (θ,X, Y, T ; ε) ,

(25)

for X = εx, Y = ε2y, T = ε3t with the following phase relations:

φX = q , φY = r , φT = Ω , ⇒ qT = ΩX , qY = rX , rT = ΩY ,

ψX = p , ψY = s , ψT = Γ , ⇒ pT = ΓX , pY = sX , sT = ΓY .

(26)

The first set of these, related to φ are the typical modulational functions
that arise from this approach. The second of these, the ones involving ψ,
are required in order to resolve the secondary criticality (20). Ultimately,
these will become related to the φ family of modulation functions via
the condition (20), which will be made apparent in the analysis.

This ansatz and the resulting approach may seem unnecessarily com-
plex, but it allows for several simplifications within the analysis. Firstly,
by including the unknown functions as perturbations to the wave vari-
ables, one naturally introduces derivatives of Ẑ into the analysis, which
leads to the cancellation of several unimportant terms which do not
contribute to the analysis. Secondly, this ansatz leads to both the key
solvability criteria and the coefficients of the resulting nonlinear PDE
to be related to derivatives of the conservation law components, allow-
ing these computations to be done in advance. Finally, although there
are initially two unknown vector valued functions φ and ψ within the
analysis, the solvability requirements (18) and (20) will reduce this to a
problem in some scalar valued unknown function over the course of the
reduction.

The idea is to substitute the ansatz (25) into the Euler Lagrange
equation (11) and Taylor expand around the ε = 0 state to generate a
system of equations to solve at each order of ε. For convenience, we also
expand W in a simple asymptotic series,

W = W0 + εW1 + ε2W2 + . . . .

Below is the summary of the analysis, ignoring the leading order problem
which simply recovers (13).
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First order

This simply reads

2∑
i=1

φiLẐθi = 0,

which is true, as Ẑθi ∈ ker(L).

Second Order

The system at this order is

2∑
i=1

(
qiLẐki − (φi)XJ(Ẑ)Ẑθi

)
= 0

which is true by an earlier stated linear operator result in (14), as well
as recalling from (26) that qi = (φi)X .

Third Order

At this order, we obtain

LW0 =

2∑
i=1

(qi)XJ(Ẑ)Ẑki .

This system is solvable precisely when

(
〈〈Ẑθ1 ,J(Ẑ)Ẑk1〉〉 〈〈Ẑθ1 ,J(Ẑ)Ẑk2〉〉
〈〈Ẑθ2 ,J(Ẑ)Ẑk1〉〉 〈〈Ẑθ2 ,J(Ẑ)Ẑk2〉〉

)
qX ≡ −DkBqX = 0 . (27)

So that this may be satisfied, we require that

det
[
DkB

]
= 0 , q = ζU with DkBζ = 0 ,

which is seen by appealing to (18) and (19). When the above holds, we
may solve the system at this order, giving that

W0 = UXξ5, with Lξ5 =

2∑
i=1

ζiJ(Ẑ)Ẑki .
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Fourth Order

After simplifying, one finds the equation at this order is given by

L

(
W1 −

2∑
i=1

φiUX∂θiξ5

)
=

2∑
i=1

(
(φi)TM(Ẑ)Ẑθi − ΩiLẐωi

)
+ UXXDJξ3

+ UY

2∑
i=1

ζi(K(Ẑ)Ẑki + J(Ẑ)Ẑmi
) +

2∑
i=1

(pi)XJ(Ẑ)Ẑki .

(28)

The UXX component of this equation lies in the range of L as the zero
eigenvalue of L is of even algebraic multiplicity. The φT term cancels
with the Ω term, and so in order for the remaining terms to also lie in
the range of L it is required that

−DkBpX +

(
〈〈Ẑθ1 ,K(Ẑ)Ẑk1 + J(Ẑ)Ẑm1

〉〉 〈〈Ẑθ1 ,K(Ẑ)Ẑk2 + J(Ẑ)Ẑm2
〉〉

〈〈Ẑθ2 ,K(Ẑ)Ẑk1 + J(Ẑ)Ẑm1
〉〉 〈〈Ẑθ2 ,K(Ẑ)Ẑk2 + J(Ẑ)Ẑm2

〉〉

)
ζ

≡ −DkBpX − (DkC + DmB)ζUY = 0 .

This matrix system is only solvable when

ζT (DkC + DmB)ζ = 0 . (29)

Thus the second condition for the KP to arise emerges from the modu-
lation approach naturally, which can be met automatically by choosing
m = 0 as illustrated in §2.2. This additionally imposes that

pX = −ηUY with DkBη = (DkC + DmB)ζ . (30)

Thus, all the modulation functions are now related to the scalar unknown
U . As discussed in §2.2, when a transverse reversor symmetry is present
whenever m = 0, one can choose η = 0 and so p terms vanish. In cases
where (29) is satisfied, the equation (28) is solvable and we have

W1 =

2∑
i=1

φiUX∂θiξ5 + UXXξ6 , with Lξ6 = J(Ẑ)ξ5 .
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Fifth Order

The final order reads

LW̃2 = UT
∑2

i=1 ζi
(
M(Ẑ)Ẑki + J(Ẑ)Ẑωi

)
+ UXXXJ(Ẑ)ξ6

+UUX
∑2

i=1 ζi

[(
J(Ẑ)(ξ5)θi + DJ(Ẑ)(ξ5, Ẑθi)

+
∑2

j=1

(
kjD

2J(Ẑ)(Ẑθj , ξ3, Ẑki) + ωjD
2M(Ẑ)(Ẑθj , ξ3, Ẑki)

)
−D3S(Ẑ)(Ẑki , ξ5) +

∑2
j=1 ζj

(
J(Ẑ)Ẑkikj + DJ(Ẑ)(Ẑki , Ẑkj )

)]
+
∑2

i=1(ri)Y K(Ẑ)Ẑmi
+
∑2

i=1(αi)XXJẐki .
(31)

The expression W̃2 is the sum of the functionW2 from the expansion ofW
with a collection of the preimages of the terms which lie in the range of L

at this order. The explicit expression for W̃2 is no longer important, since
the analysis terminates at this order, but would be necessary if further
orders are investigated. All that remains is to determine the solvability
of the system at this order using (15). This generates a vector equation
which can then be projected using ζ and will ultimately result in U
satisfying a KP equation.

The solvability condition at this order is computed by taking the inner
product of the right hand side of (31) with each kernel element Ẑθi ; this
results in a sequence of vectors being generated whose sum must vanish.
The first vector we compute is the one which prefactors the UT term.
This is simply

〈〈Ẑθp ,J(Ẑ)Ẑωi + M(Ẑ)Ẑki〉〉 = −〈〈Ẑωi ,J(Ẑ)Ẑθp〉〉 − 〈〈Ẑki ,M(Ẑ)Ẑθp〉〉
= −∂ωiBp − ∂kiAp.

This forms the vector

−
(∑2

i=1 ζi
(
∂ωiB1 + ∂kiA1

)∑2
i=1 ζi

(
∂ωiB2 + ∂kiA2

))UT ≡ −(DkA + DωB)ζUT .
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The vector of the quadratic term is sought next, giving

〈〈Ẑθp ,
[
J(Ẑ)(ξ5)θi + DJ(Ẑ)(ξ5, Ẑθi)−D3S(Ẑ)(Ẑki , ξ5)

+

2∑
j=1

(
kjD

2J(Ẑ)(Ẑθj , ξ3, Ẑki) + ωjD
2M(Ẑ)(Ẑθj , ξ3, Ẑki)

)
+

2∑
j=1

ζj
(
J(Ẑ)Ẑkikj + DJ(Ẑ)(Ẑki , Ẑkj )

]
〉〉

=

2∑
j=1

ζj〈〈Ẑθp , (β(Ẑ))kikj 〉〉+ 〈〈ξ3,LẐθpki〉〉

=

2∑
j=1

ζj
(
〈〈Ẑθp , (β(Ẑ))kikj 〉〉+ 〈〈J(Ẑ)Ẑkj , Ẑθpki〉〉

)
=

2∑
j=1

ζi∂ki(〈〈Ẑθp ,J(Ẑ)Ẑkj 〉〉) = −
2∑
j=1

ζi∂kikjBp .

Therefore, the vector associated with the quadratic term UUX is

−

(∑2
i,j=1 ζiζj∂kikjB1∑2
i,j=1 ζiζj∂kikjB2

)
UUX ≡ −D2

kB(ζ, ζ)UUX . (32)

The elements of the vector multiplying the third order dispersive term
are defined as

Kp = −〈〈Ẑθp ,J(Ẑ)ξ4〉〉 ,

coming to form the vector(
〈〈Ẑθ1 ,J(Ẑ)ξ4〉〉
〈〈Ẑθ2 ,J(Ẑ)ξ4〉〉

)
UXXX ≡ −

(
K1

K2

)
UXXX = −K UXXX

The (ri)Y terms will have coefficients of the form

〈〈Ẑθp ,K(Ẑ)Ẑmi
〉〉 = −∂mi

Cp

giving the vector

−
(∑2

i=1(ri)Y 〈〈Ẑθ1 ,K(Ẑ)Ẑmi
〉〉∑2

i=1(ri)Y 〈〈Ẑθ2 ,K(Ẑ)Ẑmi
〉〉

)
≡ −DmCrY .

Similarly, one finds that the (pi)Y terms generate

〈〈Ẑθp ,K(Ẑ)Ẑki + J(Ẑ)Ẑmi
〉〉 = −∂kiCp − ∂mi

Bp .

leading to the vector

−(DkC + DmB)pY .
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Finally, the terms involving the components of α gives

−DkBαXX ,

by using (27). These results come together to form the vector PDE

(DkA + DωB)ζUT + D2
kB(ζ, ζ)UUX + K UXXX + DmCrY

+ (DkC + DmB)pY + DkBαXX = 0 .

This may be written entirely in terms of U by differentiating the system
with respect to X and noting that from (26) we have that rXY = qY Y =
ζUY Y as well as pXY = −ηUY Y from (30). Overall, this gives that[

(DkA + DωB)ζUT + D2
kB(ζ, ζ)UUX + K UXXX

]
X

+
(
DmC− (DkC + DmB)η

)
ζUY Y + DkBαXXX = 0 .

This system is a set of two inhomogeneous equations (since α is an
arbitrary function) governing the evolution of U . It is the case however
that this inhomogeneity can be removed simply by multiplying by ζT

on the left (which is akin to projecting the above in the direction of the
kernel of DkB). Doing so gives rise to the scalar KP equation:(

a0UT + a1UUX + a2UXXX
)
X

+ a3UY Y = 0 , (33)

with the coefficients

a0 = ζT (DkA + DωB)ζ

a1 = ζTD2
kB(ζ, ζ)

a2 = ζTK ,

a3 = ζT
(
DmC− (DkC + DmB)η

)
ζ .

4. Application to the Full Stratified Water Wave Problem

One interesting application of the modulation theory presented here is
the emergence of the KP equation from the full water wave problem
with two stratified fluid layers. It may appear surprising at first that the
theory of this paper is applicable here, however once the inherent double
affine symmetry of the system is identified then this system becomes a
natural candidate for the theory to be applied to. For this example,
we modulate the state of uniform flow within each layer, which is the
relative equilibrium associated with the double affine symmetry. As such,
the theory of the paper goes through intact by replacing the θi averaging
inner product with an inner product with depth averaging instead.
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The stratified water wave problem in the absence of surface tension
effects possesses the following Lagrangian [37],

L̃ =

∫∫ [
ρ1

∫ h̃

0

(
φ̃t̃ +

1

2
(φ̃2
x̃ + φ̃2

ỹ + φ̃2
z̃) + gz̃ −R1

)
dz̃

+ ρ2

∫ H̃

h̃

(
ϕ̃t̃ +

1

2
(ϕ̃2

x̃ + ϕ̃2
ỹ + ϕ̃2

z̃) + gz̃ −R2

)
dz̃

]
dx̃ dỹ dt̃ , (34)

which is obtained by using Luke’s Lagrangian [38] for the fluid in each
layer. Thus, this is the Lagrangian for the full water wave problem with
two layers of constant density, indexed by i = 1, 2 with layer 1 residing
beneath layer 2. For stable stratification, we require that the densities
ρi satisfy ρ2 < ρ1. The velocity potentials are denoted by φ̃ in the lower
layer and ϕ̃ in the upper layer, and the free surfaces are given by h(x, y, t)
and H(x, y, t). The interface between the two fluids is located at z = h
and the uppermost free surface at z = H. The equations of motion for
the problem are obtained by taking variations of the above Lagrangian,
and result in the system

ρ1

(
φ̃t̃ +

1

2
(φ̃2
x̃ + φ̃2

ỹ + φ̃2
z̃) + gh−R1

)
= ρ2

(
ϕ̃t̃ +

1

2
(ϕ̃2

x̃ + ϕ̃2
ỹ + ϕ̃2

z̃) + gh−R2

)
,

ρ2

(
ϕ̃t̃ +

1

2
(ϕ̃2

x̃ + ϕ̃2
ỹ + ϕ̃2

z̃) + gH −R2

)
= 0 ,

φ̃x̃x̃ + φ̃ỹỹ + φ̃z̃z̃ = 0 for z̃ ∈ (0, h̃),

h̃t + h̃x̃φ̃x̃ + h̃ỹφ̃ỹ = φ̃z̃ at z̃ = h̃,

φ̃z̃ = 0 at z̃ = 0.

ϕ̃x̃x̃ + ϕ̃ỹỹ + ϕ̃z̃z̃ = 0 for z̃ ∈ (h̃, H̃),

h̃t + h̃x̃ϕ̃x̃ + h̃ỹϕ̃ỹ = ϕ̃z̃ at z̃ = h̃ ,

H̃t + H̃x̃ϕ̃x̃ + H̃ỹϕ̃ỹ = ϕ̃z̃ at z̃ = H̃,

The first two of these represent the Bernoulli equations at the inter-
face and uppermost surface respectively. The next three represent the
Laplace equation and the kinematic equations at the interface and bed
for the velocity potential φ̃. The final three give the Laplace equation
and the kinematic conditions at the interface and surface which ϕ̃ must
satisfy.
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The theory of this paper is most readily applied when the above water
wave problem is flattened, which is achieved by taking

x = x̃, y = ỹ t = t̃, z =

{
z̃
h̃
, z̃ ∈ [0, h̃],

(z−1)H̃−(z−2)h̃

H̃−h̃ , z̃ ∈ [h̃, H̃] ,

and it also becomes convenient to define

φ(x, y, z, t) = φ̃(x̃, ỹ, z̃, t̃) , ϕ(x, y, z, t) = ϕ̃(x̃, ỹ, z̃, t̃) ,

Φ1 = φ(x, y, z = 1, t) , Ψ1 = ϕ(x, y, z = 1, t) , Ψ2 = ϕ(x, y, z = 2, t) .

Doing so gives the flattened Lagrangian as

L =

∫∫ [
ρ1

(
− htΦ1 +

∫ 1

0
hu1(φx −

zhx
h
φz) + hv1(φy −

zhy
h
φz) dz

)
+ ρ2

(
−HtΨ2 + htΨ1 +

∫ 2

1
hu2(ϕx −

(z − 1)Hx − (z − 2)hx
H − h

ϕz)

+ hv2(ϕy −
(z − 1)Hy − (z − 2)hy

h
ϕz) dz

)
− S(Z)

]
dx dy dt (35)

where

u1 = φx −
zhx
h
φz, v1 = φy −

zhy
h
φz,

u2 = ϕx −
(z − 1)Hx − (z − 2)hx

H − h
ϕz, v2 = ϕy −

(z − 1)Hy − (z − 2)hy
H − h

ϕz ,

have been introduced via Legendre transforms, and

Z =
(
h,H,Φ1,Ψ1, φ, ϕ,Ψ2, u1, u2, v1, v2

)T
,

S(Z) =ρ1R1h+ ρ2R2(H − h)− g

2

(
(ρ1 − ρ2)h2 + ρ2H

2
)

+
ρ1

2

∫ 1

0
hu2

1 + hv2
1 −

1

h
φ2
z dz

+
ρ2

2

∫ 2

1
(H − h)u2

2 + (H − h)v2
2 −

1

(H − h)
ϕ2
z dz.
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This gives (10) with

α(Z) = (ρ1Φ1 − ρ2Ψ1, ρ2Ψ2,−ρ1h, ρ2h, 0, 0,−ρ2H, 0, 0, 0, 0)T ,

β(Z) =

(
ρ1

∫ 1

0
z(u1φz)x dz − ρ2

∫ 2

1
(z − 2)(u2ϕz)x dz , ρ2

∫ 2

1
(z − 1)(u2ϕz)x dz,

− ρ1hxu1|z=1 , ρ2hxu2|z=1 , −ρ1(h(u1)x − zhx(u1)z ,

− ρ2

(
(H − h)(u2)x − (z − 1)Hx(u2)z + (z − 2)hx(u2)z

)
, −ρ2Hxu2|z=2 ,

ρ1(hφx − zφzhx) , ρ2(H − h)ϕx − ρ2ϕz((z − 1)Hx − (z − 2)hx) , 0 , 0

)T
,

γ(Z) =

(
ρ1

∫ 1

0
z(v1φz)y dz − ρ2

∫ 2

1
(z − 2)(v2ϕz)x dz , ρ2

∫ 2

1
(z − 1)(v2ϕz)y dz,

− ρ1hyv1|z=1 , ρ2hyv2|z=1 , −ρ1(h(v1)y − zhy(v1)z ,

− ρ2

(
(H − h)(v2)y − (z − 1)Hy(v2)z + (z − 2)hy(v2)z

)
, −ρ2Hyv2|z=2 ,

0 , 0 , ρ1(hφy − zφzhy) , ρ2(H − h)ϕy − ρ2ϕz((z − 1)Hy − (z − 2)hy)

)T
,

with their gradients leading to the relevant M, J, K in (11). The above
multisymplectic form of equations comes with the additional constraint
that φz|z=0 = 0, since this now does not arise from taking variations
with respect to Z, but this information is still present in the flattened
Lagrangian. The flattened equations of motion can be found in appendix
A. The relevant inner product used for this system is the depth averaging
inner product

[[U, V ]] =

4∑
i=1

UiVi + U7V7 +

∫ 1

0
U5V5 + U8V8 + U10V10 dz

+

∫ 2

1
U6V6 + U9V9 + U11V11 dz .

The basic state of this system is simply

Ẑ(θ; k,m,ω) =
(
h0, H0, θ1, θ2, θ1, θ2, θ2, k1, k2, m1, m2

)T
,

so that only the velocity potentials are treated as variables, and the re-
maining quantities (namely the velocities and thicknesses) are functions
of the wave parameters k, m and ω. The wavenumbers of the relative
equilibrium ki take the role of the flow velocities, and the frequencies
ωi behave like corrections to the total Bernoulli heads of each flow, as
suggested by Whitham [32]. The quiescent heights of each interface h0
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and H0 may be solved for in terms of these parameters and give that

h0(k,m,ω) =
ρ1R1 − ρ2R2 − ρ1ω1 + ρ2ω2 + 1

2

(
ρ2(k2

2 +m2
2)− ρ1(k2

1 +m2
1)
)

g(ρ1 − ρ2)
,

H0(k,m,ω) =
1

g

(
R2 − ω2 −

k2
2 +m2

2

2

)
.

The aim now is to determine when the criticality condition (18) occurs
for this uniform flow state, which leads to the KP equation (33) emerging
from the stratified water wave problem.

4.1. Conservation laws and criticality

The conservation laws for this problem are the conservation of mass
within each layer of the fluid, and are associated with the affine symmetry
of each velocity potential. Evaluated on the uniform flow solution, the
components of these conservation laws are found to be

A =

(
ρ1h0

ρ2(H0 − h0)

)
B =

(
ρ1k1h0

ρ2k2(H0 − h0)

)
, C =

(
ρ1m1h0

ρ2m2(H0 − h0)

)
.

(36)
We use these to determine the relevant criticality conditions the uniform
flow solution must satisfy in order for the KP equation to emerge. The
first of these is (18), and may then be computed from

0 = det
[
DkB

]
= det

[
1

g(1− r)

(
gρ1h0(1− r − F 2

1 ) ρ2k1k2

ρ2k1k2 gρ2(H0 − h0)(1− r − F 2
2 )

)]
.

In the above, we have introduced the density ratio r and the Froude
numbers within each stratification layer Fi as

r =
ρ2

ρ1
< 1 , F 2

1 =
k2

1

gh0
, F 2

2 =
k2

2

g(H0 − h0)
.

This determinant vanishes precisely when

(1− F 2
1 )(1− F 2

2 ) = r. (37)

Such a condition appears within the existing literature as a stability
boundary, across which there is a tendency for hydraulic jumps to occur
(as discussed in [19, 39]). Additionally, this condition arises within the
modulation of uniform flows in stratified shallow water systems as the one
necessary for the KdV equation to emerge [23, 40]. In such cases where
the criticality condition (37) holds, one may then define the eigenvector
necessary for the theory as

ζ =

(
−ρ2k1k2

gρ1h0(1− r − F 2
1 )

)
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This will be used, along with the relevant tensors, to generate the coef-
ficients of the KP equation according to (33).

The other conservation law criticality we require is

ζT (DkC+DmB)ζ = −2gρ2
1ρ2h0(1−r−F 2

1 )
(
k1m1(1−F 2

2 )+k2m2(1−F 2
1 )
)

= 0 .

The simplest way this is met is by choosing m = 0, which we will use for
this example, although it is possible for other choices for m exist which
will satisfy the above. By this choice, η = 0 and the calculation of the Y
derivative term in (33) is much simpler. This completes the assessment
of criticality of the uniform flow and the coefficients of the relevant KP
equation can now be computed assuming these are met.

We are able to determine the relevant matrices required to compute
the desired coefficients,

DkA =
1

g(1− r)

(
−ρ1k1 ρ2k2

ρ2k1 −ρ2k2

)
,

DmC =

(
ρ1h0 0

0 ρ2(H0 − h0)

)
,

D2
kB =

1

2g(1− r)

((
−6ρ1k1 2ρ2k2

2ρ2k2 2ρ2k1

)(
2ρ1k2 2ρ2k1

2ρ2k1 −6ρ2k2

))
.

These give the following projections:

ζTDmCζ =ρ2
1ρ2g

2h2
0(H0 − h0)(1− r − F 2

1 )
(
F 2

1 + F 2
2 − 2F 2

1F
2
2

)
ζT (DkA + DωB)ζ =− 2g2ρ2

1ρ2(H0 − h0)h2
0(1− r − F 2

1 )

×
(
k1

gh0
(1− F 2

2 ) +
k2

g(H0 − h0)
(1− F 2

1 )

)
,

ζTD2
kB
(
ζ, ζ
)

=3g2ρ3
1ρ2k2h

2
0(1− r − F 2

1 )

×
(
(H0 − h0)r(1− F 2

2 )F 2
1 − h0(1− F 2

1 )2F 2
2 )
)

Additionally, we require the coefficient of the third order dispersive term,
which requires the Jordan chain analysis. The details of this calculation
may be found in appendix B, which result in the coefficient

ζTK =g2ρ2
1ρ2h

2
0(H0 − h0)(1− r − F 2

1 )

×

[
1

3
h2

0F
2
1 (1− F 2

2 ) + (H0 − h0)2F 2
2 (1− F 2

1 )

(
1

3
− 2F 2

2 + F 4
2

)]
.

(38)

Therefore, the KP equation we obtain is(
a0UT + a1UUX + a2UXXX

)
X

+ a3UY Y = 0,
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with

a0 = −2g2ρ2
1ρ2(H0 − h0)h2

0(1− r − F 2
1 )

(
k1
gh0

(1− F 2
2 ) + k2

g(H0−h0)(1− F 2
1 )

)
,

a1 = 3g2ρ3
1ρ2k2h

2
0(1− r − F 2

1 )
(
(H0 − h0)r(1− F 2

2 )F 2
1 − h0(1− F 2

1 )2F 2
2 )
)
,

a2 = g2ρ2
1ρ2h

2
0(H0 − h0)(1− r − F 2

1 )

×

[
1
3h

2
0F

2
1 (1− F 2

2 ) + (H0 − h0)2F 2
2 (1− F 2

1 )

(
1
3 − 2F 2

2 + F 4
2

)]
,

a3 = ρ2
1ρ2g

2h2
0(H0 − h0)(1− r − F 2

1 )
(
F 2

1 + F 2
2 − 2F 2

1F
2
2

)
,

which can be simplified to((
k1

gh0
(1− F 2

2 ) +
k2

g(H0 − h0)
(1− F 2

1 )

)
UT

− 3g2ρ1k2

2(H0 − h0)

(
(H0 − h0)r(1− F 2

2 )F 2
1 − h0(1− F 2

1 )2F 2
2 )
)
UUX

− 1

2

[
1

3
h2

0F
2
1 (1− F 2

2 ) + (H0 − h0)2F 2
2 (1− F 2

1 )

(
1

3
− 2F 2

2 + F 4
2

)]
UXXX

)
X

− 1

2

(
F 2

1 + F 2
2 − 2F 2

1F
2
2

)
UY Y = 0 .

(39)

5. Concluding Remarks

This paper has illustrated that, given a two-phased wavetrain or relative
equilibrium solution to a general Lagrangian system, one may reduce
the original Euler-Lagrange equations to the KP equation with coeffi-
cients tied to the conservation of wave action. This result has been
demonstrated by reducing the full water wave problem with two layers
of stratification to the KP equation using a uniform flow solution. The
theory, although only appearing within the paper for two phases, may
be extended to arbitrarily many with the appropriate modifications to
the sums appearing with the reduction.

Although only illustrated for the full stratified water wave problem
here, the theory of this paper has several other applications. Most read-
ily, it can be applied to the coupled nonlinear Schrödinger models in
2+1, which arise across various contexts. Most interestingly though, the
theory of this paper can be applied to the single layered water wave
problem in the case where a mean flow couples to some surface wave
profile. A weakly nonlinear version of this scenario has been covered in
Donaldson and Bridges from a different perspective [33], however
the modulation approach has the ability to not only relate the critical-
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ity to the degeneracy of the associated conservation laws, but to also
incorporate time evolution into the analysis.

The KP equation derived for the stratified water wave problem (39)
is robust for a large choice of velocities and layer thicknesses, so long
as these lie on the surface (37). However, there exist cases where one
of the coefficients within this equation vanishes and the KP equation
is no longer a valid asymptotic reduction. Various cases of this have
been considered in one spatial dimension for the shallow water variant of
this problem [24, 25, 41], demonstrating how these degeneracies lead to
the two-way Boussinesq equation, modified KdV equation and various
other nonlinear PDEs emerging from the modulation. It is expected that
the two spatial variants of these will be recovered from similar analyses.
Additionally there is the potential for the coefficient of the transverse
term, UY Y , to vanish as well. A rescaling in this case is expected to
lead to a fully two-dimensional KdV equation to be the result of the
modulational approach. Additionally, a set of coupled KP equations
is expected when the geometric multiplicity of the zero eigenvalue of
DkB is greater than one, a scenario more likely in the case of three or
more phases. This is since additional eigenvectors associated with the
zero eigenvector enter the analysis, which facilitate additional projections
of the vector KP which arises at fifth order and thus a set of coupled
nonlinear PDEs.

The modulation approach presented here may also be altered to allow
the derivation of the KP equation for a moving frame, providing a fur-
ther connection between the existing literature and the phase dynamical
approach outlined here. By doing so, nonlinear dynamics instead emerge
by suitable choice of the frame’s speed c to meet the solvability criteria
[42]. This would in fact lead to a KP which emerges with only the condi-
tion that such a c exists and is real, rather than imposing a condition on
the wavenumbers, making it arise more readily across various contexts.
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Appendix A. Details of the Flattening Transformation

In order to flatten the two-layered Euler problem, one must make the
following change of co-ordinates:

x = x̃, y = ỹ t = t̃, z =

{
z̃
h̃
, z̃ ∈ [0, h̃],

(z−1)H̃−(z−2)h̃

H̃−h̃ , z̃ ∈ [h̃, H̃]

This gives two sets of derivative transforms. The first set (for z ∈ [0, 1])
are given by

∂
∂t̃

= ∂
∂t −

zht
h

∂
∂z ,

∂
∂x̃ = ∂

∂x −
zhx
h

∂
∂z ,

∂
∂ỹ = ∂

∂y −
zhy
h

∂
∂z ,

∂
∂z̃ = 1

h
∂
∂z ,

The upper layer admits the following transforms:

∂
∂t̃

= ∂
∂t −

(z−1)Ht−(z−2)ht
H−h

∂
∂z ,

∂
∂x̃ = ∂

∂x −
(z−1)Hx−(z−2)hx

H−h
∂
∂z

∂
∂ỹ = ∂

∂y −
(z−1)Hy−(z−2)hy

H−h
∂
∂z ,

∂
∂z̃ = 1

H−h
∂
∂z ,

We also pre-emptively define the fluid velocities in each layer:

u1 = φx −
zhx
h
φz, v1 = φy −

zhy
h
φz,

u2 = ϕx −
(z − 1)Hx − (z − 2)hx

H − h
ϕz, v2 = ϕy −

(z − 1)Hy − (z − 2)hy
H − h

ϕz.

After considering the relevant Lagrange multipliers for the above sub-
stitutions, this then transforms the original Lagrangian into the one ap-
pearing in (35). It then follows from taking variations that the flattened
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Euler-Lagrange equations for this problem are

ρ2

(
Ht +Hx u2|z=2 +Hy v2|z=2

)
=

ρ2

H − h
ϕz|z=2 ,

ρ2

(
ht + hx u2|z=1 + hy v2|z=1

)
=

ρ2

H − h
ϕz|z=1 ,

ρ2

(
(H − h)∂xu2 −

(
(z − 1)Hx − (z − 2)hx

)
∂zu2

+ (H − h)∂yv2 −
(
(z − 1)Hy − (z − 2)hy

)
∂zv2 +

1

H − h
ϕzz

)
= 0, z ∈ (1, 2) ,

ρ1

(
ht + hx u1|z=1 + hy v1|z=1

)
=
ρ1

h
φz|z=1 ,

ρ1

h
φz|z=0 = 0 ,

ρ1

(
h∂xu1 − zhx∂zu1 + h∂yv1 − zhy∂zv1 +

1

h
φzz

)
= 0, z ∈ (0, 1) ,

ρ1

(
∂tΦ1 + u1|z=1 φx|z=1 + v1|z=1 φy|z=1 +

∫ 1

0
z(∂xu1φz − ∂zu1φx) dz

+

∫ 1

0
z(∂yv1φz − ∂zv1φy) dz −

1

2

∫ 1

0
u2

1 + v2
1 +

1

h2
φ2
z dz + gh−R1

)
= ρ2

(
∂tΨ1 + u2|z=1 ϕx|z=1 + v2|z=1 ϕy|z=1 + gh−R2

+

∫ 2

1
(2− z)(∂xu2ϕz − ∂zu2ϕx) dz +

∫ 2

1
(2− z)(∂yv2ϕz − ∂zv2ϕy) dz

− 1

2

∫ 2

1
u2

2 + v2
2 +

1

(H − h)2
ϕ2
z dz

)
,

ρ2

(
∂tΨ2 + u2|z=2 ∂xΨ2 + v2|z=2 ∂yΨ2 −R2 + gH

+

∫ 2

1
(z − 1)(∂xu2ϕz − ∂zu2ϕx) dz +

∫ 2

1
(z − 1)(∂yv2ϕz − ∂zv2ϕy) dz

− 1

2

∫ 2

1
u2

2 + v2
2 +

1

(H − h)2
ϕ2
z dz

)
= 0 .

The first three correspond to the kinematic conditions at the top surface,
at the interface between the fluids and the Laplace equation for the top
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fluid respectively. The following three are the kinematic conditions at the
interface, the bed and Laplace’s equation in the bottom fluid respectively.
The variation in h gives the flattened version of the Bernoulli equation
at the interface, and the H variations result in the flattened Bernoulli
equation for the top free surface.

Appendix B. Details of the Jordan Chain Calculation

Here we provide the details for the Jordan chain theory that results in
the dispersive term (38). The linear operator about the uniform flow
state may be found as

L =



ρ2(ω1∂θ1 + ω2∂θ2)Ψ1 − ρ1(ω1∂θ1 + ω2∂θ2)Φ1 + (ρ2 − ρ1)gh
−ρ2(ω1∂θ1 + ω2∂θ2)Ψ2 − ρ2gH
ρ1(ω1∂θ1 + ω2∂θ2)h−

ρ1
h0
φz

z=1

ρ2(ω1∂θ1 + ω2∂θ2)h+ ρ2
H0−h0

ψz
z=1

ρ1
h0
φzz

ρ2
H0−h0

ψzz
ρ2(ω1∂θ1 + ω2∂θ2)H −

ρ2
H0−h0

ψz
z=2

ρ1h0u1

ρ2(H0 − h0)u2

ρ1h0v1

ρ2(H0 − h0)v2


We can also determine the skew symmetric operator in the Jordan Chain
relation as

J(Ẑ) =
0 0 ρ1k1 −ρ2k2 0 0 0 0 0 0 0
0 0 0 0 0 0 ρ2k2 0 0 0 0

−ρ1k1 0 0 0 0 0 0 0 0 0 0
ρ2k2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −ρ1h0 0 0 0
0 0 0 0 0 0 0 0 −ρ2(H0 − h0) 0 0
0 −ρ2k2 0 0 0 0 0 0 0 0 0
0 0 0 0 ρ1h0 0 0 0 0 0 0
0 0 0 0 0 ρ2(H0 − h0) 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


Thus, the first four elements of the chain according to the theory in §2.3
are

ξ1
1 = Ẑθ1 =

(
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0

)T
,

ξ2
1 = Ẑθ2 =

(
0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,

)T
,

ξ1
2 = Ẑk1 =

(
∂k1h0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

)T
,

ξ2
2 = Ẑk2 =

(
∂k2h0,−

k2

g
, 0, 0, 0, 0, 0, 0, 1, 0, 0

)T
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The next element in the chain satisfies

Lξ3 = J(Ẑ)(ζiξ
1
2 + ζ2ξ

2
2) =



0
0

−ζ1ρ1k1∂k1h0 − ζ2ρ1k1∂k2h0

ζ1ρ2k2∂k1k0 + ζ2ρ2k2∂k2h0

−ζ1ρ1h0

−ζ2ρ2(H0 − h0)

ζ2ρ2
k2
2

g

0
0
0
0



This system is solvable providing det
[
DkB

]
= 0, and gives that

ξ3 =



0
0

−ζ1
1
2h

2
0

ζ2(H0 − h0)2
(

3
2 − F

2
2

)
−ζ1

1
2h

2
0z

2

ζ2(H0 − h0)2z
(
2− F 2

2 − 1
2z
)

2ζ2(H0 − h0)2
(
1− F 2

2

)
0
0
0
0


Finally we then solve

Lξ4 =



−1
2ζ1ρ1k1h

2
0 − ζ2ρ2k2(H0 − h0)

(
3
2(H0 − h0)− k2

2

g

)
2ζ2ρ2k2ζ2(H0 − h0)

(
1− F 2

2

)
0
0
0
0
0

−1
2ρ1h

3
0z

2

ζ2ρ2(H0 − h0)3z
(
2− F 2

2 − 1
2z
)

0
0


,
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giving that

ξ4 =



1
g(ρ1−ρ2)

(
1
2ζ1ρ1k1h

2
0 + ζ2ρ2k2(H0 − h0)2

(
3
2 − F

2
2

))
−2ζ2k2g

−1ζ2(H0 − h0)2
(
1− F 2

2

)
0
0
0
0
0

−ζ1
1
2h

2
0z

2

ζ2z(H0 − h0)
(
2− F 2

2 − 1
2z
)

0
0


From this, we can determine the elements of the vector K :

K1 =− 〈Ẑθ1 ,Jξ4〉

=
1

(1− r)

[
ζ1ρ1h

3
0

(
1

2
F 2

1 −
1

6
(1− r)

)
+
ζ2ρ2k1k2

g
(H0 − h0)2

(
3

2
− F 2

2

)]
K2 =− 〈Ẑθ2 ,Jξ4〉

=
ρ1ρ2

(ρ1 − ρ2)

[
− 1

2g
ζ1k1k2h

2
0 + ζ2(H0 − h0)3

(
(1− r)

(
11

6
− 3

2
F 2

2

)
− 2(1− r)F 2

2

(
1− F 2

2

)
− rF 2

2

(
3

2
− F 2

2

)]
.

The projection of K then gives, by utilising the criticality condition (37)
several times to simplify,

ζTK = ζ1K1 + ζ2K2

= g2ρ2
1ρ2h

2
0(H0 − h0)(1− r − F 2

1 )

×

[
1

3
h2

0F
2
1 (1− F 2

2 ) + (H0 − h0)2F 2
2 (1− F 2

1 )

(
1

3
− 2F 2

2 + F 4
2

)]
.
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