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Abstract

We consider a kinetic equation describing evolution of the particle distribu-
tion function in a system with nonlinear wave-particle interactions (trappings
into resonance and nonlinear scatterings). We study properties of its solu-
tions and show that the only stationary solution is a constant, and that all
solutions with smooth initial conditions tend to a constant as time grows.
The resulting flattening of the distribution function in the domain of nonlin-
ear interactions is similar to one described by the quasi-linear plasma theory,
but the distribution evolves much faster. The results are confirmed numeri-
cally for a model problem.
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1. Introduction

In sufficiently dense plasma (a gas of ionized particles), the energy ex-10

change between particles and the energy transformation (e.g., from kinetic
to thermal energy) are controlled by particle collisions, which lead to their
momentum exchange [e.g., 1]. Rarefied space plasma systems are, however,
collisionless, and hence other kinetic processes control the energy exchange
and dissipation within them. Electromagnetic waves generated by one pop-15

ulation of particles can travel in space and interact with another, possi-
bly quite distant, population. This interaction effectively connects particles
which never physically collide with each other, and results in collisionless
momentum exchanges. Therefore, understanding of the thermalization pro-
cess in collisionless plasma requires a detailed picture of the wave-particle20

interaction [e.g., 2, 3].
The wave-particle resonant interaction plays a crucial role in the structure

and dynamics of various space and laboratory plasma systems. In the near-
Earth space environment, this interaction determines structure and dynamics
of the collisionless bow shock [e.g., 4, and references therein], controls solar25

wind transport across the Earth magnetosphere boundary (magnetopause)
[e.g., 5, and references therein], participates in magnetic energy release in the
magnetotail reconnection [e.g., 6, and references therein], contributes to field-
aligned current dissipation [e.g., 7, and references therein], determines the
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radiation belt formation and dynamics [e.g., 8, and references therein], con-30

trols charged particle precipitation to aurora [e.g., 9, and references therein]
and their acceleration in the aurora region [e.g., 10, and references therein].

The basic concept describing wave-particle interaction is the quasi-linear
theory proposed in early 60s [11, 12]. It is based on the assumption of charged
particle stochastic scattering by plasma turbulence with a sufficiently broad35

spectrum. However, as high-resolution wave measurements become available
[e.g., 13, 14, 15, 16, 17, 18, 19, 20], the applicability of the quasi-linear theory
becomes questionable. Intense coherent waves at the bow shock and in the
Earth’s magnetosphere can lead to effective momentum exchanges between
particle populations and support anomalous plasma transport and energy40

dissipation. However, their resonant interaction with charged particles is
nonlinear and cannot be described by the quasi-linear theory. This problem
stimulates the development of new models and theories of the wave-particle
resonant interactions and their contribution to large-scale plasma system
structure and dynamics [e.g., 21, 22, 23, 24, 25, 26].45

One of the perspective models of the nonlinear wave-particle interaction
consists in generalization of the kinetic equation (generalized Fokker-Planck
equation) in order to include effects of particle nonlinear scattering (non-
diffusive drift in phase space [see, e.g., 27, 28, 29]) and nonlocal transport
(large jumps in the phase space due to phase trapping effect [see, e.g., 30, 31,50

32]). The combination of the Hamiltonian theory of perturbations in resonant
systems [33] and the probabilistic approach for describing resonant systems
results in such a kinetic (generalized Fokker-Planck) equation incorporating
non-diffusive effects of the nonlinear wave-particle interaction. This equation
successfully describes the evolution of the charged particle distribution in55

various space plasma systems and explains many important effects observed
by spacecraft in the near-Earth plasma environment [see, e.g., discussion
in 34, 35, 36]. In this paper we investigate general properties of this kinetic
equation and its solutions. In Section 2 we demonstrate existence of a unique
stationary solution of the kinetic equation, and show that it is a constant.60

In Section 3 we consider a simplified version of the equation and construct
its general solution; then we show that for any smooth initial distribution it
tends to a constant solution as the time tends to infinity. In section 4 we use
numerical simulations of the complete equation to test our analytical results
derived in Sections 2 and 3. And finally in Section 5 we discuss the paper65

conclusions.
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2. The kinetic equation and its properties

Typically, resonant phenomena occur in systems with two scales of mo-
tion: fast and slow. Far from a resonance, one can average the dynamics
over the fast motion and obtain the averaged (or slow) system. In this lat-70

ter system, one can introduce the action-angle variables. In particular, in
problems of wave-particle interactions, the resonance corresponds to one of
possible resonances between the particle motion and the wave, and the ac-
tion variable I of the averaged system is a function of the particle energy (see
[38]). When the system passes through a resonance, the method of averaging75

fails, and the resonant phenomena (capture into resonance and scattering on
resonance) occur. As a result, the value of I changes. Capture into reso-
nance is a probabilistic phenomena: it occurs with a certain probability of
order

√
ε, where ε is a small parameter that defines the separation of the

two scales of motion. A capture produces a sharp variation (jump) of I by a80

value of order one. Scatterings occur essentially every time when a particle
passes through the resonance, and result in small random variation of I of
order

√
ε. The average value of scattering is, in general, non-zero, and thus

scatterings produce drift in I. It was shown in [37, 38] (see also [39]) that di-
rection of this drift is opposite to the direction of jumps due to captures, and85

there is a well-defined relation between the drift velocity and the probability
of capture. For a particle ensemble, multiple changes of I due to captures
and scatterings produce variation of the distribution function.

In [37, 38] (see also [39]) we have introduced the kinetic equation describ-
ing evolution of the distribution function of charged particles in a system90

with captures (trapping) into resonance and scatterings on resonance. The
distribution function f depends on the action variable I of the slow system
and time t. The form of the equation is different at I ≤ Im and I ≥ Im,
where Im is a certain value of the action variable:

∂f

∂t
= −V (I)

∂f

∂I
+

1

2

∂

∂I

(
D(I)

∂f

∂I

)
, if I ≤ Im; (1)

95

∂f

∂t
= −V (I)

∂f

∂I
− ∂V (I)

∂I
(f − f∗) +

1

2

∂

∂I

(
D(I)

∂f

∂I

)
, if I ≥ Im. (2)

Here smooth function V (I) (the drift velocity due to scatterings) has the
only extremum at I = Im, is negative at I− < I < I+ and zero otherwise.
Function D(I) (the diffusion coefficient due to scatterings) is also smooth
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Figure 1: Schematic representation of the system dynamics. Fast variation (jump due
to capture into the resonance) in I, shown with the red arrow, takes a particle from
I∗ ∈ (I−, Im) to I ∈ (Im, I+). Slow drift due to scatterings, shown with the blue arrows,
transports particles in the opposite direction, from Im < I < I+ to I− < I < Im. Note
that V (I) ≤ 0, hence |V (I)| = −V (I).

and positive at Il < I < Ir and zero otherwise; Il < I− < Im < I+ < Ir.
Thus, for every value V0 of function V (I) (except for V (Im)) there are two100

values of I such that V (I) = V0. For each I > Im, we introduce I∗ < Im
such that V (I∗) = V (I). Then f∗ in (2) denotes f(t, I∗). Near I = I+ and
I = I−, function V (I) has the following asymptotics: V (I) ∼ |I − I±|5/4 (see
Appendix). We summarize the notations in Fig. 1.

2.1. Conservation of the number of particles105

Equations (1)-(2) preserve the total number of particles:

d

dt

∫ Ir

Il

f(t, I)dI =

∫ Ir

Il

∂f(t, I)

∂t
dI

=

∫ Ir

Il

1

2

∂

∂I

(
D
∂f

∂t

)
dI +

∫ Im

I−

(
− ∂

∂I
(V f) + f

∂V

∂I

)
dI

+

∫ I+

Im

(
− ∂

∂I
(V f) + f∗

∂V

∂I

)
dI

=

∫ Im

I−

f(t, I)
∂V (I)

∂I
dI +

∫ I+

Im

f∗(t, ξ)
∂V (ξ)

∂ξ
dξ.
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Changing the integration variable in the second integral ξ 7→ I and using
V (I) = V (ξ), f(t, I) = f∗(t, ξ) we get

d

dt

∫ Ir

Il

f(t, I)dI =

∫ Im

I−

f(t, I)
∂V (I)

∂I
dI +

∫ I−

Im

f(t, I)
∂V (I)

∂I
dI = 0. (3)

2.2. A unique smooth stationary solution: f = const

Stationary solutions to (1)-(2) satisfy the following equations:110

−V (I)
∂f

∂I
+

1

2

∂

∂I

(
D(I)

∂f

∂I

)
= 0, if I ≤ Im;

−V (I)
∂f

∂I
− ∂V (I)

∂I
(f − f∗) +

1

2

∂

∂I

(
D(I)

∂f

∂I

)
= 0, if I ≥ Im. (4)

For I ≤ I− and I ≥ I+ we have V (I) = 0. Hence, at these values of I,
(4) is reduced to ∂

∂I

(
D(I)∂f

∂I

)
= 0. Therefore D(I)∂f

∂I
= const. At I = Il,r

function D(I) is zero, hence the constant is zero and ∂f
∂I

= 0. Thus, for
I ≤ I− and I ≥ I+ we find f = const. We denote the value of f at I ≤ I−
as c−.115

Consider now the range I− ≤ I ≤ Im. Denote ∂f
∂I

= u. We have:

−V u+
1

2

d

dI
(Du) = 0.

Its solution is u = c
D

exp
∫

(2V/D)dI, where c is a constant. We have shown
above that u(I−) = ∂f/∂I|I− = 0. Therefore the constant c = 0, and
∂f/∂I = 0 at I ∈ [I−, Im]. Hence, f ≡ const = c−.

Finally, consider the range Im ≤ I ≤ I+. For values of I in this range,
one should substitute f∗ = c− in (4). Denote f̃ = f − c−. Then the second
equation in (4) becomes

−V ∂f̃
∂I
− ∂V

∂I
f̃ +

1

2

∂

∂I

(
D
∂f̃

∂I

)
= 0.

And thus

−V f̃ +
1

2
D
∂f̃

∂I
= C, (5)

where C is a constant. At I = I+ we have V (I+) = 0 and ∂f̃/∂I|I+ = 0.
Therefore, in (5), C = 0, and we get

−V f̃ +
1

2
D
∂f̃

∂I
= 0.
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The last equation has the solution f̃ = c1 exp
∫

(2V/D)dI, where c1 is a120

constant. By continuity of function f we have f̃(Im) = 0. Hence c1 = 0,
f̃ = 0 and f = c−.

It follows from the continuity of f that f = c− for I ≥ I+ as well. Thus
we have proven that the only smooth solution to (4) is f = const.

3. Stability of the constant stationary solution (D = 0)125

To demonstrate that the constant stationary solution to (1)-(2) is stable,
we restrict ourselves to the case of zero diffusion: D(I) ≡ 0. Doing so we keep
in mind that in the systems with trappings into resonance and scatterings on
resonance D � V (in dimensionless units; see, e. g., [37, 38]). On the other
hand, the diffusive term normally enhances stability. In the next section we130

numerically demonstrate the validity of the analytical results obtained for
D = 0 in the general case.

Consider equations

∂f

∂t
= −V (I)

∂f

∂I
, if I ≤ Im; (6)

∂f

∂t
= −V (I)

∂f

∂I
− ∂V (I)

∂I
(f − f∗) , if I ≥ Im. (7)

Similarly to Section 2, equations (6)-(7) possess a unique smooth stationary135

solution f = const. Below we prove that a smooth solution to (6)-(7) with
initial condition f(0, I) = f0(I) tends to a constant as t→∞.

3.1. General solution

First, we construct the general solution to equations (6)-(7) on I ∈
(I−, I+), t ∈ (0,+∞).140

Equations (6)-(7) are quasilinear PDEs. To find general solutions to these
equations, we consider ODEs for the characteristic curves of (6)-(7) (see, e.
g., [40]):

dt

1
=

dI

V (I)
=

df

0
, if I ≤ Im; (8)

dt

1
=

dI

V (I)
=

df

−∂V
∂I

(f − f∗)
, if I ≥ Im. (9)

7



The first equality in (8) leads to

t−
∫ I

Im

dξ

V (ξ)
= C1,

where C1 = const. Hence, the general solution to (6) is

f(t, I) = Q

(
t−
∫ I

Im

dξ

V (ξ)

)
, I ≤ Im, (10)

where Q(x) is an arbitrary smooth function.145

From the first equality in (9) we get

t−
∫ I

Im

dξ

V (ξ)
= C2,

where C2 = const. The second equality can be rewritten as a linear ODE

df

dI
= − 1

V

∂V

∂I
(f − f∗), I ≥ Im. (11)

The corresponding homogeneous equation

df

dI
= − 1

V

∂V

∂I
f

has a solution f = C/V , C = const. To find the general solution to (11), we
put C = C(I) to find

C(I) =

∫ I

Im

∂V (ξ)

∂ξ
f∗

(
C2 +

∫ ξ

Im

dη

V (η)
, ξ

)
dξ.

Substituting C2 = t−
∫ I
Im

dη/V (η) we find the general solution to (11):

f(t, I) =
1

V (I)

∫ I

Im

∂V (ξ)

∂ξ
f∗

(
t+

∫ ξ

I

dη

V (η)
, ξ

)
dξ

+
1

V (I)
P

(
t−
∫ I

Im

dξ

V (ξ)

)
, I ≥ Im, (12)

where P (x) is an arbitrary smooth function.
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A solution to (6)-(7) should be continuous at I = Im. Thus, from (10)
and (12) we find150

P (t) = VmQ(t), (13)

where Vm = V (Im).
Consider a value I0 of I such that I0 ≥ Im. Introduce function Λ(I) ≤ Im

such that V (Λ(I0)) = V (I0). (In terms of trappings into resonance it means
that a particle trapped at I = Λ(I0) escapes from resonance at I = I0, see
[37, 38].) Using this notation we have155

f∗(t, I) = f(t,Λ(I)) = Q

(
t−
∫ Λ(I)

Im

dξ

V (ξ)

)
. (14)

Now, from (12), (13), and (14) it is straightforward to obtain

f(t, I) =
1

V (I)

∫ I

Im

∂V (ξ)

∂ξ
Q

(
t−
∫ I

Im

dη

V (η)
−
∫ Λ(ξ)

ξ

dη

V (η)

)
dξ

+
Vm
V (I)

Q

(
t−
∫ I

Im

dξ

V (ξ)

)
, I ≥ Im. (15)

3.2. Solution with given initial conditions (Cauchy problem)

Let f0(I) = f(0, I). From (10) and (15) at t = 0 we have

f0(I) = Q

(
−
∫ I

Im

dξ

V (ξ)

)
, I ≤ Im, (16)

f0(I) =
1

V (I)

∫ I

Im

∂V (ξ)

∂ξ
Q

(
−
∫ I

Im

dη

V (η)
−
∫ Λ(ξ)

ξ

dη

V (η)

)
dξ

+
Vm
V (I)

Q

(
−
∫ I

Im

dξ

V (ξ)

)
, I ≥ Im. (17)

Now we are going to prove that (10) and (15) together with initial conditions160

(16), (17) provide a bounded and smooth solution to equations (6), (7). In
order to do this, we prove that there exists a unique smooth bounded function
Q satisfying (16), (17).

Note that V (I) ≤ 0. Hence
(
−
∫ I
Im

dξ/V (ξ)
)
≤ 0 at I ≤ Im, and(

−
∫ I
Im

dξ/V (ξ)
)
≥ 0 at I ≥ Im. For values of I close to I± we have165
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V (I) ∼ |I − I±|5/4 (see Appendix) and hence the integral
∫ I±
Im

dξ/V (ξ) di-
verges. Therefore, given f0(I), equation (16) definesQ(x) for all x ∈ (−∞, 0).
Moreover, as f0(I) is bounded, (16) implies that Q(x)→ f0(I−) as x→ −∞.

At I ≥ Im, function Q(x) is defined by (17). Introduce new integration
variable x instead of ξ:170

x = −
∫ I

Im

dη

V (η)
−
∫ Λ(ξ)

ξ

dη

V (η)
. (18)

We have

dx =

(
− 1

V (Λ(ξ))

∂Λ

∂ξ
+

1

V (ξ)

)
dξ. (19)

By its definition, function Λ(ξ) satisfies V (ξ) = V (Λ(ξ)). Differentiating this
equation, we obtain

∂Λ

∂ξ
=

V ′(ξ)

V ′(Λ(ξ))
,

where the prime denotes derivative of a function over its argument. Substi-
tuting into (19), one obtains

∂V

∂ξ
= g(I, x)dx, (20)

where

g(I, x) =
1

(V (ξ)V ′(ξ))−1 − (V (Λ(ξ))V ′(Λ(ξ)))−1
. (21)

Equation (17) takes the form:175

V (I)f0(I) =

∫ b(I)

a(I)

g(I, x)Q(x)dx+ VmQ

(
−
∫ I

Im

dξ

V (ξ)

)
, I ≥ Im, (22)

where

a(I) = −
∫ I

Im

dη

V (η)
> 0, (23)

b(I) = −
∫ Λ(I)

Im

dη

V (η)
< 0. (24)

At x ≤ 0 function Q(x) is defined in terms of f0(I), I ≤ Im (see (16)).

Therefore, the integral
∫ b(I)

0
g(I, x)Q(x)dx is a known function of I, which

10



we denote as h(I). Hence,

−h(I) +V (I)f0(I) = −
∫ a(I)

0

g(I, x)Q(x)dx+VmQ

(
−
∫ I

Im

dξ

V (ξ)

)
, I ≥ Im.

(25)
It follows from (23-24) that a(I) → +∞ and b(I) → −∞ as I → I+. Using180

definitions of functions g(I, x) and h(I) and returning to the original inte-
gration variable ξ one can see that h(I) is bounded as I → I+. Moreover,

the integral
∫ a(I)

0
g(I, x)dx converges as I → I+.

Equation (25) is a Volterra integral equation of the second kind with
a(I) considered as an independent variable (see, e.g., [40]). On any bounded185

segment (0, A) of values of a this equation has a unique continuous solution.
Therefore, it has a unique continuous solution on any segment (Im, Ik) of
values of I, where Ik < I+.

We can rewrite (25) as

−h(I) + V (I)f0(I) = −
∫ A

0

g(I, x)Q(x)dx−
∫ a(I)

A

g(I, x)Q(x)dx

+ VmQ

(
−
∫ I

Im

dξ

V (ξ)

)
, I ≥ Im. (26)

In the first integral in (26), Q(x), is a known bounded function. Hence, this190

integral converges for any finite value of A (i.e., for any I < I+). Thus, we
can rewrite the equation in the form

−h̃(I) = − 1

Vm

∫ a(I)

A

g(I, x)Q(x)dx+Q

(
−
∫ I

Im

dξ

V (ξ)

)
, (27)

where h̃(I) is a known function and we consider such values of I that a(I) >

A. The integral
∫ a(I)

A
g(I, x)dx converges (see above) and is small at large

enough values of A. Therefore, the operator

Q(a(I))− 1

Vm

∫ a(I)

A

g(I, x)Q(x)dx

is a contraction (see, e. g., [40]). Hence, equation (27) has a unique contin-
uous bounded solution. Smoothness of Q(x) at x < 0 is due to smoothness
of the initial condition f0(I) at I < Im. Smoothness of Q(x) at x > 0195

11



follows from its boundedness and equation (22). Thus, the constructed so-
lution f(t, I) is smooth at I < Im and I > Im. To prove smoothness of
f(t, I) at I = Im one can differentiate (10) and (15) with respect to I and
find the values of the both derivatives as I → Im. Taking into account that
∂V/∂I = 0 at I = Im it is straightforward to obtain that the both values of200

∂f/∂I coincide.

3.3. Behavior at t→∞
Now we can study behavior of the constructed solution f(t, I) as t→ +∞.
According to the previous subsection, function Q(x) is bounded. There-

fore, there is a finite limit205

W = lim
I→I+

∫ I

Im

∂V (ξ)

∂ξ
Q

(
−
∫ I

Im

dη

V (η)
−
∫ Λ(ξ)

ξ

dη

V (η)

)
dξ. (28)

Indeed, ∂V/∂ξ = O(|ξ − I±|1/4) if ξ is close to I±, and ∂V/∂ξ = O(|ξ − Im|)
if ξ is close to Im. If the argument of Q in (28) is negative, Q is a known
(in terms of f0(I), see (16)) bounded function. Taking into account that
V (I) → 0 as I → I+ and f0(I) is bounded, we find from (17) and (28) that
Q(x)→ −W/Vm as x→ +∞.210

Consider now the limit limt→∞ f(t, I) at a fixed I 6= I±. At I ≤ Im we
have

f(t, I) = Q

(
t−
∫ I

Im

dξ

V (ξ)

)
→ −W

Vm
= const, as t→∞. (29)

Hence, for I ≥ Im one has

f∗(t, I)→ −W
Vm

= const, as t→∞. (30)

Therefore, at I ≥ Im, we find from (12), (13) that

f(t, I)→ 1

V (I)

(
−W
Vm

∫ I

Im

∂V (ξ)

∂ξ
dξ −W

)
= −W

Vm
, as t→∞. (31)

Thus, we have proved that f(t, I)→ const as t→∞. Therefore, the constant215

solution to equations (6)-(7) is stable. In the following section we demon-
strate that this is also valid for the kinetic equation (1)-(2) with D(I) 6= 0.

12



4. Numerical tests

To verify our analytical results and confirm the main conclusion of sta-
bility of the stationary solution f = const, we solve Eqs. (1, 2) numerically220

for a set of initial conditions, f0(I). Coefficients of Eqs. (1)-(2) and the
specific form of Λ(I) are defined from the analysis of Hamiltonian (32) (see
Appendix). We use a sample function V (I) = −ε1/2(1 − (I/Ia)

2)5/4 with
I± = ±Ia and Im = 0 (thus, Λ(I) = −I) with ε = 10−3 (we put V (I) = 0
for |I| > Ia). The diffusion coefficient is chosen in the form D = D0ε(1− I2)225

and it is non-zero at I ∈ [−1, 1], i.e. if Ia < 1 the I-range of nonlinear drift
and trapping is shorter than the range of diffusion. The initial distribution is
f0(I) = C0 exp(−4(I−I0)2), C0 is defined by normalization

∫ +1

−1
f0(I)dI = 1,

and I0 = 0,±1/2 (this distribution is slightly modified around I = I± to sat-
isfy the boundary conditions df/dI|I± = 0). This set of parameters assumes230

that particles (with f(I, t) distribution) drift toward smaller I and jump (due
to trappings) from negative I to positive I. Therefore, the initial distribu-
tion with I0 = −1/2 peaks within the region where charged particles can be
trapped (dV/dI < 0). The evolution of this distribution allows both drift
and jumps from the very beginning. The initial distribution with I0 = 1/2235

peaks within the region where trappings are not possible (dV/dI > 0). This
distribution should first drift to the region of I < 0 (where dV/dI < 0), and
only then the jumps due to trappings can start. The initial distribution with
I0 = 0 peaks at dV/dI = 0. The evolution of this distribution should resem-
ble spreading, because the distribution drifts to smaller I (larger |I|) and at240

the same time some portion of these particles (with I < 0) is transported
towards large I.

We consider two sets of solutions: with Ia = 1 (Fig. 2) and with
Ia = 1/

√
2 (Fig. 3). In the first set of solutions, the distribution f(t, I)

changes slowly near the boundary I± because both V and D vanish there,245

but eventually this evolution form the flat distribution f ∼ const. In the
second set of solutions, the boundary of the I-range of nonlinear drift and
trappings is located at I = ±Ia where the diffusion is still quite strong (not
vanishing). This results in the absence of peculiarities (local maxima) of
particle distribution at this boundary: the nonlinear processes (drift and250

trappings) rapidly form f ∼ const distribution at |I| < Ia and then slow
diffusion moves boundaries of this distribution toward the system boundary,
I = ±1.

Figures 2, 3 show results of numerical solutions of Eqs. (1)-( 2). Left
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Figure 2: Solutions of Eqs. (1)-(2) with three initial distributions f0(I) = C0 exp(−4(I −
I0)2) with I0 = −1/2 (top panels), with I0 = 1/2 (middle panels), and with I0 = 0 (bottom
panels). Left panels show 2D-distributions f(t, I) and right panels show f(t, I) at four time
moments. Blue dashed lines show f(t, I) at t/

√
ε = 3 for the solution with D0 = 1/10 (all

other curves and 2D-distributions are for solutions with D0 = 1). The boundary conditions
are df/dI = 0 at I = ±1, and the drift velocity is V (I) = −ε1/2(1 − (I/Ia)2)5/4 with
Ia = 1, i.e. the diffusion and nonlinear drift (and trapping) are acting on the same I
range.

panels demonstrate 2D-distributions f(t, I), and right panels show f(t, I)255

at four time moments. The initial distribution determines the beginning of
the evolution, but after t/

√
ε ∼ 2 distribution f(t, I) becomes quite flat in

all three examples. The diffusion contributes to f spreading, but does not
change the general evolution which is determined by drift and trapping effects
(compare red and blue curves at the right panels; these curves are plotted260

for solutions with D0 = 1 and D0 = 1/10). Thus, the numerical solution
confirms our main conclusion: independently on initial distribution f0(I) the
solution of Eqs. (1)-(2) tends to the uniform one f = const.
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Figure 3: Solutions of Eqs. (1)-(2) with three initial distributions f0(I) = C0 exp(−4(I −
I0)2) with I0 = −1/2 (top panels), with I0 = 1/2 (middle panels), and with I0 = 0 (bottom
panels). Left panels show 2D-distributions f(t, I) and right panels show f(t, I) at four time
moments. Blue dashed lines show f(t, I) at t/

√
ε = 3 for the solution with D0 = 1/10 (all

other curves and 2D-distributions are for solutions with D0 = 1). The boundary conditions
are df/dI = 0 at I = ±1, and the drift velocity is V (I) = −ε1/2(1 − (I/Ia)2)5/4 with
Ia = 1/

√
2, i.e. the nonlinear drift and trappings act on a shorter I-range than the

diffusion.
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5. Discussion and conclusions

In this paper we show that the kinetic equation which includes nonlin-265

ear effects of particle trapping and scattering by high-amplitude waves has a
unique stationary solution, f = const, and all solutions with smooth initial
conditions tend to constant as t → ∞. Thus, despite significant difference
between this equation (i.e., Eqs. (1)-(2)) and the classical diffusion equation
describing the quasi-linear wave-particle interaction [e.g., 11, 12], the solu-270

tions for both equations tend to a constant. The main difference between the
nonlinear resonant interaction including trappings and drift and the quasi-
linear diffusion is the time-scale required to form a constant solution. The
typical time-scale of the nonlinear processes is ∼ 1/V ∼ ε−1/2, whereas the
time-scale of diffusion varies from 1/D ∼ 1/ε [e.g., 41] to 1/D ∼ 1/ε2 [42]275

depending on the characteristics of a particular plasma system. Thus, in the
I-range where nonlinear wave-particle interaction is possible, the solution
f = const is formed much faster than in the I-range where only diffusion
affects the particle distribution (see, e.g., Fig. 3). In realistic plasma sys-
tems where a value (I + const) plays the role of the particle energy [see, e.g.,280

43, 44, 38], distributions f(t, I) have a typical shape of energy spectra, i.e.
f decreases as I increase. For such distributions, the nonlinear wave-particle
interaction within a limited I-range results in formation of a plateau and the
following evolution of this plateau is due to the diffusion (see, for example,
Fig. 4). Such distributions with a energy-limited plateau are usually ob-285

served in the near-Earth plasma systems where the nonlinear wave-particle
interaction is supposed to be strong [e.g., 45, 46, 47]. Note also that such
regions of flattened distribution might be of interest in problems of tailoring
barriers in the phase space in laboratory plasmas (c.f., e.g., [48]). One should
also mention that on time scales of order less than ε−1/2, i. e. in the process290

of relaxation, the nonlinear effects can produce localized structures depend-
ing on the specific properties of the system. An example of such structures
in a model problem can be found in [49].

In conclusion, we have shown that the kinetic equation including effects
of the nonlinear wave-particle resonant interaction (scattering-induced drift295

and trappings) has a unique stationary solution f = const. This solution
is stable, and any solution f(t, I) with smooth initial conditions tends to
constant as t→∞. We used numerical simulations to illustrate that particle
diffusion does not significantly affect these conclusions. Obtained results
could be useful for analysis of various plasma systems where the nonlinear300
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equation is V (I) = −ε1/2(1 − (I/Ia)2)5/4 with Ia = 1/2, i.e. the nonlinear drift and
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wave-particle interaction plays an important role.

Appendix

Function V (I) is proportional to the area bounded by the separatrix loop
on the phase portrait of the system near the resonance (see [37, 38, 39]). The
corresponding Hamiltonian (called ”pendulum-like” Hamiltonian, see, e. g.,305

[50, 51]) has the form

F =
1

2
g(I)K2 − A(I) sinϕ+ β(I)ϕ, (32)

where K,ϕ are canonically conjugate variables and I can be considered as a
parameter; g, A, β are functions of I; one may assume that they are positive.
(Note that in [39] the variable corresponding to our I is denoted as J). If
A(I) > β(I), there is the separatrix on the phase portrait. At I = I± one has310

A = β, and the saddle-center bifurcation occurs. Consider for definiteness
I = I+. At I = I+, the separatrix loop disappears at ϕ = 0 (see Fig 5).
Expanding Hamiltonian F near I = I+, ϕ = 0 one obtains in the main
approximation

F =
1

2
g(I+)K2 − δϕ+ Ãϕ3, (33)

where δ = (A′(I+) − β′(I+))(I − I+); Ã = A(I+)/6. The area inside the315

separatrix loop on the phase portrait (at δ > 0) is

S(δ) = 2

∫ ϕ2

ϕ1

Kdϕ = 2

∫ ϕ2

ϕ1

√
2

g
(Fs + δϕ− Ãϕ3)dϕ, (34)

where ϕ1, ϕ2 ∼
√
δ are the zeros of the integrand, and Fs ∼ δ3/2 is the value

of the Hamiltonian F at the saddle point. At δ � 1, one obtains S(δ) ∼ δ5/4.
Therefore, V (I) at I close to I± has the asymptotics V ∼ |I − I±|5/4.
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