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ABSTRACT

Transcritical, or resonant, flow of a dretified fluid over an obstacle is sudied
using a forced extended Korteweg - de Vries modd. This modd is particularly relevant
for a two-layer fluid when the layer depths are near criticd, but can dso be useful in
other smilar circumstances. Both quadratic and cubic nonlinearities are present and they
are balanced by third order disperson. We consider both possible signs for the cubic
nonlinear term but emphasise the less-studied case when the cubic nonlinear term and the
diperson term have the same-sgned coefficients. In this case, our numericd
gmulations show tha two kinds of solitay waves are found in certan parameters
regimes. One kind is smilar to those of the wel-known forced Korteweg - de Vries
mode and occurs when the cubic nonlinear term is rather smal, while the other kind is
irregularly generated waves of variable amplitude, which may continudly interact. To
explan this phenomenon, we deveop a hydraulic theory in which the digperson term in
the modd is omitted. This theory can predict the occurrence of upstream and
downstream undular bores, and these predictions are found to agree quite well with the

numericd smulaions.



Introduction

The evolution of weskly nonlinear long waves, in both homogenous and densty-
dretified fluid environments, is of grest interest in many branches of flud mechanics,
notably in oceanographic agpplications. When the leading baance is between quadratic
nonlinearity and disperson, the dynamics is typicdly governed by the wdl-known
Korteweg - de Vries (KdV) equation. For lager waves, or for cetan specid
configurations in dratified fluids, it has been found useful to incdude cubic nonlinegrity,
leading to the extended KdV (eKdV) equation. Such mode systems have been derived in
the literature for stratified fluids, and the localized solitary waves have been identified”.

In many geophyscd and marine applications it is necessary to include a forcing
term; typical examples are when the waves are generated by moving ships, or by flow
over bottom topography. Previous studies™ have identified some interesting features of
the forced eKdV eguation. These include undular bores propagating upsiream in the
subcritical  regime, and monotonic bores in the transcriticd regime; such bores may
reman dationary. These features differ sharply from the solution of the forced KadVv
equation, where in the transcritical regime solitary waves are generated continudly and
propagate upstream.  Locdly deady flow is observed for sufficiently large Froude
numbers in the supercritical range of such eKdV systems, while stationary lee waves are
formed for sufficiently low Froude numbers in the subcritical regime. For the forced
KdV equation Grimshaw and Smytt? (GS) showed that the upstream and downstream

wavetrans could be well described by the modulation theory for the KdV equation,



which, in tun, is a devdopment from the hydraulic agpproximation in which the
dispersve term is neglected. However, it seems that the modulation theory for the eKdv
equation is not fully available, except for sufficiently smal amplitude waves’.

Further, numericd simulaions of the full equeations for dreified flow over
topography have been performed for a two-layer drification and for a linearly dratified
Boussnesy fluid* °. Flows past an obstacdle in a horizontd channe will reach criticality
if the lineer long wave speed of one mode is equa to the upstream flow speed. The
energy of the waves excited by the obstacle cannot propagate away from it, and hence a
srongly nonlinear response occurs.  Indeed it is this feature which leads to the necessty
for such nonlinear theoreticd models as those provided by the forced KdV and eKadV
equations. These full numericad smulations broadly support the behaviour types seen in
the modd equations. Further, we note that a forced eKdV equation has been discussed in
the context of the generation of capillary-gravity waves in a two-layer fluid®; aso a set of
coupled forced KdV eguations have been discussed for surface waves, with a view to
retaining a (week) interaction with the non-resonant wave mode®.

It is known that the solutions of the eKdV equation will depend on the rdative
ggns of the coefficient of the cubic nonlinear and dispersive terms. Mogt sudies of the
forced eKdV equation mentioned above, with one exceptiorf, ded with the case where
these terms are of opposite sgn. In this case the eKdV equation supports a single family
of solitary waves, whose polarity is determined by the relative Sgns of the coefficient of
the quadraic nonlinear and dispersve terms, which for smdl amplitudes resemble those
of the KdV equation, but for large amplitudes become “thick” solitary waves with a

limiing amplitude’.  On the other hand when the cubic nonlinear and dispersive terms



have the same-signed coefficients, the eKdV equation supports two families of solitary
waves, one resembles the KdV solitary waves a smdl amplitudes, but the other, with
oppodte polarity, can exis only for large amplitudes. Since the coefficient of the cubic
nonlinear term in the eKdV eguaion can have ether sgn for various layered and
sratified fluids” 8, the objective of the present work is to study waves generated by the
forced eKdV for both sgns of the cubic nonlinear term, with a particular emphasis on the
less-studied case when the cubic nonlinear and dispersve terms have the same sgn. As
the procedure for deriving such forced eKdV eguation is standard, and well-known, we
shall proceed directly with a study of a nondimensiona forced eKdV equation. Formats
and ggns for this forced eKdV will conform as far as possble with the forms used in
earlier gudies.

The drategy will be a combined andyticd and computationa dudy. Firdly,
based on the usefulness of the hydraulic approximation used by GS® in their study of the
forced KdV eguaion, an andogous hydraulic approximation for the forced eKdV
equation will be developed here and used to study the transcritica regime.  Secondly, the
forced eKdV equation will be solved numericaly, and the results compared with the
hydraulic gpproximation. The mogt interesting result is that two kinds of solitary waves
can be emitted and travel upstream in cetan parameter regimes. The firg type is
generated a regular intervals when the cubic nonlinear term is rdaively unimportant,
while the second type is produced irregularly and occurs when the cubic nonlinear term

playsacrucid role.



. Forced extended K orteweg-de Vries equation
We begin the andyticd formulation by consdering the forced eKdV equeation for

an gppropriate field variable u(xt) ,

3
ﬂ_u+DE-auﬂ—u-bu2E-ﬂ—l::E. (1)
it X ix x ™ X

For instance, in a two-layer fluid, u is the interfacid displacement!. Here D measures the

deviaion from the long wave phase speed, and is the parameter which controls the flow
regime; f (x) is the representation of the localized topographic forcing; a and b are the
coefficients of the quadratic and cubic nonlinear terms respectively, and can be
determined explicitly in terms of the basic state of the sraified fluid™ 2 % > 7 For initid
condition, we set  u(x,0) =0 which corresponds to turning on the basic flow at the initid
time. Theforcing function used in our numericd smulationsis

f =f_exp(-x*x?), 2

where x is a shape parameter. In genera, we assume that f has a sngle maximum and
decays rapidly in the far fiddd. Only pogtive forcing is conddered in this sudy, (i.e
f, >0 in Egn. (2)) and a is kept congtant (equal to 2 without loss of generdity) for all

the numericd smulaions. However, we vary the coefficent b and dlow it to be both

postive and negative. A typical sequence of numericd Smulations for D=0, f =1s

showninFgure 1 for b > 0.

[11.  Hydraulic approximation
To explan the festures shown in Figure 1 and al our other numericad smulations,

we follow the approach of GS® and consider here the hydraulic approximation. Formaly



this is vdid for broad forcings (x® O in Egn. (2)), and can be expected to lead to a
combinaion of locdly-steady dtate solutions together with shocks. As in GS, we expect
the shocks to be indicative of the presence of wavetrans in the full equations (1),
athough, as far as we aware, there is currently no counterpart for the eKdV eguation to
the modulation theory for the KdV equation used by GS. On omisson of the dispersve
term, Egn. (1) becomes,

T, plu g U e u_Tt ©)

t  x X x Tx

Eqgn. (3) can be solved by the method of characteristics. These are given by

%:D-au-buz, %:E, (4)
dt dt  1x

where on a given characteriticat t = 0, X = Xo, U = 0. Here X, is a parameter defining
each characteridic. Egqns. (4) ae readily solved numericaly, dthough we note that
andyticdly the solution can be written in the form

Du-%auz- %bu3= (- F(x,) ®)

which gives u in terms of x and X,. Subditution into the first of equations (4) then gives
X =X(X,,t), and subsequent dimingtion of X, then yieds the solution of Egn. (3).
However, if the characterigtics intersect, then a shock much be inserted. The shock speed
V can be determined by integrating Eqgn. (3) across the shock, and is

V =D- %a(ua +u,)- %b(us U, +U2) 6)

where u,, ae the vaues of u on each sde of the shock. However, in our numerica

solutions of Egns. (4) we dlow the characterigtics to intersect, and the shocks are inserted

only schemdticdly, i.e. we determine numericaly the points (X) where characteridtics



fird intersect, and sketch a curve (solid line) whose dope a the initid intersection point
isgiven by Eqgn. (5).
Next, to determine the criteria for a steady hydraulic solution, we ignore the

unsteady term in Eqn. (3) which then becomes

DE-auE-bu2E=E (7)

x X % X
We gshdl assume tha a >0 without loss of genedity, and dso in the subsequent
discusson, we shdl assume that b>0. The case b<0 can be recovered by the
trandformation u® -u, D® - D. At the locd maximum of the forcing, located a x =

0, f (0) =f,, fx =0and welet u = u,. Then Egn. (7) showsthat either ux = 0, or that
a .a’
D=au,+bu?, ie bum:-zi{T+Db}“2. (8)

Since we are interested only in asymmetric Seady hydraulic solutions, we assume here
that ux + 0 a x = 0, and s0 Egn. (8) holds; later we will show that only the upper sgn in

Egn. (8) is rdevant. In the far fidd, where f ® Owelet u ® u,,where u and u,
represent the upstream (x® - ¥) and downstream (X ® +¥) vaues respectively, and we

will require that u,* u_. Laer we will show that u. >u,. Integrating Eqn. (7) with

respect to x gives
2 3
pu- & -bg ~f=c, ©

where C can be determined by the far fidd conditions, or by the condition & x = 0, sO

that

2 3
C:DJ+-Euf-Euf=Dum- aly, _buy, _ f . (10)
27 37 3




Further, ance u_ 1 u, , weobtan
_a b 2 2
D=—(u, +u )+—=(u; tu,u_ +u?) . (12)
2 3
Firs, for smplicity, le¢ D = 0. In this case, Egn. (8) implies that u, =0, or
u, =-a/b.1f u, =0,then C =- f_ and the solution of Eqgn. (9) becomes
f - f P +lbu3,
3
which is plotted in Figure 2. Clearly,

(12)

iu2+9u+3 =f
2 37

m 2

must hold for this solution to exist and furthermore,

a a
—>Uu >O>u+>-E.

In the other casg, if u, = —a / b, it can be shown tha there is no solution, most obvioudy
by again usng Figure 2.

Then, in the genera case, we consgder Dt Ofor a >0, b > 0. First Egn. (8)
shows that uy, will not exist unless

a2
D>-—. 13
4b 13)

Since u,, = 0 when D = 0, we choose u., by the upper sign in Egn. (8). Egns. (9) and (10)

then give
2 3
f - f+g(D)=-Du+ 2 LU (14)
2 3
where



a b aD a° 2 a?
D)=-Du_+—u? +—u?, or D)=—+
g( ) m 2 m 3 m g( ) 2b 12:)2 &)2

_+[1) 3/2'
{4 }

We now plot f,, — f + g(D) as afunction of u in Figure 3, and see that there are two turning

points

_ _a  1.a° Vo .

U=Un, U,=-—+={—+Db}"°, (alocd minimum),
2b b 4

u=ug, ug;:-i-l{a—2+Db}”2, (aloca maximum) .
2b b 4

Thusasolutionwith u. >u_ >u, exigsuntil f,, reaches avalue such that

fo = DU - Uy) +5(uf - u2) +2(uf - 1) =- 9(D) - Dug+ ug + 2ug.

From Egns. (15, 16),
2.a°’ a
u¢ - u_ =-—{—+Db}"?, u¢+u, =-—
§ - Uy = ~{=-+Db} fru, =
and we find that this hydraulic solution exists provided thet

4 a?
f £—{—+Dh}*2,
m 3b2{4 }

Note here that
ad 60b 4Db
9(D) = {l+—5 Wr—5)""} £0

2

holdsfor all D in the allowed range, D > - j_b andg(D) =0a D=0.

(15)

(16)

(17)

(18)

(19)

The shock veocities upstream {/.) and downstream (V;) are found from Egn. (6)

with u, , =(0O,u_) and (O,u,) respectively, so that
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au, bu; _-(f,+9(D)
: 2 3 u, '

Since we requirethat V, >0 and V. <0, it followstha u. >0>u, and that (see Figure
3)

fm>—g(D) (20)
which defines the transcritical regime. The results Egn. (18) and Egn. (20) are the main
concluson from this study of the steady hydraulic solutions. Egn. (18) is the condition for
the exisence of the downsiream deady sate u,, while Egn. (20), together with Eqgn.
(13), define the range of D for which this asymmetric hydraulic solution can be obtained.
We raterate that when both Egn. (18) and Egn. (20) are satisfied we anticipate thet in the
full equation (1) the shocks u, are replaced by wavetrains, asin GS.

The case

2
f >%[617+Db]3’2 (21)

requires a different trestment. Instead of the treatment above, we assume now that a
dationary shock forms over the front face of the forcing a x =x¢ (Figure 4). The
dructure to the left of this shock issmilar to that described above:

2 3
au +b§ =-C-f, x<x¢,

f(u)=-Du+

u

-I.

-I.

y (22)
where - C=f_+g(D), g(D)=f(u,). :
b

Then as x =x§, it is clear from Figure 3 tha u =u¢ (see Egn. (16)), and this is sufficient

to dso determine x¢. Then since the shock speed is now zero, one has f(u¢) =f (u®)
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which determines u$. Downgtream of the shock (x> x$) one seeks a steady solution

where u® u¢ asx ® ¥,and u® u® as x® x¢ +. It isreadily shown that thisis dso

given by Egn. (22), s0 that in fact u¢=u_, i.e the downstream steady date leve is
identical to that upstream. However, in the downstream case, this is not a shock, and

instead isresolved by ararefaction wave.

IV.  Numerical smulations

We now discuss some numerical studies of the forced eKdV eguation for various
flow regimes. A numericad code is developed usng the Adams-Bashforth-Moulton
predictor and corrector method to integrate Egn. (1) forward in time, and centrd finite
difference formulas are employed in the spatid discretization process.  The code is
vdidated by comparing the numerica result with the exact solitary wave solutions of the
eKdV equation.

The locdized forcing is switched on impulsvely when the time integration darts.
We keep a condant (a = 2), and fix the forcing to be given by Egn. (2) for dl
gmulaions. D and b are then varied to generate different flow regimes. In order to study
the mass fluctuation in front of and behind the forcing, we plit the mass of the whole
system into two parts, namey, - ¥ <X<O0 (Mfon) and O£ X < +¥ (Mpehing). Asthe total
mass of the system is conserved, Miont + Mpehind = Miotar = O gnce the null initid
condition is used here.

Part 1, forced eKdV,b >0

Case(A):D<O

12



The transcritica range for D is defined by Egn. (20) which depends on f,,, a and
b. One paticular vdue of b, namdy, b = 1.4 will be chosen for the purpose of
discusson. Thetranscriticd rangeisthen givenby - 0.71<D < 2.35.

We fird condder a large negative vdue of D (D = -3) which is outsde the
transcritical regime.  Figure 5a shows a typicd solution of Egn. (1) with x = 0.3, and f,, =
1. The criticd vaue of b found from Egn. (18) is given by b = 0.28, and so there is no
deady hydraulic solution avalable, snce here b>b_ . Nevetheess, this case is quite
smilar to that of the usud forced KdV equatio®. A locelized stationary depression is
observed just downsream of the forcing region followed by a Saionary lee wavetrain. A
solitary wavetrain is generated in the upstream direction with one very dominant leading
wave. Figure 5b illustrates the mass fluctuation of the sysem. The upstream <olitary
wave, formed a a very early stage, is represented by the plot of My on; and reaches six
units very soon after the integration starts, Mioa Says equa to zero Seadily as time
proceeds, as the totd mass of the system is conserved. Outsde the transcritica regime,
the introduction of the cubic nonlinearity does not generate any dramatic influence on the
solution as compared with the usud forced KdV modd.

Next we consider a case doser to the transcritical regime, D = —1, but ill with x
=03 and b = 14 (Figure 6a). There is now an undular bore upstream, athough, the
oxcillatory wavetrain downdream is the dominant feature. The critical vaue of b given
by Eqgn. (18) is here b = 0.59, and here dso b>Db_. It is therefore not surprisng that
there is no dationary depression just downstream of the forcing region. Ingtead, there is a
downdream wavetrain, which is highly oscillaory. The mass fluctuaion is shown in

Figure 6b, while the characteristics obtained from Egns. (4) are shown in Figure 6c.
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There are two shocks formed, one upstream which leads to the observed undular bore in
Figure 6a, while the other is over the forcing and leads to the ungteadiness of the
downgtream wavetrain. Figure 6d shows the snap plots a t = 60, reveding the regime
trangtions as b is incressed. At b = 0.3, wel below b, the solution is smilar to thet for
the usua forced KdV eguation, with an upstream undular bore, a depresson just behind

the obdtacle, followed by a modulated wavetrain.  This behaviour perssts until b> b,

and for b = 0.6 we see some variability in the downstream wavetrain, possibly indicative
of a rarefaction type of modulation. On trther increasing the vdue of b beyond b, the
irregular  oscillatory wavetrain becomes the dominant festure downstream while the
number of upstream waves in the undular bore decreases.
Case(B):D=0

We now consider the resonant case of D =0, x = 0.3 and f,, = 1, where the critica

vaue b, =1.15. For b<b_, our numericad smulaions show good agreement with the

hydraulic approximation in that there is an upstream undular bore composed of solitary
waves of nearly uniform amplitude, a stationary downstream depresson terminated by a

modulated wavetrain. The scenario is andogous to that described by GS for the forced
KdV equation. Figure 1 shows the snap plots a t = 60 for different vdues of b. When b
is only dightly greater then the critical value p = 1.2), the downstream depressed region
ceasss to exid, and ingead a locadized minimum deveops.  There ae dill regulaly
generated solitary waves upstream, and a modulated downstream wavetrain remains. On
further increesing the vaue of b, two systems of upstream solitary waves are observed.
They are regular ones, which are generated at an early stage and irregular ones, which are

goparently generated in accordance with the fluctuations in the depresson just in the lee
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of the forcing region. These irregular solitary waves, and the accompanying irregularly
downstream waves are the most dtriking results of the present work, and differ dragticaly
from the forced KdV modd.

When the cut-off criterion (Egn. (18)) is exceeded (i.e. b>b_), one can construct

another seady hydraulic solution. This new solution has a dationary shock on the
downstream sde of the forcing, and is followed by a trangtion to a rarefaction. In the
full Egn. (1) we interpret the presence of the dationary shock with the fluctuations seen
just in the lee of the forcing, leading to the irregular generation of the higher amplitude
solitaay waves (HASW) observed in the numericd dmulations, while the rarefaction
becomes a rather weak downstream wavetrain. In this regime, we find that the hydraulic
goproximation is again useful in predicting the criterion for the presence of a deady lee
depression, which is directly related to the structure of the upsiream solitary waves. For
b = 14, five regular and two irregular HASWs are generated at t = 60. The time

devdopment in the numericd smulation for b = 1.4 is shown in Fgure 7a  The fird

HASW, generated at t » 305, travels faster than the regularly generated solitary waves
and interacts with them. We are proposing that the generation of this kind of HASW is
due to the presence of a dationary shock on the downstream sde of the forcing in the
hydraulic approximation. Simultaneoudy, an oscillatory wavetrain is sent downgream.
Once the locdized depressed region possesses enough negative mass, it is apparently
pushed upstream and undergoes a trandformation. Simultaneoudy, one can recognize
severd fluctuaions of mass in the upstream region (Figure 7b), i.e. Msront, IS NO longer a
graight line. If these locdized and large negative disturbances near the forcing region

have insufficient mass, they will decay into radiation and be sent back downsream.
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Figure 7c illustrates the characteridtics for the case of b = 1.4, which shows evidence to
support these interpretations.  Some characteristics curves, from the downstream side of
the forcing region, bend towards the upsiream direction, and have more than one turning
point. When we increase the vaue of b to 1.6 (Figure 1), the number of regulaly
generated solitary waves drops to three. For b = 3.6, only one regular solitary wave is
formed a an early sage. Consequently, we infer that increasing the cubic nonlinearity
hinders the generation of the regular solitary waves, and a the same time triggers the
formation of the HASWs.
Case(C):D>0

Figure 8a shows the snap plots at t = 60 for different vaues of b with D=1, x =
0.3 and f,, = 1. Thisis 4ill in the transcritica regime, while b = 3.67. For the fixed time
period chosen the number of solitary waves generated is proportiona to the vaue of b
before it resches the cut-off criterion of 3.67. When b exceeds the criticad value, the
depresson cannot be mantained, and according to our hydraulic gpproximation, a
gationary shock is formed behind the forcing region. Some HASWSs are dso observed
for the case of b = 4.2. Figure 8b shows the time history of the case b = 4.2 and the
charecterigtic curves are shown in Figure 8c. Stationary shocks develop just behind the
forcing region, and they form upstream advancing HASWSs.

Findly consder thecase D = 2, x = 0.3 and f,, = 1 which is a0 in the transcritica
regime, while b = 0.38. This case shown in Figure 8d, illustrates the nonlinear character
of the solitary wave formation. The generation period decreases and the number of the

solitary waves increases if we choose a larger vaue of b (Figure 8d), but are dl ill the
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irregular regime. However, the amplitudes of the solitary waves generated decrease from
about3.2atb =1.2toabout 24 a b = 3.6.

For an example outsde the transcritica range, let D=3, b =14, x =03 and f,, =
1. A locdly dationary devation forms over the forcing region, and a downstream
modulated wavetrain is obtained (Figure 8e). The characteristics curves of this case are
shown in Figure 8f.
Part 2, eKdV,b <0
Case(A): D<O

We fird consder D= -3, x = 0.3 and f,, = 1. Figure 9a shows a series of snap

plotsat t = 60. The cut-off criterion for this case is b, » —48.99, 0 that we must have
b|<|b.| to have a steady hydraulic solution. Only one upstream solitay wave is

generated and a depresson develops in the forcing region. These results are quite Smilar

to those of the forced KdV equation, and indeed Figure 9b shows the time higtory of the
case b =-1.4, whichisvery smilar to theresult of the caseb = +1.4 (Figure 5a).

For D = -1, there is a trangtion from the undular bore solution to the monotonic
bore solution as |b| is increased.  Figure 10a shows quite dramatically a series of pictures
representing this trangtion. The undular bore solution is obtained for b = —1.0 and the

monotonic bore solution is found for b = —3.2; here be » —3.67 and o |b| <o, | implies

that the steady hydraulic solutions hold. But, as |b| increases, the upstream shock
reolution into an undular bore is converted into resolution as a monotonic bore. Even

when |b|>|b.|, eg. b = —4.2, the monotonic bore solution can il be observed. The

undular and monotonic bore solutions are globaly ungteady, but do ultimady give new
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locally steedy conditions immediatdly upstream of the forcing regior?. Earier work in
the literature shows that the quditative form of the solution depends on the Froude
number © in our case) and the strength of the forcing. We find here that it also depends
on the grength of the cubic nonlinearity. The time higory for a paticular vdue of b, b =
—3.2, isshown in Figure 10b.
Case(B):D=0

This case is shown in Figure 11a b, where now b, = —-1.15. However, even for

lb| >|b.| (say b = 2.0 or b = —3:6), a monatonic bore solution is till found. A transition

smilar to that for the case D = -1 is dso obtained in this regime in that as |o| decreases,

the upstream monotonic bore becomes an undular bore, eg. an undular bore is observed
a b = -0.6. But note that the structure of the upstream monotonic bore changes near the
forcing, once the cut-off criterion is reached (Figure 11a). The hydraulic approximation
is highly effective and precise in predicting the trandtion point in this case. Figure 11b
shows the time higtory of the monotonic bore solution with b = —1.4.
Case(C):D>0

In Figure 12a, b we consider D = 1, which is within the transcriticad regime, while
b, =-059. For b = -0.3 (below the cut-off criterion), three well-developed upsiream
solitary waves are emitted. A stable depression just behind the forcing s found. Further

increasing |o| resuits in a stable solution of elevation a the forcing. The amplitude of the
elevation continues to decrease as one increases the numerical vdues b (Figure 12a).

Fgure 12b showsthetime higory for thecaseD=1and b=-14.
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For D = 3, a deady supercriticd solution is obtained for dl the smulaions within
and outside of the steady depression regime (Figures 13a, b), as the value of D considered
in this case is outdde the transcriticdl range. A locdized devaion is generated and
located a the forcing with condant amplitude (» 0.35) for the different vaues of b
consdered. The amplitude of the eevation is quite insendtive to changes in b, in marked

contrast with the previous case.

V. Conclusions

Transcritica flows of a dratified fluid over topography are conddered using a
forced extended Korteweg — de Vries mode (eKdV). The present paper extends the
eaxlier sudies by dlowing the cubic nonlinear and digoersve terms to have the same sign
for their coefficients A hydraulic gpproximation (HA) is developed by ignoring the
disperson term.  This amplified model of the dynamics is shown to agree remarkably
well with independent, direct numericd smulations (DNS) of the full forced eKdV over
most parameters regimes. A very interesting result is that two kinds of solitary waves are
emitted in certan parameters regimes. Beddes the regularly generated ones smilar to
those in the forced KdV modd, there are irregularly generated solitary waves of variable
amplitudes. The vedocities of the two types of waves ae different, and interactions
among them are observed.

A further contribution of the present work is to unite these two approaches (HA
and DNS) to enhance the understanding of the underlying fluid physcs. More precisdy,
the hydraulic gpproximation computes a cut-off criterion for the absence of a downstream

depression, a lower bound for D for any such hydraulic solution, and a determination of
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the transcritical regme. Indeed we clam that once this cut-off criterion is exceeded, one
can congruct another steady hydraulic solution. This new steady solution has a dationary
shock on the downdream Sde of the forcing, and is followed by a trandtion to a
rarefaction. The dationary shock is associated with the irregular, large waves observed in
the numericd results, while the rarefaction becomes a rather wesk downstream
wavetrain. Otherwise the upstream propagating shock which terminates the upstream
deady hydraulic solution becomes the observed upstream train of solitary waves, and
likewise downstream when the hydraulic solution extends downstream.

We consder briefly the more usuad case where the cubic and dispersve terms
have opposite sgns, and the hydraulic gpproximation are demonstrated to work there as
well.  Only pogtive forcing has been conddered here.  The effects of negative forcing

will be reported in a separate work.
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Figures Captions

Figurel: Thesgpplotsof theflowat=60withD=0, f,=1.0andx =0.3forb >0.
Figure2: f,versusuforD=0.

Figure3: f,- f+g(D)vesusuforD?* O, for D<O0. Thecase D> 0isgmilar.

Figure4:  Configuration for a stationary downstream shock.

Figureb5a: Thenumericd solutionwithD=-3.0,b =14, f,=1.0andx =0.3.

Figure5b: ThemassfluctuationwithD=-3.0,b =14, f,=1.0andx =0.3.

Figure6a: The numericd olutionwithD=-1.0,b =14, f,=1.0andx =0.3.

Figure6b: ThemassfluctuaionwithD=-1.0,b =14, f,=1.0andx =0.3.

Figure6c: The characteristics configuration for the hydraulic gpproximation with
D=-10,b=14,f,=10andx =0.3.

Figure6d: Thesngp plotsof theflow a t =60 with D=-1.0, f,,=1.0and x = 0.3 for
b>0.

Figure7a: Thenumericd solutionwithD=0, b =1.4, f,=1.0andx =0.3.

Figure7b: The mass fluctuations with D = 0, f, = 1.0 and x = 0.3 ©Enly Mont IS
shown).

Figure7c. The characteristics configuration for the hydraulic gpproximation with D =
0,b=14, f,=10andx =0.3.

Figure8a: Thesngp plotsof theflow at=60withD=1.0, f,,=1.0and x = 0.3 for
b>0.

Figure8b: Thenumericd solutionwithD=1.0,b =4.2, f,=1.0andx =0.3.
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Figure8c: The characteridics configuration for the hydraulic gpproximation with D =
10,b=42, f,=1.0andx =0.3.

Figure8d: Thesgp plotsof theflow et =60with D=2.0, f,=1.0andx =0.3for
b>0.

Figure8e: Thenumericd solutionwithD=3.0,b =1.4, f,=1.0andx =0.3.

Figure8f: The characteridtics configuration for the hydraulic gpproximation with D =
30,b=14, f,=10andx =0.3.

Figure9a: The snap plots of theflow a t = 60 with D=-3.0, f,, = 1.0 and x = 0.3 for

b <O0.

Figure9b: Thenumericad solutionwithD=-3.0,b =-1.4, f,=1.0andx =0.3.

Figure 10a: The sngp plotsof theflow a t = 60 with D=-1.0, f,,=1.0and x = 0.3 for

b <O0.

Figure 10b: Thenumerica solutionwithD=-1.0, b =-3.2, f,=1.0andx =0.3.

Figure 1la: Thesngp plotsof theflow et =60withD=0, f,=1.0andx =0.3forb <0.
Figure 11b: Thenumericd solutionwithD=0,b =-1.4, f,=1.0andx =0.3.

Figure12a: The snap plotsof theflow att =60 with D= 1.0, f,,=1.0and x = 0.3 for

b <O0.

Figure 12b: The numericd solutionwithD=1.0,b =-1.4, f,=10andx =0.3.

Figure 13a: The snap plots of theflow at t = 60 with D= 3.0, f,,=1.0and x = 0.3 for

b <O0.

Figure 13b: Thenumericd solutionwithD=3.0,b =-1.4, f,=10andx =0.3.
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Figure 1: The snap plots of the flow at # = 60 with A= 0, f» = 1.0 and £ = 0.3 for 3 > 0.
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Figure2: f versusufor D=0.



D<O0

fm_ f +g(D)

Houre3: f,- f +g(D) versusufor D1 O, for D<0. Thecase D>0is
smilar.



Figure 4: Configuration for a stationary downsiream shock.
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Figure 6¢: The characteristics configuration for the hydraulic approximation
[ withA=-1.0,=1.4, fn=1.0and £ =0.3.
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Figure 6d: The snap plots of the flow at # = 60 with A=-1.0, f» = 1.0 and £ = 0.3 for B > 0.
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Figure 7c: The characteristics configuration for the hydraulic approximation
O withA=0,=1.4, fn»=1.0and §=0.3.
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Figure 8a: The snap plots of the flow at = 60 with A =1.0, f» = 1.0 and = 0.3 for 3 > 0.
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Figure 8d: The snap plots of the flow at r = 60 with A=2.0, fu=1.0 and £ = 0.3 for > 0.
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Figure 8f: The characteristics configuration for the hydraulic approximation
N withA=3.0,B=14,fx»=1.0and £ =0.3.
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Figure 9a: The snap plots of the flow at # =60 with A =-3.0, f» = 1.0 and £ = 0.3 for } <0.
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Figure 10a: The snap plots of the flow at t =60 with A =-1.0, f» =1.0 and £ = 0.3 for B <O0.
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Figure 11a: The snap plots of the flow at = 60 with A= 0, f» =1.0 and £ = 0.3 for  <O0.
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Figure 12a: The snap plots of the flow at t = 60 with A= 1.0, f» =1.0 and £ = 0.3 for  <0.
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Figure 13a: The snap plots of the flow at # = 60 with A = 3.0, f» =1.0 and { = 0.3 for § <O.
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