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Itô maps and analysis on path spaces

K. D. Elworthy & Xue-Mei Li

Abstract
We consider versions of Malliavin calculus on path spaces of compact manifolds
with diffusion measures, defining Gross-Sobolev spaces of differentiable functions
and proving their intertwining with solution maps, I, of certain stochastic differential
equations. This is shown to shed light on fundamental uniqueness questions for this
calculus including uniqueness of the closed derivative operator d and Markov unique-
ness of the associated Dirichlet form. A continuity result for the divergence operator
by Kree and Kree is extended to this situation. The regularity of conditional expec-
tations of smooth functionals of classical Wiener space, given I, is considered and
shown to have strong implications for these questions. A major role is played by the
(possibly sub-Riemannian) connections induced by stochastic differential equations:
Damped Markovian connections are used for the covariant derivatives.

1 Introduction

A natural approach to geometric analysis on path spaces, or loop spaces, of mani-
folds is to base it on continuous paths with Brownian motion (or other) diffusion)
measure. It became clear in the 1970’s from the early work of L. Gross on analysis
on Banach spaces with Gaussian measures, that in such analysis the differentiation
should be restricted to differentiation in directions given by a certain Hilbert space,
the Cameron-Martin space. These H-derivatives formed the basis of the highly suc-
cessful Malliavin Calculus, see e.g. Malliavin [36] [35]. Key tools in this were the
Sobolev spaces they generated, see for example the books by Ikeda-Watanabe [30] and
Nualart [38]. For paths on a Riemannian manifold, here based paths for simplicity,
with Brownian motion measure, it was realized that the Cameron-Martin space should
be replaced by Hilbert spaces of tangent vectors at almost all points of the path space:
the so called Bismut tangent spaces. These are described in terms of parallel trans-
lation of the usual Cameron-Martin space of finite energy paths in the tangent space
to M at the base point, Jones-Léandre [31]. The parallel translation was that of the
Levi-Civita connection. This was extended to more general connections by Driver in
[9] whose work led to rapid progress in creating a Sobolev calculus (depending on the
choice of connections) over the path spaces and loop spaces see e.g. Aida[1], Léandre
[33]. When M has curvature a major difficulty in this analysis comes from the non-
holonomic nature of the Bismut tangent “bundle”. There are no known “local charts”
which adequately preserve the structure. The standard method, as in Driver [9] has
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been to use the stochastic development which gives a measure theoretic isomorphism
of the Wiener space of based paths on Euclidean space with that on the manifold, and
classically gives a diffeomorphism between the corresponding spaces of finite energy
paths. However although this is smooth in the sense of Malliavin calculus, in general
its derivative does not map the Cameron-Martin space to the Bismut Hilbert spaces.
Moreover it seems clear from X-D Li [34] that the composition of it with a differen-
tiable function, say in IDp,1, on the path space may not be differentiable on the flat
space, e.g. not in IDq,1 for any 1 ≤ q < ∞: a loss of differentiability occurs. There is
an intertwining formula, Thm 2.6 in Cruzeiro-Malliavin [6], but it is for differentiation
given by “tangent processes” not by tangent vectors.

There are also fundamental unresolved uniqueness problems in the calculus on
these path spaces. The most basic is of the derivative operator itself: a standard ap-
proach is to take the closure in Lp of the H-derivative defined on some initial domain
of manifestly regular functions, e.g. smooth cylindrical functions or bounded Fréchet
differentiable functions with bounded derivatives. In Wiener space the result does not
depend on any, reasonable, choice of such initial domain, Sugita [45]. For paths on M
when there is non-zero curvature this is not known. Alhough there is a self-adjoint ana-
logue d∗d of the finite dimensional Laplace-Beltrami operator it is unknown whether
it is essentially self-adjoint or whether it, or equivalently the associated Dirichlet form,
has Markov uniqueness, taking the space of smooth cylindrical functions as initial do-
main. The latter concept relates to the uniqueness of a Markov process on the path
space which would play the role of a Brownian motion (or Ornstein-Uhlenbeck pro-
cess), see e.g. Eberle [12] and §6 below. Note that Aida has shown that such operators
on certain finite co-dimensional submanifolds of Wiener space [3] are essentially self
adjoint, and similarly for paths and loops on Lie groups [4]. An earlier work of Costa
has shown the essential self-adjointness for a larger core on such path groups.

Here we continue the approach of Aida-Elworthy [2], Aida [1], Elworthy-LeJan-Li
[17] and Elworthy-Li [19] using Itô maps, i.e. solution maps of stochastic differential
equations, as substitutes for charts, and filtering techniques. We work with a fairly gen-
eral class of, possibly degenerate, diffusion measures, with metric connections to define
the Bismut tangent spaces. The stochastic differential equations are those whose solu-
tions form the given diffusion process on M . We take M compact and all coefficients
smooth. The Itô maps are then infinitely differentiable in the sense of Malliavin Calcu-
lus, but as with the stochastic development their H-derivatives will not in general map
into the Bismut tangent spaces, nor can we expect there to be a ‘chain rule’ to say that
composition with them maps “differentiable” functions to ‘differentiable’ functions.
However if we restrict to stochastic differential equations whose associated connec-
tion, in the sense of Elworthy-LeJan-Li [17] [15], agrees with the connection defining
the Bismut tangent spaces, it turns out that such compositions are well behaved. The
aim of this article is to describe this and its possible deficiences, and show what light
it sheds on the fundamental uniqueness questions mentioned above. In particular we
show that the latter are related to a question on Classical Wiener space concerning the
regularity of differentiable functions after conditioning with respect to any of these Itô
maps, see Remark 7.9 below.

Since we are working in greater generality than usual, the calculus on path space
is developed from scratch, based on the integration by parts formulae of Elworthy-
Li [18] and Elworthy-LeJan-Li [15], [16]. This is done in section 4 for scalars and
with a covariant calculus in section 8 more generally. In section 2 the basic setup of
Bismut tangent bundles, damped parallel translations, stochastic differential equations
and associated connections, are described. In section 3 there is the key result, Theorem
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3.4, that if the connection associated to the stochastic differential equation is the same
as that used to define the Bismut tangent spaces then the Itô map can be used to pull
back any measurable H-1-form φ on the path space of M to an H-1-form on flat
Wiener space. We also give an explicit expression for the pull back I∗φ as a stochastic
integral. From this one obtains the pull back theorem, or chain rule, for functions
in a Sobolev space IDp,1(Cx0M ; R), Theorem 4.2 and Corollary 4.3. In particular if
f ∈ IDp,1(Cx0M ; R) then f ◦ I ∈ IDp,1(Ω; R) and d(f ◦ I) = I∗(df ) given some
conditions on the connection.

In section 5 we consider the divergence operator acting on H-vector fields and its
intertwining by these Itô maps. We show that V lies in its domain if a certain pull back
of V is in the domain of the divergence on flat space, Corollary 5.2. This enable us to
extend the flat space result of Kree-Kree [32] and see that IDp,1 H-vector fields lie in
the domain of the divergence, Theorem 5.8, a crucial result for our discussion of weak
differentiability later.

In section 6 we introduce weak differentiability and the weak Sobolev spacesW p,1.
Theorem 6.1 extends the chain rule to a precise intertwining:

f ∈W p,1(Cx0M ; R) iff f ◦ I ∈ IDp,1(C0Rm; R).

The question is posed as to whether W p,1 = IDp,1, as in flat space. In Theorem 6.9,
following Eberle [12], this is shown for the case of p = 2 to be equivalent to Markov
uniqueness, after demonstrating W 2,1 = 0W 2,1, the latter being the weak Sobolev
space used in [12]. A key step in the proof is to show that smooth cylindrical forms are
dense in the space of ID2,1 H-1-forms, Proposition 6.14.

Other uniqueness questions are considered in section 7.1. In particular it is shown
that the closure of the differentiation operator is independent of the initial domain if
that domain contains Cyl, the set of smooth cylindrical functions and consists of BC2,
twice Fréchet differentiable functions whose derivatives are bounded, Corollary 7.5.
However we are not able to prove the uniqueness of d when its initial domain is al-
lowed to contain general BC1 functions. Some of these results for the special case of
Brownian motion measures and Levi-Civita connections are summarised in [21] cor-
recting [25].

In the case when it is possible to find a stochastic differential equation whose Itô
map has no redundant noise, all the main results in this article hold without the Condi-
tion (M0) which was often needed in the general situation. See section 9. In particular
we have I∗d = dI∗ on Lp for 1 < p < ∞ and the Markov uniqueness. This ap-
plies to paths on Lie groups with left or right invariant connections and to paths on
the orthonormal frame bundle of a Riemannian manifold with measure associated to
the horizontal Laplacian. In this case our Itô map is essentially the stochastic devel-
opment map and our results are an extension of some of the isomorphism results by
Fang-Franchi [27] for path spaces on Lie groups.

The culmination of section 8 is Theorem 8.14 on the pull back by composition
with I of higher order Sobolev spaces IDq,k, and weak Sobolev spaces W q,k, k =
1, 2 . . .. As for k = 1, in the weak case there is a precise intertwining. To differentiate
these Sobolev spaces requires a connection on the Bismut tangent ‘bundle’. We use
the ‘damped Markovian’ connection. This was introduced in Cruzeiro-Fang [5] for
Brownian motion measures with Levi-Civita connections. One key point in this work
is how well they fit into this situation, in some sense being induced by the derivative of
I, Proposition 8.2.

Although we work in considerably greater generality, the main results here, The-
orem 3.4 and Theorem 8.14 on intertwining, Theorem 8.12 on the continuity of the
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divergence, Theorem 6.9 on Markov uniqueness, and Corollary 7.5 (BC2 functions are
in ID2,1), are essentially novel for the more standard case of Brownian motion measures
and Levi-Civita connections (thought there is a version of Theorem 3.4 in Elworthy-Li
[19]), as are the treatment of the covariant calculus in section 8, and the importance
shown for the rather general problem of the smoothness of conditional expectations in
classical Wiener space, Remark 7.9.
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2 Basic Assumptions

Let M be a C∞ connected manifold of dimension n. For simplicity assume it is com-
pact. Otherwise some bounded geometry assumptions on the manifold and bounds
on the coefficients of the stochastic differential equations we consider will need to be
imposed. Let A be a smooth semi-elliptic second order operator with no zero order
term. Assume its symbol σA : T ∗M → TM has constant rank p so that its image is a
sub-bundle E of TM . It has a natural Riemannian metric induced by σA. Let ∇ be a
metric connection on E. Then A can be written in the following form:

Af =
1
2

traceE∇−(df |E) + LA(f ) (2.1)

where A is a smooth vector field. Denote by µx0 the law of the Markov process
(xt : 0 ≤ t ≤ T ) corresponding to A with initial value x0 for some point x0 ∈M and
fixed T > 0.

Consider
Cx0M =

{
σ : [0, T ] →M

∣∣ σ(x0) = 0, σ is C0
}
,

the space of continuous paths on M starting from x0 equipped with the probability
measure µx0 .
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2.1 An SDE which induces the connection ∇
The underlying probability space Ω will be taken to be the canonical space C0Rm,
given by

Ω = C0Rm =
{
ω: [0, T ] → Rm

∣∣ω(0) = 0, ω is continuous
}
, (2.2)

some natural number m. It is equipped with the Wiener measure P and its natural
filtration {F∗}. Let {Bt : 0 ≤ t ≤ T} be the canonical Brownian motion on Rm, that
is Bt(ω) = ω(t), the evaluation map.

Denote by L(E;F ) the space of bounded linear maps between linear spaces E and
F and let X : Rm × M → TM be C∞ with X(x) ∈ L(Rm;TxM ) for each x.
For each x ∈ M , Image[X(x)] inherits an inner product. We shall choose X so that
Image[X(x)] = Ex as a Hilbert space. Let CrΓE be the space of Cr sections of E.
For e in Rm let Xe be the section of E given by Xe(x) = X(x)(e) and Y : E → Rm

the adjoint of X . Note that X(x)Y (x)(v) = v for all v ∈ TxM . Write kerX(x) and
[kerX(x)]⊥ respectively for the kernel of the map X(x) and its orthogonal comple-
ment. The result on which, Elworthy-LeJan-Li [15], and this article are based is the
following, c.f. Quillen [40], Narasimhan-Ramanan [37]:

Proposition 2.1 (Elworthy-LeJan-Li [17], [15], c.f. Quillen[40]) For each such map
X : Rm ×M → TM there is a unique connection ∇̆ on E such that

∇̆vX
e = 0, ∀v ∈ TyM,y ∈M, e ∈ [kerX(y)]⊥ (2.3)

This connection is metric. In fact

∇̆vU = X(x)d (Y (U (·))) (v), v ∈ TxM,U ∈ C1ΓE. (2.4)

Furthermore all metric connections on E can be obtained this way for some X and
some number m.

• Assumption (X). By this proposition we can and will suppose from now on that
map X induces the Riemannian metric and the connection ∇ on E. Hence (2.3)
holds for ∇.

For A as in (2.1), consider the stochastic differential equation

dxt = X(xt) ◦ dBt +A(xt)dt, 0 ≤ t ≤ T. (2.5)

It induces the diffusion measure µx0 on M .

2.1.1 Examples [15]

Example 1 (Gradient S.D.E.). Consider a Riemannian manifold M isometrically im-
mersed in Rm with immersion j. Set Xe ≡ X(·)(e) = ∇〈j(·), e〉. Then X(x) : Rm →
TM is the orthogonal projection of Rm to TxM . The stochastic differential equa-
tion has solutions which are Brownian motions on M and it induces the Levi-Civita
connection on M as its associated connection.

Example 2. (Left invariant S.D.E.). LetM be a Lie group with left invariant metric,
identity e and Lie algebra g := TeG. Let (Bt) be a Brownian motion on g. The
connection associated to the left invariant stochastic differential equation

dxt = X(xt) ◦ dBt
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is the flat left invariant connection. Here X(e) : Rn → G is some isometry and
X(g)e = (TLg)X(e). The solution of the equation is a process on the Lie group whose
filtration is the same as that of the noise (Bt). It is a Brownian motion if the metric is
bi-invariant.

Example 3 (Symmetric space S.D.E.). Let M = G be a Lie group with bi-invariant
metric. It has a standard symmetric space structure:

G =
G×G

{(g, g) : g ∈ G}

where G×G acts on G as follows:

(g1, g2)x = g1xg
−1
2 .

Denote by Lx and Rx respectively the left and right group multiplications. Consider
the stochastic differential equation on G

dxt =
1√
2
TLxt

◦ dBt −
1√
2
TRxt

◦ dB′t

where (Bt) and (B′t) are two independent Brownian motions on g. The corresponding
connection is the Levi-Civita connection on G.

Example 4 (Canonical SDE on frame bundles). Let N be an m dimensional Rie-
mannian manifold and let M be its orthonormal frame bundle, M = ON , with π :
ON → N the projection. Using the Levi-Civita connection for N consider the canon-
ical stochastic differential equation on ON . Then X(u)e = Hu(u(e)) where Hu :
Tπ(u)N → TuON denotes the horizontal lift map. Then E is the horizontal tangent
bundle of ON and p = m = dimN . The connection on E is the flat connection in-
duced by the trivialization X . The solutions to the S.D.E. on ON project to Brownian
motions on N , and are the horizontal lifts of those Brownian motions.

2.2 The Covariant Differentiation operator ID
dt

There is an adjoint semi-connection, ∇′, of ∇. For each smooth vector field V on M
this gives a derivative

∇′
uV ∈ TyM

for each u ∈ Ey , y ∈M . It is defined by

∇′
uV = ∇vU + [U, V ](y) (2.6)

for v = V (y) and U any smooth section of E with U (y) = u.
Using ∇ there are parallel translations along smooth paths σ in M

//t = //t(σ) : Eσ(0) → Eσ(t)

and these preserve the inner products. Using ∇′ we obtain parallel translation

//′t = //′t (σ) : Tσ(0)M → Tσ(t)M

along smooth paths which are ‘horizontal’. (A path σ is horizontal if σ̇(t) belongs to
Eσ(t) for each t.) There are also the operators D

dt and D′

dt

D

dt
Ut = //t

d

dt
(//t

−1
Ut) ∈ Eσ(t)
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D′

dt
Vt = //′t

d

dt
(//′t

−1
Vt) ∈ Tσ(t)M

defined for vector fields along σ, for Ut ∈ Eσ(t) each t, and for σ horizontal in the case
of D′

dt .

We will need ‘damped’ versions of these operations. Let Z be a vector field on
M . When Z(x) ∈ Ex for each x, the damped parallel translation WZ

t ≡ WZ
t (σ) :

Tσ(0)M → Tσ(t)M along a horizontal smooth path σ is defined by{
D′

dt [WZ
t (v0)] = − 1

2 Ric#(WZ
t (v0)) +∇W Z

t (v0)Z, 0 ≤ t ≤ T

WZ
0 (v0) = v0.

(2.7)

Here Ric# : TM → E is defined by the Ricci curvature Ric corresponding to the
connection ∇: 〈Ric#(u), v〉y = Ricy(u, v) = traceE〈R(u,−)−, v〉y . Under these
conditions the corresponding operator ID

dt on vector fields along σ is given by

ID
dt
Vt = WZ

t

d

dt

(
(WZ

t )−1Vt

)
.

Thus
ID
dt

=
D′

dt
+

1
2

Ric# −∇Z. (2.8)

In this case the damped (and undamped) parallel translation is defined almost surely
along the sample paths of the solutions to our stochastic differential equation (2.5), with
D′

dt and ID
dt being defined correspondingly on suitable vector fields along the paths.

If Z is not a section of E then the solution paths are not ‘horizontal’ and it is
convenient to introduce an auxiliary connection ∇1 on TM . To obtain this take a
Riemannian metric on TM . Let E⊥ be the orthogonal bundle to E in TM and take
any metric connection ∇⊥ on E⊥. Set

∇1 = ∇+∇⊥ (2.9)

and let ∇1′ be its adjoint. Now extend the definition of ID
dt to define

ID
dt
Vt :=

D1′

dt
Vt +

1
2

Ric#Vt −∇1
Vt
Z (2.10)

for any suitably regular vector field V along the paths of any continuous semi-martingale
on M .

In particular ID
dt is defined µx0-almost surely for suitably regular vector fields along

the elements of Cx0M . It follows from Proposition 3.3.9 of Elworthy-LeJan-Li [15]
and the Girsanov-Maruyama theorem that as such it depends only on ∇ and Z and not
on the choice ofE⊥ or∇⊥ provided that Z−A ∈ Γ(E) whereA is the drift coefficient
of the SDE. Consequently for such Z the solution to

ID
dt
vt = 0 (2.11)

given v0 ∈ Tx0M is defined along µx0-almost all paths and is independent of the
choice of the auxiliary connection on E⊥. When Z = A it shall be denoted Wt(v0) to
extend that defined by (2.7). With these extensions it remains true that

ID
dt
vt = Wt

d

dt
(W−1

t (v0)). (2.12)
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2.2.1 Condition (M0)

Some additional conditions will sometimes be imposed on our connection ∇ and on
the stochastic differential equation. We are given a Riemannian metric only on E and
so will formulate the conditions in terms of that metric, avoiding using the metric we
imposed on TM , even though for a compact manifold M that is not really essential.

• Condition (M0) : The damped parallel translation Wt satisfies:

(i) sup0≤t≤T

∣∣(W−1
t |Ext

)
∣∣
L(Ext ;Tx0M )

∈ L∞ and

(ii) sup0≤t≤T |∇Wt(−)X|L(Tx0M ;L(Rm;Ext )) ∈ L
∞

• Condition (M ) : The adjoint connection ∇′ is metric for some Riemannian
metric on TM , (which we will denote by 〈·, ·〉′).

Note that if E = TM condition (M) holds with 〈·, ·〉′ = 〈·, ·〉 if and only if∇ is torsion
skew symmetric as described by Driver in [9]. In particular Condition (M ) holds for
the SDE’s in Examples 1-3, section 2.1.1. For examples where it does not hold see
Elworthy-LeJan-Li [15], in which there is also the following result (Proposition 3.3.11,
p72):

Proposition 2.2 [15] For compact M ,

sup
0≤s≤T

|Ws|L(Tx0M ;Txs M ) and sup
0≤s≤T

∣∣W−1
s

∣∣
L(Txs M ;Tx0M )

lie in Lp for all 1 ≤ p < ∞. If also condition (M ) holds then both are in L∞. (Here
we are using any Riemannian metric on M .)

From this we see immediately that condition (M ) implies condition (M0) in the com-
pact case under consideration.

2.3 The L2 tangent bundles L2E , L2TCx0M and the Bismut tangent bundle H
Recall that Cx0M is a C∞ Banach manifold, Eells [13], see Eliasson [14], and its
tangent space TσCx0M at a path σ can be identified with the following space of vector
fields along it:

TσCx0M =
{
v : [0, T ] → TM

∣∣ vt ∈ Tσ(t)M,v0 = 0
}
.

By the L2 tangent space L2Eσ at σ we mean the following set of measurable vector
fields along σ:

L2Eσ =
{
v : [0, T ] → E

∣∣ vt ∈ Eσ(t), |v·|L2E <∞
}
. (2.13)

where

|v·|L2E :=

(∫ T

0

|vs|2 ds

)1/2

.

These form the fibres of a smooth Hilbert bundle L2E over Cx0M . It is associated to
the principal bundle

Cx0OE → Cx0M
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where π : OE →M is the orthonormal frame bundle of E and

Cx0OE = {u : [0, T ] → OE
∣∣ u(0) ∈ π−1(x0)}.

Given the choice of a Riemannian metric on TM extending that of E we also have the
Hilbert subbundle of L2 tangent vectors L2TCx0M , obtained as L2E but using TM
rather than E. Then L2E is a subbundle of L2TCx0M . Let

Π : L2TCx0M → L2E

denote the orthogonal projection.
Using the metric connection ∇ which we have imposed on E, we can define a

family of subspaces Hσ ⊂ TσCx0M :

Hσ :=

{
v ∈ TσCx0M

∣∣∣∣∣ ID
dt
vt ∈ Eσ(t),

∫ T

0

| IDvt

dt
|2σ(t) dt <∞

}
(2.14)

(with the usual convention of absolute continuity after translation back to Tx0M ). This
is a Hilbert space under the obvious inner product

〈u, v〉σ =
∫ T

0

〈
IDut

dt
,

IDvt

dt

〉
σ(t)

dt.

Note also that ID
dt determines an isometry of Hσ → L2Eσ for almost all σ, with

inverse
W· : L2Eσ → Hσ

given by

Wt(v) = Wt

∫ t

0

W−1
s vsds. (2.15)

LetH = tσHσ . Then it inherits a vector bundle structure (over a subset of full measure
in Cx0M ) from L2E via ID

dt as does its dual H∗ = tσH∗
σ .

In particular an Lp H-form (or written as H-form) φ on Cx0M is an Lp section of
H∗, i.e. an assignment of φσ : Hσ → R, continuous linear, for almost all σ in Cx0M ,
measurable in σ in the sense that σ 7→ φσ

( ID
d·−
)

is a measurable section of the dual of
the vector bundle L2E with

|||φ|||Lp :=
∫
Cx0M

|φσ|pH∗σ dµx0(σ) <∞.

Let LpΓH∗ be the space of equivalence classes of Lp H-forms.

Remark 2.3 Suppose V ∈ LpΓH, the space of Lp H-vector fields on Cx0M . Then,
for any inner product on Tx0M and almost all σ ∈ Cx0M

sup
t
|W−1

t Vt(σ)| = sup
t

∣∣∣∣∫ t

0

W−1
s

ID
ds
Vs(σ)ds

∣∣∣∣
≤ T

1
2 sup

t
|W−1

t |L(Eσ(t);Tx0M )‖V ‖Hσ

and so supt |W−1
t Vt(σ)| is in Lp if condition (M0) holds.
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3 Pull backs of H-forms by Itô maps.

3.1 The derivative TI of the Itô map and TI
Let

I : C0Rm → Cx0M

I(ω)t = xt(ω)

be the Itô map of (2.5) for {ξt : 0 ≤ t ≤ T} the solution flow of (2.5) and xt(ω) =
ξt(x0, ω). For each ω ∈ C0Rm, let

TωI : H ≡ L2,1
0 Rm −→ Tx·(ω)Cx0M

be its H-derivative in the sense of Malliavin calculus. Strictly speaking conventional
Malliavin calculus just gives a derivative at each time t

TωIt : H −→ Txt(ω)Cx0M.

However there is the formula, due to Bismut, for vt(ω) = TωIt(h), h ∈ H:

vt = Tx0ξt

∫ t

0

(Tx0ξs)−1X(xs)ḣsds, 0 ≤ t ≤ T (3.1)

where Tx0ξt : Tx0M → Txt
M is the derivative at x0 of ξt. This shows that we do

have, for almost all ω ∈ C0Rm, a continuous linear version TωI : H → Tx·(ω)Cx0M .
Moreover supt |TIt|L(H;TxtM ) lies in Lp for all 1 ≤ p < ∞, (c.f. Proposition 2.2
below), for any Riemannian metric on our compact manifold M .

One of the key points in our discussion will be the decomposition of the ‘noise’
{Bt : 0 ≤ t ≤ T} into ‘redundant’ and ‘relevant’ parts

dBt = /̃/tdB̃t + /̃/tdβt, (3.2)

as described in Elworthy-Yor [23] for gradient systems and Elworthy-LeJan-Li [17],
[15] more generally. Here

(i) /̃/t(ω) : Rm → Rm is an orthogonal transformation of Rm, mapping kerX(x0)
to kerX(xt(ω)), given by parallel translation along {xt : 0 ≤ t ≤ T} using a
connection on the trivial Rm-bundle over M , canonically determined by X .

(ii) B̃t :=
∫ t

0
/̃/−1

s K⊥(xs)dBs, for K⊥(x) the orthogonal projection of Rm onto
[ker(X(x))]⊥; so {B̃t : 0 ≤ t ≤ T} is a Brownian motion on [kerX(x0)]⊥. It
has the same filtration as that of {xt : 0 ≤ t ≤ T}.

(iii) βt :=
∫ t

0
/̃/−1

s K(xs)dBs with K(x) = 1 −K⊥(x); so {βt : 0 ≤ t ≤ T} is an
F∗-Brownian motion on kerX(x0), independent of {xs : 0 ≤ s ≤ T}. From the
point of the view of the solution {xt : 0 ≤ t <∞} it is the ‘redundant noise’.

From Elworthy-LeJan-Li [16] or equation (4.16) p79 of [15], we have the covariant
Itô equation for vt ≡ TIt(h) any h ∈ H , using the connection ∇1′ on TM , defined
via (2.9),

D1′vt = ∇vtX(/̃/tdβt)−
1
2

Ric#(vt)dt+∇1
vt
Adt+X(xt)ḣtdt (3.3)
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which may be written, using notation (2.10),

IDvt = ∇vtX(/̃/tdβt) +X(xt)ḣtdt. (3.4)

The equation (3.3) comes from (3.2) and the defining property, (2.3), of the connection.

For almost all σ ∈ Cx0M and h ∈ H define

TIσ(h) = E {TωI(h)|x·(ω) = σ} . (3.5)

From (3.4), as in [15], we obtain a key property

Property 3.1 ( Elworthy-Li [24][19]) Suppose the connection defined by the SDE (2.5)
is the same as that defining H. Then the map TIσ gives a projection

TIσ : H → Hσ

for almost all σ ∈ Cx0M . It is given by

TIσ(h)t = Wt

∫ t

0

W−1
s X(σs)ḣsds

with isometric right inverse v 7→
∫ ·
0
Yσ(s)

( ID
dsvs

)
ds.

3.2 Some useful lemmas
Lemma 3.1 Let (Mt, 0 ≤ t ≤ T ) be a continuous local martingale with respect to
some filtration G∗, with values in L(Rk;G) for some separable Hilbert space G. Sup-
pose the tensor quadratic variation of (Mt) has a continuous density with respect to t.
Then the map

f 7→
∫ T

0

dMs(fs).

is continuous in probability as a map

L0
(
Ω,G0, P ; L2([0, T ]; Rk)

)
−→ L0 (Ω,GT , P ;G)

Proof Suppose {fn, n ≥ 1} is a sequence of G0 measurable functions converging in
probability to f . For m = 1, 2, 3, . . ., set τm = inft>0{supn{

∫ t

0
|fn(s)|2ds} ≥ m},

giving it the value T if the set is empty. Note that by going to a subsequence which
converges almost surely we can assume that supn{

∫ T

0
|fn(s)|2ds} is almost surely

finite and so these times increase to T almost surely. They are also G0-measurable and
so can be used as stopping times. The processes{χ[0,τm)(·)fn}∞n=1 are bounded and so
converge in Lp to χ[0,τm)(·)f for each m and p < ∞. Their stochastic integrals, after
localisation, will then converge in Lp and the result follows. �

The next proposition extends the main technical tool used in Aida-Elworthy [2].
Compactness of M is not used though non-explosion of the underlying diffusion needs
to be assumed. First we record an easy consequence of the Burkholder-Davis-Gundy
inequalities.
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Lemma 3.2 For 0 < p < ∞ let cp, Cp be the constants in the Burkholder-Davis-
Gundy inequalities. If {Zt : 0 ≤ t ≤ T} is a real-valued continuous local martingale
with respect to a filtration {Gt : 0 ≤ t ≤ T} with Z0 = 0, then almost surely

cpE
{
〈Z,Z〉

p
2
T | G0

}
≤ E

{
sup

0≤t≤T
|Zt|p | G0

}
≤ CpE

{
〈Z,Z〉

p
2
T | G0

}
.

Proof Let λ be non-negative, G0-measurable, and bounded. Then {λ
1
pZt : 0 ≤ t ≤ T}

is a G∗-local martingale to which we can apply the Burkholder-Davis-Gundy inequali-
ties to see

cpEλ〈Z,Z〉
p
2
T ≤ Eλ sup

0≤t≤T
|Zt|p ≤ CpEλ〈Z,Z〉

p
2
T

giving the result. �

Set Fx0 = σ{xs : 0 ≤ s ≤ T}.

Proposition 3.3 Assume condition (M0) holds. Then for all 1 ≤ p < ∞ there is a
constant αp with

E
{

sup
0≤s≤T

∣∣W−1
s TIs(h)

∣∣p
Tx0M

∣∣∣ Fx0

}
≤ αp ‖h‖p

H , all h ∈ H a.s.

Proof Take h ∈ H . We only need to show the inequality for p ≥ 2. From (3.4) we
have the Itô equation for ut := W−1

t (TIt(h)):

dut = W−1
t ∇Wt(ut)X

(
/̃/tdβt

)
+W−1

t X(xt)(ḣt)dt (3.6)

giving

sup
0≤t≤τ

|ut|p ≤ 2p−1 sup
0≤t≤τ

∣∣∣∣∫ t

0

W−1
s ∇Ws(us)X

(
/̃/sdβs

)∣∣∣∣p
+ 2p−1 sup

0≤t≤τ

∣∣∣∣∫ t

0

W−1
s X(xs)(ḣs)ds

∣∣∣∣p (3.7)

for any 0 ≤ τ ≤ T . Set Gt = Ft ∨Fx0 . Then (β·) is a G∗-Brownian motion and so we
can apply Lemma 3.2 to give

E

{
sup

0≤t≤τ

∣∣∣∣∫ t

0

W−1
s ∇Ws(us)X

(
/̃/sdβs

)∣∣∣∣p ∣∣∣ Fx0

}

≤ CpE


∫ τ

0

∑
j

∣∣W−1
s ∇Ws(us)X

j
∣∣2 ds


p
2 ∣∣∣ Fx0


for Xj(x) = X(x)(ej) where e1, . . . , em is an orthonormal base for Rm. Since p ≥ 2,
condition (M0) plus Jensen’s inequality gives

E
{(∫ τ

0

∑
j

∣∣W−1
s ∇Ws(us)X

j
∣∣2 ds) p

2
∣∣∣Fx0

}
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≤ const.
(
||| sup
0≤s≤τ

∣∣∣W−1
s |Exs

∣∣∣
L(Exs ;Tx0M )

|||L∞
)p

·(
||| sup
0≤s≤τ

|∇Ws(−)X|L(Tx0M ;L2(Rm;Exs )) |||L∞
)p(

τp/2−1
)
E
{∫ τ

0

|us|p ds
∣∣∣Fx0

}
≤ const.

∫ τ

0

E
{

sup
0≤r≤s

|ur|p
∣∣Fx0

}
ds.

Applying condition (M0) to the second term on the right hand side of (3.7) we see that
(3.7) leads to

E
{

sup
0≤t≤τ

|ut|p
∣∣Fx0

}
≤ const.

∫ τ

0

E
{

sup
0≤r≤s

|ur|p
∣∣Fx0

}
ds+ const. (‖h‖H)p

and the result follows by Gronwall’s lemma. �

3.3 The pull back map I∗ and the push forward map TI(−)

If f : Cx0M → R is Fréchet C1 with bounded derivative df : TCx0M → R we see
that I∗(df )ω := df ◦ TωI is almost surely defined as a continuous linear functional on
H , (and by the usual approximation techniques this is d̄(f ◦I)ω). Similarly we can pull
back any geometric 1-form φ : TCx0M → R to obtain an H-form I∗(φ) = φ(TI−)
on C0Rm. If f ∈ L2(Cx0M ; R) is an arbitrary element in Dom(d̄) we have now the
H-form d̄fσ : Hσ → R for almost all σ ∈ Cx0M . Set vt = TIt(h) for h ∈ H . From
Bismut’s formula (3.1) we cannot expect v· to be inH and thus the usual pull back map
I∗ : Λ1 → L0(Ω;H∗) defined by I∗(φ)(h) = φ(TI(h)), on geometric differential 1-
forms does not obviously extend to H-forms. In particular it is not at all clear that we
can define I∗(d̄f ). As shall be seen below we will need to interpret φ(v·) as a stochastic
integral.

Theorem 3.4 Under the standing assumption Assumption (X), the map φ 7→ I∗φ :=
φ◦TI defined on measurable geometric forms on Cx0M extends to a continuous linear
injective map

I∗ : L0ΓH∗ −→ L0 (C0Rm;H∗)

from measurable H-one forms on Cx0M to measurable H-one -forms on C0Rm, using
the topology of convergence in probability. The map is given by the Itô stochastic
integral

I∗(φ)(h) =
∫ T

0

〈
IDφ#

s

ds
,∇TIs(h)X(/̃/sdβs) +X(xs)(ḣs) ds

〉
xs

, h ∈ H (3.8)

using the filtration Gt := Fβ
t ∨ Fx0 , 0≤ t ≤ T . Moreover for 1 ≤ p <∞,

(a) the map I∗ restricts to a continuous linear map

I∗ : Lp+εΓH∗ −→ Lp (C0Rm;H∗) (3.9)

for any ε > 0. If condition (M0) holds, (3.9) holds for ε = 0.

(b) if φ ∈ L0ΓH
E {I∗(φ(−)) |Fx0 } = φ(TIx·−) (3.10)

and
‖φ‖Lp ≤ ‖I∗(φ)‖Lp . (3.11)
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Consequently I∗[L0ΓH∗]∩Lp(C0Rm;H) is closed inLp and is contained in I∗[LpΓH∗]
with equality if condition (M0) holds.

Proof (1) For h ∈ H set vt = TIt(h). From (3.4 ),

vt = Wt

∫ t

0

W−1
s ∇vs

X(/̃/sdβs) + Wt

(
X(x·)(ḣ·)

)
. (3.12)

Consider φ(v·) for φ a geometric 1-form. We can treat φ as an H-form by restriction.
As such it has a dual H-vector field φ#, so if u ∈ Hσ then

φ(u) = φσ(u) =
∫ T

0

〈
ID
dt
ut,

ID
dt
φ#

t (σ)
〉

σ(t)
dt.

Thus

φ(v·) = φ

(
Wt

∫ t

0

W−1
s ∇vsX(/̃/sdβs)

)
+
∫ T

0

〈
ID
dt
φ#

t , X(xt)ḣt

〉
dt (3.13)

For the second term on the right hand side, we have∣∣∣∣∣
∫ T

0

〈
ID
dt
φ#

t , X(xt)ḣt

〉
dt

∣∣∣∣∣ ≤ ‖φ#‖Hx·
‖h‖H , a.s.

Consequently the map h 7→ φx· (W·(X(x·)(ḣ·)) is in H∗ almost surely. For p = 0
or 1 ≤ p ≤ ∞ it gives an element of Lp(C0Rm;H∗) depending continuously on the
restriction of φ in LpΓH∗.

(2) For the more interesting first term on the right hand side of (3.13),

Φ(h, φ) ≡ φ

(
W·

∫ ·

0

W−1
s ∇vsX(/̃/sdβs)

)
, (3.14)

we assume that φ is a geometric differential form on Cx0M which extends to give linear
functionals on the L2 tangent spaces L2TσCx0M , for some choice of a Riemannian
metric on TM extending that of E. Then there is a section α of the vector bundle
L2TCx0M → Cx0M such that if u ∈ L2TσCx0M then

φ(u) =
∫ T

0

〈α(σ)t, ut〉σ(t) dt. (3.15)

Assume α is in L2, i.e.
∫
Cx0M

‖α(σ)‖2L2 dµx0(σ) < ∞. We first show that for such φ
the right hand side of (3.8) makes sense and agrees with the pull back φ(v·). It is easy
to verify that

φ#
t = Wt

(
Π(W−1

· )∗
∫ T

·
W ∗

s αs ds

)
, (3.16)

whereW ∗
r : Txr

M → Tx0M is the adjoint ofWr. Let e1, . . . , en−p be an orthonormal
base for ker[X(x0)]. Set ej

s = /̃/se
j and βj

s =
〈
βs, e

j
〉

Rm . Then

Φ(h, φ) =
∑

j

φ

(
W·

∫ T

0

χ[0,·](s)W−1
s ∇vsX(ej

s) dβj
s

)

=
∑

j

∫ T

0

φ
(
χ[0,·](s)W s

· ∇vsX(ej
s)
)
dβj

s
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where W s
t = W−1

t Ws, since φx· is Fx0 = G0 measurable. Using (3.15) this gives

Φ(h, φ) =
∑

j

∫ T

0

{∫ T

s

〈
αt,W

s
t ∇vs

X(ej
s) dt

〉}
dβj

s

=
∫ T

0

〈∫ T

s

(W s
t )∗ αt dt,∇vs

X
(
/̃/sdβs

)〉
xs

=
∫ T

0

〈
ID
ds
φ#

s ,∇vsX
(
/̃/sdβs

)〉
xs

.

This shows that φ(v·) = I∗(φ) agrees with the right hand side of (3.8), as expected.

(3) In general for ψ a measurable H-form define

Φ̃(ψ)t :=
∫ t

0

〈
ID
ds
ψ#

s ,∇TIs(−)X
(
/̃/sdβs

)〉
xs

, 0 ≤ t ≤ T.

Note that (Φ̃(ψ)t, 0 ≤ t ≤ T ) is a local G∗-martingale with values in H∗ since∫ T

0

sup
‖h‖H≤1

∣∣∣∣(∇TIs(h)X)∗
(

ID
ds
ψ#

s

)∣∣∣∣2
xs

ds <∞, a.s.

using the fact that

sup
0≤s≤T

sup
‖h‖H≤1

|(∇TIs(h)X)|2L(Rm;Exs ) <∞ a.s. .

The usual stopping time argument, see Lemma 3.1, shows that Φ̃(ψ)(−) is a continuous
map from L0ΓH∗ to L0(C0Rm;H∗).

To see that the pull back map of a geometric differential 1-form φ evaluated at h
agrees with the right hand side of (3.8), we only need to show that Φ̃(φ)(h) = Φ(h, φ).
For this define a sequence of differential forms φn, which extends over L2TCx0M , by

φn(σ)(u) = φ

(
//·(σ)

∫ T

0

λn(s− ·)//−1
s (σ)usds

)

for suitable λn : Rn → Rn, n = 1, 2, . . . so that φn converges to φ on (TσCx0M )∗ for
almost all σ, and observe that Φ̃(φn)(h) → Φ̃(φ)(h) in particular from the convergence
of φn in H∗ and Lemma 3.1.

Furthermore by the Burkholder-Davis-Gundy inequalities, [8], for 0 < p <∞

E
∣∣∣Φ̃(ψ)

∣∣∣p ≤ CpE
∣∣∣ ∫ T

0

∣∣∣∣(∇TIs(−)X)∗
(

ID
ds
ψ#

s

)∣∣∣∣2
L2(H;Rm)

ds
∣∣∣p/2

≤ CpE
{

sup
0≤s≤T

∣∣(∇TIs(−)X)∗
∣∣p
L2(H;L(Exs ;Rm)) ‖ψ‖

p
H∗·

}
. (3.17)

For 1 ≤ p <∞ this gives by Hölder’s inequality, for ε > 0,∣∣∣Φ̃(ψ)
∣∣∣
Lp
≤ const. |||ψ|||Lp+ε · ||| sup

0≤s≤T
|TIs(−)|L(H;Txs M ) |||L p(p+ε)

ε
.
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Since sup0≤s≤T |TIs(−)| lies in Lq for all 1 ≤ q <∞ we see that Φ̃ gives a continu-
ous linear map

φ̃ : Lp+εΓH∗ −→ Lp (C0Rm;H∗)

for all 1 ≤ p <∞ and ε > 0.
Combining the two terms in (3.13) we obtain a continuous linear map

ψ 7→
∫ T

0

〈
ID
dt
ψ#

t ,∇TIt(−)X
(
/̃/tdβt

)
+X(xt)(

d

dt
−)
〉

xt

dt

from Lp+εΓH∗ to Lp(C0Rm;H∗) in the relevant range of 1 ≤ p < ∞, ε > 0, which
agrees with

ψ 7→ I∗(ψ)

when ψ is an L∞ section of (L2TCx0M )∗.
Supposing furthermore that condition (M0) holds, observe that (3.17) gives

|||Φ̃(ψ)|||Lp ≤ (Cp)1/p |||ψ|||Lp · |||E
{

sup
0≤s≤T

∣∣∇TIs(−)X
∣∣p ∣∣∣Fx0

}
|||L∞

with

E
{

sup
0≤s≤T

∣∣∇TIs(−)X
∣∣p ∣∣∣Fx0

}
≤ sup

0≤s≤T
|∇Ws(−)X|pL(Tx0M ;L(Rm;Exs )) E

{
sup

0≤s≤T

∣∣W−1
s TIs(−)

∣∣p
L2(H;Tx0M )

∣∣∣Fx0

}
which is essentially bounded by condition (M0) and Proposition 3.3. Thus in this case
we can take ε = 0 and (a) is proved.

To see that I∗ : L0 → L0 is injective note that by (3.8) and the independence of β
and Fx0 ,

E {I∗(φ(−)) |Fx0 } =
∫ T

0

〈
ID
ds
φ#

s , X(xs)(
d

ds
−)
〉

xs

ds = φ(TIx·−)

(with a suitable interpretation of the conditional expectation if I∗(φ) is not in L1, e.g.
see Elworthy-LeJan-Li [15] p66). Using the inverse of TI, see Property 3.1 we obtain

φx· (−) = E
{
I∗(φ)

(∫ ·

0

Yxs·

(
ID
ds
−
)
ds

)∣∣∣∣Fx0

}
. (3.18)

This proves injectivity, giving a left inverse for I∗.
Moreover since v 7→

∫ ·
0
Yxs

( ID
dsvs

)
ds is an isometry of Hx· → H almost surely

we see

‖φ‖Lp = ‖E {I∗(φ)|Fx0} ‖Lp

≤ ‖I∗(φ)‖Lp

completing the proof. �

Remark 3.5 Although the term ID
dsφ

#

s appearing in (3.8) may depend on the whole
path {xs : 0 ≤ s ≤ T}, the stochastic integral there can and was considered as an Itô
integral by regarding β· as a martingale with respect to Fx0 ∪ Ft. We can also treat it
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as a Skorohod integral, c.f. X-D Li [34] for pull backs by the stochastic development
map. In fact if φ ∈ Lp+εΓH the stochastic integral can be written as∫ T

0

〈
∇TIs(−)Y

(
ID
ds
φ#

s ◦ I
)
, dBs

〉
and interpreted as a Skorohod integral on C0Rm, i.e. as

(dq)∗
(
α 7→

∫ T

0

χ[0,·](s)
〈
∇TIs(−)Y (

ID
ds
φ#

s ◦ I),
d

ds
αs

〉
Rm

ds

)

for 1
p + 1

q = 1 when 1 < p <∞. Here

dq ≡ dq
H∗ : Dom(dq) ⊂ Lq(C0Rm;H∗) −→ Lq(C0Rm; L2(H;H∗)).

Proof Set G = L2

(
H;L2,1

0 ([0, T ];Tx0M)
)

. Define θ : Ω → L2(H;G) by

θ(α)(h)τ =
∫ T

0

χ[0,τ ](s)W−1
s ∇TIs(h)X(α̇s)ds, α, h ∈ H, 0 ≤ τ ≤ T.

Then

(dq
G)∗(θ)(−)τ =

∫ T

0

χ[0,τ ](s)W−1
s ∇TIs(−)X(dBs) ∈ L(H;Tx0M ).

Suppose first that φ is smooth and cylindrical. Then

Φ(−, φ) = φx

(
W·

∫ T

0

χ[0,·](s)W−1
s ∇TIs(−)X(dBs)

)
= φx (W·(d

q
G)∗(θ)(−)·) .

Now, if {Ek}∞k=1 is an orthonormal base for H , g : C0Rm → R is C∞ smooth
cylindrical, and h ∈ H ,

E [gφx· (W·(d
q
G)∗θ(−)·) (h)] = E

[
gφx·

(
W·(d

q

L2,1
0 ([0,T ];Tx0M )

)∗(θ(−)(h))
)
·

]

= E

∑
j

dq (gφx· (W·−)) (Ej)(θ(Ej)(h)·)


= E

∑
j

dqg(Ej)φx· (W·θ(Ej)(h)·)

+ E

∑
j

gdq(φx· (W·−))(Ej)
(
θ(Ej)(h)·

)
= E 〈dqg, φx· (W·θ(−)(h)·〉H∗ + E

∑
j

gdq(φx· (W·−))(Ej)
(
θ(Ej)(h)·

) .
Furthermore∑

j

d(φx· (W·−))(Ej)(θ(Ej)(h)·)

=
∑

j

d(φx· (W·−))
(∫ ·

0

K⊥(xs)Ėj
sds

)
(θ(
∫ ·

0

K(xs)Ej
sds)(h)),



PULL BACKS OF H -FORMS BY ITÔ MAPS. 18

since TI(Ej) = TI(
∫ T

0
K⊥(xs)Ėj

sds) and ∇TIs(·)X(Ėj
s ) = ∇TIs(·)X(K(xs)(Ėj

s ))
by the defining property of ∇, Proposition 2.1. Note that the expression is independent
of the choice of basis and so vanishes giving

Φ(h, φ) = φx (W·(d
q
G)∗(θ(−)·(h))) = (dq

H∗)
∗ (φx· (W·θ(−)(h)·)) . (3.19)

Note that for h ∈ H ,

φx· (W·θ(−)(h))#t =
∫ t

0

∇TIs(h)Y (
ID
ds
φ#

s )ds ∈ H,

to obtain the desired result.
For general φ ∈ Lp+εΓH we can take C∞ cylindrical one-forms φj , j = 1 to

∞, converging to φ in Lp+εΓH. By the Theorem, I∗(φj) → I∗(φ) in Lp and we see
therefore that Φ(−, φj) is convergent in Lp. Thus ∇TIs(−)Y−( ID

dsφ
#
s ) is in the domain

of (dq)∗ and the result holds. �

Remark 3.6 From (3.8) we see that I∗(λφ) = λI∗(φ) for all φ ∈ L0ΓH∗, if λ ∈
L0(Cx0M ; R). This is because λ ◦ I ∈ G0 for all such λ. From the Skorohod integral
representation,

I∗(φ) =
∫ T

0

〈
∇TIs(−)Y

(
ID
ds
φ#

s ◦ I
)
, dBs

〉
+
∫ T

0

〈
ID
ds
φ#

s , X(xs)ḣs

〉
ds,

this is less obvious. However for sufficiently regular λ,∫ T

0

〈
∇TIs(−)Y

(
ID
ds

(
λφ#

s

)
◦ I
)
, dBs

〉
= λ

∫ T

0

〈
∇TIs(−)Y

(
ID
ds
φ#

s ◦ I
)
, dBs

〉
−
∫ T

0

〈
∇TIs(−)Y

(
ID
ds
φ#

s ◦ I
)
,
d

ds
∇(λ ◦ I)

〉
xs

,

and as for the proof of Remark 3.5 the second term vanishes. �

For suitable h : C0Rm → H define a measurable vector field TI(h) on Cx0M by

TI(h)(σ) = E {TI(h(·)) |I(·) = σ }

for µx0-almost all σ in Cx0M . Note that if h is Fx0 measurable with h = h̄ ◦ I
then TI(h)(σ) = TIσ(h̄(σ)) for TI as in Property 3.1. For completeness we give the
following extension of Theorem 2.2 of Elworthy-Li [19]:

Corollary 3.7 For δ > 0 and 1 < q < ∞ the map h 7→ TI(h) gives a continuous
linear map

TI(−):Lq(C0Rm;H) → Lq−δΓH.
(This map is the co-joint of I∗ in the sense that∫

C0Rm

I∗(φ)(h)dP =
∫
C0Rm

φ
(
TI(h)

)
dP (3.20)

for φ ∈ Lp+εΓH∗ and h ∈ Lq(C0Rm;H), taking ε > 0 and 1
p + 1

q = 1.)
If Condition (M0) holds we can allow δ = 0 and also q = ∞, and TI(−) :

Lq(C0Rm;H) → LqΓH is surjective, 1 < q ≤ ∞.
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Proof First note that when φ is a true form∫
C0Rm

I∗(φ)(h)dP = E {φ (E {TI(h) |Fx0 })} = Eφ
(
TI(h)

)
so (3.20) holds and it holds for φ ∈ Lp+εΓH∗, h ∈ Lq(C0Rm;H) for 1

p + 1
q = 1 by

continuity, from Theorem 3.4. Consequently for such φ and h,∣∣∣ ∫
C0Rm

φ
(
TI(h)

)
dP
∣∣∣ ≤ |||I∗(φ)|||Lp · |||h|||Lq ≤ const. · |||φ|||Lp+ε |||h|||Lq .

Since this holds for all φ in Lp+ε we see that TI(h) ∈ L
p+ε

p+ε−1 and is continuous linear
in h into L

p+ε
p+ε−1 . Thus if h ∈ Lq then TI(h) ∈ L

p+ε
p+ε−1 for all ε > 0 so that TI(−)

is continuous linear from Lq to Lq−δ for any δ > 0, with δ = 0 allowed if condition
(M0) holds.

Surjectivity comes from the fact that TI(−) has a right inverse

v 7→
∫ ·

0

Yxs

(
ID
ds
vs ◦ I

)
ds (3.21)

mapping LqΓH to Lq (C0Rm;H) as in Property 3.1. �

Analogously to (3.16) we have also:

Remark 3.8 Let N : [0, T ] × Cx0M → Rp be a continuous semi-martingale on the
filtered probability space {Cx0M,µx0 ,Fx0

∗ } where Fx0
t = σ{xs : 0 ≤ s ≤ t}. Sup-

pose α· is a locally bounded section of L(Rp;L2TCx0M ) which is Fx0
∗ adapted. Then

the mapping

L2H → L0(Cx0M ; R)

U 7→
∫ T

0

〈U (σ), α(σ)sdNs(σ)〉σ(s)

can be considered as the map U 7→ ϕ(U (·)) for ϕ the H-one-form determined by the
H-vector field ϕ# with

ϕ#
t = Wt

(
Π(W−1

· )∗
∫ T

·
W ∗

s αsdNs

)
, 0 ≤ t ≤ T.

If the martingale part of N· is zero then no adapteness is required.

Remark 3.9 The proof of Theorem 2.2 in Elworthy-Li [19] as it stands has a trivial
mistake in the last line and only gives TI(h) ∈ L1 when h ∈ L2. However it is easily
modified by not taking expectations in the proof of Lemma 3.3 of [19]: this shows
that TI(h) ∈ L∞ if h ∈ L2(C0Rm, σ{βs : 0 ≤ s ≤ T};H), not just L2, using
the observation that sup0≤r≤T E{|TIr|2

∣∣Fx0} < ∞ from Aida-Elworthy [2], i.e. a
special case of Proposition 3.3 above.
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4 Sobolev calculus on Cx0M and its intertwining by Itô maps

If M is given a Riemannian metric then Cx0M gets a Finsler structure defined by

‖v‖σ := sup
0≤t≤T

|vt|σ(t), v ∈ TσCx0M.

By the compactness ofM different metrics produce uniformly equivalent Finsler norms.
From Elworthy-LeJan-Li [15] and Elworthy-Ma [26] and the compactness of M , for
almost all σ the inclusion Hσ ↪→ TσCx0M is continuous and its norm is in Lp as a
function of σ for all p ∈ [1,∞) and is essentially bounded for any of these Finsler
norms if condition (M) holds.

A function f : Cx0M → R will be said to be BC1 if it is Fréchet differentiable
and is bounded together with its differential df considered as a section of T ∗Cx0M ,
again using any of these Finsler structures. Note that then df restricts to H to give an
element of LpΓH∗ for all 1 < p < ∞ and lies in L∞ΓH∗ if condition M holds, by
the definition of H and Proposition 2.2.

Denote by Cyl the space of smooth cylindrical functions on Cx0M . Let Dom(dH)
be a linear subspace of L∞(Cx0M ; R) with

Cyl ⊂ Dom(dH) ⊂ BC1. (4.1)

Define
d = dH : Dom(dH) → ∩1≤p<∞L

pΓH∗

by restriction:
(dHf )σ = dfσ|Hσ

.

LetDom(dH) be the space of equivalence classes of Dom(dH) under equality up to
sets of µx0-measure zero. However after this section we will not distinguish between
Dom(d) and Dom(d). By a standard result the set of smooth cylindrical functions is
dense in Lp(Cx0M ; R), 1 ≤ p <∞, and therefore so is Dom(dH).

We next give the proof of closability of dH restricted to Dom(dH) in our context.
For classical Wiener space this is one of the basic results of Malliavin calculus and
gives for each 1 ≤ p <∞ a closed linear operator

d ≡ dp : Dom(dp) ⊂ Lp(C0Rm; R) → Lp(C0Rm;H∗).

This is proved by the standard method of integration by parts in Nualart [38]. (Strictly
speaking his basic domain does not consist of BC1 functions but it is easy to see, and
well known, that this gives the same closures dp.) On the path space dH is closable,
from Elworthy-LeJan-Li [15], in L2(Cx0M ; R). For p > 1 the following theorem
follows in the same way from the integration by parts results in Elworthy-LeJan-Li
[16], [15]. Related results in this context and a detailed discussion of the Dirichlet
forms which arise can be found in Elworthy-Ma [26] and [22]. See also Driver [9] and
Hsu [29].

Theorem 4.1 For 1 ≤ p <∞ the operator dH can be considered as a linear operator

dH : Dom(dH) ⊂ Lp(Cx0M ; R) → LpΓH∗.

It is closable for each 1 < p <∞ and for p = 1 if condition (M0) holds.
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Proof It is not immediately obvious that dH is defined on Dom(dH): we need to
know that if f ∈ Dom(dH) is µx0-almost surely 0 then dHf = 0 almost surely (c.f.
Proposition 3.5 in Elworthy-Ma [26]). This comes together with closability from the
following proof that if fj ∈ Dom(dH) has fj → 0 in Lp and dHfj → θ in LpΓH∗ then
θ = 0. For this note that fj ◦ I → 0 in Lp(C0Rm; R) and fj ◦ I belongs to the domain
of d, as is well known, for example by Wong-Zakai approximations. Moreover

dp(fj ◦ I) = dHfj ◦ TI = I∗(dHfj).

By Theorem 3.4, I∗(dHfj) converges to I∗(θ) in Lp′ for any p′ ∈ [1, p) and for
p′ = p = 1 if condition (M0) holds. Since dp′ for C0Rm is closed this shows that
I∗(θ) = 0. But Theorem 3.4 shows I∗ is injective and so θ = 0 as required. �

Let dp : Dom(dp) ⊂ Lp(Cx0M ; R) → LpΓH∗, 1 ≤ p < ∞, be the closures of dH
given by Theorem 4.1.

We now comes to our main result on the chain rule, or intertwining. For 1 ≤ p′ ≤
p <∞ let

I∗:Lp(Cx0M ; R) → Lp(C0Rm; R) ↪→ Lp′ (C0Rm; R)

denote the map I∗f = f ◦ I as well as the map from LpΓH∗ to Lp′ (C0Rm;H∗), as
defined by Theorem 3.4. We will see below that the Itô map for our s.d.e. can be
used in some sense as a substitute for a chart for the ‘differential structure’ given by
the calculus. See also Aida-Elworthy [2], Aida [1], Elworthy-Li- [19] for the gradient
case, Elworthy-LeJan-Li [15], Elworthy-Li [20] more generally, and for related work
see Fang-Franchi [27], [34] and Cruzeiro-Malliavin [6].

Theorem 4.2 Suppose 1 ≤ p′ ≤ p < ∞, with 1 < p′ < p unless condition (M0)
holds. The operators

I∗dp : Dom(dp) ⊂ Lp(Cx0M ; R) −→ Lp′ (C0Rm;H)

and

dp′I∗ :
{
f ∈ Lp

∣∣ I∗f ∈ Dom(dp′ )
}
⊂ Lp(Cx0M ; R) −→ Lp′ (C0Rm;H)

are densely defined. Moreover

(i) I∗dp is closable in general and closed if condition (M0) holds and p = p′;

(ii) dp′I∗ is closed.

(iii)
I∗dp ⊂ dp′I∗. (4.2)

Proof The denseness of the domain of dp′I∗ and the fact that it is closed are automatic
by continuity of I∗, giving (ii). It is clear that I∗dp is densely defined.

For (i) first suppose that condition (M0) holds and p = p′. Then I∗ on Lp H-forms
is continuous and has closed range, by Theorem 3.4. It follows that its composition
I∗dp with the closed operator dp is closed. In the general case suppose 1 ≤ p′ < p and
{fj}∞j=1 is a sequence in Dom(dp) with fj → 0 in Lp(Cx0M ; R) and I∗(dpfj) → θ in
Lp′ (C0Rm;H∗), some θ. By Theorem 3.4(b) we know θ = I∗(α) for some α ∈ Lp′ΓH
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with dpfj → α in Lp′ . Since fj → 0 in Lp′ , dp′ is closed and Dom(dp) ⊂ Dom(dp′ ),
we have

α = lim
j→∞

dpfj = lim
j
dp′fj = 0.

Thus θ = 0
As observed in the proof of closability, if f ∈ Dom(dH) then I∗(f ) ∈ Dom(dq) all

1 ≤ q <∞ and
I∗(dHf ) = dq(I∗f ), f ∈ Dom(dH)

From this and using (i), (ii)

(I∗dH)p,p′ =
(
dp′I∗ |Dom(dH)

)p,p′

⊂ dp′I∗

where ()p,p′ indicates the closure as an operator from Lp(Cx0M ; R) to Lp′ (C0Rm; R).
The inclusion (4.2) will follow if we show

(I∗dH)p,p′ = (I∗dp)p,p′ .

This is clear since if f ∈ Dom(I∗dp) ⊂ Dom(dp) there exist fj ∈ Dom(dH) with
fj → f in Lp and dHfj → dpf in Lp, but by continuity of I∗ this implies that
f ∈ Dom((I∗dH)p,p′ ). �

Let IDp,1(Cx0M ; R), IDp,1(Cx0M ) or IDp,1 denote the domain of dp with its graph
norm

‖f‖IDp,1 = (|||dpf |||pLp + |||f |||pLp)
1
p .

Note that these spaces depend on the choice of Cyl ⊂ Dom(dH) ⊂ BC2. But see §7.1.
The boundedness of I∗ on ID2,1 in the next corollary was known from Aida-

Elworthy [2] for gradient Brownian stochastic differential equations.

Corollary 4.3 The pull back I∗ determines a continuous linear map

I∗ : IDp,1(Cx0M ; R) −→ IDp′,1(C0Rm; R),

for 1 < p′ < p <∞, with the property that

‖f‖IDp,1 ≤ ‖I∗(f )‖IDp,1 , for f ∈ ∪q>1IDq,1. (4.3)

If condition (M0) holds we can take 1 ≤ p′ = p <∞ and then the map I∗ has closed
range in the case of p = p′, and (4.3) holds for f ∈ ID1,1.

Proof From the theoremDom(dp) ⊂ Dom(dp′I∗). A comparison result of Hörmander,
(see Yosida [47], Theorem 2, §6 of chapter II, p79) therefore implies that there is a con-
stant Cp,p′ with

|||dp′I∗f |||Lp′ ≤ Cp,p′‖f‖p,1.

(Alternatively use Theorem 3.4.) This, plus the continuity of I∗ on Lp, gives the
required continuity of I∗ on IDp,1(Cx0M ; R) into IDp′,1(C0Rm; R).

Inequality (4.3) holds by (3.11) and the intertwining (4.2), and implies that I∗ has
closed range when p = p′ and Condition (M0) holds. �
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Remark 4.4 (1) As we see in Theorem 6.9 below, an outstanding question is whether
I∗[IDp,1(Cx0M ; R)] = IDp,1

Fx0 (C0Rm; R), the space of Fx0 measurable elements
of IDp,1(C0Rm; R). This appear to be unknown even for gradient Brownian mo-
tion systems, with Levi-Civita connection, on any space with curvature (e.g. Sn

any n).

(2) Even if Condition (M0) does not hold we see that for 1 < q ≤ p <∞,

I∗[IDq,1 (Cx0M ; R)] ∩ IDp,1 (C0Rm; R)

is closed in IDp,1(C0Rm; R). However, even given Condition (M0), we do not
know whether I∗(f ) ∈ IDp,1(C0Rm; R) and f ∈ IDq,1(Cx0M ; R), some 1 < q <
p <∞, imply that f ∈ IDp,1(Cx0M ; R). See section 6.1 below.

5 The divergence operator and the spaces IDp,1H

5.1 The divergence operator div

From now on we shall take Dom(dH) to be closed under multiplication by elements of
Cyl, the set of smooth cylindrical functions on the path space. Assume 1 < p < ∞
and 1

p + 1
q = 1. Define

div ≡ divp : Dom(divp) ⊂ LpΓH −→ Lp(Cx0M ; R)

to be the cojoint of −dq. That is V ∈ Dom(divp) if and only V # is in Dom(d∗) and
divpV := −d∗(V #). So V ∈ Dom(divp) if and only if V is in Lp and there is a
constant C(V ) such that,∣∣∣∣∫ df (V )dµx0

∣∣∣∣
Lp

≤ C(V ) · |f |Lp , ∀f ∈ IDq,1(Cx0M ; R).

If Condition (M0) holds we can take p = 1 and q = ∞. If it is necessary to distinguish
the underlying path spaces for the divergence operator, we shall use DomCx0M (divp)
or DomΩ(divp).

Define YY : H → H whose restriction to Hσ , σ ∈ Cx0M , is given by

YY σ(h)(·) =
∫ ·

0

Yσs

(
ID
ds
hs

)
ds, h ∈ H1

σ. (5.1)

Then TIσ(YY σ) : H → H is the identity map.
For any h : Cx0M → H define K⊥h : Cx0M → H by

(K⊥h)(σ)t =
∫ t

0

K⊥(σs)ḣ(σ)sds, 0 ≤ t ≤ T (5.2)

and for h : C0Rm → H write

(K⊥h)(ω)t =
∫ t

0

K⊥(xs(ω))ḣ(ω)sds, 0 ≤ t ≤ T.

Note that for all h : C0Rm → H ,

TI(K⊥h) = TI(h), TI(K⊥h) = TI(h). (5.3)
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Proposition 5.1 Let 1 < p < ∞. For any h ∈ Dom(divp) on the Wiener space, and
any 0 < δ < p− 1, TI(h) ∈ Dom(divp−δ) on the path manifold. Furthermore

div(TI(h)) = divh = −
∫ T

0

〈ḣs, dBs〉. (5.4)

If condition (M0) holds we take δ = 0 and also allow p = ∞.

Proof Take h ∈ Dom(divp) ∈ Lp(C0Rm;H) then by Corollary 4.3, for ε > 0,∫
d(I∗f )(h)dP = −

∫
I∗f (divh)dP, ∀ f ∈ IDq+ε,1(Cx0M ).

This implies that for all f ∈ IDq+ε,1(Cx0M ),∫
df
(
TI(h)

)
dµx0 =

∫
I∗(df )(h)dP = −

∫
I∗f (divh)dP = −

∫
f (divh)dµx0

and so for all h ∈ Dom(divp),

div(TI(h))(σ) = divh(σ)

and (5.4) holds since divh = −
∫ T

0
〈ḣs, dBs〉, the Skorohod integral. �

Corollary 5.2 Let 1 < p′ < p <∞. An H-vector field V is in the domain of divp′ if it
is in Lp′ and the vector field h on C0Rm given by

h := (YY V ) ◦ I : C0Rm → H

is such that ḣ is Skorohod integrable, i.e. h ∈ Dom(divp) for C0Rm. If so

(divV )(x·) = −E

{∫ T

0

〈
ID
ds
V (x·), X(xs)dBs

〉
xs

∣∣∣∣∣Fx0

}
(5.5)

where the right hand side is interpreted as the Skorohod integral. In this case

div(V ) = div(I∗(YY (V ))).

If condition (M0) holds we can take 1 < p = p′ ≤ ∞.

Let IDp,1
Fx0 be the closed subspace of IDp,1(Ω; R) consisting of Fx0 measurable

functions.

Corollary 5.3 If g ∈ IDp,1
Fx0 then dg(−) = dg(K⊥−) almost surely.

Proof Take h ∈ H . Then K⊥h ∈ IDq,1, a subset of Dom(div) by Kree-Kree [32].
Since by Proposition 5.1 divh = div

(
TI(h)

)
= div

(
TI(K⊥h)

)
,

Edg(h) = −Eg divh = −E (gE{divh|Fx0})

= −E
(
g div

(
TI(h)

)
◦ I
)

= −E
(
g div

(
TI(K⊥h)

)
◦ I
)

= −E
(
g div(K⊥h)

)
= Edg(K⊥h).

Replace h by λh where λ ∈ Cyl to conclude that almost surely dg(h) = dg(K⊥h). �

Finally we observe the following version of Corollary 5.2:
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Proposition 5.4 For an Lq H-1-form φ, if E{I∗φ|Fx0} ∈ DomΩ(d∗) then φ belongs
to DomCx0M (d∗) and

(d∗φ)σ = E{d∗E{I∗φ|Fx0}|I = σ} = d∗[φI(TII(−))](σ).

Proof Just note that for f ∈ Cyl,∫
〈d(I∗f ),E{I∗φ|Fx0}〉dP =

∫
〈I∗f,E{d∗E{I∗φ|Fx0}|Fx0}〉dP

=
∫
f (σ)E{d∗E{I∗φ|Fx0}|I = σ}dµx0(σ)

on one hand and, since E{I∗(−)|Fx0} is an isometry on one forms,∫
〈d(I∗f ),E{I∗φ|Fx0}〉dµ =

∫
〈E {I∗(df )|Fx0} ,E{I∗φ|Fx0})〉dP

=
∫
〈df, φ〉dµx0

on the other hand. �

5.2 Hilbert space valued Lp functions
Let G be a separable Hilbert space and B = H or H∗, or a similar ‘tensor bundle’.
Denote by LpΓB and LpΓ(G⊗ B) respectively the Lp sections of B and those of the
tensor product of the ‘bundle’ B with the trivial G bundle over Cx0M . We always use
⊗ to refer Hilbert space completions and ⊗0 the incomplete algebraic tensor products.
For each densely defined linear map T from Lp(Cx0M ; R) to LpΓB there is a naturally
defined linear operator TG ≡ Id⊗T from Lp(Cx0M ;G) to LpΓ(G⊗ B) with domain
Dom(TG) ≡ Dom(T )⊗0 G, namely

Dom(TG) =
{
F : Cx0M → G

∣∣ F (σ) =
n∑

j=1

fj(σ)gj , gj ∈ G, fj ∈ Dom(T ), n ∈ N
}

and such that TG(f ⊗ g) = T (f )⊗ g for f ∈ Dom(T ) and g ∈ G.

Proposition 5.5 If T with Dom(T ) is a closable operator then so is TG ≡ Id⊗T with
Dom(TG) = G⊗0 Dom(T ).

Proof Take Fn ∈ Dom(TG) converging to 0 in Lp(Cx0M ;G) with TFn → α. For
an orthonomal basis {ej} for G write Fn(σ) =

∑∞
j=1 f

j
n(σ)ej and α =

∑
j ej ⊗ αj .

Then Tf j
n → αj and f j

n → 0 in Lp as n→∞. Consequently αj = 0. �

Now take T to be dH with Dom(dH) the set of smooth cylindrical functions. Define

d ≡ dp ≡ dp,G : Dom(dp,G) ⊂ Lp(Cx0M ;G) → LpΓ(G⊗H∗) ∼ LpΓ(L2(H;G))

to be the closure of (dH)G which exists by Proposition 5.5. Its domain shall be denoted
by IDp,1(Cx0M ;G) and is the closure of Dom(d) ≡ G ⊗0 Dom(dH) under the graph
norm.

The following elementary lemma is useful in section 5.4.
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Lemma 5.6 Suppose 1 < p < ∞, allowing p = 1 if Condition (M0) holds. Let
G1 and G2 be two Hilbert spaces and θ : M → L(G1;G2) a C1 map. Suppose
f : Cx0M → L2([0, T ];G1) is in IDp,1

(
Cx0M ;L2([0, T ];G1)

)
. Then

Θ(f ) : Cx0M → L2([0, T ];G2)

given by σ 7→ [t 7→ θ(σt)(f (σ)t) is in IDp,1
(
Cx0M ;L2([0, T ];G2)

)
with

[dp (Θ(f ))σ (v)]t = (dθ)σt
(vt)(f (σ)t) + θ(σt)(dpfσ(v))t. (5.6)

Proof Take fn → f in IDp,1
(
Cx0M ;L2([0, T ];G1)

)
where

fn(σ) =
kn∑

j=1

λn
j (σ)hj

with λn
j real valued smooth cylindrical functions and hj ∈ L2([0, T ];G1). Then

Θ(fn)(σ)(t) =
kn∑

j=1

λn
j (σ)θ(σt)h

j
t .

Clearly Θ(fn) → Θ(f ) in Lp
(
Cx0M ;L2([0, T ];G2)

)
and Θ(fn) is Fréchet differen-

tiable as a map into L2([0, T ];G2). For v ∈ Hσ ,

[dH (Θ(fn))σ (v)]t =
kn∑

j=1

(
dHλ

n
j

)
σ

(v)θ(σt)h
j
t +

kn∑
j=1

λn
j (σ)(dθ)σt

(vt)h
j
t

= (dθ)σt
(vt)(fn(σ)t) + θ(σt)(dfn)σ(v)t)

and we see that dH (Θ(fn)) converges in Lp
(
Cx0M ;L2([0, T ];G2)

)
with limit given

by the right hand side of (5.6). Finally just approximate θ(σt) by a sequence of func-
tions θn ∈ IDp,1

(
L2([0, T ];G2)

)
, for example set

θn(σ)t =
t− tnj

tnj+1 − tnj
θ
(
σ(tnj+1)

)
+ θ

(
σ(tnj )

)
, tnj ≤ t < tnj+1

for suitable partitions 0 ≤ tn1 ≤ . . . ≤ tnj ≤ . . . ≤ T . �

5.3 Pull back of Hilbert space valued functions and H-forms
We follow the notation of section 5.2. For p = 2 there is the canonical isometry of
L2(Cx0M ; R)⊗G with L2(Cx0M ;G) mapping Dom(d)⊗G onto Dom(dG).

By a G-valued H-1-form φ on Cx0M we mean a measurable section of the bundle
L2 (H;G), (or equivalence class of such sections under almost sure equality). There
is the standard identification of L2 (Hσ;G) with G ⊗Hσ . It is given by (g ⊗ h)(v) =
〈h, v〉Hσ

g. We shall use φ# to denote the section of G ⊗ H corresponding to a G-
valuedH-1-form φ. Note that we can differentiate such φ# to obtain

(
1G ⊗ ID

ds

)
φ#

σ,s ∈
G⊗ Tσ(s)M , 0 ≤ s ≤ T , σ ∈ Cx0M .

If f : Cx0M → G is in IDp,1, its differential (df )σ ∈ L2(H;G) then determines the
gradient ∇f ∈ G⊗H by ∇f (σ) = (df )#σ . In the Nualart-Pardoux notation we obtain
(s 7→ Dsf ) ∈ Γ(G⊗ L2E) by the isometries

L2(H;G) ∼ G⊗H
1⊗ ID

ds∼ G⊗ L2E .
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Theorem 5.7 Theorem 3.4 and Theorem 4.2 and Corollary 4.3 hold forG-valued func-
tions. For a measurable G-valued H-1-form φ in Lp the pull back I∗(φ) : C0Rm →
L2 (H;G) is given by, for h ∈ H ,

I∗(φ)(h) =
∫ T

0

[(
1G ⊗

ID
ds

)
φ#

s

]# (
∇TIs(h)X(/̃/sdβs) +X(xs)(ḣs)ds

)
. (5.7)

Proof The proofs are essentially the same as those for the real valued case. Here we
assume that p = 2 to demonstrate the proof. If theG-valued φ has φ# =

∑k
j=1 gj⊗ψ#

j

where ψ#
j ∈ ΓH and gj ∈ G for j = 1 to k, we immediately obtain (5.7) from (3.8).

The general case and the rest of Theorem 3.4 follow by taking limits, in particular by
observing that (3.18) remains true in the G-valued case. The proof of Theorem 4.2 is
based on (3.18) and so is easily seen to extend to theG-valued case. The crucial remark
is that the stochastic integral in (5.7) can be considered as an L2(H;G)-valued integral
applied to h. To see this and perform the necessary estimates we need to show

∫ T

0

∥∥∥∥∥
[(

1G ⊗
ID
ds

)
φ#

s

]#
∇TIs(−)X

j

∥∥∥∥∥
2

L2(H,G)

ds

is finite almost surely for j = 1, . . . . ,m. First noted that the assumption that φσ :
H → G is in L2 implies that so is V 7→ φσ(W·V ) from L2E to G, where L2E is the
Hilbert bundle of E valued L2 tangent vector fields on Cx0M . Moreover

φσ(W·V ) =
∫ T

0

〈(
1G ⊗

ID
ds

)
φ#

s , Vs

〉
σ(s)

ds.

The norm of φσ(W·−) equals ‖φσ‖2L2(Hσ ;G) and is given by

‖φσ ◦W‖2L2(L2E;G) =
∫ T

0

∥∥∥∥(1G ⊗
ID
ds

)
φ#

s

∥∥∥∥2

L2(Eσ(s);G)
ds,

which is finite. Now for σ = I(ω),

∫ T

0

∥∥∥∥∥
[(

1G ⊗
ID
ds

)
φ#

s

]#
∇TωIs(−)X

j

∥∥∥∥∥
2

L2(H;G)

ds

≤
∫ T

0

∥∥∥∥∥
[(

1G ⊗
ID
ds

)
φ#

s

]#∥∥∥∥∥
2

L2(Eσ(s);G)

∥∥∇TωIs(−)X
j
∥∥2

L(H;Eσ(s))
ds

≤ ‖φσ ◦W‖2L2(L2E;G) · sup
s

∥∥∇TωIs(−)X
j
∥∥2

L(H;Eσ(s))

≤ constant · ‖φσ ◦W‖2L2(L2E;G) sup
s
‖TωI‖2L(H;TσCx0M ) <∞.

There are no difficulties with Corollary 4.3.
�
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5.4 The space IDp,1H
For 1 < p <∞, and allowing p = 1 if Condition (M0) holds, define

IDp,1H =
{
V ∈ LpΓH

∣∣ YY ·(V (·)) ∈ IDp,1(Cx0M ;H)
}
, (5.8)

Equip this space with the obvious norm:

‖V ‖IDp,1H = ‖YY (V (·))‖IDp,1(Cx0M ;H) = (E|YY (V )|p + E|d(YY (V ))|p)
1
p .

This depends only on the connection on E not on the specific stochastic differential
equation (2.5), or equivalently not on the particular choice of X as can be easily seen
by Lemma 5.6. In fact IDp,1H can also be described by covariant differentiation, see
§8.3 below. Similarly we can define IDp,1H∗:

IDp,1H∗ =
{
φ ∈ LpΓH∗ ∣∣ φ(XX(−)) ∈ IDp,1(Cx0M ;H∗)

}
. (5.9)

We have the following analogue of a fundamental result of Kree-Kree [32] for
C0Rm:

Theorem 5.8 For 1 < p′ < p < ∞, the set IDp,1H is contained in Dom(divp′ ) and
divp′ : IDp,1H → Lp′ (Cx0M ; R) is continuous. If Condition (M0) holds we may take
p = p′.

Proof Take r with p′ < r < p. If V ∈ IDp,1H then YY (V ) ◦ I ∈ IDr,1(Ω;H) ⊂
DomΩ(divr), by Theorem 5.7 and the corresponding result for Wiener space of Kree-
Kree [32]. Then V = TI(YY (V )) ∈ DomCx0M (divp′ ) by Proposition 5.1. Finally note
that

IDp,1H I∗(YY−)−→ IDr,1(Ω;H) div−−→ Lp′ (Ω; R)
conditional expectation

−→ Lp′ (Cx0M ; R)

is a continuous map and by Corollary 5.2, agrees with the divergence operator restricted
to IDp,1H. Note that the continuity also follows from the closed graph theorem. �

The following is a compliment of Proposition 5.1:

Proposition 5.9 For 1 < p <∞, set

U =
{
h ∈ IDp,1(Ω,H)

∣∣ TI(h) ∈ IDp,1H
}
. (5.10)

Then U is total in IDp,1(Ω;H) and thus total in the domain, Dom(divp), of the diver-
gence on Wiener space.

Proof Consider the family of functions

U1 ≡

{
k′· exp

(∫ T

0

〈k̇s, dBs〉 −
1
2

∫ T

0

|k̇s|2ds

) ∣∣∣ k′, k ∈ H} .
Since the exponential martingales are total in IDp,1(Ω; R) it is clear from the defi-

nition that U1 is total in IDp,1(Ω;H) and so it is sufficient to show that

Image[TI(h) : h ∈ U1] ⊂ IDp,1(H),
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or equivalently that YY (TI(h)) belongs to IDp,1(Cx0M ;H). In fact for

h· = k′· exp

(∫ T

0

〈k̇s, dBs〉 −
1
2

∫ T

0

|k̇s|2ds

)
,

we can write

h· = k′· exp

(∫ T

0

〈k̇s, //sdB̆s〉 −
1
2

∫ T

0

|K⊥(xs)k̇s|2ds

)

· exp

(∫ T

0

∫ T

0

〈k̇s,K(xs)dBs〉 −
1
2

∫ T

0

|K(xs)k̇s|2ds

)
.

TIt(h·) = exp

(∫ T

0

〈k̇s, //sdB̆s〉 −
1
2

∫ T

0

|K⊥(xs)k̇s|2ds

)

× E

{
TIt

(
k′· exp

∫ T

0

〈k̇s,K(xs)dBs〉 −
1
2

∫ T

0

|K(xs)k̇s|2ds

)∣∣∣∣∣Fx0

}
.

Set

ft = E

{
exp

(∫ T

0

〈k̇s,K(xs)dBs〉 −
1
2

∫ T

0

|K(xs)k̇s|2ds

)
|Fx0 ∨ Ft

}
.

Then (ft, 0 ≤ t ≤ T ) is a martingale with respect to {Fx0 ∨ Ft} and so

ft = exp
(∫ t

0

〈k̇s,K(xs)dBs〉 −
1
2

∫ t

0

|K(xs)k̇s|2ds
)
,

giving

E

{
TIt(k′·) exp

(∫ T

0

〈k̇s,K(xs)dBs〉 −
1
2

∫ T

0

|K(xs)k̇s|2ds

)∣∣∣∣∣Fx0

}

= E
{
TIt(k′·) exp

(∫ t

0

〈k̇s,K(xs)dBs〉 −
1
2

∫ t

0

|K(xs)k̇s|2ds
)∣∣∣∣Fx0

}
.

On the other hand, if we set

Vt = TIt(k′·) exp
(∫ t

0

〈k̇s,K(xs)dBs〉 −
1
2

∫ t

0

|K(xs)k̇s|2ds
)
,

then as in Elworthy-LeJan-Li [15], Elworthy-Li [19]

IDVt = ∇X(Vt)dBt +
1
2
∇X(Vt)(K(xt)k̇t)dt

+TIt(k′) exp
(∫ t

0

〈k̇s,K(xs)dBs〉 −
1
2

∫ t

0

|K(xs)k̇s|2ds
)
〈k̇t,K(xt)dBt〉

= ∇X(Vt)dBt +
1
2
∇X(Vt)(K(xt)k̇t)dt+ 〈k̇t,K(xt)dBt〉Vt.
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Consequently, for V̄t(σ) = E{Vt|x· = σ},

IDVt

dt
◦ I =

1
2
∇Vt(x·)X(K(xt)k̇t)dt.

Thus

d

dt
YY (Vt(x·)) = Y

(
ID
dt
V̄t(x·)

)
=

1
2
Y
(
∇X(TIt(YY (V·(x·))(K(xt)k̇t)

)
.

Since solutions of such a stochastic differential equation are in IDp,1 for all 1 < p <∞
by standard results, YY (V ·) ∈ IDp,1(Cx0M ;H). See Lemma 6.12 below. Finally note
that

TIt(h·)σ = exp

(∫ T

0

〈k̇s, //sdB̆s〉 −
1
2

∫ T

0

|K⊥(σs)k̇s|2ds

)
Vt(σ).

Since such exponential martingales belong to IDq,1 for all finite q we see that

σ 7→ YY (TIt(h·)σ) = YY (V̄t(σ)) exp

(∫ T

0

〈k̇s, //sdB̆s〉 −
1
2

∫ T

0

|K⊥(σs)k̇s|2ds

)

belongs to IDp,1(Cx0M ;H) for all 1 ≤ p <∞. �

6 On the Markov Uniqueness of d

Throughout section 6 we take Dom(dH) = Cyl. To define the weak derivatives we
shall need to assume IDq,1H∗ ⊂ Dom(dp)∗), which is guaranteed by Theorem 5.8 if
Condition (M0) holds or if X is injective.

6.1 Weak Differentiability
For 1

p + 1
q = 1 and 1 < p <∞, the weak Sobolev space W p,1(Cx0M ), abbreviated as

W p,1, is the domain of the adjoint of the restriction of (dp)∗ to IDq,1H∗:

W p,1 = Dom
((

(dp)∗ |IDq,1H∗
)∗)

(6.1)

furnished with its graph norm. More precisely a function f belongs toW p,1 if and only
if it is in Lp and there is a constant C(f ) such that∣∣∣∣∣

∫
Cx0M

fd∗φ dµx0

∣∣∣∣∣ ≤ C(f )|φ|Lq , ∀φ ∈ IDq,1H∗.

Equivalently,

W p,1 =
{
f ∈ Lp :

∣∣ ∫ div(V )fdµx0

∣∣ ≤ C|V |Lq , for all V ∈ IDq,1H, some C
}
.

If f ∈W p,1 it has a “weak derivative” d̃f ∈ LpΓH∗ defined by∫
d̃f (V (σ))dµx0(σ) = −

∫
f (σ) divV (σ)dµx0(σ), ∀V ∈ IDq,1H, (6.2)
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and
d̃ = ((dp)∗|IDq,1H∗)

∗

as a closed densely defined operator on Lp. Denote by ∇̃ the corresponding weak
gradient with values in LpΓH. Note that d̃ is an extension of (d, IDp,1).

Recall that Cyl denotes the space of smooth cylindrical functions on Cx0M . Set

Cyl0H∗ = linear span {g dk | g, k ∈ Cyl} (6.3)

and define
0W p,1 = Dom(d∗ | Cyl0H∗)∗. (6.4)

From Proposition 6.14 below, Cyl0H∗ ⊂ IDq,1H∗ ⊂ Dom(d∗) and so

IDp,1 ⊆ W p,1 ⊆ 0W p,1.

In Theorem 6.7 below we show that W p,1 = 0W p,1.

Theorem 6.1 Suppose Condition (M0) holds. For 1 < p < ∞, the following are
equivalent:

(i) f ∈W p,1(Cx0M ; R)

(ii) I∗(f ) ∈ IDp,1(C0Rm; R)

(iii) f ∈W r,1(Cx0M ; R)∩Lp(Cx0M ; R) some r ∈ (1, p) and the weak derivative d̃f
is in Lp.

Moreover

(iv) there is the following intertwining of d̃ and I∗:

d(I∗f ) = I∗(d̃f ), for all f ∈W p,1(Cx0M ; R).

(v) if f ∈W p,1(Cx0M ; R),

(d̃f )σ = E{d(I∗f )ω|x.(ω) = σ}YY σ. (6.5)

Proof Let V ∈ Dq,1H. Suppose I∗(f ) ∈ IDp,1 then by Corollary 5.2 and Kree-Kree
[32],∫

Cx0M

f div(V )dµx0 =
∫
C0Rm

I∗(f ) div(V ) ◦ IdP

=
∫
C0Rm

I∗(f ) div I∗(YY −(V (−)))dP

= −
∫
C0Rm

d(I∗(f ))ω(YY x·(ω)(V (x·(ω)))dP(ω)

= −
∫
Cx0M

E{d(I∗(f ))ω|x·(ω) = σ}YY σ(V (σ))dµx0(σ).

Thus (ii) implies (i) and (6.5) holds.
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To show (i) implies (ii), suppose f ∈ W p,1(C0Rm) and take V = TI(h) where
h ∈ U , as defined in Proposition 5.9. By definition V ∈ IDq,1H and by Proposition 5.1
div(V ) = div(h). So∫

Ω

div(h)I∗(f )dP =
∫
Cx0M

div(V )fdµx0

≤ C(f )‖TI(−)‖|h|Lq ,

by Corollary 3.7. Since U is total in IDq,1(Ω,H) the inequality holds for all h ∈
IDq,1(Ω;H). Consequently I∗(f ) ∈W p,1(Ω) = IDp,1(Ω; R), using Sugita [45].

Next observe for f ∈W p,1(Cx0M ), h ∈ IDq,1,∫
Ω

d(I∗f )(h)dP = −
∫

Ω

div(h)I∗(f )dP = −
∫
Cx0M

div(V )fdµx0

=
∫
Cx0M

(d̃f )(V )dµx0 =
∫

Ω

(I∗d̃f )(h)dP,

which gives d(I∗f ) = I∗(d̃f ).
To see the equivalence of (i) and (iii), take 1

r + 1
s = 1. That (i) implies (iii) is trivial.

To obtain (i) from (iii), take f ∈W r,1(Cx0M ; R), with d̃f ∈ Lp. For any U ∈ IDs,1H,∣∣∣∣∫ div(U )(σ)f (σ)µ(dσ)
∣∣∣∣ = ∣∣∣∣∫ d̃f (U )µ(dσ)

∣∣∣∣ ≤ ‖d̃f‖Lp |U |Lq .

which, by continuity using Theorem 5.8, holds for all U ∈ IDq,1H if f ∈ Lp, giving
(i). �

Corollary 6.2 Suppose Condition (M0) holds. The symmetric form

ε(f, g) =
∫
Cx0M

〈d̃f, d̃g〉dµx0

with domain W 2,1(Cx0M ; R) is a Dirichlet form.

Proof Just observe that, by Theorem 6.1, the usual chain rule holds for composition
on the left by BC1 functions on R. �

Note that if I∗[ID2,1(Cx0M ; R)] = ID2,1
Fx0 (Ω; R) then, by Theorem 6.1, ID2,1(Cx0M ; R) =

W 2,1(Cx0M ; R) and I∗d = dI∗. In particular we have the Markov uniqueness. Fur-
thermore there is equality of the following two Dirichlet forms:∫

Cx0M

|d̃f |2 dµx0 =
∫

Ω

∣∣E{dI∗(f )
∣∣Fx0}

∣∣2dP
and there is a constant c with∫

Cx0M

|d̃f |2dµx0 ≤
∫

Ω

|dI∗f |2dP ≤ c

∫
Cx0M

|d̃f |2dµx0 , f ∈W 2,1(Cx0M ; R),

c.f. Driver [11], Shigekawa [41].
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Corollary 6.3 Suppose Condition (M0) holds. If I∗[IDp,1] = IDp,1
Fx0 for the Itô map

I of one stochastic differential equation which induces (µx0 ,∇), then it holds for all
such Itô maps.

Proof This is immediate from Theorem 6.1 since W p,1 depend only on µx0 and∇. �

Proposition 6.4 For 1 < p <∞,

(1) IDp,1(Cx0M ; R) is a closed subspace of W p,1(Cx0M ; R).

(2) Set W p,1
0 = {f ∈ W p,1|

∫
fdµx0 = 0}. Suppose Condition (M0) holds. Then

d̃ : W p,1
0 (Cx0M ; R) → LpΓH∗ has closed range and is a linear isomorphism

onto its image.

Proof Part (i) is automatic since d ⊂ d̃. For (2) the continuity holds by definition of
the graph norm while injectivity comes from the result for C0Rm using Theorem 6.1.

To show d̃ has closed range, take φ ∈ LpΓH∗ with φ = limj d̃fj in Lp, for
fj ∈W p,1

0 (Cx0M ; R). Then I∗(d̃fj) = d(I∗fj) by Theorem 6.1 and

I∗φ = lim
j→∞

I∗(d̃fj) = lim
j→∞

d(I∗fj)

in Lp by Theorem 3.4. Since d on the Wiener space has closed range, e.g. from
Shigekawa [42], we see I∗fj → g in IDp,1(Ω; R) for some g ∈ IDp,1

Fx0 . By Theorem
6.1, g = I∗(f ) for some f ∈W p,1

0 and f = lim fj in Lp. Since d̃ is closed, f ∈W p,1
0

with d̃f = φ. Thus d̃ has closed range. �

6.2 Markov uniqueness
Let t = {t1, . . . , tk} with 0 ≤ t1 < . . . < tk ≤ T , and write M t ∼= M × . . .×M . A
cylindrical q-form on Cx0M is of the form (evt)∗ϕ where ϕ is a smooth q-form on M t

and
evt : Cx0M →M t

is the evaluation given by

evt(σ) = (σ(t1), . . . , σ(tk)) .

Theorem 6.5 The space Cyl0H∗, defined by (6.3), is total in the space IDq,1H∗ for
1 ≤ q <∞.

Proof Let (evt)∗ϕ be a typical cylindrical one form on Cx0M . In local co-ordinates ϕ
can be represented by an expression such as ΣN

j=1ϕ
jdxj , some N . It follows using a

partition of unity that ϕ = ΣN
j=1g

jdf j , for a finite set of smooth cylindrical functions
gj , f j on M t. Thus Cyl0H∗ spans the space of all smooth cylindrical 1-forms. The
conclusion can be drawn from Proposition 6.14 in §6.3 below, which states there exists
a set of smooth cylindrical 1-forms which is dense in IDq,1H∗. �
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Remark 6.6 If our Itô map is induced by a gradient stochastic differential equation
then the last part of the proof above is unnecessary since the forms ϕτ,e defined in (6.8)
would be in Cyl0H∗ as Y = dj for j the immersion of M in Rm, and so Proposition
6.14 shows directly that the set

{fϕτ,e : f is C∞and cylindrical , e ∈ Rm, 0 6 τ ≤ T}

of elements of Cyl0H∗ is total in IDq,1H∗.

Combining Theorem 6.5 with Theorem 5.8 on the continuity of divq on IDq,1H∗,
we see if Condition (M0) holds,

(dp)∗|Cyl0H∗ = (dp)∗|IDq,1H∗

as operators on Lq for 1 ≤ q <∞. From this,

Theorem 6.7 Suppose Condition (M0) holds. Let 1 < p <∞, then

W p,1 = 0W p,1

Following Eberle [12], consider the space of bounded functions in 0W 2,1 closed under
the weak Sobolev norm, which we shall denote by 0W 2,1

∞ .

Proposition 6.8 Suppose Condition (M0) holds. Then 0W 2,1
∞ = W 2,1.

Proof Take f ∈ 0W 2,1 so f ∈ W 2,1 by Theorem 6.7. Then g ≡ f ◦ I ∈ ID2,1(Ω) by
Theorem 6.1. Set fn = f

1+ 1
n f2 and gn = I∗(fn). Then |fn| ≤ 1

2 is bounded. Now

dgn(ω)(h) =
dg(ω)h
1 + 1

ng
2
· n− g2

n+ g2

is bounded and gn ∈ ID2,1(Ω) converges to g in ID2,1. Consequently fn ∈ 0W 2,1
∞ and

converges to f in W 2,1 and so in 0W 2,1. Thus 0W 2,1 = 0W 2,1
∞ . �

Consider the symmetric diffusion operator L = −d∗d on L2(Cx0M ; R) with do-
main Cyl, the set of smooth cylindrical functions. It is called Markov unique if and
only if there is only one symmetric sub-Markovian C0 contraction semi-group (Pt)
on L2(Cx0M ; R) whose generator extends L. Equivalently there is a unique extension
of the corresponding Dirichlet form among the family of quasi-regular semi-Dirichlet
forms. Markov uniqueness implies that there is at most one reversible diffusion solving
the corresponding martingale problem, c.f. Eberle [12], though such results go back to
Takeda [46]. We can apply a result of Eberle to our situation to obtain:

Theorem 6.9 Suppose Condition (M0) holds. The following are equivalent:

1. Markov uniqueness for −d∗d;

2. W 2,1 = ID2,1;

3. I∗[ID2,1] = ID2,1
Fx0 .

Proof It follows from Corollary 6.2 and a result of Eberle (page 115, [12]) that Markov
uniqueness is equivalent to ID2,1 = 0W 2,1

∞ . Proposition 6.8 then shows that (1) and (2)
are equivalent. The equivalence of (2) and (3) is immediate from Theorem 6.1. �

For discussion on when I∗[ID2,1] = ID2,1
Fx0 holds see Remark 7.4.
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6.3 Cylindrical 1-forms are dense in IDq,1H∗

The following lemma will be useful technically, leading to the proof of Theorem 6.5,
in view of the fact that we do not know if W2,1 = ID2,1 on our path spaces.

Lemma 6.10 Let G be a separable Hilbert space and L a dense family of linear func-
tionals on G. Suppose f : Cx0M → G satisfies

(i) I∗ (f ) ∈ IDp,1(C0Rm;G)

(ii) l ◦ f ∈ IDp,1(Cx0M ; R) for all l ∈ L.

Then f ∈ IDp,1(Cx0M ;G).

Proof For f satisfying (i) and (ii) and l ∈ G∗ take ln ∈ L→ l. Then

I∗(lnf ) = ln(I∗f ) IDp,1

−→ l(I∗f ) = I∗(lf ).

By (4.3) lnf
IDp,1

−→ lf and so we have

(iii) l ◦ f ∈ IDp,1(Cx0M ; R) for all l ∈ G∗.

Take an orthonormal base {gn}n for G and let Πn be the orthogonal projection onto
the subspace spanned by its first n elements, n = 1, 2, . . .. By (iii), Πn ◦ f ∈
IDp,1(Cx0M ; R).

Now as n→∞ we see Πn ◦ f → f almost surely and also, if d̃f is as in (6.5), for
almost all σ,

‖d(Πn ◦ f )σ − d̃fσ‖2L2
= ‖(d̃f )∗σΠn − (d̃f )∗σ‖2L2(G;Hσ) =

∑
p>n

‖d̃fσ ◦ (d̃fσ)∗(gp)‖2

which converges to zero since d̃fσ ∈ G ⊗ H. From this we can apply the monotone
convergence theorem to see that Πn ◦ f → f in the Lp graph norm and the result
follows. �

The next two lemmas are essentially ‘well known’:

Lemma 6.11 Let ∇̃ be a connection on the trivial Rk-bundle over M . Suppose J :
M → L(Rk; Rk) isC∞ and define the ‘J-damped’ parallel translation Zt(σ) : {x0}×
Rk → {σt} × Rk along σ in Cx0M by{

D̃
dtZt(e) = Jσ(t) (Zt(e)) , 0 ≤ t ≤ T
Z0(e) = e, e ∈ Rk.

(6.6)

Then the principal part ZP
t of Zt as a map from Cx0M → L(Rk; Rk) is in IDp,1, 1 ≤

p < ∞, for each t. Its H-derivative is an L(Rk; Rk)-valued H-1-form: h 7→ dZP
t (h)

with

dZP
t (h) = At(W−1

t ht) +
∫ t

0

Bs(W−1
s hs)ds+

∫ t

0

Cs(W−1
s

ID
ds
h)ds, h ∈ H (6.7)

where

At, Bt, Ct ∈ Lp
(
Cx0M ; L(Tx0M ; L(Rk; Rk))

)
, 1 ≤ p <∞, 0 ≤ t ≤ T.
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Furthermore At(σ), Bt(σ), and Ct(σ) : Tσ(t)M → L(Rk; Rk) are almost surely con-
tinuous in t with

E
(

sup
0≤t≤T

|At|L(Tx0M ;L(Rk;Rk))

)p

<∞,

E
(

sup
0≤t≤T

|Bt|L(Tx0M ;L(Rk;Rk))

)p

<∞,

E
(

sup
0≤t≤T

|Ct|L(Tx0M ;L(Rk;Rk))

)p

<∞.

Proof That Zt ∈ IDp,1 for all p and each t is standard when we are using Brownian
motion measure and the Levi-Civita connection, e.g. see the Appendix in Aida [1],
or Léandre [33] and the proofs go over to our situation. The computation leading to
(6.7) is also standard, going back, at least, to Bismut. See also Driver [9], Cruzeiro-
Malliavin [6]. In particular if h is an adapted Lq-H-vector field on Cx0M , from (6.6),
the covariant derivative ∇̃hZt satisfies the covariant Stratonovich equation

D̃∇̃hZt(e) =
[
(∇̃htJ)(Zt(e)) + Jσ(t)(∇̃hZt(e))

]
dt− R̃(ht, ◦dσt)Zt(e).

Thus

∇̃hZt(e) = Zt

∫ t

0

Z−1
s

{
(∇̃hs

J)(Zs(e))ds− R̃(hs, ◦dσs)Zs(e)
}
.

In fact by integration by parts, treating
∫ t

0
Z−1

s R̃(Ws−, ◦dσs)Zs(e) as anL(Tx0M ; Rk)-
valued integral we see

∫ t

0

Z−1
s R̃(hs, ◦dσs)Zs(e) =

(∫ t

0

Z−1
s R̃(Ws−, ◦dσs)Zs(e)

)
W−1

t ht

−
∫ t

0

(∫ τ

0

Z−1
s R̃(Ws−, ◦dσs)Zs(e)

)(
W−1

τ

ID
dτ
hτ

)
dτ.

So our expression for ∇̃hZt(e) is ‘tensorial’ in H and so holds for arbitrary elements
in H.

To obtain (6.7) we observe that the principal part of ∇̃hZt(−) and dZP
t (h) only

differ by Γ̃(σ(t))(ht)(Z
p
t ) where Γ̃ is the Christoffel symbol Γ̃. Finally the required

estimates come from Proposition 2.2 and the analogous observation that | supt Zt| and
| supt Z

−1
t | are in Lp for all p. �

Lemma 6.12 Let Z be the ‘J-damped’ parallel translation from Lemma 6.11. Then
for p > 1, and ε ∈ (0, p− 1), the map f 7−→ Z(f ) gives a continuous linear map

IDp,1
(
Cx0M ;L2

(
[0, T ]; Rk

))
→ IDp−ε,1

(
Cx0M ;L2

(
[0, T ]; Rk

))
.

Proof Take f in IDp,1
(
Cx0M ;L2([0, T ]; Rk)

)
. It is standard and easy to see using

Lemma 6.11 and weak differentiability, e.g. Sugita [45] Corollary 2.1, that I∗(Z(f )) ∈
IDp−ε,1

(
C0Rm;L2([0, T ]; Rk)

)
. Let En be the subspace of L2([0, T ]; Rk) spanned by

the polynomials of degree less than or equal to n, n = 1, 2, . . . , with πn(Z(f )) the
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orthogonal projection of Z(f ) into En. Since the evaluations {evt, 0 ≤ t ≤ T} span
a dense linear subspace of linear functionals on each En, we can apply the previous
lemmas to see that πn(Z(f )) ∈ IDp−ε,1(Cx0M ;L2([0, T ]; Rk)) for each n = 1, 2, . . ..
However as in the proof of Lemma 6.10 we see that I∗(πn(Z(f ))) → I∗(Z(f )) in
the Lp−ε graph norm. Therefore Z(f ) ∈ IDp−ε,1

(
Cx0M ;L2([0, T ]; Rk)

)
. Continuity

follows as usual from continuity into Lp−ε and the closed graph theorem. �

For cases including non-elliptic diffusion measures take a Riemannian metric 〈, 〉′
on TM extending that of E with a metric connection ∇1 and adjoint ∇1′ extending ∇
and ∇′ as in §2.2. Take a surjective vector bundle map X̃ : Rm̃ → TM for some m̃,
inducing the metric 〈, 〉′, which extends X if Rm is considered as a subspace of Rm̃.
For x ∈M let Ỹx : TxM → Rm̃ be the usual right inverse of X̃(x). Take a connection
∇̃ on Rm̃ conjugate to ∇1′ on [ker X̃]⊥ and arbitrary on ker X̃ . In the elliptic case we
could take X̃ = X , Ỹ = Y and if moreover ∇ is the Levi-Civita connection then ∇̃
could be the standard metric connection on Rm induced byK, as in Elworthy-LeJan-Li
[15].

In order to prove the density of cylindrical forms in IDq,1H∗ fix τ ∈ [0, T ] and
e ∈ Rm̃. Let ϕτ,e be the cylindrical one-form given by

ϕτ,e(V ) = 〈Ỹσ(τ )(Vτ ), e〉, V ∈ TσCx0M. (6.8)

In fact we will show that the set {fφτ,e : f ∈ Cyl, e ∈ Rm̃, 0 ≤ τ ≤ T} is total in
IDq,1H∗. Set

Uτ,e = (ϕτ,e)
#
. (6.9)

Using the fact that

Wτ

∫ τ

0

W−1
s

ID
ds
Vsds = V τ

we see that
ID
ds
Uτ,e

s = χ[0,τ ](s)Πs(W−1
s )∗(Wτ )∗X̃(σ(τ ))(e), (6.10)

where Πs = Πs(σ) : Tσ(s)M → Eσ(s) is the orthogonal projection and W ∗
s and W−1

s
∗

the adjoints using the extended metric 〈, 〉′.
Now define Zt ≡ Zt(σ) : Rm̃ → Rm̃ to be the damped parallel translation on the

trivial Rm̃-bundle over M along σ ∈ Cx0M given by

Zt(a) =
{
Ỹσ(t)WtX̃(x0)a, if a ∈ [ker(X̃(x0))]⊥

/̃/t(a), if a ∈ ker(X̃(x0)).

By (2.10), Zt solves (6.6) for

J(x)(a) = Ỹ (x)
(
−1

2
Ric#x +∇1

−A

)
X̃(x)a.

Let Z∗t : Rm̃ → Rm̃ be the usual adjoint of Zt and similarly for (Z−1
t )∗. Set

Λτ,e
s = χ[0,τ ](s)(Z−1

s )∗Z∗τ e,

then
ID
ds
Uτ,e

s = ΠsX̃(σ(s))Λτ,e
s . (6.11)
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Lemma 6.13 Set

Ξ = {fΛτ,e
· : f ∈ Cyl, e ∈ Rm̃, 0 ≤ τ ≤ T}. (6.12)

The sets Z∗· [Ξ] and Ξ are both total in IDq,1
(
Cx0M ;L2([0, T ]; Rm̃)

)
.

Proof Since every element of the Haar basis, {Ej}j say, of L2([0, T ]; Rm̃) has the
form χ[0,τ2](·)e − χ[0,τ1](·)e some 0 ≤ τ1 ≤ τ2 ≤ T, e ∈ Rm̃, using the definition of
IDq,1 we have

T :=
{
fχ[0,τ ](·)e : 0 ≤ τ ≤ T, e ∈ Rm̃, f ∈ Cyl

}
is total in IDq,1

(
Cx0M ;L2([0, T ]; Rm̃)

)
for 1 ≤ q < ∞. On the other hand, by

definition,

Z∗· [Ξ] =
{
fχ[0,τ ](·)Z∗τ e· : f ∈ Cyl, e ∈ Rm̃, 0 ≤ τ ≤ T

}
, (6.13)

a subset of IDq,1(Cx0M ;L2([0, T ]; Rm̃) from Lemma 6.10.
For each e ∈ Rm̃ and τ ∈ [0, T ] define eτ : Cx0M → Rm̃ by

eτ (σ) = (Z∗τ (σ))−1
e.

Note that eτ ∈ IDp,1, 1 ≤ p < ∞, by Lemma 6.10 (applied to (Z−1
· )∗). Consequently

given ε > 0 and q0 > 1, there exist gτ ∈ Cyl(Cx0M ; Rm̃) with

‖gτ − eτ‖IDq,1 < ε, 1 ≤ q ≤ q0.

Then, for 1 ≤ q < q0,

‖χ[0,τ ](·)e− χ[0,τ ](·)Z∗τ gτ‖IDq,1(Cx0M ;L2([0,T ];Rm̃))

= ‖χ[0,τ ](·)(Z∗τ eτ − Z∗τ g
τ )‖IDq,1(Cx0M ;L2([0,T ];Rm̃)) ≤ Cε‖Zτ‖IDr,1

for sufficiently large r and some constant C.
Thus each χ[0,τ ](·)e ∈ Span

q,1
Z∗· [Ξ], 1 ≤ q <∞ and T ⊂ Span

q,1
Z∗· [Ξ]. Conse-

quently for each 1 ≤ q <∞,

Span
q,1
Z∗. [Ξ] = IDq,1

(
Cx0M ;L2([0, T ]; Rm̃)

)
,

as required for the first assertion. For the second, take fEj ∈ Span T and q < p <∞.
By Lemma 6.12 Z∗· (fEj) ∈ IDp,1. Since by the first assertion IDp,1 = SpanZ∗[Ξ],
there is a sequence {Sn}n in Span[Ξ] with Z∗· (Sn

· ) → Z∗(fEj) in IDp,1. Using
Lemma 6.12, applied to (Z∗)−1, we see Sn → fEj in IDq,1, which implies the re-
sult by the totality of T . �

Proposition 6.14 Smooth cylindrical 1-forms form a dense subspace of IDq,1H∗.

Proof By construction of X̃ , if π : Rm̃ → Rm̃ is the projection map then ΠX̃ = X ◦π
and so

IDq,1H =
{

WΠ(X̃(h)) | h ∈ IDq,1(Cx0M ;L2([0, T ]; Rm̃)
}
.

By Lemma 6.13, {W·ΠX̃(fΛτ,e
· ) : f ∈ Cyl, e ∈ Rm̃, 0 ≤ τ ≤ T} is total in IDq,1H.

Finally note that by (6.11), W·ΠX̃(fΛτ,e
· ) = Uτ,e

s and so the set

{fφτ,e : f ∈ Cyl, e ∈ Rm̃, 0 ≤ τ ≤ T}
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is total in IDq,1H∗.
To see that every cylindrical one-form gives an element of ∩q<∞IDq,1H suppose φ

is one, given by

φσ(v) = Φ(σ(t1),...,σ(tk)) (vt1 , . . . , vtk
) , v ∈ Hσ

where Φ is a smooth 1-form on

k︷ ︸︸ ︷
M × . . .×M . We must show

φ ◦ TI ∈ IDq,1(Cx0M ;H∗), 1 < q <∞.

For this write

φ ◦ TIσ(h) = Φ
(
X̃(σ(t1))−, . . . , X̃(σ(tk))−

)
(∫ t1

0

Ỹσ(t1)W
s
t1X̃(σ(s))ḣsds, . . . ,

∫ tk

0

Ỹσ(tk)W
s
tk
X̃(σ(s))ḣsds

)
for h ∈ H ⊂ L2,1

0

(
[0, T ]; Rm̃

)
. The first part of the right hand side is in

∩q<∞IDq,1
(
Cx0M,

(
Rm̃ × . . .× Rm̃

)∗)
,

being cylindrical. The second can be written as

h 7→
(∫ t1

0

Zt1Z
−1
s K⊥(σ(s))ḣsds, . . . ,

∫ tk

0

Ztk
Z−1

s K⊥(σ(s))ḣsds

)
which by Lemma 6.12 and 5.6 gives a continuous linear map

H → IDq,1
(
Cx0M, (Rm̃ × . . .× Rm̃

)
.

Thus φ ∈ IDq,1. �

7 On uniqueness of d

7.1 A weak uniqueness result on the Gross derivative operator d
If Condition (M0) holds the map I* sends ID2,1(Cx0M ; R) to ID2,1

Fx0 (Ω; R) with closed
range, by Corollary 4.3. We investigate the question whether I∗[ID2,1(Cx0M ; R)] =
ID2,1
Fx0 (Ω; R). We proceed using chaos expansions. An L2 real valued function f on the

Wiener space has a chaos expansion

f =
∞∑

k=0

Ik(αk),

for I0 = Id on constants, α0 = E(f ), I1(α1) =
∫ T

0
〈α1(t1), dBt1〉, and for k > 1,

Ik(αk) = k!
∫ T

0

∫ tk

0

. . .

∫ t2

0

〈αk (t1, . . . , tk) , dBt1 ⊗ . . .⊗ dBtk
〉⊗Rm , (7.1)

an iterated Itô integral. Hereαk is considered to be an element ofL2
(
∆k; Rm ⊗ . . .⊗ Rm

)
for ∆k = {(t1, . . . , tk), 0 ≤ t1 ≤ t2 ≤ . . . tk ≤ T}.
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Let Rn be the remainder term such that

f =
n∑

k=0

Ik(αk) +Rn.

Then f ∈ ID2,1(Ω; R) if and only if Rn → 0 in L2 and ‖dRn‖ → 0 in L2 (e.g. see
Nualart [38], Proposition 1.2.2).

Let L2
Fx0 ≡ L2

Fx0 (Ω,R) be the closed subspace of L2(Ω; R) whose elements are
Fx0 measurable.

Lemma 7.1 If f ∈ ID2,1
Fx0 (Ω,R) then the remainder term of its L2 chaos expansion

has the following form

Rk =
∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈
ak+1(s1, . . . , sk+1), dBs1 ⊗ . . .⊗ dBsk+1

〉
(7.2)

for ak+1 ∈ L2
(
C0Rm ×∆k+1; Rm ⊗ . . .⊗ Rm

)
such that

(i) Each ak+1(s1, . . . , sk+1) is Fx0
s1

measurable;

(ii) ak+1(s1, . . . , sk+1) =
(
K⊥(xs1)⊗ 1 . . .⊗ 1

)
αk+1(s1, . . . sk+1), whereK⊥(x) :

Rm → [kerX(x)]⊥ is the orthogonal projection.

(iii) Furthermore ak+1 ∈ ID2,1(C0Rm;L2(∆k+1; Rm ⊗ . . .⊗ Rm)) and

‖dRk‖2L2 = (k + 1)‖ak+1‖2L2 + ‖dak+1‖2L2 . (7.3)

Proof By the integral representation theorem there exists an L2, F∗-adapted process
a1 : [0, T ]× C0Rm → Rm with

f = Ef +
∫ T

0

〈a1(s), dBs〉. (7.4)

Since f = E{f |Fx0} we see, using (3.2),

f = Ef +
∫ T

0

〈K⊥(xs)E{a1(s)|Fx0}, dBs〉.

By the uniqueness of the integral representation (7.4)

K⊥(xs)E{a1(s)|Fx0} = a1(s).

Thus a1(s) is Fx0
s measurable and (i) and (ii) hold for k = 0. Suppose for induction (i)

and (ii) hold for k − 1 some k ≥ 1. Apply the integral representation theorem to the
Fx0

s2
measurable function ak(s2, . . . , sk+1) to see

ak(s2, . . . , sk) = E (ak(s2, . . . , sk)) +
∫ s2

0

〈ak+1(s1, . . . , sk+1), dBs1〉 ,

where ak+1(s1, . . . , sk+1) is Fx0
s1

measurable with(
K⊥(xs1)⊗ 1 . . .⊗ 1

)
ak+1(s1, . . . , sk+1) = ak+1(s1, . . . , sk+1).
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By the uniqueness of the chaos expansion with remainder terms, we see that Rk to-
gether with ak+1 satisfies (i) and (ii).

To prove part (iii), we apply a result of Pardoux-Peng [39], see Lemma 1.3.4 in
Nualart [38]: if

X =
∫ T

0

〈us, dBs〉

where u is adapted and square integrable then X ∈ ID2,1 implies u· ∈ ID2,1. Moreover

‖dX‖2L2 =
∫ T

0

E|us|2ds+
∫ T

0

‖dus‖2L2 ds. (7.5)

Apply this to Rk iteratively, to deduce that ak+1(s1, . . . , sk+1) belongs to ID2,1 and

‖dRk‖2L2

=
∫ T

0

E
∣∣∣∣∫ sk+1

0

. . .

∫ s2

0

〈ak+1(s1, . . . , sk+1), dBs1 ⊗ . . .⊗ dBsk
〉
∣∣∣∣2 dsk+1

+
∫ T

0

∥∥∥∥d ∫ sk+1

0

∫ sk

0

. . .

∫ s2

0

〈ak+1(s1, . . . , sk+1), dBs1 ⊗ . . .⊗ dBsk
〉
∥∥∥∥2

L2

dsk+1

= ‖ak+1‖2L2 +
∫ T

0

∫ sk+1

0

E
∣∣∣∣∫ sk

0

. . .

∫ s2

0

〈
ak+1(s1, . . . , sk+1), dBs1 ⊗ . . .⊗ dBsk−1

〉∣∣∣∣2 dskdsk+1

+
∫ T

0

∫ sk+1

0

∥∥∥∥d ∫ sk

0

∫ sk−1

0

. . .

∫ s2

0

〈
ak+1(s1, . . . , sk+1), dBs1 ⊗ . . .⊗ dBsk−1

〉∥∥∥∥2

L2

dskdsk+1

= . . . ,

giving (7.3).
�

Note that Lemma 7.1 (iii) holds if Fx0 is replace by FT everywhere in the state-
ment. This shows that a function f ∈ ID2,1 if and only if

k‖ak‖2L2 → 0 and ‖dak‖2L2 → 0. (7.6)

Lemma 7.2 Let f ∈ L2(Ω; R) with chaos expansion f =
∑∞

k=0 Ik(αk). Set J̄k(αk)(σ) =
E
{
Ik(αk)

∣∣x· = σ
}

. Then J̄k(αk) is in ID2,1(Cx0M ). Consequently if f ∈ ID2,1
Fx0 then

each f − E{Rk|Fx0} is in I∗[ID2,1(Cx0M ; R)].

Proof For 0 ≤ t ≤ T define

Ik,t(αk) := k!
∫ t

0

∫ tk

0

. . .

∫ t2

0

〈αk (t1, . . . , tk) , dBt1 ⊗ . . .⊗ dBtk
〉⊗Rm . (7.7)

Thus

Ik,t(αk) = k

∫ t

0

〈
Ik−1,tk

(αk (. . . , tk)), dBtk

〉
Rm

(7.8)

considering s 7→ Ik−1,tk
(αk(. . . , s)) as a random element in L2 ([0, T ]; Rm), or more

precisely

Ik,t(αk) = k

∫ t

0

〈(Ik−1,tk
⊗ id) (αk(. . . , tk)) , dBtk

〉Rm (7.9)
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if we identified L2 (Ω; R)⊗ Rm with L2 (Ω; Rm). Set

Jk,t (αk) = E {Ik,t(αk) | Fx0} , k = 0, 1, 2, . . .
Jk (αk) = Jk,T (αk) .

Then inductively

Jk,t (αk) = k

∫ t

0

〈
Jk−1,tk

(αk (. . . , tk)) ,K⊥(xtk
)dBtk

〉
Rm

Set B̆t =
∫ t

0
//s
−1
X(xs)dBs, the martingale part of the anti-development of x· to

see

K⊥(xt)dBt = Y (xt)X(xt)dBt = Y (xt)//t(x·)dB̆t;

J̄k,t (αk) (σ) = k

∫ t

0

〈
J̄k−1,tk

(αk (. . . , tk)) (σ), Y (xtk
)//tk

(σ·)dB̆tk

〉
Rm

.(7.10)

The fact that J̄k,t(αk) is in Dom(d) is essentially standard e.g. see Cruzeiro-Malliavin
[6] or the Appendix in Aida [1]. For a gradient stochastic differential equation (2.5)
determined by an isometric j : M → Rm it is especially clear since then K⊥(xt)dBt

can be replaced by dx̃t − 1
2∆j(xt)dt for x̃t = j(xt) ∈ Rm.

Finally just observe that for f ∈ ID2,1
Fx0 ,

f − E{Rk|Fx0} =
m∑

j=1

I∗
(
J̄k(αk)

)
which is in I∗[ID2,1(Cx0M )].

�

Proposition 7.3 Suppose Condition (M0) holds. Then f ∈ Dom(∆) ∩ L2
Fx0 (Ω,R)

implies that f ∈ I∗[ID2,1(Cx0M ; R)].

Proof Take f ∈ ID2,1(Ω,R). By Corollary 4.3, I∗[ID2,1(Cx0M )] is closed in ID2,1(C0Rm; R)
and so by Lemma 7.2 to show f ∈ I∗[ID2,1(Cx0M ; R) we only need to demonstrate
that ‖d (E{Rk|Fx0}) ‖L2 → 0. Observe that, as iterated integrals,

E{Rk|Fx0} =
∫ T

0

∫ sk+1

0

. . .

∫ s2

0〈
ak+1(s1, . . . , sk+1),K⊥(xs1)dBs1 ⊗ . . .⊗K⊥(xsk+1)dBsk+1

〉
and for h ∈ H ,

d (E{Rk|Fx0}) (h)

=
k+1∑
l=1

∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈 ak+1(s1, . . . , sk+1),

K⊥(xs1)dBs1 ⊗ . . .⊗ d(K⊥(Isl
))(h)dBsl

⊗ . . .K⊥(xsk+1)dBsk+1

〉
+

k+1∑
l=1

∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈ak+1(s1, . . . , sk+1),
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K⊥(xs1)dBs1 ⊗ . . .K⊥(xsl
)ḣsl

⊗ . . .K⊥(xsk+1)dBsk+1

〉
+
∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈d(ak+1(s1, . . . , sk+1))(h),K⊥(xs1)dBs1 ⊗ . . .K⊥(xsk+1)dBsk+1〉

= A1(h) +A2(h).

where

A1(h) =
k+1∑
l=1

∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈ak+1(s1, . . . , sk+1),

K⊥(xs1)dBs1 ⊗ . . .⊗ d(K⊥ ◦ Isl
)(h)dBsl

⊗ . . .K⊥(xsk+1)dBsk+1

〉
On the other hand

E{dRk(h)|Fx0} =
k+1∑
l=1

∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈ak+1(s1, . . . , sk+1),

K⊥(xs1)dBs1 ⊗ . . . ḣsl
⊗ . . .K⊥(xsk+1)dBsk+1

〉
+
∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈E{d(ak+1(s1, . . . , sk+1))(h)|Fx0},

K⊥(xs1)dBs1 ⊗ . . .K⊥(xsk+1)dBsk+1

〉
.

Thus
d (E{Rk|Fx0}) (h) = A1(h) + C2(h) + E{dRk(K⊥h)|Fx0},

where K is as defined by (5.1) and

C2(h) =
∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈 d(ak+1(s1, . . . , sk+1))(h)

−E{d(ak+1(s1, . . . , sk+1))(K⊥h)|Fx0}, K⊥(xs1)dBs1 ⊗ . . .K⊥(xsk+1)dBsk+1

〉
.

However

‖C2‖2L2 ≤ 4
∫ T

0

∫ sk+1

0

. . .

∫ s2

0

‖dak+1(s1, . . . , sk+1)‖2L2ds1 . . . dsk+1 = 4‖dak+1‖2L2

and ‖E{dRk(−)|Fx0}‖L2 ≤ ‖dRk(−)‖L2 giving

‖d (E{Rk|Fx0}) ‖2L2 ≤ 6‖A1‖2L2 + 24‖dak+1‖2L2 + 6|dRk(−)‖2L2 .

For f ∈ ID2,1
Fx0 , ‖dRk(−)‖2L2 → 0 and ‖dak+1‖2L2 → 0 by (7.3). Thus we only need

to show that ‖A1‖L2 → 0. Now

‖A1‖2L2 ≤ Ck2E
∫ T

0

∫ sk+1

0

. . .

∫ s2

0

‖ak+1(s1, . . . , sk+1)‖2ds1 . . . dsk+1 ≤ Ck2‖Rk‖2L2 ,

by Proposition 3.3, which converges to zero if f belongs to Dom(∆). �
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Remark 7.4 If we can show that ‖A1‖2L2 → 0 without the condition f ∈ Dom(∆) we
would have shown that I∗[ID2,1(Cx0M ; R)] = ID2,1

Fx0 (Ω; R). This convergence should
hold, though we do not have a proof, as the similar term

‖A2(h)‖L2 ≡
∥∥∥ k+1∑

l=1

∫ T

0

∫ sk+1

0

. . .

∫ s2

0

〈
ak+1(s1, . . . , sk+1),

K⊥(xs1)dBs1 ⊗ . . .K⊥(xsl
)ḣsl

⊗ . . .K⊥(xsk+1)dBsk+1

〉∥∥∥
L2
→ 0,

following from E{dRk(h)|Fx0} → 0.

Observe that the pull back by I of BC2 functions belong to ID2,2
Fx0 (Ω,R) and

ID2,2
Fx0 (Ω,R) ⊂ I∗[ID2,1(Cx0M ; R)] by Proposition 7.3. We are lead to the follow-

ing :

Corollary 7.5 If Condition (M0) holds thenBC2 functions on Cx0M are in ID2,1(Cx0M ; R).

Corollary 7.5 corrects Theorem 2.1 of [25] which stated that BC1 functions are in
ID2,1(Cx0M ; R).

7.2 On the uniqueness of d
Definition 7.6 We say uniqueness holds for dp if the closure of dp is independent of
the choice of its initial domain dH satisfying Cyl ⊂ Dom(dH) ⊂ BC1.

Remark 7.7 Since BC1 ⊂ W p,1 uniqueness for dp would be implied by Markov
uniqueness. It would also follow more generally if the image I∗[IDp,1] is independent
of the choice of Dom(dH).

Theorem 7.8 Assume Condition (M0). Suppose T is a closed operator,

T : Dom(T ) ⊂ L2(Cx0M ; R) ⊂ L2ΓH∗

with the properties that

(i) T agrees with dH on smooth cylindrical functions.

(ii) Dom(T ∗) contains all smooth cylindrical one forms.

Then d ⊂ T ⊂ d̃, where d̃ is the weak derivative.

Proof It is enough to show that (d̃)∗ ⊂ T ∗, which follows from

d̃∗ = d∗|ID2,1 = d∗|Cyl ⊂ T ∗.

�

Remark 7.9 If E{f |Fx0} is in ID2,1(Ω,R) whenever f is in ID2,1(Ω,R) then I∗[ID2,1] =
ID2,1
Fx0 and so Markov uniqueness, and hence uniqueness of d, holds. To see this take f

in ID2,1
Fx0 so f = limn f

n in ID2,1 when fn is the sum of the finite terms in the chaos
expansion of f . We saw above that each E{fn|Fx0} lies in I∗[ID2,1]. Since the latter
is closed f itself must lie in it. See the Appendix, section 10.
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8 Covariant Differentiation

Our main aim in this section is to define higher order Sobolev and weak Sobolev spaces
and to prove the pull back theorem, Theorem 8.14.

For G a separable Hilbert space we can define W p,1G ≡ W p,1(Cx0M ;G) by
Proposition 5.5 to be the domain, by graph norm, of the closure of d̃G whose domain
Dom(d̃G) consists of finite sums

∑
j fjgj for fj ∈W p,1(Cx0M ; R), gj ∈ G. Let

d̃ ≡ d̃G : W p,1G ⊂ Lp(Cx0M ;G) → LpΓ(L2(H;G))

also denote this closure.

Proposition 8.1 Assume Condition (M0). For f : Cx0M → R the following are equiv-
alent:

(i) f ∈W p,1(Cx0M ;G)

(ii) I∗f ∈ IDp,1(C0Rm;G);

(iii) There is a constant cf such that if 1
p + 1

q = 1 then for all G-valued 1-forms
φ ∈ IDq,1 (Cx0M ; L2(H;G)),∣∣∣∣∣

∫
Cx0M

〈
f, (dG)∗φ

〉
G
dµx0

∣∣∣∣∣ ≤ cf‖φ‖LqΓL2(H;G). (8.1)

If f ∈W p,1(Cx0M ;G) the intertwining formula of Theorem 6.1 and (6.5) extend
to G-valued functions.

Proof Suppose f ∈ W p,1G. Then f = liml→∞ fl in graph norm for some sequence
{fl}∞l=1 in G⊗0 Dom(d̃). By Theorem 6.1, I∗(fl) ∈ IDp,1 for each l and

dI∗(fl) = I∗(d̃Gfl).

By assumption d̃Gfl → d̃Gf in Lp and so by continuity of I∗, Theorem 5.7, dI∗(fl)
converges in Lp, showing that I∗(f ) ∈ IDp,1 and d(I∗f ) = I∗(d̃Gf ).

Conversely, if I∗(f ) ∈ IDp,1(C0Rm;G), taking an orthogonal base {gi}∞i=1 for G

I∗(f ) = lim
k→∞

k∑
l=1

αlgl

in IDp,1(C0Rm;G) for αl = 〈I∗(f ), gl〉G ∈ IDp,1
Fx0 (C0Rm; R). By Theorem 6.1 αl =

I∗(fl) some fl ∈ W p,1(Cx0M ; R). Then f = limk→∞
∑k

l=1 flgl in Lp(Cx0M ; R).
Since

d̃G(
k∑

l=1

flgl)(−) =
k∑

l=1

d̃fl(−)gl

and d̃fl is given in terms of dαl by equation (6.5), we see the convergence is in
W p,1(Cx0M ;G) and so f ∈ W p,1(Cx0M ;G). Thus (i) is equivalent to (ii). That
(ii) is equivalent to (iii) can be seen as for the scalar case in Theorem 6.1. The only
additional point is to observe that if U is defined by (5.10) then G ⊗0 U is total in
IDp,1(Ω, G⊗H) and (1⊗ TI)(h) ∈ IDp,1(G⊗H) for each h ∈ G⊗0U . Thus G⊗0U
can take over the role U played in the proof of Theorem 6.1. This proof also shows
that the analogue of (6.5) holds for G-valued functions. �
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8.1 The pointwise and the damped Markovan connections
To define higher order Sobolev spaces we need to introduce covariant derivatives.

Using the notation of §2.3 consider the principal CIdO(p)-bundle Cx0OE → Cx0M
and its associated Hilbert bundle L2E → Cx0M . As described in Eliasson [14] our
metric connection ∇ on E induces a so called pointwise connection ∇̄ on L2E .

∇̄vU =
D

∂s
U
(
expσ· sv·

) ∣∣∣
s=0

, (8.2)

for U a smooth section of L2E and v ∈ TσCx0M where D
∂s and exp come from ∇.

The almost surely defined map ID
d· : H → L2E , is an isometric isomorphism which

we used to give H a vector bundle structure (at least over the subset on which D
∂· is

defined). We also use it to pull back ∇̄ to obtain a connection on H, which we shall
denote by ∇∇. By definition

∇∇ = W∇̄ ID
dt
,

see (2.15). As usual these connections induce connections on the relevant tensor bun-
dles and in particular on the dual bundles (L2E)∗ and H∗ respectively. Since the con-
nections are metric the latter are compatible with the natural isometries

(L2E)∗ → L2E , (H)∗ → H.

For X : M × Rm → TM as in (2.5) define:

X̄ : Cx0M × L2([0, T ]; Rm) → L2E

by (
X̄(σ)h

)
t
= X(σ(t))(h(t)), 0 ≤ t ≤ T

and its right inverse:
Ȳ : L2E → L2([0, T ]; Rm)

Ȳ (v)t = Yσ(t)(v(t)), 0 ≤ t ≤ T.

Also define
XX : Cx0M ×H → H

by
XX(σ)(h) = TIσ(h) ≡ WX̄(σ)(ḣ·), 0 ≤ t ≤ T

with right inverse YY : H → H , as defined by (5.1).

Proposition 8.2 The connections ∇̄, ∇∇ on L2E and H are the connections corre-
sponding to X̄ and XX respectively in the sense that ∇̄vX̄(ḣ) = 0 and ∇∇vXX(h) = 0 if
ḣ ∈ [ker X̄(σ)]⊥ or equivalently h ∈ [kerXX(σ)]⊥ and v ∈ TσCx0M .

If U , ID
∂tV are C1 sections of L2E and v ∈ TσCx0M then

∇̄vU = X̄(σ)d
(
α 7→ ȲαU (α)

)
(v) (8.3)

and
∇∇vV = XX(σ)d (α 7→ YY αV (α)) (v). (8.4)
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Proof By definition

∇̄vX̄(ḣ)t =
D

ds
X
(
expσ(t) svt

)
(ḣ(t))|s=0

= ∇vtX(ḣ(t))
= 0, if ḣ(t) ⊥ ker[X(σ(t))].

However ḣ ⊥ ker[X̄(σ)] in L2([0, T ]; Rm) holds if and only if ḣ(t) is orthogonal to
ker[X(σ(t))] for almost all t, and we see the pointwise connection is the connection
corresponding to X̄ . From this (8.3) holds as in Elworthy-LeJan-Li [15]. The results
for H follow by conjugation with ID

∂t . �

In the case E = TM the connection ∇∇ is the damped Markovian connection de-
fined in a different way by Cruzeiro-Fang [5] and we refer to it as that in our more
general situation. For the case of M a Lie group with left invariant metric and connec-
tion, as Example 2 of section 2.1.1, see section 9.

8.2 Covariant Gross-Sobolev derivatives
Let G be a separable Hilbert space. First consider a smooth separable Hilbert bundle
G over Cx0M with a metric connection ∇̃ determined by a smooth surjective vector
bundle map X̃ : Cx0M ×G→ G, with isometric right inverse

Ỹσ = X̃(σ)∗ : Gσ → G, σ ∈ Cx0M.

Define Dom(∇̃p) to be IDp,1G for

IDp,1G =
{
V ∈ LpΓG | Ỹ V ∈ IDp,1(Cx0M ;G)

}
.

For V ∈ IDp,1G, φ ∈ IDp,1L2(G;K), K a separable Hilbert space set

∇̃p
vV = X̃(σ)dp

(
Ỹ V

)
σ

(v), v ∈ Hσ. (8.5)

∇̃p
vφ = dp(φ(X̃−))σ(v)(Ỹσ−). (8.6)

Let K̃⊥(σ) = ỸσX̃(σ) be the orthogonal projection of G onto ker[X̃(σ)]⊥, σ ∈
Cx0M . Note that, c.f. [15]:

X̃∇̃Ỹ = 0, and X̃dHK̃
⊥ = 0. (8.7)

To obtain a closed covariant differentiation operator we impose:

Condition Kp. If f ∈ IDp,1(Cx0M ;G) then K̃⊥(·)f (·) ∈ IDp,1(Cx0M ;G).

Note that this implies , by the closed graph theorem, that f 7→ K̃⊥f is continuous
from IDp,1(Cx0M ;G) to IDp,1(Cx0M ;G). Note that if X̃ = X̄ or XX , then Condition
(M0) implies Condition Kp holds for all p by Lemma 5.6.

Proposition 8.3 Assume Condition Kp. Then C∞ΓG ∩ IDp,1G is dense in IDp,1G.

Proof For V ∈ IDp,1G set f = Ỹ V and take smooth functions fk ∈ IDp,1(Cx0M ;G),
k = 1, 2, . . ., converging to f in IDp,1(Cx0M ;G). Then X̃fk → V in Lp. Observe that

∇̃(X̃fk) = X̃dH(Ỹ X̃fk) → X̃d(Ỹ X̃f ) = ∇̃V
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in Lp by Condition Kp. �

The proposition is essentially due to the fact that ConditionKp implies the smooth-
ness of X̃ and in particular

U ∈ IDp,1(Cx0M ;G) ⇐⇒ X̃(U ) ∈ IDp,1G. (8.8)

Corollary 8.4 Assume Condition Kp . There is the Leibniz formula

dp(Ỹ V ) = (∇̃−Ỹ )V + Ỹ ∇̃p
−V, V ∈ IDp,1G. (8.9)

Proof The formula holds for smooth V and so in general by Proposition 8.3 since dp

is closed. �

Lemma 8.5 Assume Condition Kp. Then for 1 < p < ∞, and for 1 ≤ p < ∞ if
condition (M0) holds,

∇̃p : Dom(∇̃p) ⊂ LpΓG → LpΓ(L2(H;G))

is a closed operator.

Proof Let {Uk}∞k=0 be a sequence in IDp,1G such that {Uk, ∇̃pUk}∞k=0 converges to
some (U,Z). We must show that U ∈ IDp,1G and Z = ∇̃pU . By definition Ỹ (Uk) ∈
IDp,1(Cx0M ;G) and Ỹ (Uk) → Ỹ (U ). Apply the Leibniz formula to see that

d(Ỹ Uk) = (dHK̃⊥)(Ỹ Uk) + Ỹ ∇̃pUk → (dHK̃⊥)(Ỹ U ) + Ỹ Z.

The convergence is inLpΓL2(H;G) by ConditionKp. Since d is closed this shows that
Ỹ U ∈ IDp,1(Cx0M ;G) and limk→∞ d(Ỹ Uk) = d(Ỹ U ). Consequently U ∈ IDp,1G
and, using (8.5), ∇̃pUk = X̃d(Ỹ Uk) → X̃d(Ỹ U ) = ∇̃pU , giving Z = ∇̃pU . �

Note that if G1 and G2 are smooth Hilbert bundles over Cx0M with metric connec-
tions given respectively by

X̃j : Cx0M ×Gj → Gj , j = 1, 2

then the natural induced metric connections on the Hilbert bundles (G1)∗, G1 ⊗ G2,
L2(G1;G2) are determined by

Cx0M × (G1)∗ → (G1)∗

(σ, l) 7→ l ◦ Yσ,

X̃1 ⊗ X̃2 : Cx0M × (G1 ⊗G2) → G1 ⊗ G2

and

Cx0M × L2(G1;G2) → L2(G1;G2)
(σ, T ) 7→ X̃2(σ)T Ỹ 1

σ

respectively. Using these, iteratively, we can obtain closed operators acting on sections
of the tensor bundles constructed from an initial Hilbert bundle G, given the relevant
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Condition Kp. For ‘bundles’ of the form L2(H; L2(H;G)) which we can more com-
pactly write as G ⊗ (H⊗2

)∗ we will use the isometry ID
∂t : H → L2E to pull back the

covariant derivative operator from the one obtained as above on G ⊗
(

(L2E)⊗
2
)∗

, (in

this case) using the pointwise connection on L2E . For example IDp,1
(
G ⊗ (H⊗2

)
)

is{
V ∈ Lp

(
G ⊗ (H⊗2

)
)
|
(

1⊗ ID
∂t
⊗ ID
∂t

)
V ∈ IDp,1

(
G ⊗ (L2E)⊗2

)}
.

Theorem 8.6 Assume Condition Kp for X̄ for all 1 < p < ∞. Then for 1 < p <
∞ the above construction yields closed covariant derivative operators with domain
Dom(∇∇p):

∇∇p : LpΓ
((
L2E

)⊗r ⊗
(
L2E

)⊗s ⊗H⊗a ⊗ (H∗)⊗b
)

−→ LpΓ
((
L2E

)⊗r ⊗
(
L2E

)⊗s ⊗H⊗a ⊗ (H∗)⊗b+1
)

for any r, s, a, b,∈ {0, 1, 2, . . . , }. Moreover V ∈ Dom(∇∇p) if and only if

Xr,s,a,bV ≡
((
⊗rX̄

)
⊗
(
◦(⊗sȲ )

)
⊗ (⊗aXX)⊗

(
◦(⊗bYY )

))
V :

Cx0M −→
(
L2([0, T ]; Rm

)⊗r

⊗
(
L2([0, T ]; Rm

)⊗s

⊗H⊗a

⊗ (H∗)⊗
b

is in IDp,1 and then ∇∇p = (Xr,s,a,b)∗dp(Xr,s,a,bV ). If Condition (M0) holds we may
take p = 1.

Proof It is only necessary to observe that Condition Kp for Xr,s,a,b is implied by
Condition Kq for all 1 < q < ∞ for X̄ , and if Condition (M0) holds then Xr,s,a,b

satisfies K1 by Lemma 5.6. �

8.3 The higher order Sobolev spaces IDp,k

Suppose that G is a smooth Hilbert bundle over Cx0M with connection ∇̃ as given in
§8.2 by some X̃ which together with all tensor products

X̃ ⊗ (⊗aX̄)⊗ (◦ ⊗b Ȳ )

satisfies Condition Kp. For a, b ∈ {0, 1, 2, . . .} we can inductively define ∇∇p,(k) and
IDp,k

(
G ⊗H⊗a ⊗ (H∗)⊗b

)
, k = 1, 2, . . . as follows:

Set ∇∇p,(1) = ∇∇p, defined as in Theorem 8.6, with

IDp,1
(
G ⊗H⊗a ⊗ (H∗)⊗b

)
= Dom(∇∇p).

For k = {2, 3, . . .} set

IDp,k
(
G ⊗H⊗a ⊗ (H∗)⊗b

)
=
{
V ∈ IDp,1 | ∇∇pV ∈ IDp,k−1

(
G ⊗H⊗a ⊗ (H∗)⊗(b+1))}

and∇∇p,(k) = ∇∇p,(k−1)◦∇∇p. Here we have used our usual identification of L2(H1;H2)
with H2 ⊗H∗

1 for Hilbert spaces H1,H2. As usual we give IDp,k the graph norm

|||V |||p,k =
(
|||V |||pLp + |||∇∇pV |||pLp + . . .+ |||∇∇p,(k)V |||pLp

) 1
p

,

i.e. the graph of the closed operator Id⊗∇∇p ⊕ . . .⊕∇∇p,(k).
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8.3.1 The higher order weak Sobolev spaces W p,k

Continuing with the previous notation let

(∇∇p)∗ : Dom(∇∇p)∗ ⊂ LqΓ
(
G ⊗H⊗r ⊗H∗⊗s+1

)
−→ LqΓ

(
G ⊗H⊗r ⊗H∗⊗s

)
be the adjoint of ∇∇p, 1

p + 1
q = 1, with q = ∞ if p = 1.

Lemma 8.7 Assume Condition Kp holds for X̃r,s and X̃X
r,s

where

X̃r,s = X̃ ⊗
(
⊗rX̄

)
⊗
(
◦(⊗sȲ )

)
,

X̃X
r,s

= X̃ ⊗ (⊗rXX)⊗ (◦(⊗sYY ) .

Then

(i) (∇∇p)∗ = X̃X
r,s

(dp)∗
(
X̃X

r,s+1
)∗

.

(ii) IDq,1
(
G ⊗H⊗r ⊗H∗⊗s+1

)
⊂ Dom(∇∇p)∗.

Proof After conjugation with ID
dt if necessary we can assume that r = s = 0. Then by

(8.5), ∇̃p(−) = X̃dpỸ (−) and it is easy to see that

(∇̃p)∗ ⊃ X̃(dp)∗(Ỹ ⊗ 1) = X̃(dp)∗(Ỹ ◦ −).

Suppose that φ ∈ Dom(∇̃p)∗ ⊂ LqΓ(G ⊗ H∗) ∼ LqΓL2(H;G). For (i) it suffices to
show that Ỹ ◦ φ ∈ Dom((dp)∗). For this take g ∈ IDp,1(Cx0M ;G) then∣∣∣∣∣

∫
Cx0M

〈
Ỹ ◦ φ, dpg

〉
dµx0

∣∣∣∣∣
=

∣∣∣∣∣
∫
Cx0M

〈
φ, X̃dp(K̃⊥g)

〉
dµx0

∣∣∣∣∣+
∣∣∣∣∣
∫
Cx0M

〈
φ, X̃dp(K̃g)

〉
dµx0

∣∣∣∣∣ .
Now K̃⊥g = Ỹ (X̃g) and X̃g ∈ IDp,1G. So the first of these two terms is∣∣∣∣∣

∫
Cx0M

〈
φ, ∇̃p(X̃g)

〉
dµx0

∣∣∣∣∣ ≤ cφ|X̃g|Lp ≤ const. · cφ |g|Lp .

The second term is∣∣∣∣∣
∫
Cx0M

〈
Ỹ φ, dp(K̃g)

〉
dµx0

∣∣∣∣∣ =

∣∣∣∣∣
∫
Cx0M

〈
Ỹ φ, dp(K̃)(−)g + K̃dpg

〉
dµx0

∣∣∣∣∣
≤ |const.φ|Lq |g|Lp .

For (ii) suppose φ ∈ IDq,1L2(H;G). By definition,

Ỹ ◦ φ ∈ IDq,1 (L2(H;G)) ⊂ Dom(dp)∗

just as in the scalar case, Theorem 5.8. However (the easy part of ) (i) then shows
φ ∈ Dom(∇̃p)∗ as required. �
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Define W p,1
(
G ⊗H⊗r ⊗H∗⊗s

)
to be domain of the adjoint of the restriction of

(∇∇p)∗ to IDq,1
(
G ⊗H⊗r ⊗H∗⊗s+1

)
. Let

∇̃∇p
: W p,1

(
G ⊗H⊗r ⊗H∗⊗s

)
⊂ LpΓ

(
G ⊗H⊗r ⊗H∗⊗s

)
−→ LpΓ

(
G ⊗H⊗r ⊗H∗⊗s+1

)
be the adjoint , considered as a closed operator.

As for IDp,k we can define W p,k and ∇̃∇p,(k)
iteratively, giving W p,k the analogous

graph norm. Since ∇∇p,(k) ⊂ ∇̃∇p,(k)
we see IDp,k is always a closed subspace of W p,k.

When G is a trivial vector bundle Cx0M × G we write them as W p,k(Cx0M ;G) and
IDp,k(Cx0M ;G) respectively. By Proposition 8.1 this agrees with the previous defini-
tion when k = 1.

We will consider the following possible conditions on X̃:

Condition K(N). For 1 ≤ k ≤ N , for g ∈ G, the kth H-derivative of K̃⊥(−)(g) :
Cx0M → G has a bound∣∣∣(∇∇⊗(k−1)dHK̃

⊥(−)(g))
∣∣∣
G⊗(H∗)⊗(k−1)

< cN (σ)|g|G,

where c̄N = ess supσ∈Cx0M cN (σ) is finite.

Condition K(N)ID. For each g ∈ G the map K̃⊥(−)(g) is in ∩p>1 ∩N
k=1 IDp,k and

Condition K(N ) holds.

Remark 8.8 If Condition M holds then Condition K(N )ID holds for X̄ and XX . To
see this observe that Condition K(N ) holds because Condition (M ) implies that the
norm ‖iσ‖σ of the inclusion iσ : Hσ → TσCx0M is in L∞(Cx0M ; R) while all the
derivatives of K⊥ : M → L(Rm; Rm) are bounded. Then Condition K(N )D follows
as in the proof of Lemma 5.6. Condition (M0) suffices for Condition K(1)D.

Remark 8.9 The necessity of imposing Condition K(N )D in order to discuss IDp,k

sections of G reflects the fact that we have not shown that Fréchet BC∞ functions are
in ∩p>1 ∩∞k=1 IDp,k, and G should be “of class IDp,k ” in some sense.

Lemma 8.10 Assume Condition (M0). Let 1 ≤ p <∞.

(i) Under Condition K(N)ID the map

f 7→ K̃⊥f

gives a continuous linear map

IDp,k(Cx0M ;G) → IDp,k(Cx0M ;G)

for k ∈ {1, . . . , N} and f 7→ dHK̃
⊥(−)f a continuous linear map

IDp,k−1(Cx0M ;G) → IDp,k−1(Cx0M ; L2(H;G))

for k ∈ {1, 2, . . . , N}.
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(ii) Under Condition K(N) the corresponding results hold for weak derivatives.

Proof Assume Condition K(N ). Consider I∗(K̃⊥(·)f (·)) to see

K̃⊥(·)f (·) ∈W p,1(Cx0M ;G)

and
d̃p(K̃⊥f ) = dH(K̃⊥)(−)f + K̃⊥(·)d̃pf

by Proposition 8.1. Repeat this for dH(K̃⊥)(X̃−)f and higher derivatives to prove (ii)
(The continuity comes from the closed graph theorem). For (i) assume K(N)ID. We
already have the result for the weak derivatives. If f ∈ Dom(dH)G, i.e. f ∈ Cyl⊗G
we see K̃⊥f ∈ IDp,1, as do successive derivatives of K̃⊥(−)f . Since IDp,1 is closed in
W p,1 we obtain the result for k = 1, and by iterating this the result for 1 ≤ k ≤ N as
required.

�

Proposition 8.11 Suppose 1 < p < ∞ and k ∈ {1, 2, . . .}. Assume Condition (M0)
and that X̃X

r,s
defined in Lemma 8.7 satisfies Condition K(k). Then

V ∈W p,k
(
G ⊗H⊗r ⊗H∗⊗s

)
if and only if (X̃X

r,s
)∗V ∈ Wp,k

(
Cx0M ;G⊗H⊗r ⊗H∗⊗s

)
. Furthermore ∇̃∇p,(k)

=
X̃X

r,s
d̃(k)(X̃X

r,s
)∗V . The corresponding result holds for IDp,k assuming Condition K(k)ID.

Proof After conjugation by ID
dt we can assume that r = s = 0. Suppose V ∈ W p,1G.

Then there exists cV such that∣∣∣∣∣
∫
Cx0M

〈
V, (∇̃q)∗Z

〉
σ
dµx0

∣∣∣∣∣ ≤ cV |Z|Lq , ∀ Z ∈ IDq,1 (G ⊗H∗) . (8.10)

On the other hand suppose φ ∈ IDq,1(G⊗H∗) ∼ IDq,1L2(H;G). Then, by definition,
X̃ ◦ φ ∈ IDq,1L(H;G) ∼ IDq,1(G ⊗H∗) and so∣∣∣∣∣

∫
Cx0M

〈
Ỹ V, (dq)∗φ

〉
σ
dµx0(σ)

∣∣∣∣∣ =
∣∣∣∣∣
∫
Cx0M

〈
V, X̃(dq)∗φ

〉
σ
dµx0(σ)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Cx0M

〈
V, X̃(dq)∗K̃⊥φ

〉
σ
dµx0(σ)

∣∣∣∣∣+
∣∣∣∣∣
∫
Cx0M

〈
V, X̃(dq)∗K̃φ

〉
σ
dµx0(σ)

∣∣∣∣∣ .
Take Z = X̃ ◦ φ and use Lemma 8.10 with equation (8.10) to bound the first of

these two terms by a constant times |φ|Lq . To obtain a similar bound for the second
term observe that there is a constant such that∣∣∣∣∣

∫
Cx0M

〈
U, X̃(dG)∗K̃φ

〉
dµx0

∣∣∣∣∣ ≤ c|φ|Lq , ∀ U ∈ LpΓ(G),

because if U ∈ IDp,1, a dense subset of Lp, we have Ỹ U ∈ IDp,1 and∣∣∣∣∣
∫
Cx0M

〈
dq(Ỹ U ), K̃φ

〉
dµx0

∣∣∣∣∣ =

∣∣∣∣∣
∫
Cx0M

〈
(∇̃−Ỹ )U + Ỹ ∇̃−U, K̃φ

〉
dµx0

∣∣∣∣∣
≤ c̄1|U |Lp |φ|Lq
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by Condition K(k), and since K̃Ỹ = 0. This proves that V ∈ W p,1G implies Ỹ V ∈
W p,1(Cx0M ;G).

Conversely suppose Ỹ V ∈ W p,1(Cx0M ;G) and Z ∈ IDq,1(L2(H;G)). We shall
show (8.10) holds. Observe Ỹ ◦ Z ∈ IDq,1(L2(H;G)). By Lemma 8.7,∣∣∣∣∣

∫
Cx0M

〈
V, (∇̃p)∗Z

〉
σ
dµx0(σ)

∣∣∣∣∣ =

∣∣∣∣∣
∫
Cx0M

〈
V, X̃(dp)∗(Ỹ ◦ Z)

〉
σ
dµx0(σ)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Cx0M

〈
Ỹ V, (dp)∗(Ỹ ◦ Z)

〉
σ
dµx0(σ)

∣∣∣∣∣
≤ CỸ V |Ỹ ◦ Z|Lq ≤ CỸ V |Z̃|Lq .

So V ∈W p,1G and the result holds for k = 1.
Suppose now that the proposition holds for W p,k−1 some k ∈ {2, 3, . . .}. Take

V ∈ W p,kG. Then V ∈ W p,k−1G and ∇̃∇p
V ∈ W p,k−1G. Equivalently Ỹ V ∈

W p,1(Cx0M ;G) and Ỹ ∇̃∇p
V ∈W p,k−1L2(H;G). Now

d̃(Ỹ V ) = d̃(K̃⊥Ỹ V ) = (dHK̃⊥)(−)Ỹ V + K̃⊥d̃(Ỹ V ) = (dHK̃⊥)(−)Ỹ V + Ỹ ∇̃∇p
V,

which belongs toW p,k−1(Cx0M ;G) by the previous lemma. Thus V ∈W p,kG implies
Ỹ V ∈W p,k(Cx0M ;G).

Conversely if Ỹ V ∈W p,k then

Ỹ ∇̃∇p
V = d̃(Ỹ V )− ∇̃∇p

−Ỹ (V ) = d̃(Ỹ V )− (dHK̃⊥)(−)Ỹ V

is in W p,k−1 by the previous lemma, and so by the induction hypothesis V ∈ W p,kG.
�

Note that we have not discussed the independence of IDp,kG from the choice of X̃ .
However our main interest is in sections of L2E or H and related tensor bundles. For
these we used X̃ derived from a stochastic differential equation and for such X̃ this is
clear, as in Lemma 5.6. An extension of Proposition 8.3 to IDp,k and of the discussion
in section 7 to prove that BC∞ functions are in ∩p>1 ∩∞k=1 IDp,k, c.f. Remark 8.9,
would give the general case.

As for the proof of Theorem 5.8, we have, using Remark 8.8

Theorem 8.12 Assume Condition (M0). For 1 < p <∞, the set W p,1H is contained
in Dom(divp) and divp : W p,1H → Lp(Cx0M ; R) is continuous.

8.4 Intertwining of higher order derivatives
First we define the Sobolev spaces over the Wiener space relative to the Itô map.

Definition 8.13 For any sub σ-algebra a of the Borel σ-algebra of Rm and separable
Hilbert space G, the space IDp,1

a,G consists of those F ∈ Lp (C0Rm;G) s.t.

1. F is a-measurable,

2. F ∈ DomG(dp).

Inductively IDp,k
a,G consists of those F ∈ Lp (C0Rm;G) such that

1. F ∈ IDp,1
a,G
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2. E {dpF |a} : C0R
m → L2 (H;G) is in IDp,k−1

a,L2(H;G).

For F ∈ IDp,k
a,G define

(
‖F‖IDp,k

a,G

)
=

(
k∑

r=0

‖(dpE {−|a})r
F‖p

Lp

) 1
p

.

These spaces are Banach spaces since dpE {−|a}F is the composition of a closed
operator following a bounded operator and thus a closed operator.

The following theorem corrects the version in [25].

Theorem 8.14 Assume Condition (M ). Let G be a separable Hilbert space. Then
f : Cx0M → G is in W p,k(Cx0M ;G) some 1 ≤ p < ∞, k ∈ {1, 2, . . .} if and only if
I∗(f ) ∈ IDp,k

F,G. Moreover

I∗ : W p,k(Cx0M ;G) → IDp,k
F,G

is a continuous linear isomorphism.

Proof For k = 1 this is Proposition 8.1. Suppose it holds for some k ∈ {1, 2, . . .}.
Then if f ∈W p,1(Cx0M ;G)

E{dI∗(f )|Fx0} = E{I∗(d̃f )|Fx0} = I∗(d̃f ◦ TI) = I∗(d̃f ◦XX),

which belongs to IDp,k if and only if d̃f ◦XX ∈W p,k(Cx0M ;H∗). The last holds if and
only if f ∈ W p,k+1(Cx0M ;G) by Proposition 8.11 and so the result holds for k + 1.

�

Corollary 8.15 Under the conditions of Theorem 8.14, I∗ maps IDp,k(Cx0M ;G) onto
a closed subspace of IDp,k

F,G.

Note that many authors, e.g. Léandre [33], Li [34], have defined Sobolev spaces for
Cx0M using the flat connection on H defined by the trivialisation of H given by V· 7→
//−1
· V· (in the Levi-Civita case). This cannot be expected to agree with our definition

because of the curvature term occurring in the covariant derivative of //−1, c.f. the
proof of Lemma 6.11. In particular Corollary 8.15 should not in general hold with
those definitions. For a covariant calculus using Markovian connections see Cruzeiro-
Malliavin [7].

9 Special case: no redundant noise

Suppose X(x) : Rm → TxM is injective for each x, so p = m and X trivialises
E. Or equivalently F = Fx0 . Examples include left and right invariant stochastic
differential equations on Lie groups, Example 2 of section 2.1.1 and the canonical
stochastic differential equation on the orthonormal frame bundle, Example 4 of the
same section. Condition (M ) may not hold for the injective case, see for example 2C
on page 24 of Elworthy-LeJan-Li [15]. However we still get complete intertwining
and all the results in this article. In fact condition (M0) can be removed in the proof
of the key Theorems, Th 3.4, Th 4.2, Co 4.3 and their corresponding Hilbert space
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valued versions. Furthermore the Conditions K needed to define IDp,k holds trivially.
The following theorem extends some of the results of Fang-Franchi [27] who were
concerned with Brownian motion measure on Lie groups.

Theorem 9.1 Suppose X is injective. Then for 1 < p <∞

1. I∗ maps IDp,k(Cx0M ; R) isometrically onto IDp,k(Ω; R), k = 1, 2, . . ., and

I∗dp = dpI∗

I∗∇∇p,(k)dp = (dp)(k+1)I∗

where, for ψ ∈ LpΓL
(
⊗k+1H; R

)
,

I∗(ψ) : Ω → L(⊗k+1H; R)

is given by I∗(ψ) =
(
ψ ◦ ⊗(k+1)TI

)
◦ I.

2. On H-1-forms (dp)∗I∗ = I∗(dp)∗. An H-vector field V lies in Dom(divp
Cx0M ) if

and only if (YY V ) ◦ I is in Dom(divp
Ω); if so

(divV ) ◦ I = −
∫ T

0

〈
ID
ds
V (xs), X(xs)dBs

〉
xs

where the integral is a Skorohod integral.

3. The Laplacians, or ‘Ornstein-Uhlenbeck operators’, are conjugated by I∗, as
operators on Lp:

I∗((dp)∗dp = (dp)∗dpI∗.

Proof Since TI = TI, it acts isometrically on H with inverse YY . The proof of
Proposition 5.1 gives that h ∈ Dom(divp

Ω) if and only if TI(h) ∈ Dom(divp). Part
2 follows by (5.4). For k = 1, part 1 follows from part 2 since, by (3.8), I∗ acts
isometrically on H-1-forms as well as on functions. For k > 1 and higher order
Sobolev spaces, observe that for G a separable Hilbert space, IDp,k

Fx0 ;G = IDp,k(Ω, G).
Finally part 3 follows from part 1 and part 2.

�

Remark 9.2 From Theorem 9.1 we see Markov uniqueness holds if X is injective,
without assuming condition (M0). In fact the proof in section 6.3 shows that Cyl0H∗

is total in Dom(d∗) on Cx0M and so ID2,1H∗ is dense in Dom(d∗) and (dp)∗|Cyl0H∗ =
(dp)∗|IDq,1H∗ . The argument leading to Theorem 6.9 in section 6.2 proves ID2,1 = W 2,1

and Markov uniqueness. For the stronger result of the essential self-adjointness of
d∗d|Cyl on L2(Cx0M ; R) see the method of Aida [3].

For completeness and as an example we show that for Lie groups G with left in-
variant connection our connection ∇∇ agrees with the ‘Levi-Civita’ connection used
previously, c.f. Freed [28], Fang-Franchi [27], Aida [4], Driver-Lohrenz [10]. See also
Shigekawa [43], Shigekawa-Taniguchi [44]. For this let M = G with left invariant
stochastic differential equation as in Example 2 of section 2.1.1. Since the adjoint con-
nection ∇̂ of ∇ is the flat right invariant connection we have H-vector fields V y(σ)
given by V (σ)t := TRσ(t)(yt), y ∈ L2,1

0 ([0, T ]; g), for TRg : g = TeG → TgM the
derivative of right translation Rg by g ∈ G.
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Proposition 9.3 For y, z in L2,1
0 ([0, T ]; g),

(∇∇V z(σ)V
y)t = TRσ(t)[ẏ(t), z(t)].

Proof By definition of X and ∇∇ and since the Ricci curvature is zero and there is no
‘drift’,

(∇∇V z(σ)V
y)t = TLσ(t)

[
d

(
ρ 7→ TL−1

ρ

ID
d·
V y
·

)
σ

(V z(σ))
]

t

= TLσ(t)

[
d
(
g 7→ TL−1

g TRg ẏt

)
σ(t)

(TRσ(t)(zt))
]

= TRσ(t)[ẏ(t), z(t)]

as expected. �

10 Appendix: The conditional expectations of exponential martin-
gales

Let ε(a) be the exponential martingale

ε(a) := exp

(∫ T

0

〈ȧs, dBs〉 −
1
2

∫ T

0

|ȧs|2ds

)

for a ∈ H and set ε̃(a) = E{ε(a)|Fx0}. By Proposition 7.3 we know ε̃(a) is in ID2,1
Fx0 .

As evidence that E{−|Fx0} maps ID2,1 into itself we show, c.f. Remark 7.9:

Proposition 10.1 There is a constant C such that for all a ∈ H

‖ε̃(a)‖ID2,1 ≤ C‖ε(a)‖ID2,1 .

Proof Set

εt = εt(a) = exp
(∫ t

0

〈ȧs, dBs〉 −
1
2

∫ t

0

|ȧs|2ds
)
.

Denote by dH the H-derivative to distinguish it from the stochastic differential. Then
E|εt|2 = exp

(∫ t

0
|ȧs|2ds

)
and ‖ε(a)‖2ID2,1 = (1 + ‖a‖2H ) exp

(
‖a‖2H

)
. Conditioning

the stochastic differential equation

dεt = 〈ȧt, dBt〉 εt

on Fx0 shows that ε̃t ≡ ε̃t(a) = E{εt|Fx0} satisfies:

dε̃t = ε̃t 〈X(xt)ȧt, X(xt)dBt〉 .

So

ε̃t = exp
(∫ t

0

〈X(xs)ȧs, X(xs)dBs〉 −
1
2

∫ t

0

|X(xs)ȧs|2ds
)

and

E|ε̄t|2 = E exp
(∫ t

0

|K⊥(xs)ȧs|2ds
)
,
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where K⊥ : M × Rm → [ker(X)]⊥ is the projection map Y (x)X(x). From this, for
h ∈ H ,

dH (ε̃)(h) = ε̃

{∫ T

0

〈
X(xs)ȧs, X(xs)(ḣs)ds+∇TIs(h)XdBs

〉

+
∫ T

0

〈∇TIs(h)X(ȧs), X(xs)dBs〉 −
∫ T

0

〈∇TIs(h)X(xs)(ȧs), X(xs)ȧs〉 ds

}
.

By Theorem 3.4, setting φ# = ε̃Ws(X(x·)ȧ·), then

ε̃

∫ T

0

〈
X(xs)ȧs, X(xs)(ḣsds) +∇X(TIs(h))dBs

〉
= I∗(φ)(h).

Note that ‖φ‖2 = Eε̃2
∫ T

0
|X(xs)ȧs|2ds ≤ |a|2HEε̃2.

Take any Riemannian metric on TM extending that of E and for e ∈ Rm define:

Zx(e) : Ex → TxM

to be the adjoint of ∇−X(e) : TxM → Ex for each x in M . Then

ε̃

{∫ T

0

〈∇TIs(h)X(ȧs), X(xs)dBs〉 −
∫ T

0

〈∇TIs(h)X(xs)(ȧs), X(xs)ȧs〉 ds

}

= ε̃

{∫ T

0

〈TIs(h), Zxs (ȧs) (X(xs)dBs)〉 −
∫ T

0

〈TIs(h), Zxs (ȧs) (X(xs)ȧs))〉 ds

}
,

which can be verified to equal to I∗(ψ)(h), defined by Theorem 3.4, where

ψ# = ε̃Wt

(
Π(W−1

· )∗
∫ T

·
W ∗

r Zσr (ȧr)X(σr) (dBr − ȧrdr)

)
.

We have used the expression (3.12) of TI for the verification. It remains to estimate

E|I∗(ψ)|2 =
∫

Cx0M

∫ T

0

∣∣∣∣ IDdsψ#
s

∣∣∣∣2 dsµx0(dσ)

= Eε̃2
∫ T

0

(
Π(W−1

t )∗
∫ T

t

W ∗
r Zxr

(ȧr)X(xr)(dBr − ȧrdr)

)2

dt.

For this let {yt : 0 ≤ t ≤ T} be the solution to the stochastic differential equation{
dyt = X(yt) ◦ dBt +A(yt)dt+ 2X(yt)(ȧt)dt
y0 = x0.

Then by the Girsanov-Maruyama theorem,

E|I∗(ψ)|2

= E exp

(∫ T

0

|K⊥(ys)ȧs|2ds

)∫ T

0

(
Π(W−1

t )∗
∫ T

t

W ∗
r Zyr

(ȧr)X(yr)(dBr + ȧrdr)

)2

dt
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≤ 2E exp

(∫ T

0

|K⊥(ys)ȧs|2ds

)∫ T

0

(
Π(W−1

t )∗
∫ T

t

W ∗
r Zyr

(ȧr)(X(yr)dBr)

)2

dt

+2E exp

(∫ T

0

|K⊥(ys)ȧs|2ds

)∫ T

0

(
Π(W−1

t )∗
∫ T

t

W ∗
r Zyr (ȧr)(X(yr)ȧr)dr

)2

dt

≤ const. ‖a‖2H exp(‖a‖2H )

+exp(‖a‖2H )E exp

(
−
∫ T

0

|K(ys)ȧs|2ds

)
·

∫ T

0

(
Π(W−1

t )∗
∫ T

t

W ∗
r Zyr

(K(yr)ȧr)X(yr)(ȧr)dr

)2

dt

where K(x) = 1−K⊥(x), using the fact that ∇X = ∇X ◦K. Now

E exp

(
−
∫ T

0

|K(ys)ȧs|2ds

)
·
∫ T

0

(
Π(W−1

t )∗
∫ T

t

W ∗
r Zyr

(K(yr)ȧr)X(yr)(ȧr)dr

)2

dt

≤ const.E exp
(
−
∫ T

0
|K(ys)ȧs|2ds

)
·
∫ T

0

{∫ T

t
|K(yr)ȧr|2dr

∫ T

t
|K⊥(yr)ȧr|2dr

}
dt

≤ const.|a|2HE
∫ T

0

(∫ T

t
exp

(
−
∫ T

r
|K(ys)ȧsds|2ds

)
|K⊥(yr)ȧr|2dr

)
dt

≤ const.|a|2HE
∫ T

0
exp

(
−
∫ T

t
|K(ys)ȧsds|2ds

)
dt

≤ const.|a|2H.

From this we see E|I∗(ψ)|2 ≤ const.|a|2He|a|
2
H as required. �
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the occasion of his eightieth birthday). Springer, 1996.

[19] K. D. Elworthy and Xue-Mei Li. Special Itô maps and an L2 Hodge theory for one forms
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