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ABSTRACT. Consider a stochastic differential equation whose diffusion vector fields are
formed from an integrable family of Hamiltonian functions Hi, i = 1, . . . n. We investi-
gate the effect of a small transversal perturbation of order ε to such a system. An averaging
principle is shown to hold for this system and the action component of the solution con-
verges, as ε → 0, to the solution of a deterministic system of differential equations when
the time is rescaled at 1/ε. An estimate for the rate of the convergence is given. In the
case when the limiting deterministic system is constant we show that the action compo-
nent of the solution scaled at 1/ε2 converges to that of a limiting stochastic differentiable
equation.

1. INTRODUCTION

A time homogeneous stochastic differential equation is related to a partial differential
equation and to the geometry and the topology of the state space through its infinitesimal
generator, a second order differential operator in Hörmander form. If the second order
differential operator has an ‘elliptic ’ structure there corresponds an Riemannian metric on
the state space and a linear connection on the relevant sub-bundle of the tangent bundle as
has been investigated in [ELJL99]. The desire to understand elliptic systems leads to the
question of the stability of the geometry when the elliptic system is perturbed. We may ask
if the diffusion vector fields of the stochastic differential equation has a certain structure,
for example if they form an Hamiltonian system, what properties or structures remain of
the solution when a small perturbation is added and turned off slowly?

A deterministic Hamiltonian system on R2 is of the form: q̇t = ∂H
∂p , ṗt = −∂H

∂q , where
H : R2 → R is a smooth function. The vector field (∂H

∂p ,−∂H
∂q ) is the Hamiltonian vector

field associated to H . The motion of a Hamiltonian system will preserve the energy H . A
small non-Hamiltonian forcing or vector field is added to a Hamiltonian system to model a
motion which is not perfectly Hamiltonian. This could be a deterministic non-Hamiltonian
vector field, or a Gaussian noise coming from the central limit theorems due to the accu-
mulation of large quantities of small scale perturbations. For example one can consider:
q̇t = ∂H

∂p + εẆt(ω), ṗt = −∂H
∂q + εẆt(ω) where Ẇt(ω) stands for the standard white

noise with chance element ω and parameter ε ≥ 0. A valid question on perturbations is
whether, or to which degree is, any of the characteristics of the dynamics of a Hamilton-
ian system stable under small perturbation. As the magnitude of the random perturbation
may differ at different locations we are naturally lead to consider a multiplicative noise
perturbation, e.g. q̇t = ∂H

∂p + qtẆt(ω), ṗt = −∂H
∂q + ptẆt(ω), in which case we have
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a nontrivial stochastic differential equations, a linear one in this case. Yet no particular
structure is assumed of the noise in the above example. If the noise terms in a perturbed
Hamiltonian system comes from a Hamiltonian function the system is called a stochastic
Hamiltonian system. Stochastic Hamiltonian systems can be formally regarded as a family
of time dependent Hamiltonian systems, with parameter ω, where the dependence on time
is continuous but not differentiable. An example of a linear stochastic Hamiltonian equa-
tion is: q̇t = pt + ptẆt(ω), ṗt = −qt − qtẆt(ω); and the following is one with additive
noise q̇t = pt, ṗt = −qt + Wt(ω). Note that the Hamiltonian functions (p2

t + q2
t )Wt(ω)

and qtWt(ω) are not bounded from below. Another example would be, by taking two inde-
pendent white noises Ẇ 1

t and Ẇ 2
t : q̇t = pt +ptẆ

1
t (ω), ṗt = −qt−qtẆ

2
t (ω). One related

question is the rigidity of the stochastic Hamiltonian systems under small non Hamilton-
ian perturbations. Perturbed stochastic Hamiltonian systems have been studied by vari-
ous authors in a number of contents, see e.g. Albeverio-Hilbert-Kolokotsov [AHK00] for
asymptotics of some noisy Hamiltonian systems.

A family of n Hamiltonians {Hk} on a 2n dimensional symplectic manifold is said to
form a (completely) integrable system if they are pointwise Poisson commuting and that
the corresponding Hamiltonian vector fields XHk

are linearly independent at almost all
points. Given such an integrable family and a local Hamiltonian vector field V commuting
with the family of vector fields XHk

in the sense of ω(XHk
, V ) = 0, we can construct a

so called integrable stochastic symplectic/Hamiltonian system:

(1.1) dxt =
n∑

k=1

XHk
(xt) ◦ dBk

t + V (xt)dt,

where (Bk
t , k = 1, . . . , n) are pairwise independent Brownian motions on a filtered prob-

ability space (Ω,F ,Ft, P ) with the standard assumptions on the filtration and ◦ stands for
Stratonovitch integration. Note that we have suppressed the chance element ω here as is
conventional. We call respectively XHk

the diffusion vector fields and V the drift vector
field for the stochastic differential equation. Strictly speaking we ought to distinguish the
use of the ‘stochastic symplectic systems’ from ‘stochastic Hamiltonian systems’ depend-
ing whether the vector fields concerned are Hamiltonian or merely locally Hamiltonian.
But here we are not too worried about that unless there is a need to emphasise this aspect.

As we mentioned earlier a stochastic differential equation can be particularly interesting
when a sufficient amount of noise is present, as the infinitesimal generator of the Markov
solutions to the stochastic Hamiltonian system relates to geometry and plays a significant
role in the analysis of solutions. In the integrable stochastic Hamiltonian system case, the
diffusion vector fields span a sub-bundle of the tangent bundle, at least locally. Indeed
the purpose of the present article is to investigate the effect of a small non-Hamiltonian,
and Hamiltonian, perturbation to random systems of this type. A solution to an integrable
Hamiltonian system preserves the energies Hk, just as does a solution to any other stochas-
tic Hamiltonian systems and there are corresponding invariant manifolds (level sets). The
Markov solution restricts to each compact level set and the restriction has generator

L0 =
n∑

k=1

1
2
LXHk

LXHk
+ LV .

Here LV indicates Lie differentiation in the direction of V . If the integrable stochastic
Hamiltonian system is perturbed by a vector field εK for K a vector field not taking values
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in the span of {XHk
, k = 1, 2 . . . n} the solution to the resulting equation

dyε
t =

n∑
i=1

XHk
(yε

t ) ◦ dBk
t + V (yε

t )dt + εK(yε
t )dt,

yε
t = y0

(1.2)

will not conserve the energies. Here ε is a parameter. On the other hand letting ε → 0,
the deviation from level sets of the energies will be small. Consider the solution yε(t/ε)
scaled in time by 1/ε, which has generator given by 1

εL0 +LK . Note that the motion splits
into two parts with the fast component approximately an elliptic diffusion on the invariant
torus and the slow motion governed by the transversal part of the vector field εK. The
evolution of yε(t/ε) is the skew product of the diffusion of order 1 across the level sets
and the fast elliptic diffusion of order ε−1 along the level sets. The motion on the level sets
(thinking of the level sets as the standard n-torus), which would be quasi periodic if there is
no diffusion terms, is ergodic and the evolution of the action component of yε(t/ε) will not
depend on the angular variable in the limit as ε → 0 and can be described by a system of
n-dimensional ordinary differential equations whose vector fields are given by ω(K, XHi),
i = 1, . . . n. Here ω is the symplectic 2-form. On the other hand if the vector field K is
given by a Hamiltonian function, the average of ω(K, XHi

) over the torus vanishes and
we look at the second order scaling to see an interesting limit. The action component of
yε(tε−2) will involve a martingale term in the limit and the asymptotic law of yε(tε−2)
cross the level sets is shown to be given by a stochastic differential equation. However it
remains open to find an estimate for the rate of the convergence of the law of yε(tε−2).

This work is in the framework of Arnold on averaging principle of integrable Hamil-
tonian system as a stochastic Hamiltonian system can be considered as a family of ordi-
nary differential equations with time dependent random vector fields (whose corresponding
Hamiltonians are in general not bounded from below nor differentiable in time). Aver-
aging of stochastic systems has been pioneered by Khasminskii [Kha64], Papanicolaou,
Stroock and Varadhan [PSV77]. The structure of the main averaging results are very
close to that described in the excellent survey of Papanicolaou [Pap78]. Investigations
described in this article relate particularly to the body of work of Freidlin et al on ran-
dom perturbations of Hamiltonian systems, see e.g. Borodin-Freidlin [BF95], Freidlin-
Weber [FWeb01, FWeb04], Freidlin-Wentzell [FW93]. In their work, they allow generic
random perturbations and the systems have less restrictive structure than ours and there
are other differences. For example in Eizenberg-Freidlin [EF93] and Borodin-Freidlin
[BF95], the diffusion part of the motion belongs to the slow component. In Freidlin-Weber
[FWeb01, FWeb04] the fast component is allowed to be a diffusion, but the perturbation
is assumed to be elliptic. We refer to Abraham-Marsden [AM78], Arnold [Arn89], Hofer-
Zehnder [HZ94] and McDuff-Salamon [MS95] as references for Hamiltonian systems on
sympletic manifolds, to Givon-Kupferman-Stuart [GKS04] for some physical models be-
hind these problems and for recent progress in the direction of deterministic averaging,
and to Freidlin-Wentzell[FW98], Sowers [Sow02], Koralov [Kor04], Khasminskii-Krylov
[KK01], and Khasminskii-Yin [KY04] for related work on random perturbations of Hamil-
tonian systems as well as Arnold-Imkeller-Namachchivaya [AIN04] for a discussion on
asymptotic expansion of a damped oscillator of one degree of freedom with small noise
perturbation. For the Lagrangian mechanics and variational principle in stochastic frame-
work we would like to refer to Bismut’s work [Bis81]. However in this article we do not
investigate the stochastic mechanics related to the SDEs.
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2. PRELIMINARIES

2.1. Hamiltonian and Symplectic Vector fields. We will need the following terminol-
ogy. A smooth 2n-dimensional manifold M is said to be a symplectic manifold if it is
equipped with a symplectic structure, that is, a closed differential two-form ω which is
nondegenerate in the sense that for each x ∈ M, ω(v, w) = 0 for all w ∈ TxM implies
v = 0. Note that the customary symbol for the symplectic form is unfortunately the same
as that for the chance variable, however confusion should not arise as the chance variable
will from now on will not be explicitly expressed unless indicated otherwise. Eqivalently
M admits a set of coordinates mapping such that the coordinate changing maps are sym-
plectic on R2n with the standard symplectic form ω0 =

∑
dpi ∧ dqi. Every symplectic

manifold has a natural measure, called the Liouville measure. It is in fact ∧nω, differing
from the volume form by a constant. Denote by ιvω the inner product of a tangent vector
v with ω. The map from TM to T ∗M given by v 7→ ιvω is a vector bundle isomorphism,
and there is a one to one correspondence between vector fields and differential 1-forms. A
symplectic vector field V , also called a local Hamiltonian vector field, is one which pre-
serves the symplectic structure, i.e. LV ω = 0. Here LV denotes Lie differentiation in the
direction of V . Equivalently ιV ω is a closed differential 1-form. For every C1 function
H : M → R we can associate a Hamiltonian vector field (also called symplectic gradient
vector field) given by:

ιXH
ω = dH.

The canonical sympletic structure on R2n with coordinates (q1, . . . , qn, p1, . . . , pn) is
ω =

∑n
i=1 dqi ∧ dpi. Darboux’s theorem asserts that any symplectic manifold is locally

R2n with its canonical sympletic structure. If the first de Rham cohomology H1(M ;R)
vanishes, as in the case of R2n, every Hamiltonian vector field is given by a Hamiltonian
function. There are locally Hamiltonian vector fields which are not given by a Hamilton-
ian function. For example take the two torus T 2 with coordinates x and y periodic in x
and y. The canonical sympletic structure on R2 induces the symplectic structure on T 2:
ω = dx∧dy. A vector field X(x, y) = a(x, y) ∂

∂x +b(x, y) ∂
∂y with ∂a

∂x + ∂b
∂y ≡ 0 is clearly

locally Hamiltonian as ω(X,−) = a(x, y)dy − b(x, y)dx. However it is not given by a
Hamiltonian function on T 2 if (a(x, y), b(x, y)) 6= (0, 0) for any (x, y).

The space of smooth functions on M has a Lie algebra structure given by the Pois-
son bracket. The Poisson bracket of two smooth functions is denoted by {F1, F2} and
{F1, F2} = dF1(XF2) = ω(XF1 , XF2). The vector field corresponding to the Poisson
bracket is precisely the Lie bracket of the Hamiltonian vector fields XF1 and XF2 . Two
Hamiltonian functions are Poisson commuting or in involution if their Poisson bracket van-
ishes, in which case their corresponding Hamiltonian flows commute. If {F,H} = 0 we
say that F is a first integral of H . Two Hamiltonian functions are said to be linearly inde-
pendent at x if their associated Hamiltonian vector fields are linearly independent at that
point. A family of n Hamiltonian functions is said to form an integrable system if the
Hamiltonian functions are pairwise Poisson commuting and if they are linearly indepen-
dent on a set of full measure.

2.2. An example of a stochastic Hamiltonian system on R2n. The Hamiltonian vector
field given by an Hamiltonian function H is given by XH = JdH where J is the canonical
complex structure:

J =
(

0 1
−1 0,

)
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where 1 denotes the n by n identity matrix. The corresponding Hamiltonian system thus
takes the familiar form

q̇i =
∂H

∂pi
, 1 ≤ i ≤ n

ṗi = −∂H

∂qi
, 1 ≤ i ≤ n.

For simplicity write p = (p1, . . . , pn) and q = (q1, . . . , qn). An important class of exam-
ples of Hamiltonian functions on R2n is those of the form H(p, q) = 1

2 |p|
2 + V (q) for

some potential function V . If V is quadratic, e.g. V (q) = 1
2a2|q|2, we have the standard

harmonic oscillator. The Poisson bracket in R2n is of the following form:

{H,F} =
n∑

i=1

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
.

A example of an integrable stochastic Hamiltonian system is given by

dqi(t) =
∂K

∂pi
dt +

n∑
k=1

∂Hk

∂pi
◦ dBk

t

dpi(t) = −∂K

∂qi
dt +

n∑
k=1

∂Hk

∂qi
◦ dBk

t .

where

H1 =
1
2

n∑
i=1

a2
i q

2
i +

1
2

n∑
i=1

p2
i

Hk =
1
2
akq2

k +
1
2

p2
k

ak
, 2 ≤ k < n,

and K is a smooth function which commutes with all Hi’s, e.g. if K is a smooth function
of Hi’s.

2.3. The invariant manifolds and integrable symplectic Hamiltonian systems. As be-
fore let {Hk}n

k=1 be an integrable family of smooth Hamiltonian functions, i.e. they are
Poisson commuting and so the Hk’s are first integrals of each other and they are indepen-
dent on a set of full measure. For a = (a1, . . . , an) ∈ Rn denote by Ma the level set of
the first integrals {Hk}:

Ma = ∩n
i=1{x : Hi(x) = ai}.

The Liouville-Arnold theorem states that if {Hk}n
k=1 are independent on Ma then Ma is

a smooth manifold and furthermore it is diffeomorphic to an n dimensional torus if it is
compact and connected. For such value a, Ma is invariant under the flows of each Hk and
each x in M determines an invariant manifold through the value a = (H1(x), . . . ,Hn(x)),
which we shall write also as MH(x).

An application of Itô’s formula below shows that the solution flow {Ft(x) : t ≥ 0} of
(1.1) preserves the invariant manifolds {Ma}:

dHi(xt) =
∑

k

dHi

(
XHk

(xt)
)
◦ dBk

t + dHi

(
V (xt)

)
dt = 0, 1 ≤ i ≤ n.

For simplicity we shall assume throughout the paper the following:
• The invariant manifolds are compact,
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which is the case if the map x ∈ M 7→
(
H1(x), . . . Hn(x)

)
∈ Rn is proper. Note that

the n vector fields {XHi(x)} are tangent to MH(x) and the symplectic form ω vanishes on
the invariant manifolds Ma. Therefore the stochastic differential equation (1.1) is elliptic
when restricted to individual invariant manifolds and the Markovian solution is ergodic.
Denote by µa the unique invariant probability measure on Ma; it can be considered as the
uniform probability measure on the torus as shall be seen below.

2.4. The invariant measure and th divergence operator for semi-elliptic stochastic
symplectic systems. Let {A0, A1, . . . , An} be smooth symplectic vector fields with [Ai, Aj ] =
0 for all i, j. Assume that {A1, . . . , An} spans a sub-bundle E of the tangent bundle TM
of rank n. Consider the following stochastic differential equation:

(2.1) dxt =
n∑

i=1

Ai(xt) ◦ dBi
t + A0(xt)dt.

If there is a global solution flow {Ft(x0, ω) : t ≥ 0} to equation (2.1), then the solution
flows are stochastic symplectomorphisms, i.e. ω = F ∗

t ω, where ω is the symplectic form,
not the chance variable.

For each x ∈ M , define a linear map A(x) : R2n → TxM by

A(x)(e) =
n∑

i=1

Ai(x)〈e, ei〉, e ∈ R2n

where {ei} is an orthonormal basis of R2n. The linear map is onto Ex with kernel {0} ×
Rn and gives a positive symmetric bilinear form on E by making {Ai(x)} an orthonormal
basis:

〈Ai(x), Aj(x)〉 = δij .

Then A(x) is an isomorphism from Rn × {0} to Ex. This defines a metric on E: for
u =

∑
i uiA

i and v =
∑

i viA
i,

〈u, v〉 =
n∑

i=1

uivi

and for a function f we define its gradient∇Ef =
∑

i df(Ai)Ai. The symplectic structure
ω restricts to E defines a complex structure on M as following: we first give the tangent
bundle TM any Riemannian metric which agrees with the one constructed on E using the
linear map A. Define Jx : TxM → TxM by

ω(Jxu, v) = 〈u, v〉x.

To see that this identity defines Jx uniquely suppose that for u ∈ TxM there are u1 and u2

satisfies ω(ui, v) = 〈ui, v〉x, i = 1, 2. Then ω(u1 − u2, v) = 0 for all v. Thus u1 = u2.
Existence can be easily seen as direct calculations can be done in R2n.

Next take Ai = XHi
in (2.1), i = 1, 2, . . . n, to be the Hamiltonian vector fields for

an integrable family of Hamiltonian functions {Hi} and A0 = V . We arrive back to
the integrable stochastic sympletic equation (1.1) where V is a symplectic vector field
commuting with all XHi’s. Under our assumption that

H : x →
(
H1(x), . . . Hn(x)

)
is a proper map, then for almost every point a0 in Rn it is either trvial or a local trivial
fibration in the sense that there is a neighbourhood V of a0 such that H−1(a) is a smooth
sub-manifold for all a ∈ V and that there is a diffeomorphism from H−1(V ) to V ×
H−1(a0). Such a0 is called a regular value of H . Denote by ΣH the set of values in Rn
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which are not regular. A point y in M is said to be a critical point if H(y) ∈ ΣH . By Sard’s
theorem the set of critical values of the function H has measure zero. The 2n-differential
form ωn, as a measure, has a decomposition which gives a measure on each invariant
manifold Ma for regular a value. The decomposition can be chosen in the following way.
First recall that on a neighbourhood of a regular point a0 of H , every component of the
level set Ma0 is diffeomorphic to an n-torus and a small neighbourhood U0 of Ma0 is
diffeomorphic to the product space Tn × D where D is a relatively compact open set in
Rn, see e.g. [AKN93]. More precisely if V is an open set of Rn such that H−1(V ) does
not contain any critical points of H then it is diffeomorphic to D×Tn. Take an action angle
chart around Ma which is diffeomorphic to D × Tn for some open set D. The measure
(
∑

i dIi ∧ dθi)n on the product space naturally splits to give us a probability measure, the
Haar measure dθ1∧ . . . dθn on Tn. We take the corresponding one on Ma and denote it by
µa. Let U be a section of E. Define the divergences diva

E U to be the functions such that∫
Ma

df(U) dµa = −
∫

Ma

fdiva
EU dµa

for all smooth functions f on Ma. Note that divE XHi
= 0, since∫

Ma

df(XHi
)dµa =

∫
Ma

{Hi, f}dµa = 0

for all smooth functions f (see the beginning of section 4 for a calculation). Thus if U =∑
i aiXHi where ai are constant on Ma and is thus divergence free.

Remark 2.1. Let U be a section of E commuting with all XHi the invariant measure for
the SDE (1.1) restricted to the invariant manifold Ma is µa, which varies smoothly with a
in sufficiently small neighbourhoods of a regular value.

Proof. The measure ωn is an invariant measure for the SDE on M due to the fact that
the solution of the SDE leaves invariant the symplectic form. More precisely, since U
commutes with {XHi} and thus can be written in the the form of U =

∑
i aiXHi(x),

where ai are constant on Ma, it is therefore divergence free. Thus the invariant measure of
the SDE restricted to the torus is the same as that of the corresponding SDE without a drift.
From the action angle transformation we see that the measure µa is an invariant measure
for the SDE restricted to Ma. This is in fact the only invariant measure for the SDE on Ma

since the system is elliptic when restricted to each level set and the conclusion follows. �

3. AN AVERAGING PRINCIPLE

Let {Hi}n
i=1 be a completely integrable system on a smooth 2n-dimensional symplectic

manifold M so that the functions {Hi} are constants of motions of each other and that they
are pairwise in involution. We assume that H is proper and the set of critical points of the
function H = (H1, . . . ,Hn) : M → Rn has measure zero and so the corresponding
Hamiltonian vector fields are complete and that the solutions to (1.1) are globally defined.
Note that the vector fields {XHi

} forms an integrable distribution and so through each
point of the manifold there is an integrable n dimensional manifold.

Take an action-angle coordinate: φ−1 : U0 → D× Tn. In this coordinate, x = φ(I, θ),
I ∈ D, θ ∈ Tn, and (φ−1)∗ω = dI ∧ dθ defines a symplectic structure on D × Tn.
Furthermore if H̃i = Hi

(
φ(I, θ)

)
is the induced Hamiltonian on D × Tn then İk

i =
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−∂H̃i

∂θk
= 0 and

(3.1) θ̇k
i =

∂H̃i

∂Ik
= ωk

i (I)

with ωi
k smooth functions. In fact XH̃i

= (φ−1)∗(XHi) = −
∑n

k=1
∂(Hi◦φ)

∂Ik
∂

∂θk
. For

example the integrable Hamiltonian system in section 2.2 is equivalent to the Hamiltonian
system H1 =

∑n
i=1 aiq̄i, ai > 0, and Hk = q̄k, k = 2, . . . , n, through the action angle

coordinates change (q, p) 7→ (q̄, p̄):

(q1, . . . qn, p1, . . . , pn)

=
(√

2q̄1

a1
cos p̄1, . . .

√
2q̄n

an
cos p̄n,

√
2a1q̄1 sin p̄1, . . . ,

√
2anq̄n sin p̄n,

)
.

The corresponding Hamiltonian system is the trivial one ˙̄
ip = ai, ˙̄

iq = 0. Since U0 is
diffeomorphic to D × Tn there is a constant r > 0 such that U0 contains the open set
{x :

∑
i |Hi(x)−Hi(y0)|2 ≤ r2}.

Let K be a smooth vector field, transversal in the sense that ω(XHi ,K) are not all iden-
tically zero. Denote by yε

t the solution to (1.2), the perturbation of the integrable system
(1.1) starting from a given point y0 in M . Set xt = y0

t , the solution to (1.1) with initial
value y0. If V is a vector field on M denote by Ṽ the induced vector field on D× Tn. We
shall assume the following of the SDE (1.2):

Condition R: Suppose that ω(V,XHi) = 0 and V commutes with all vector fields XHi .
Let y0 ∈ M be a regular point of H with a neighbourhood U0 the domain of an action-
angle coordinate map: φ−1 : U0 → D × Tn, where D is an open set of Rn.

We adopt the notation that if f is a function on U0, f̃ shall be the representation of f in
D × Tn.

Lemma 3.1. Assume condition R holds for (1.2). Let τ ε be the first time that the solution
yε

t starting from y0 exits U0. Then for any smooth function f on M ,

(1) [
E
(

sup
s≤t∧τε

|f(yε
s)− f(xs)|p

)] 1
p

≤ C1ε(t + t2),

where C1 = C1(V,K,Hi, f) depends on the upper bounds of the functions |df̃ |,
| ∂2H̃k

∂Ii∂Ij
|, |dṼ |, |K̃| on D × Tn.

(2) If V ≡ 0, then the estimates above, ε(t + t2), can be improved to C1ε(t + t
3
2 ).

Proof. In the proof below C stands for an unspecified constant. We shall write the flows
in action-angle coordinates, xt = φ(It, θt) and yε

t = φ(Iε
t , θ

ε
t). Set f̃ = f ◦ φ. Then

|f(yε
t )− f(xt)| = |f̃(I(yε

t ), θ(y
ε
t ))− f̃(I(xt), θ(xt))|

≤ C|I(yε
t )− I(xt)|+ C|θ(yε

t )− θ(xt)|,

using the fact that ∂f̃
∂I and ∂f̃

∂θ are bounded on Tn × D as D is relatively compact. In the
local chart, ∂Ṽ

∂θi
= 0 and we can write V (I, θ) = Vj(I)∂Hj

∂I (I, θ) = ωj
0(I) ∂

∂θj
for some

smooth functions ωj
0 on D. The perturbation vector field can be written as (Kθ,KI) were

Kθ = (K1
θ , . . . ,Kn

θ ) and KI = (K1
I , . . . ,Kn

I ) be respectively the angle and the action
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component of the vector field K̃ on Tn×Dn. The result is now clear from the form of the
SDE on Tn ×D:

dIi,ε
t = ε KI

i (Iε
t , θ

ε
t) dt,

dθi,ε
t =

n∑
k=1

ωi
k(Iε

t ) ◦ dBk
t + ωi

0(I
ε
t ) dt + εKi

θ(I
ε
t , θ

ε
t) dt,

where ωi
k, i, k = 1, . . . n, are defined by (3.1). Indeed, then

sup
s≤t∧τε

|Iε
s − Is| = ε sup

s≤t∧τε

|
∫ s

0

∣∣KI(Iε
s , θ

θ
I )
∣∣ds ≤ εt sup

D×T n

|K1|,

and for s < τ ε,

θi,ε
s − θi

s =
n∑

k=1

∫ s

0

(
ωi

k(Iε
r)− ωk

i (Ir)
)
◦ dBk

r

+
∫ s

0

(
ωi

0(I
ε
r)− ωi

0(Ir)
)
dr + ε

∫ s

0

Ki
θ(I

ε
r , θ

ε
r) dr.

As ∫ s

0

(
ωi

k(Iε
r)− ωk

i (Ir)
)
◦ dBk

r =
∫ s

0

(
ωi

k(Iε
r)− ωk

i (Ir)
)
dBk

r

∣∣∣θi(yε
s)− θi(xs)

∣∣∣ ≤
∣∣∣ n∑

k=1

∫ s

0

(
ωi

k(Iε
r)− ωk

i (Ir)
)
dBk

r

∣∣∣
+ sup

D×T n

|dωi
0| ·
∫ s

0

∣∣Iε
r − Ir

∣∣ dr + εs sup
D×T n

∣∣∣Ki
θ

∣∣∣
≤

∣∣∣ n∑
k=1

∫ s

0

(
ωi

k(Iε
r)− ωk

i (Ir)
)
dBk

r

∣∣∣
+ε

s2

2
sup

D×T n

|KI | · sup
D×T n

|dω0
i |+ εs sup

D×T n

∣∣∣Ki
θ

∣∣∣.
Summing up over i, we have

E sup
s≤t∧τε

|θε
s − θs|p

≤ C1 sup
s≤t

( n∑
i,k=1

E
∫ s

0

∣∣∣ωi
k(Iε

r)− ωi
k(Ir)

∣∣∣2)p/2

+ C2(K̃)ε(t + t2)p

≤ C1

(∑
i,k

(|dωi
k| ∨ 1)p

)
εpt

3p
2 + C2(K̃)εp(t + t2)p

by Lp inequalities for martingales. Combining the estimates we obtain

E sup
s≤t∧τε

|f(yε
s)− f(xs)| ≤ C3ε(t + t2)

for some constant C3.
(ii) If the drift V ≡ 0 then ω0 = 0 and the calculation above shows that the estimate is

of the order ε(t
3
2 ∧ 1). �
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If the stochastic dynamical system (1.1) is subjected to a small non-Hamiltonian per-
turbation, the slow variable is in the direction transversal to the energy surfaces while the
stochastic components are the fast variables. The lemma shows that the first integrals of
the perturbed system changes by an order ε(t + t2) over a time interval t and so the slow
component accumulates over a time interval of the size t/ε and we obtain a new dynamical
system in the limit: as ε goes to zero the motion along the torus moves very fast compared
to the motion in the transversal direction and thus the action component of yε

t/ε has a limit
as the randomness in the fast component is averaged out by the induced invariant measure,
as shall be shown below. Recall that H(x) = (H1(x), . . . ,Hn(x)).

We shall first prove a lemma:

Lemma 3.2. Assume condition R holds. Let g be a real valued function on M , which
is considered in the action angle co-ordinates as a function from D × Tn to R. Define
Qg : D ⊂ Rn → R by its local representative :

(3.2) Qg(a) =
∫

T n

g̃(a, z) dµ(z).

Suppose that g is C1 on U0. Set

Hε
i (s) = Hi(yε

s/ε), Hε(s) = (Hε
1(s), . . . ,H

ε
n(s)).

Then

(3.3)
∫ (s+t)∧τε

s∧τε

g(yε
r/ε)dr =

∫ (s+t)∧τε

s∧τε

Qg
(
Hε(r)

)
dr + δ(g, ε, t)

with the following rate of convergence: for any β > 1,

(3.4)
(
E sup

s≤t

∣∣δ(g, ε, s)
∣∣∣β) 1

β ≤ C(g)(t2 + t)ε1/2 + ε
√

t,

where T ε is the first time that yε
t/ε exit from U0 and τ ε = T ε/ε.

Proof. For q ∈ (0, 1), let ∆t = (t + s)/εq ∧ T ε − s/εq ∧ T ε and set N ≡ N(ε) =
[εq−1] + 1 where [εq−1] is the integer part of εq−1 and all terms may depend on the sample
paths of ω. Take tn = (s/ε) ∧ T ε + n∆t, 1 ≤ n ≤ N so that

s

ε
∧ T ε = t0 < t1 < · · · < tN =

s + t

ε
∧ T ε

is a partition of [ s
ε ∧ T ε, (s+t)

ε ∧ T ε]. We shall first make some pathwise estimates. Let τ ε

be the first time that yε
t exit from U0, then for any C1 function g on M ,∫ (s+t)∧τε

s∧τε

g(yε
s/ε)ds = ε

∫ s+t
ε ∧T ε

s
ε∧T ε

g(yε
r)dr

= ε
N−1∑
n=0

∫ tn+1

tn

g(yε
r) dr + ε

∫ s+t
ε ∧T ε

tN

g(yε
r) dr

Since g is bounded on U0, the second term on the right hand side of the above expression
converges to zero with rate ε1−q:

ε
∣∣∣ ∫ (s+t)

ε ∧T ε

tN

g(yε
r) dr

∣∣∣ ≤ Cε∆t ≤ Ctε1−q.
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For the remaining terms we use the splitting

ε
N−1∑
n=0

∫ tn+1

tn

g (yε
r) dr = ε

N−1∑
n=0

∫ tn+1

tn

[
g(yε

r)− g
(
Fr−tn

(yε
tn

,Θtn
(ω))

)]
dr

+ε
N−1∑
n=0

∫ tn+1

tn

g
(
Fr−tn

(yε
tn

,Θtn
(ω))

)
dr.

where ω denotes the chance variable, Θt the shift operator on the canonical probability
space: Θt(ω)(−) = ω(− + t) − ω(t), and {Ft(x, ω), t ≥ 0} the solution flow of the un-
perturbed stochastic differential equation (1.1) with starting point x. Write the summation
as the sum of A1 and A2 and the first term we can apply a law of large numbers to A1:

A1(t, ε) ≡ ε
N−1∑
n=0

∫ tn+1

tn

g
(
Fr−tn(yε

tn
,Θtn(ω))

)
dr

= ε∆t
N−1∑
n=0

1
∆t

∫ ∆t

0

g
(
Fr(yε

tn
,Θtn

(ω))
)

dr.

The invariant measure on the invariant manifold MHε(εtn) ≡ Myε
tn

shall be denoted as
µHε(εtn) or as µyε

tn
. The law of the large numbers on Tn says that for any function f on a

compact manifold and any stopping time S, 1
(t+s)∧S−s∧S

∫ (s+t)∧S

s∧S
f(xr)dr converges to∫

M
f(z)dz when t → ∞ with rate 1√

t
and the convergence is uniform on compact time

intervals in Lp for all p > 1. Here dz is the volume measure. The easiest way to see this
holds is to first assume that

∫
fdz vanishes and let h be the function solving ∆h = 2f

and apply Itô’s formula to h(xt) on the time interval [s ∧ S, (s + t) ∧ S]. By the Markov
property of the flow we apply the law of large numbers and have the following estimates
for all sufficiently small ε,

E sup
u≤t

(
A1(u, ε)− ε∆t

N−1∑
n=0

∫
MHε(εtn)

g(Hε(εtn), z)dµHε(εtn)(z)
)β

≤ Nβ−1
N−1∑
n=0

E sup
u≤t

ε∆t

∣∣∣ 1
∆t

∫ ∆t

0

g
(
Fr(yε

tn
,Θtn

(ω))
)
dr −

∫
MHε(εtn)

g(Hε(εtn), z)dµHε(εtn)(z)
∣∣∣β

≤ C(εεq−1 t

εq
)β(

1√
t/εq

)β = C(εq/2
√

t)β .

On the other hand letting sn = εtn and so 0 = s0 < s1 · · · < sN = t is a partition of
[s ∧ τ ε, (s + t) ∧ τ ε] with ∆s = ε∆t → 0, and we have the following pathwise estimate:∣∣∣∣∣∆s

N−1∑
n=0

∫
MHε(sn)

g(Hε(sn), z) dµHε(sn)(z)−
∫ (s+t)∧τε

s∧τε

∫
MHε(s)

g(Hε(sn), z) dµHε(s)(z) ds

∣∣∣∣∣
≤ C(g)tε1−q

where C(g) = maxU0 |dg|. Summarize we have:

(3.5)
∫ (s+t)∧τε

s∧τε

g(yε
r/ε)dr =

∫ (s+t)∧τε

s∧τε

Qg(Hε(r)) dr + δ(g, ε, t)
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where

δ(g, ε, t) = ε

∫ (t+s)
ε ∧T ε

tN

g(yε
r) dr + A2(t, ε)

+A1(t, ε)− ε∆t

∫
MHε(εtn)

g(Hε(εtn), z)dµHε(εtn)(z)

+∆s

∫
MHε(sn)

g(Hε(sn), z)dµHε(sn)(z)

−
∫ (s+t)∧τε

s∧τε

∫
MHε(s)

g(Hε(s), z) dµHε(s)(z) ds.

and

A2(t, ε) = ε
N−1∑
n=0

∫ tn+1

tn

[
g(yε

r)− g
(
Fr−tn

(yε
tn

,Θtn
(ω))

)]
dr.

By the previous estimates:

|δ(g, ε, t)| ≤ Ctε1−q + C(g)εtq + |A2(t, ε)|

+
∣∣∣A1(t, ε)− ε∆t

N−1∑
n=0

∫
MHε(εtn)

g(Hε(εtn), z)dµHε(εtn)(z)
∣∣∣.

To show that |A2| is reasonably small, we apply Lemma 3.1 and Hölder’s inequality(
E sup

s≤t
(A2(s, ε))β

) 1
β

= ε
[
E sup

s<t∧T ε

(N−1∑
n=0

∫ tn+1

tn

∣∣g(yε
r)− g

(
Fr−tn

(yε
tn

,Θtn
(ω))

)∣∣ dr
)β] 1

β

≤ ε ·N1−1/β
(N−1∑

n=0

E
[
sup
s≤t

∫ tn+1

tn

∣∣g(yε
r)− g

(
Fr−tn

(yε
tn

,Θtn
(ω))

)∣∣ dr
]β) 1

β

≤ εN1−1/β ·N
1
β C · ε(∆t + (∆t)2)

≤ Ct2ε1−q + Ctε2−q.

Consequently,(
E sup

s≤t

∣∣∣δ(g, ε, s)
∣∣∣β) 1

β ≤ Ctε1−q + C(g)εtq + Ct2ε1−q + Ctε2−q + εq/2
√

t

and finally

(3.6)
∥∥∥ sup

s≤t
δ(g, ε, s)

∥∥∥
Lβ

≤ C(t + t2)ε
1
2 + ε

√
t.

�

Theorem 3.3. Consider the stochastic differential equation (1.2) satisfying condition R.
Let T ε be the first time that the solution y t

ε
starting from y0 exits U0. Set

Hε
i (t) = Hi(yε

t/ε).
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(1) Let H̄(t) ≡ H̄t ≡ (H̄1(t), . . . H̄n(t)) be the solution to the following system of
deterministic equations.

(3.7)
d

dt
H̄i(t) =

∫
MH̄(t)

ω(XHi
,K)(H̄(t), z) dµH̄t

(z),

with initial condition H̄(0) = H(y0). Let T 0 be the first time that H̄(t) exits from
U0. Then for some constant C2, t < T0, β > 1,(

E(sup
s≤t

‖Hε(s ∧ T ε)− H̄(s ∧ T ε)‖β)
) 1

β

≤ C2ε
1/2,

(2) Let r > 0 be such that U ≡ {x : ‖H(x)−H(y0)‖ ≤ r} ⊂ U0 and define

Tδ = inf
t
{|H̄t −H(y0)| ≥ r − δ}.

Then for any β > 1, δ > 0 and a constant C depending on Tδ ,

P (T ε < Tδ) ≤ C(Tδ)δ−βεβ/2.

Remark 3.4. To see that (3.7) is a genuine system of ordinaray differential equations, take
the canonical transformation map xa : Ma → Tn. The pushed forward measure x∗(µa) is
the Lebesque measure µ on the torus and (3.7) becomes:

d

dt
H̄i(t) =

∫
T n

ω(XHi
,K)

(
x−1

H̄t
(H̄t, z)

)
dµ(z).

Proof. By Itô’s formula, for t < T0 ∧ T ε.

Hε
i (t) = Hi(y0) +

∫ t

0

ω(XHi ,K)(yε
s
ε
)ds.

For i fixed, write

(3.8) gi = ω(XHi
,K)

We only need to estimate

(3.9) |Hε
i (t)− H̄i(t)| =

∣∣∣ ∫ t

0

gi(yε
s/ε)ds− H̄i(t)

∣∣∣
Using the notation of the previous lemma then equation (3.7) can be written as

d

dt
H̄i(t) = Qgi(H̄t)

H̄0 = H(y0).

Apply (3.5) to the functions gi we have for any t < T ε,

|Hε
i (t ∧ T ε)− H̄i(t ∧ T ε)| ≤

∫ t∧T ε

0

|Qgi(Hε(s))−Qgi(H̄(s))|ds + δ(gi, ε, t)

≤ C(g, φ)
∫ t

0

‖Hε(s))− H̄(s)‖ds + δ(gi, ε, t).

By Gronwall’s inequality,(
E( sup

s≤t∧T ε

‖Hε(s)− H̄(s)‖β)
) 1

β

≤ C1ε
1/2(e−C2t + C3t

2),

concluding part (1) of Theorem 3.3.
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Part (2) of the theorem easily follows. By definition Tδ is the first time that√∑
i

|H̄i(s)−Hi(y0)|2 ≥ r − δ

then

P (T ε < Tδ) ≤ P

(
sup

s≤Tδ∧T ε

∥∥H̄s −Hε(s)
∥∥ > δ

)
≤ δ−βE

(
sup

s≤Tδ∧T ε

∥∥H̄i(s)−Hε
i (s)

∥∥β
)

≤ Cβ
1 (e−C2t + C3t

2)βδ−βε
β
2 .

�

4. PERTURBATION BY A HAMILTONIAN VECTOR FIELD

If the perturbation K to the stochastic Hamiltonian system (1.1) is a Hamiltonian vector
field, i.e. LXω = 0, then

∫
Mc

ω(XHi ,K)dµc vanishes if c is not a bifurcation value. In
fact let (U0, φ) be an action angle coordinate around Mc. We can write K = Xk for some
smooth function k,∫

Mc

ω(XHi
,K)(z)dµc(z) =

∫
T n

d (k ◦ φ)

(
−

n∑
k=1

∂(Hk ◦ φ)
∂Ik

∂

∂θk

)
dθ

= −
n∑

β=1

ωi
β(I)

∫
T n

(
∂

∂θβ

)
(k ◦ φ) dθ = 0,

where dθ is the standard measure on the n-torus. The ordinary differential equation (3.7)
governing limε→0 Hi(yε

t/ε) has thus a constant solution. In this case we may consider
the second order scaling yε

t/ε2 and the accumulation of the perturbation over a large time
interval of order ε−2. The proof is inspired by a proof in Hairer-Pavliotis [HP04] and
this also benefited from the articles by Kahsminski, Papanicolau-Stroock-Varadhan and
Friedlin.

Let

L0(I) =
1
2

∑
LXHi

LXHi
+ LV

be the restriction of the elliptic operator on the invariant manifold with value I . If f on MI

has
∫

fdµ = 0 then the Poisson equation

(4.1) L0h = f.

is solvable. We shall denote by L−1f the solution to the Poisson equation satisfying∫
L−1fdµ = 0.
Since L0 is elliptic on each level set manifold Ma and {Hi, k} is centered there, the

Poisson equation has a unique solution hi. Note that the functions LK{Hi, k} and that
LXHi

hi are well defined.
Note that if K = Xk then the matrix with the (i, j)-th-entry given by

−dHi(K)L−1
0

(
dHj(K))

)
is positive definite.
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Theorem 4.1. Assume condition R and suppose that K is a smooth local Hamiltonian
vector field so that K = Xk for some smooth function k in the chart U0. Define the
matrices (aij) by

aij(a) = −
∫

Ma

ω(K, XHj
)L−1

0

(
ω(K, XHi

)
)
(a, z) dµa(z), a ∈ D ⊂ Rn

and let (σj
i ) be its square root. Set

bj(a) =
1
2

∫
Ma

LKL−1
0 (ω(XHj

,K))(a, z) dµa(z).

Let zt be the solution to the following stochastic differential equation

dzj
t =

∑
i

σj
i (zt) ◦ dBi

t + bj(zt)dt.

The the law of the stochastic process H(yε
t

ε2
) stopped at Sε, the first time that the process

yε
t

ε2
exits from U0, converging to that of H(zt∧Sε).

Remark: The limiting measure is clearly well defined as aij and bj are invariant with
different choices of the inverse to L0.

Proof. In the following calculation we shall restrict ourselves on the event {t < Sε},
equivalently consider the relevant processes stopped at Sε. Set

ŷε
t = yε

t
ε2
∧Sε ,

Ĥε(t) ≡ (Ĥε
1(t), . . . , Ĥ

ε
n(t)) =

(
H1(ŷε

t ), . . . ,Hn(ŷε
t )
)
.

Then

Ĥε
i (t) = Hi(y0)− ε

∫ t
ε2
∧Sε

0

ω
(
K, XHi

)
(yε

s)ds.

It is easy to see that the family of the laws µε, distribution of Ĥε(t ∧ Sε) is tight, i.e.
relatively compact and has a weak limit µ̄. To see the tightness of the family µε, we show
that for any a, η > 0 there is a δ > 0 with

P
(

sup
|s−t|<δ

‖Ĥε(t)− Ĥε(s)‖2 ≥ a
)
≤ η.

For this, observe that

‖Ĥε(t)− Ĥε(s)‖2 =
n∑

i=1

∣∣∣− ε

∫ t
ε2
∧Sε

s
ε2
∧Sε

ω
(
K, XHi

)
(yε

r)dr
∣∣∣2.

Set hi to be the solution to the Poisson equation:

L0hi = ω
(
K, XHi

)
with

∫
Ma

h0 = 0 for any a ∈ Rn. Then

‖Ĥε(t)− Ĥε(s)‖2

=
n∑

i=1

∣∣∣ε n∑
j=1

∫ t
ε2
∧Sε

s
ε2
∧Sε

LXHj
hi(yε

r)dBj
r + ε2

∫ t
ε2
∧Sε

s
ε2
∧Sε

LKhi(yε
r)dr − εhi(ŷε

t ) + εhi(ŷε
s)
∣∣∣2.
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Applying Lemma 3.2 with ε replaced by ε2, one see that the drift term has a nice bound in
|t− s|:

ε2
∫ t

ε2
∧Sε

s
ε2
∧Sε

LKhi(yε
r)dr

=
∫ t∧τε

s∧τε

∫
Ĥε(r)

LKhi(z)dµ(z)dr + δ(LKhi, ε, t− s),

This gives us a comfortable estimates since δ(LKhi, ε, t − s) is of the order
√

ε(t − s).
Similarly the quadratic variation of each of martingale terms also converges with the same
rate of convergence:

E
〈∫ t

ε2
∧Sε

s
ε2
∧Sε

LXHj
hi(yε

r)dBj
r

〉
= ε2

∫ t∧ε

s∧τε

∫
E|LXHj

hi(yε
r)|2dr.

Applying Burkerholder-Gundy inequality to obtain an estimate on the Lβ norm of

sup
|s−t|<δ

ε
∣∣∣ n∑

j=1

∫ t
ε2
∧Sε

s
ε2
∧Sε

LXHj
hi(yε

r)dBj
r

∣∣∣,
which is a constant multiple of |s− t| plus an error term of the order

√
ε(t− s).

Finally it is clear that

sup
|s−t|<δ

|εhi(ŷε
t )− εhi(ŷε

s)|2 ≤ Cε → 0.

To identify the limiting measure let h be the solution to the Poisson equation,

h =
1
2

n∑
i=1

∂iF (H)L−1
0

(
ω(K, XHi)

)
,

where L−1
0 is considered to act on the angle variable only and

∫
Ma

h = 0 for each a. For
any smooth function F on Rn, we have

F
(
Ĥε(t))

)
− F (Ĥε(0))

= −ε
n∑

i=1

∫ t
ε2
∧Sε

0

∂iF (H(yε
s))ω(K, XHi

)(yε
s)ds

= ε
n∑

j=1

∫ t
ε2
∧Sε

0

LXHj
h(yε

s)dBj
s + ε2

∫ t
ε2
∧Sε

0

LKh(yε
s)ds + ε

(
h(y0)− h(ŷε

t )
)
.

The first term on the right hand side is a martingale and the last term converges to zero as
ε → 0. We shall first identify LKh in terms of the function F . By assumption the functions
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ω(K, XHi
) are centred and L−1

0 has no effect on functions of H and so

LKh =
1
2
LKL−1

0

( n∑
i=1

∂iF (H) ω(K, XHi
)
)

=
1
2
LK

( n∑
i=1

(∂iF )(H) L−1
0

(
ω(K, XHi

)
))

= −1
2

n∑
i=1

∂j∂iF (H)ω(K, XHj
)L−1

0

(
ω(K, XHi

)
)

+
1
2

( n∑
i=1

∂iF (H)LKL−1
0 (ω(XHi

,K))
)
.

Set

L̄ = −1
2

∑
i,j

ω(K, XHj
)L−1

0

(
ω(K, XHi

)
)
∂i∂j +

1
2

n∑
i=1

LKL−1
0 (ω(K, XHi

))∂i,

to see

F
(
Ĥε(t))

)
− F (Ĥε(0))

= ε
n∑

j=1

∫ t
ε2
∧Sε

0

LXHj
h(yε

s)dBj
s + ε2

∫ t
ε2
∧Sε

0

L̄F ◦H(yε
s)ds + ε

(
h(y0)− h(ŷε

t )
)
.

Mimicking Papanicolaou-Stroock-Varadhan, we define FH
s ≡ σ{Ĥε

r∧Sε : r ≤ s} and so
{FH

s : s ≥ 0} is the filtration generated by Ĥε
·∧Sε . We need the following estimates:

ε2
∫ t

ε2
∧Sε

a∧T ε

L̄F (H(yε
s))ds

=
∫ t∧T ε

a∧T ε

(∫
MĤε(s)

L̄F ◦H(z) dµĤε(s)(z)
)
ds + δ(L̄F, ε2, t− a)

=
∫ t∧T ε

a∧T ε

LF ◦ Ĥε(s) ds + δ(L̄F ◦H, ε2, t− a),

where in the action-angle local coordinate,

LF (a) = −1
2

n∑
i,j=1

∂j∂iF (a)
∫

Ma

ω(K, XHj
)L−1

0

(
ω(K, XHi

)
)
(a, z) dµI(z)

+
1
2

n∑
i=1

∂iF (a)
∫

Ma

LKL−1
0 (ω(XHi

),K)(a, z) dµ(z).



18 XUE-MEI LI

Then for any FH
s - measurable L2 random function G, using again Lemma 3.2,

EG
[
F
(
Ĥε(t ∧ Sε))

)
− F

(
Ĥε(s ∧ Sε))

)
−
∫ t∧Sε

s∧Sε

∫
MĤε(r)

(L̄F )(z)dµĤε(r)(z)dr
]

= EG
[
ε

n∑
j=1

∫ t
ε2
∧Sε

s
ε2
∧Sε

LXHj
h(yε

s)dBj
s

]
+EG

[
δ(L̄F, ε2, t− s) + ε

(
h(yε

s
ε2
∧Sε)− h(yε

t
ε2
∧Sε)

)]
= EG

[
δ(L̄F, ε2, t− s) + ε

(
h(yε

s
ε2
∧Sε)− h(yε

t
ε2
∧Sε)

)]
→ 0.

Consequently

E
{

F
(
Ĥε(t∧Sε))

)
−F

(
Ĥε(s∧Sε))

)
−
∫ t∧Sε

s∧Sε

∫
MĤε(r)

(L̄F )(z)dµĤε(r)(z)dr
∣∣FH

s

}
→ 0,

and so any weak limit of the law Ĥε
· is the solution to the martingale problem for the

second order differential operator L.
�
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