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Abstract

The behaviour of the spectral edges (embedded eigenvalues and resonances)
is discussed at the two ends of the continuous spectrum of non-local discrete
Schrödinger operators with a δ-potential. These operators arise by replacing
the discrete Laplacian by a strictly increasing C1-function of the discrete
Laplacian. The dependence of the results on this function and the lattice
dimension are explicitly derived. It is found that while in the case of the
discrete Schrödinger operator these behaviours are the same no matter which
end of the continuous spectrum is considered, an asymmetry occurs for the
non-local cases. A classification with respect to the spectral edge behaviour
is also offered.

1 Introduction

1.1 Non-local discrete Schrödinger operators

The spectrum of discrete Schrödinger operators has been widely studied for both
combinatorial Laplacians and quantum graphs; for some recent summaries see [C97,
G01, BCFK06, EKKST08, BK12, P12, KS13] and the references therein. Specifi-
cally, eigenvalue behaviours of discrete Schrödinger operators on l2(Zd) are discussed
in e.g. [EKW10, BS12, HSSS12]. However, for discrete non-local (such as fractional)
Schrödinger operators only few results are known.

In this paper we define generalized discrete Schrödinger operators which include
discrete fractional Schrödinger operators and others whose counterparts on L2(Rd)
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are currently much studied [BB00, BB09, LM12, K13]. In [HIL12] we have intro-
duced a class of generalized Schrödinger operators whose kinetic term is given by so
called Bernstein functions of the Laplacian. These operators are non-local and via a
Feynman-Kac representation generate subordinate Brownian motion killed at a rate
given by the potential. Their discrete counterparts studied in this paper also have
a probabilistic interpretation in that they generate continuous time random walks
with jumps on Z

d.
In the present paper we consider a class of Schrödinger operators obtained as

a strictly increasing C1-function of the discrete Laplacian and a δ-potential. This
includes, in particular, Bernstein functions (see below) of the discrete Laplacian.
In the presence of a δ-potential the above probabilistic picture then describes free
motion with a “bump” which can be interpreted as an impurity in space. Our
aim here is to investigate the spectrum of such operators, specifically, embedded
eigenvalues and resonances at the edges of the continuous spectrum.

Let d ≥ 1 and L be the standard discrete Laplacian on l2(Zd) defined by

Lψ(x) =
1

2d

∑

|x=y|=1

(ψ(y)− ψ(x)).

Also, let V (x) = vδx,0 be δ-potential with mass v concentrated on x = 0, i.e.,
V ψ(x) = 0 for x 6= 0 and V ψ(x) = vψ(x). Then the operator

h = L+ vδx,0, v ∈ R (1.1)

is the discrete Schrödinger operator with δ-potential. In order to define a non-
local version of h, we use Fourier transform on l2(Zd). Let T

d = [−π, π]d be the
d-dimensional torus, and set

H = L2(Td). (1.2)

The Fourier transform F : l2(Zd) → H is then defined by Fψ(θ) =
∑

n∈Zd ψ(n)e−in·θ

for θ = (θ1, . . . , θd) ∈ T
d. Then the discrete Laplacian L transforms as

FLF
−1 =

1

d

d
∑

j=1

(cos θj + 1),

i.e., the right hand side above is a multiplication operator on H . In this paper we
use a non-local discrete Laplacian Ψ(L) defined for a suitable function Ψ by applying
Fourier transform.

Definition 1.1 (Non-local discrete Laplace and Schrödinger operators)
For a given Ψ ∈ C1((0,∞)) such that Ψ′(x) > 0, x ∈ (0,∞), we define the non-local
discrete Laplacian Ψ (L) by

Ψ(L) = F
−1Ψ

(

1

d

d
∑

j=1

(cos θj + 1)

)

F .
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Also, we call
h = Ψ(L) + vδx,0, v ∈ R, (1.3)

non-local discrete Schrödinger operator with δ-potential.

An example of such a function is Ψ(u) = uα/2, 0 < α < 2, which describes a
discrete Laplacian of fractional order α/2. Other specific choices will be given in
Example 2.9 below.

Under Fourier transform (1.3) is mapped into

Hv = FhF−1 = Ψ

(

1

d

d
∑

j=1

(cos θj + 1)

)

+ v(Ω, ·)H Ω, (1.4)

where Ω = (2π)−d/21l ∈ H .
Since σ(L) = [0, 2] and Ψ is strictly increasing, it is immediate that σ(Ψ(L)) =

Ψ([0, 2]) = [Ψ(0),Ψ(2)]. In what follows we consider the spectrum of Hv instead of
h. Note that the map Φ 7→ v(Ω,Φ)Ω is a rank-one operator, and thus the continuous
spectrum of the rank-one perturbation Hv of L is [Ψ(0),Ψ(2)], for every v ∈ R.

1.2 Ψ(∗)-resonances and Ψ(∗)-modes

As it will be seen below, for a sufficiently large value of −v > 0 there exists an
eigenvalue E−(v) of Hv strictly smaller than Ψ(0). Suppose that E−(v) ↑ Ψ(0) as
v ↑ v0 with some v0 6= 0. If Ψ(0) is an eigenvalue of Hv0 , we call the eigenvector
associated with Ψ(0) a Ψ(0)-mode. If Ψ(0) is not an eigenvalue of Hv0 , we call it
a Ψ(0)-resonance. Similarly, for a sufficiently large v > 0 it will be seen that there
exists an eigenvalue E+(v) strictly larger than Ψ(2). Suppose that E+(v) ↓ Ψ(2) as
v ↓ v2 with some v2 6= 0. If Ψ(2) is an eigenvalue of Hv2 , we call the eigenvector
associated with Ψ(2) a Ψ(2)-mode, and a Ψ(2)-resonance whenever Ψ(2) is not an
eigenvalue of Hv2.

For the discrete Schrödinger operator L + V these modes and resonances were
studied in e.g. [HSSS12], in particular, their dependence on the dimension d. For
d = 1, 2, there is no 0-mode, 2-mode, 0-resonance or 2-resonance, for d = 3, 4 there
are 0 and 2-resonances, and for d ≥ 5 there are 0 and 2-modes. This shows that
the eigenvalue behaviour at both edges (0 and 2) is the same (see Table 1). As it
will be seen below, for the case of the fractional Laplacian we have the remarkable
fact that the edge behaviours are in general different at the two sides (see Table 2).
Note that σ(

√
L) = [0,

√
2].
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2-mode 2-resonance 0-mode 0-resonance

d = 1 no no no no

d = 2 no no no no

d = 3 no yes no yes

d = 4 no yes no yes

d ≥ 5 yes no yes no

Table 1: Modes and resonances of L+ V
√
2-mode

√
2-resonance 0-mode 0-resonance

d = 1 no no no no

d = 2 no no no yes

d = 3 no yes yes no

d = 4 no yes yes no

d ≥ 5 yes no yes no

Table 2: Modes and resonances of
√
L+ V

2 Eigenvalues

2.1 A criterion for determining the eigenvalues

Consider the eigenvalue equation

HvΦ = EΦ

or, equivalently,

EΦ−Ψ

(

1

d

d
∑

j=1

(cos θj + 1)

)

Φ = v(Ω,Φ)Ω. (2.1)

The following result gives an integral test to spot the eigenvalues of Hv.

Lemma 2.1 E is an eigenvalue of Hv for a given v if and only if

∫

Td

1
(

E −Ψ
(

1

d

∑d
j=1

(cos θj + 1)
))2

dθ <∞ (2.2)

and
∫

Td

1

E −Ψ
(

1

d

∑d
j=1

(cos θj + 1)
)dθ 6= 0. (2.3)
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Furthermore, if E is an eigenvalue of Hv, then the coupling constant v satisfies

v = (2π)d





∫

Td

1

E −Ψ
(

1

d

∑d
j=1

(cos θj + 1)
)dθ





−1

. (2.4)

Proof. To show the necessity part, suppose that E is an eigenvalue and Φ an
associated eigenvector. Assuming (Ω,Φ) = 0, we have (Ω, HvΦ) = 0 and thus
(HvΩ,Φ) = (1l,Φ) + vΦ(0) = vΦ(0) = 0. Hence HvΦ(x) = LΦ(x) = EΦ(x), for all
x ∈ Z

d. Since L has no point spectrum, Φ = EΦ is a contradiction. This gives

(Ω,Φ) 6= 0 and Φ =
(Ω,Φ)

E −Ψ
(

1

d

∑d
j=1

(cos θj + 1)
) ∈ H .

Thus (2.2) follows, and (Ω,Φ) 6= 0 implies (2.3).
For the sufficiency part, suppose now that (2.2) and (2.3) hold. Define the

L2(Zd)-function

Φ =
cf

E −Ψ
(

1

d

∑d
j=1

(cos θj + 1)
)

with a chosen c. It is straightforward to see that Φ satisfies HvΦ = EΦ whenever
for v

v(2π)−d

∫

Td

1

E −Ψ
(

1

d

∑d
j=1

(cos θj + 1)
)dθ = 1 (2.5)

holds. By (2.3) it follows that there exists c such that (2.5) is satisfied, hence E is
an eigenvalue of Hv. �

In order to investigate Ψ(∗)-resonances and Ψ(∗)-modes we use Lemma 2.1 and
estimate the two integrals

I(E) =

∫

Td

1

|E −Ψ
(

1

d

∑d
j=1

(cos θj + 1)
)

|2
dθ, (2.6)

J(E) =

∫

Td

1

E −Ψ
(

1

d

∑d
j=1

(cos θj + 1)
)dθ (2.7)

at the two ends E = Ψ(∗) of the interval [Ψ(0),Ψ(2)].

2.2 The location of eigenvalues

Lemma 2.2 Let E ∈ R \ [Ψ(0),Ψ(2)]. Then there exists v 6= 0 such that E is an
eigenvalue of Hv.
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Proof. In this case it is easily seen that I(E) < ∞ and J(E) 6= 0. Then E is an
eigenvalue and v is given by (2.4). �

Lemma 2.3 We have σ(Hv) ∩ (Ψ(0),Ψ(2)) = ∅, for every v 6= 0.

Proof. Due to monotonicity of Ψ, there is a unique x ∈ (0, 2) such that Ψ(E) =
Ψ(x). Thus

∣

∣

∣

∣

∣

E −Ψ

(

1

d

d
∑

j=1

(cos θj + 1)

)∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∣

1

d

d
∑

j=1

(cos θj + 1− x)

∣

∣

∣

∣

∣

with some C > 0. Hence

I(E) ≥
∫

Td

1

|C 1

d

∑d
j=1

(cos θj + 1− x)|2
dθ.

It is directly seen that the right hand side diverges, and thus the lemma follows. �

Next consider the cases E = Ψ(2) and E = Ψ(0). For a systematic discussion of
the eigenvalue behaviour of Hv we introduce the following concept.

Definition 2.4 We say that Ψ is of (a, b)-type whenever

lim
x→0+

Ψ(x)−Ψ(0)

xa
6= 0, (2.8)

lim
x→0

Ψ(2)−Ψ(2− x)

xb
6= 0. (2.9)

Lemma 2.5 Let Ψ be of (a, b)-type. Then we have the following behaviour.

(1) J(E) 6= 0 for both E = Ψ(0) and E = Ψ(2).

(2) For E = Ψ(2) we have that I(E) <∞ if and only if d ≥ 1+4a, and J(E) <∞
if and only if d ≥ 1 + 2a.

(3) For E = Ψ(0) we have that I(E) <∞ if and only if d ≥ 1+4b, and J(E) <∞
if and only if d ≥ 1 + 2b.

Proof. Since Ψ is strictly increasing, the first statement follows directly.
Let Ψ be of (a, b)-type. Then we have at θ ≈ (0, . . . , 0),

Ψ(2)−Ψ

(

1

d

d
∑

j=1

(cos θj + 1)

)

≈
(

1

2d

n
∑

j=1

θ2j

)a
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and at θ ≈ (π, . . . , π),

Ψ

(

1

d

d
∑

j=1

(cos θj + 1)

)

−Ψ(0) ≈
(

1

2d

n
∑

j=1

(θj − π)2

)b

.

Hence

I(Ψ(2)) ≈
∫

Td

1
(

∑n
j=1

θ2j

)2adθ ≈
∫

1

0

rd−1

r4a
dr,

and similarly

J(Ψ(2)) ≈
∫

Td

1

(
∑n

j=1
θ2j )

b
dθ ≈

∫

1

0

rd−1

r2b
dr.

Thus the lemma follows for E = Ψ(2). For the case of E = Ψ(0) the proof is similar.
�

From these lemmas we can derive the spectral edge behaviour of Hv. The next
theorem is the main result in this paper.

Theorem 2.6 Assume that Ψ is of (a, b)-type. Let

v2 = (2π)d





∫

Td

1

Ψ(2)−Ψ
(

1

d

∑d
j=1

(cos θj + 1)
)dθ





−1

> 0, (2.10)

v0 = (2π)d





∫

Td

1

Ψ(0)−Ψ
(

1

d

∑d
j=1

(cos θj + 1)
)dθ





−1

< 0. (2.11)

The spectral edge behaviour of Hv is as follows.

(1) Suppose that v > 0. Then the following cases occur:

(i) Let d < 1 + 2b. Then for all v > 0 there exists an eigenvalue E > Ψ(2).

(ii) Let 1 + 2b ≤ d < 1 + 4b. Then for v > v2 there exists an eigenvalue
E > Ψ(2), while for v ≤ v2 there is no eigenvalue.

(iii) Let 1 + 4b ≤ d. Then for v > v2 there exists an eigenvalue E > Ψ(2),
for v = v2 the value E = Ψ(2) is an eigenvalue, while v < v2 there is no
eigenvalue.

(2) Suppose that v < 0. Then the following cases occur:

(i) Let d < 1 + 2a. Then for all v < 0 there exists an eigenvalue E < Ψ(0).
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(ii) Let 1 + 2a ≤ d < 1 + 4a. Then for v < v0 there exists an eigenvalue
E < Ψ(0), while for v ≥ v0 there is no eigenvalue.

(iii) Let 1+4a ≤ d. Then for v < v0 there exists an eigenvalue E < Ψ(0), for
v = v0 the value E = Ψ(0) is an eigenvalue, while for v > v0 there is no
eigenvalue.

Proof. Consider the case v > 0 and let d < 1+2b. Then for all E > Ψ(2) we have
I(E) <∞ and J(E) 6= 0. Thus there exists v such that E is an eigenvalue of Hv.

Let 1 + 2b ≤ d < 1 + 4b. Then for all E > Ψ(2) we have that I(E) < ∞ and
J(E) 6= 0. Thus E is an eigenvalue of Hv. Since J(E) <∞, it follows that E ↓ Ψ(2)
as v ↓ v2 > 0. However, E = Ψ(2) is not an eigenvalue since I(E) = ∞.

Let d ≥ 1 + 4b. Then for all E > Ψ(2) we have I(E) <∞ and J(E) 6= 0. Thus
E is an eigenvalue of Hv. Since J(E) <∞, we obtain E ↓ Ψ(2) as v ↓ v2 > 0. Since
I(E) < ∞, we have that E = Ψ(2) is also an eigenvalue. The cases for v < 0 can
be dealt with similarly.

�

Remark 2.7 Note that in general −v0 6= v2.

Remark 2.8 From the above it is seen that the spectral edge behaviour of Hv

depends on the dimension d as well as on the parameters a and b, and the result
is different according to which edge is considered. For a summary see the tables
below.

v > 0 d < 1 + 2b 1 + 2b ≤ d < 1 + 4b 1 + 4b ≤ d

Ψ(2)-mode no no yes

Ψ(2)-resonance no yes no

v < 0 d < 1 + 2a 1 + 2a ≤ d < 1 + 4a 1 + 4a ≤ d

Ψ(0)-mode no no yes

Ψ(0)-resonance no yes no

Table 3: Ψ(0) and Ψ(2)-modes and resonances

It is worthwhile to see the implications more closely for some specific choices of
function Ψ.

Example 2.9

(1) Discrete Schrödinger operator: Let Ψ(u) = u. Then Ψ is of (1, 1)-type and
Hv = L+ V . See Table 1.
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(2) Fractional discrete Schrödinger operator : Let Ψ(u) = uα/2 for 0 < α < 2.
Then Ψ is of (α/2, 1)-type and Hv = Lα/2 + V .

(3) Relativistic fractional discrete Schrödinger operator : Let Ψ(u) = (u+m2/α)α/2−
m for 0 < α < 2 and m > 0. Then Ψ is of (1, 1)-type.

(4) Discrete jump-diffusion operator : Let Ψ(u) = u+ buα/2 with 0 < α < 2. Then
Ψ is of (α/2, 1)-type.

(5) Rotationally symmetric geometric discrete α-stable operator : Let Ψ(u) =
log(1 + uα/2) for 0 < α < 2. Then Ψ is of (α/2, 1)-type.

(6) Higher order discrete Laplacian: Let Ψ(u) = uβ for β > 1. Then Ψ is of
(β, 1)-type.

(7) Bernstein functions of the discrete Laplacian: Let Ψ be a Bernstein function
with vanishing right limits, i.e., Ψ : R+ → R

+ which can be represented in the

form Ψ(u) = bu +

∫ ∞

0

(1 − e−uy)ν(dy), where b ≥ 0 and ν is a Lévy measure

with mass on (0,∞) satisfying

∫ ∞

0

(1 ∧ y)ν(dy) < ∞. Then it follows that

Ψ′(2) = b +

∫ ∞

0

ye−2yν(dy) 6= 0. Furthermore, since Ψ is concave, we have

a = α/2 with some α ≥ 2. Hence Ψ is of (α/2, 1)-type with some 0 ≤ α ≤ 2.
Note that the first five examples above are specific cases of Bernstein functions.

3 A classification of spectral edge behaviour

The functions Ψ of the discrete Laplacian can be classified according to the behaviour
of the eigenvalues at the two ends of the interval [Ψ(0),Ψ(2)].

Definition 3.1 We call Ψ normal type if Ψ is (1, 1)-type, and fractional type if Ψ
is (α/2, 1)-type with 0 < α < 2.

The two types show qualitatively different behaviour and we discuss them separately.

3.1 Normal type

Let Ψ be of normal type. In this case the spectral edge behaviour is the same as that
of the discrete Schrödinger operator L+ V . The following result has been obtained
in [HSSS12].

Proposition 3.2 Let Ψ be normal type. We have the following cases.

(1) Let d = 1 or 2. For every v > 0 there exists an eigenvalue E > Ψ(2), and for
every v < 0 an eigenvalue E < Ψ(0).
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(2) Let d = 3 or 4. If v > 0, then there exists v2 > 0 such that for all v > v2 an
eigenvalue E > Ψ(2) exists, and for v ≤ v2 no eigenvalue exists. If v < 0,
then there exists v0 < 0 such that for all v < v0 an eigenvalue E < Ψ(0) exists,
and for v < v0 no eigenvalue exists.

(3) Let d ≥ 5. If v > 0, then there exists v2 > 0 such that for all v > v2 an
eigenvalue E > Ψ(2) exists, for v = v2 the value E = Ψ(2) is an eigenvalue,
and for v < v2 no eigenvalue exists. If v < 0, then there exists v0 < 0 such that
for all v < v0 an eigenvalue E < Ψ(0) exists, for v = v0 the value E = Ψ(0)
is an eigenvalue, and for v > v0 no eigenvalue exists.

Thus the spectral edge behaviour for positive and negative v is qualitatively the
same, and the details only depend on the dimension d.

3.2 Fractional type

In the fractional type case we have the following spectral edge behaviour.

Theorem 3.3 Let Ψ be of fractional type. The following cases occur.

(1) If v > 0, then the spectral edge behaviour is the same as for normal type Ψ
with v > 0.

(2) If v < 0, then we have the following cases:

(i) Let d < 1 + α. Then for every v < 0 there exists an eigenvalue E < 0.

(ii) Let 1 + α ≤ d < 1 + 2α. There exists v0 < 0 such that for all v < v0 an
eigenvalue E < 0 exists, while for v ≤ v0 no eigenvalue exists.

(iii) Let d ≥ 1+2α. There exists v0 < 0 such that for all v < v0 an eigenvalue
E < 0 exists, for v = v0 the value E = 0 is an eigenvalue, and for v > v0
no eigenvalue exists.

In the fractional case it is seen that the edge behaviour for positive and negative v
are in general different from each other, in contrast with the normal type case.

3.2.1 The case of α = 1

For α = 1 the spectral edge behaviour of Hv =
√
L+ V is displayed for dimensions

d = 1, ..., 4 and d ≥ 5 in Table 2. For dimensions d = 2, 3, 4 the edge behaviours at 0
and

√
2 are again different. We have displayed the specific situations in Figures 1-4

below, where ⊕ denotes a resonance, • an eigenvalue, and × denotes a value which
is not an eigenvalue.
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v>0

v=0

v=0

v<0

0 2

Figure 1: α = 1 and d = 1

v>0

v=0

v=v_0<0

v<v_0<0

0 2

Figure 2: α = 1 and d = 2

v>v_2>0

v=v_2>0

v=v_0<0

v<v_0<0

0 2

Figure 3: α = 1 and d = 3, 4

v>v_2>0

v=v_2>0

v=v_0<0

v<v_0<0

0 2

Figure 4: α = 1 and d ≥ 5

3.2.2 Massless and massive cases

Consider the Bernstein function Ψ(u) =
√
u+m2 − m with m ≥ 0. This allows

to define the relativistic discrete Schrödinger operator
√
L+m2 − m + V . Then

it follows that Ψ(u) is (1, 1)-type for m > 0, and (1/2, 1)-type for m = 0. In
particular, the edge behaviours of

√
L + V and

√
L+m2 − m + V are different.

More generally, consider the Bernstein function Ψ(u) = (u + m2/α)α/2 − m, with
0 < α < 2 and m ≥ 0. This defines the relativistic rotationally symmetric α-stable
operator (L+m2/α)α/2 −m. We conclude that Ψ(u) is of (1, 1)-type for m > 0 but
of (α/2, 1)-type for m = 0. Thus the edge behaviours of (L+m2/α)α/2 −m+ V and
(L)α/2 + V are different.
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