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Abstract. A notion of rational Baker-Akhiezer (BA) function related to a configuration
of hyperplanes in Cn is introduced. It is proved that BA function exists only for very spe-
cial configurations (locus configurations), which satisfy certain overdetermined algebraic
system. The BA functions satisfy some algebraically integrable Schrödinger equations,
so any locus configuration determines such an equation. Some results towards the clas-
sification of all locus configurations are presented. This theory is applied to the famous
Hadamard’s problem of description of all hyperbolic equations satisfying Huygens’ Princi-
ple. We show that in a certain class all such equations are related to locus configurations
and the corresponding fundamental solutions can be constructed explicitly from the BA
functions.

Introduction

The notion of Baker–Akhiezer function (BA function) has been introduced by Krichever
[1] in the theory of finite–gap or algebro–geometric solutions of the nonlinear PDE’s, inte-
grable by the inverse scattering method [2]. The BA function is a far-going generalisation
of the classical function

ψ =
σ(x− z)

σ(x)σ(z)
eζ(z)x

well-known as a solution to the classical Lame equation:

Lψ = λψ, L = − d2

dx2
+ 2℘(x), λ = −℘(z).

Here σ, ζ and ℘ are classical Weierstrass elliptic functions (see e.g. [3]).

1



In the degenerate case one has the corresponding trigonometric and rational versions:

ψtrig = (1− 1

k
cotx)ekx, L = − d2

dx2
+

2

sin2 x
,

ψrat = (1− 1

kx
)ekx, L = − d2

dx2
+

2

x2
.

Certain multidimensional versions of these functions in the rational and trigonometric
cases have been introduced by Chalykh and Veselov in [4] in the theory of quantum
Calogero–Moser problem. In this paper we will restrict ourselves by the rational case only.
The construction of [4] (see also [5]) relates such a BA function ψ to a configuration A of
the hyperplanes Πα in a complex Euclidean space Cn given by the equations (α, x) = 0 ,
taken with some multiplicities mα ∈ Z+ . Here α ∈ A , A is a finite set of noncollinear
vectors. The function ψ(k, x) , k, x ∈ Cn is determined by certain analytic properties in
k (see Section 1) and exists only for very special configurations.

The most important property of the BA function is that it is an eigenfunction of the
multidimensional algebraically integrable Schrödinger operator L , which in our case has
the form

L = −∆ +
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
(1)

(see [4, 5]).
When A is a Coxeter configuration, i.e. A consists of the reflection hyperplanes for

some finite reflection group W with W -invariant multiplicities, then the corresponding
operator L is the Hamiltonian of the generalised quantum Calogero–Moser problem (after
Olshanetsky and Perelomov [6]) with special integer-valued parameters. The existence of
the BA function in this case was proved in [5] with the help of Heckman’s result [7].

At that time it was believed that the Coxeter case is the only one, when ψ does exist,
but it turned out to be not the case. The first non-Coxeter examples have been found by
the authors in [8] (see also [9]).

According to the general procedure proposed by Berest and Veselov in [10] this led
to the new examples of the hyperbolic equations satisfying the Huygens’ Principle in
Hadamard’s sense. Motivated by these results Berest and Lutsenko started the investi-
gation of the case when the potential depends on two coordinates only and found other
new examples of the huygensian equations [11]. Later Berest proved [12] that they have
actually found all such equations under assumption that the potential is homogeneous of
degree (−2) . Since a generic Berest–Lutsenko potential could not be described by the
construction [4], this was the reason for us to revise it.

In the Section 1 we give such a revised definition of the BA function, which can be
derived from the corresponding Schrödinger equation and therefore covers all the possible
cases. It is remarkable that there exists an effective way to check for a given configuration
whether BA function exists or not. Namely, as we prove in Sections 2 and 3, the following
overdetermined system of algebraic equations is a necessary and sufficient condition for
the existence of the Baker-Akhiezer function:∑

β∈A
β 6=α

mβ(mβ + 1)(β, β)(α, β)2j−1

(β, x)2j+1
≡ 0 on the hyperplane (α, x) = 0 (2)
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for each α ∈ A and j = 1, 2, . . . ,mα .
They are equivalent to the vanishing of the first mα odd terms in the Laurent expan-

sion of the corresponding potential

u(x) =
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
(3)

at the hyperplane (α, x) = 0 . Similar characterisation of the rational finite-gap potentials
in one dimension has been first proposed in the famous paper [13] by Airault, McKean
and Moser, who introduced the term ”locus” in this situation. We will also use this
terminology, calling the equations (2) as well as its general affine version (see below)
as locus equations. Duistermaat and Grünbaum [14] discovered the interpretation of
such equations as a trivial monodromy condition for the corresponding one-dimensional
Schrödinger equation in the complex domain. We give a similar interpretation for our
locus equations (2) in Section 2.

However, to describe all the configurations, satisfying the locus equations (2) (the locus
configurations) seems to be a very difficult problem. At the moment it is solved only in
dimension 2, where the answer is given by the Berest–Lutsenko construction. In dimension
n > 2 all known examples of the locus configurations are the Coxeter configurations and
their special ”deformations” [8],[9]. In the section 4 we present all the results, which are
known in this direction so far.

The generalisation of our construction to the affine configurations of the hyperplanes
is discussed in the section 5. The potential u and the locus equations in that case have
the form:

u(x) =
K∑
i=1

mi(mi + 1)(αi, αi)

((αi, x) + ci)2
(4)

∑
j 6=i

mj(mj + 1)(αj, αj)(αi, αj)
2s−1

((αj, x) + cj)2s+1
≡ 0 (5)

identically on the hyperplane (αi, x) + ci = 0 for all i = 1, . . . , K and s = 1, . . . ,mi .
Unfortunately, so far a little is known about the affine locus configurations, which are
not linear, i.e. with not all the hyperplanes to pass through one point. Apart from the
one-dimensional case investigated in [13], [15], there are only some reducible examples
discovered by Berest and Winternitz [16]. In fact, we show that the classification problem
for the affine locus configurations can be reduced to the linear case (2) by the isotropic
projectivisation procedure.

In the last section we discuss the relations of our BA function ψ and locus configura-
tions to the Huygens’ Principle. The main result says that for any locus configuration in
dimension n the corresponding hyperbolic equation

(2N+1 + u(x1, . . . , xn))φ = 0 (6)

satisfies Huygens’ Principle for large enough odd N . Conversely, we show that if the
equation (6) satisfies Huygens’ Principle and all the Hadamard’s coefficients are rational
functions, then u(x) has a form (4) for some locus configuration.
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We conjecture that this construction gives all huygensian equations of the form (2N+1+
u(x1, . . . , xn))φ = 0 . In the case n = 1 it is well-known result by Stellmacher and Lagnese
[17]. When n = 2 and u is homogeneous this follows from Berest’s theorem [12]. The
proof of the general case would lead to the solution of the famous Hadamard’s problem
in the class (6).

1. Rational Baker-Akhiezer function related to a con-

figuration of hyperplanes.

Let A be a finite set of noncollinear vectors α = (α1, . . . , αn) ∈ Cn with multiplicities
mα ∈ N . We will assume that (α, α) =

∑n
i=1 α

2
i 6= 0 .

Definition. A function ψ(k, x), k, x ∈ Cn will be called Baker-Akhiezer function
(BA function), if the following two conditions are fulfilled:

1) ψ(k, x) has a form

ψ(k, x) =
P (k, x)

A(k)
e(k,x), (7)

where A(k) =
∏

α∈A (k, α)mα , P (k, x) is a polynomial in k with the highest term A(k) ;
2) for all α ∈ A

∂α(ψ(k, x)(k, α)mα) = ∂3
α(ψ(k, x)(k, α)mα) = . . . = ∂2mα−1

α (ψ(k, x)(k, α)mα) ≡ 0 (8)

on the hyperplane Πα : (k, α) = 0 , where ∂α = (α, ∂
∂k

) is the normal derivative for this
hyperplane.

Notice that (7) means that ψ is a rational function of k with the prescribed poles
along the hyperplanes Πα, α ∈ A and with the asymptotic behaviour at infinity:

ψ = (1 + o(1)) e(k,x)

when k →∞ along the rays outside the singularities (cf.[1]).
First of all, in the same way as in [4],[5] one can prove the following
Theorem 1.1. If the Baker-Akhiezer function ψ exists then it is unique and satisfies

the algebraically integrable Schrödinger equation

Lψ = −k2ψ, (9)

where

L = −∆ +
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
. (10)

Algebraic integrability of the operator (10) means that L is a part of a rich (supercom-
plete) commutative ring of partial differential operators (see [5] for precise definitions).
This ring is described by the following theorem.

Theorem 1.2. Let RA be the ring of polynomials f(k) satisfying the following
properties

∂αf(k) = ∂3
αf(k) = . . . = ∂2mα−1

α f(k) ≡ 0 (11)
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on the hyperplane (α, k) = 0 for any α ∈ A .
If the Baker-Akhiezer function ψ(k, x) exists then for any polynomial f(k) ∈ RA

there exists some differential operator Lf (x,
∂
∂x

) such that

Lfψ(k, x) = f(k)ψ(k, x).

All such operators form a commutative ring isomorphic to the ring RA . The Schrödinger
operator (10) corresponds to f(k) = −k2 .

We give the proof of these statements in a more general affine situation in the Section
5.

We should note that there exists the following explicit formula for Lf (due to Yu.Be-
rest [18]).

Theorem 1.3. The commuting partial differential operators Lf for f ∈ RA are
given by the formula

Lf = cN(adL)N [f̂(x)], (12)

where cN = (−1)N/2NN ! , N = degf , f̂ is the operator of multiplication by f(x) , and
(adL)N means the N -th iteration of the standard ad -procedure, adAB = AB −BA .

The proof follows from the results of the next section (see Corollary 2.5).
We should note that originally in [4] another axiomatics for the ψ - function was

proposed. There was considered a function φ(k, x) of the form

φ(k, x) = P (k, x)e(k,x), (13)

where P (k, x) , as in (7), is a polynomial in k with the highest term A(k) , with the
property

∂α(φ(k, x)) = ∂3
α(φ(k, x)) = . . . = ∂2mα−1

α (φ(k, x)) ≡ 0 (14)

at the hyperplane Πα .
Comparing (13), (14) with (7), (8) we see that the difference between these two ax-

iomatics is due to the additional factor
∏

β 6=α (k, β)mβ . In the Coxeter situation consid-
ered in [4] (see Section 4 below) this factor is not essential because of its symmetry.

It turns out that this minor change makes the axiomatics less restrictive and leads to
a richer class of the integrable Schrödinger operators. We will prove (see Corollary 2.7)
that if there exists φ satisfying the conditions (13), (14) then there exists also the BA
function ψ with the properties (7), (8) and in that case ψ = φ

A(k)
. Converse is not true:

there are configurations, for which ψ does exist but φ does not (see remark after the
proof of the Theorem 4.4).

2. Monodromy and BA functions.

Let L = −∆+u(x) be a Schrödinger operator with a meromorphic potential u(x) having
a pole along the hyperplane Πα : (α, x) = 0 , which is assumed to be non-isotropic:
(α, α) 6= 0 .
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We are looking for a formal solution φ of the Schrödinger equation Lφ = λφ in the
form

φ(x) =
∑
s≥0

φ(α)
s (α, x)µ+s, (15)

for some µ , where the coefficients φ
(α)
s = φ

(α)
s (x⊥) are some analytic functions on the

hyperplane Πα , x⊥ is orthogonal projection of x onto Πα , φ
(α)
0 6= 0 .

Let’s suppose that the equation Lφ = λφ has a solution of the form (15) with some
µ < 0 . Then the substitution into the equation gives immediately that the potential u(x)
must have a second order pole along Πα : the Laurent expansion in the normal direction
α has the form

u(x) =
∑
k≥−2

c
(α)
k (α, x)k (16)

with c
(α)
−2 = µ(µ− 1)(α, α) .

Moreover, we obtain the following recurrent relations for the coefficients φ
(α)
s :

(α, α)(µ(µ− 1)− (µ+ s)(µ+ s− 1))φs = (∆̃ + λ)φs−2 −
s−2∑
i=−1

ciφs−i−2, (17)

( s = 1, 2, . . . ), where ∆̃ is the Laplacian ∆ restricted to the hyperplane Πα and we
omitted all the indices α in the coefficients.

If 2µ /∈ Z we can determine all φs from (17) and obtain the solution (15) starting
from an arbitrary function φ0 (the same procedure gives also another solution with µ′ =
−1− µ ).

In the one-dimensional case this is a classical way (going back to Frobenius, see e.g.
[27]) to construct the basis of solutions of the corresponding equation

−ϕ′′ + u(x)ϕ = λϕ (18)

in a vicinity of its regular singular point. In the case when the equation (18) has no
monodromy in the complex domain, i.e. all the solutions are single-valued, we have that

1) µ must be an integer: µ = −m, m ∈ Z+ ,
2) the first 2m+ 1 equations from (17) must be compatible.

In case if this is true for each energy level λ we will say that the Schrödinger operator
has trivial monodromy.

In the multidimensional case there exists a generalisation of Frobenius’s theory for the
partial differential equations with the regular singularities in the complex domain (see
[28]). For the Schrödinger equation with a singularity along a hypersurface the regularity
condition means that the potential has a second order pole at most.

The considerations above motivate the following
Definition. We say that a Schrödinger operator L = −∆ + u(x) with meromorphic

potential u(x) having a second order pole along the hyperplane Πα : (α, x) = 0 has local
trivial monodromy around this hyperplane if
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1) the Laurent coefficient c
(α)
−2 in the expansion (16) has the form c

(α)
−2 = mα(mα +

1)(α, α) for some mα ∈ Z+ ,
2) the system (17) with µ = −mα is compatible for any function φ0 and for all

λ ∈ C .
Theorem 2.1. L has local trivial monodromy around Πα if and only if the coefficients

of the normal Laurent expansion of the potential u(x) near Πα

u(x) =
∑
s≥−2

c(α)
s (α, x)s

satisfy the following conditions: c−2 = mα(mα + 1)(α, α) for some mα ∈ Z+ , and

c
(α)
−1 = c

(α)
1 = c

(α)
3 = . . . = c

(α)
2mα−1 ≡ 0 on Πα. (19)

In that case the Laurent expansions of the corresponding eigenfunctions φ (15) satisfy
the conditions

φ
(α)
1 = φ

(α)
3 = . . . = φ

(α)
2mα−1 ≡ 0 on Πα. (20)

Proof is similar to the one-dimensional case considered by J.Duistermaat and A.Grün-
baum [14]. Let’s demonstrate the idea in the simplest case when mα = 1 . After substi-
tution (15) into the Schrödinger equation, we deduce that µ = 2 and derive the following

recurrent relations for φ
(α)
k :


(−2 + c−2)φ0 = 0
2φ1 + c−1φ0 = 0

2φ2 + (−∆̃− λ)φ0 + c0φ0 + c−1φ1 = 0

0φ3 + (−∆̃− λ)φ1 + c1φ0 + c0φ1 + c−1φ2 = 0
. . .

(21)

where ∆̃ is the Laplacian ∆ restricted to the hyperplane Π (we omitted all the subindices
α in these formulas and assumed that (α, α) = 1 ). These relations allow one to find all
the coefficients uniquely except φ0 (which is an arbitrary function) and φ3 , provided the
consistency of the first four equations. From the first equation it follows that c−2 = 2 .
Expressing φ1 and φ2 from the second and the third equations and substituting them
into the fourth one we arrive at the relation

(−∆̃− λ)(−1

2
c−1φ0)− 1

2
c−1(−∆̃− λ)φ0 + (c1 − c0c−1 +

1

4
c3
−1)φ0 = 0,

which should be valid for all φ0 and λ . Vanishing of the leading term in λ gives
c−1φ0 ≡ 0 , i.e. c−1 ≡ 0 . The relation reduces after that to c1φ0 = 0 , thus c1 ≡ 0 .
Notice that as it follows from the second equation φ1 = −1

2
c−1φ2 ≡ 0 . This completes

the proof in the case when mα = 1 . In the general case one should use induction
arguments (see [14], p.196).
Remark. One can consider a more general case, when u(x) has a singularity along an
arbitrary hypersurface ϕ(x) = 0 . However, analysis of the corresponding relations (21)
shows that the hypersurface has to be a hyperplane (cf. [19]).
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Now let’s consider a Schrödinger operator (1) L , corresponding to some Baker –
Akhiezer function ψ . We claim that such an operator has local trivial monodromy around
all the singular hyperplanes. To prove one can consider for a given λ the (n − 1) -
dimensional family of the solutions of the Schrödinger equation

(L− λ)ϕ = 0

of the form ϕ = ψ(k, x) with k2 = −λ . They have proper pole behaviour near the

hyperplane (α, x) = 0 . Unfortunately, ψ
(α)
0 depends on k and is not an arbitrary

function on the hyperplane, so we have to present additional arguments. We’ll prove a
slightly more general result, which we will use also in the section 6.

Theorem 2.2. Let the Schrödinger operator L = −∆ + u(x) have an eigenfunction
ψ(k, x)

Lψ = −k2ψ

of the form ψ = P (k, x)e(k,x) , where P is a finite sum of some functions which are ho-
mogeneous in k and meromorphic in x . Then the singularities of u(x) are second order
poles located on a union of non-isotropic hyperplanes and L has local trivial monodromy
around these hyperplanes.

Proof. The fact that singularities of u(x) must be located on the hyperplanes was
proved by Yu.Yu. Berest and A.P. Veselov in [20] under assumption that P is a polyno-
mial in k , but their proof works also in the case when P is a finite sum of the homogeneous
in k functions. The fact that these hyperplanes must be non-isotropic follows from the
zero-residue lemma of the same paper [20] (see also [19]).

Let’s now prove that the conditions (19) are to be satisfied. After a proper choice
of orthonormal basis we may assume that the hyperplane under consideration has the
equation x1 = 0 , and let’s consider the Laurent expansion for the function ψ(k, x) :

ψ(k, x) = x−m1

+∞∑
i=0

ψi(k, x2, . . . , xn)xi1. (22)

Let’s prove first that m has to be positive. Let P 0 be the highest homogeneous term of
P , then from the Schrödinger equation we have

∑
ki∂/∂xiP

0 = 0 . So P 0(k, x + kt) is
constant while t varies, hence if P 0 vanishes on the hyperplane x1 = 0 , then it vanishes
identically. Thus, P 0 and therefore ψ can not be zero at the hyperplane, so m in (22)
must be positive.

Substitution (22) to Schrödinger equation immediately gives that c−2 = m(m + 1)
and leads to the following recurrence relations:

(m(m+ 1)− (j + 2−m)(j + 1−m))ψj+2 = (∆̃− k2)ψj −
j∑

i=−1

ciψj−i, (23)

( j = −1, 0, 1, 2, . . . ), ∆̃ = ∂2

∂x2
2 + . . .+ ∂2

∂xn2 . To prove (19) let’s suppose that c−1 = c1 =
. . . = c2p−3 = 0 , but c2p−1 6= 0 for some p < m+ 1 . Considering j = −1, 1, 3, . . . , 2p− 3
it is easy to see that ψ1 = ψ3 = . . . = ψ2p−1 = 0 . From the form of the function

ψ it follows that ψj = Pj(k, x2, . . . , xn)e(k̃,x̃) , where Pj are finite sum of homoge-
neous functions in k , k̃ = (k2, . . . , kn) , x̃ = (x2, . . . , xn) . Let P 0

j be the highest
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homogeneous term of Pj . By induction one can prove that P 0
2j = (−1)jk2j

1 P
0
0 aj and

P 0
2j−1 = (−1)j−pk

2(j−p−1)
1 P 0

0 c2p−1bj , where the constant aj > 0 and b1 = b2 = . . . = bp = 0
(by assumption) and bj > 0 for m ≥ j ≥ p + 1 . Indeed, for P 0

2j it follows easily from
the relations (23). For P 0

2j−1 one can use induction arguments similar to [14] ( prop. 3.3,
p. 196).

Now let’s consider the equation (23) with the resonance value j = 2m− 1 :

0 = (∆̃− k2)ψ2m−1 −
2m−1∑
i=−1

ciψ2m−1−i.

Since this holds identically for all k the highest homogeneous term should vanish. Simple
calculation shows that this term is equal to

−(P 0
2m−1k

2
1 + P 0

2m−2pc2p−1) = (−1)m−p+1k
2(m−p)
1 P 0

0 (bm + am)c2p−1.

Since bm + am > 0 and P 0
0 6= 0 it vanishes only if c2p−1 = 0 . This completes the proof.

It is remarkable that the BA function turns out to be symmetric with respect to k
and x . For Coxeter configurations this property has been established in [5].

Theorem 2.3. Baker-Akhiezer function ψ(k, x) is symmetric with respect to x and
k : ψ(k, x) = ψ(x, k) .

Proof. The idea is to show that ψ(x, k) is also the BA function and then to use

the uniqueness (theorem 1.1). Let’s prove that A(x)P (k,x)
A(k)

is a polynomial in x with the

highest term A(x) , where A(x) and P (k, x) are the same as in (7). For that let us
consider the conditions (8) for ψ(k, x) . They give a linear system for the coefficients
of the polynomial P with the coefficients, which are proportional to the degrees (α, x) ,
α ∈ A . Since this system has a unique solution, these coefficients are rational in x .
Let’ denote by Pj(k, x) the homogeneous term of P (k,x)

A(k)
of degree −j in k . In terms of

Pj(k, x) one can rewrite the equation (9) in the following recurrent way

LPj(k, x) = 2
n∑
i=1

ki
∂

∂xi
Pj+1, P0(k, x) = 1.

From this it follows by induction that all the singularities of ψ(k, x) in x belong to our
configuration of the hyperplanes (α, x) = 0 . Analyzing Laurent expansions for u(x) and
ψ(k, x) on these hyperplanes we conclude that ψ(k, x) has a pole of order mα along the
hyperplanes (α, x) = 0 . All that means that A(x)P (k, x) is a polynomial in x . But
from the uniqueness of BA-function it follows easily that Pj(k, x) is also homogeneous in
x with the same degree −j . Hence the highest term in x of the polynomial A(x)P (k, x)

is equal to A(x)A(k) . Thus ψ(x, k) = A(x)+...
A(x)

e(k,x) . Properties of the Laurent expansions
in x follow immediately from the theorems 2.1, 2.2. So we have all the conditions for
ψ(x, k) to be a BA function. The theorem is proved.

Corollary 2.4. Baker-Akhiezer function ψ satisfies the following bispectral problem

L(x,
∂

∂x
)ψ(k, x) = −k2ψ(k, x), L(k,

∂

∂k
)ψ(k, x) = −x2ψ(k, x), (24)

where L is the Schrödinger operator (10).
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Now we are able to prove Theorem 1.3.
Corollary 2.5. The Baker-Akhiezer function ψ is an eigenfunction of the operator

(12) for any f ∈ RA .
Proof. Due to the Theorem 1.2 and to the symmetry of ψ for any f ∈ RA there

exists a differential operator A(k, ∂
∂k

) such that A(k, ∂
∂k

)ψ = f(x)ψ . On the other hand,
L(x, ∂

∂x
)ψ = −k2ψ . Now we can use the identity (1.8) from [14] which states in that case

that
(adL)r(f̂)[ψ] = (−adk̂2)r(A)[ψ]

for all r ∈ Z+ . For r = N = ordA = degf the differential operator (−adk̂2)r(A) in
the right-hand side has zero order and is, in fact, the operator of multiplication by cf(k)
with c = (−2)NN ! . This means that ψ is an eigenfunction of the operator (adL)r(f̂)
with the eigenvalue cf(k) . This proves the theorem 1.3.

Now let’s explain why the existence of φ with the properties (13), (14) (our old
axiomatics, see section 1) implies the existence of BA function ψ . This follows from the
following general statement, showing that the new axiomatics is in some sense the most
general one.

Let A be any configuration of hyperplanes, L = −∆ + u(x) be a corresponding
Schrödinger operator, A(k) =

∏
α∈A(α, k)mα . Consider the functions ϕ of the form

ϕ(k, x) =
P (k, x)

A(k)A(x)
e(k,x), (25)

P is some polynomial in k and x : P = A(k)A(x) + . . . , where dots mean the terms of
lower order both in k and in x .

Theorem 2.6. If the Schrödinger equation Lϕ = −k2ϕ has a solution ϕ of the form
(25) then ϕ(k, x) has to be BA function.

Proof now is almost evident. Theorems 2.1 and 2.2 provide the conditions (8) for ϕ
in x -variable, and it has the required form (7) in x . Hence, ϕ(x, k) is BA function and
according to the theorem 2.3 ϕ(x, k) = ϕ(k, x) .

Corollary 2.7. If a function φ satisfies the conditions (13)-(14) then ψ = A−1(k)φ
is the Baker-Akhiezer function (7)-(8).

Proof. As it follows from the results of the papers [4], [5], the function φ must be
an eigenfunction of the same equation (9). Then the arguments we used in the proof of
the theorem 2.3 show that ϕ = A−1(k)φ satisfies the conditions of the theorem 2.6 and
therefore is the Baker-Akhiezer function.

3. Locus equations and the existence of BA function.

Let A , as in Section 1, be a finite set of non-collinear vectors α ∈ Cn with given
multiplicities mα ∈ Z+ , A be the corresponding configurations of hyperplanes (α, k) = 0
in Cn and L = −∆ + u(x) be the Schrödinger operator with the potential

u(x) =
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
. (26)

The theorems 2.1 and 2.2 from the previous section imply that if the BA function for
the configuration A exists then in the normal Laurent expansions (16) of the potential
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u(x) the first odd terms c
(α)
2j−1 ( j = 1, . . . ,mα ) should vanish identically on the hyper-

plane (α, x) = 0 . More explicitly, these conditions have the form of the following highly
overdetermined algebraic system:∑

β∈A
β 6=α

mβ(mβ + 1)(β, β)(α, β)2j−1

(β, x)2j+1
≡ 0 on the hyperplane (α, x) = 0 (27)

for j = 1, 2, . . . ,mα .
We will call the equations (27) as locus equations, following Airault, McKean and

Moser [13], who used this terminology in one-dimensional case. The configurations A

which satisfy the locus equations we will call as locus configurations.
The remarkable fact is that the locus equations (27) are not only necessary, but are

also sufficient for the existence of the BA function. We will give the proof following the
paper [21].

Theorem 3.1. For any locus configuration A the BA function ψ(k, x) does exist
and can be given by the following Berest’s formula:

ψ(k, x) = [(−2)MM !A(k)]−1(L+ k2)M [
∏
α∈A

(α, x)mαexp(k, x)], (28)

where M =
∑

α∈Amα, A(k) =
∏

α∈A(α, k)mα .
Proof. Let’s consider the linear space V which consists of the functions φ(x), x ∈

Cn , with the following analytic properties:
1) φ(x)

∏
α∈A(α, x)mα is holomorphic in Cn ;

2) for each α ∈ A the Laurent expansion (15) for φ should not contain the terms of
order −mα + 2j − 1 ( j = 1, . . . ,mα) , i.e. the conditions (20) hold.

The basic observation is the following
Lemma. The space V defined above is invariant under the Schrödinger operator with

the potential (26) provided that the locus conditions (27) are fulfilled.
It follows easily from the imposed conditions on the Laurent expansions in α -direction

for u(x) and φ ∈ V .
Now let’s define the functions ϕi (i = 0, 1, . . . ) in the following way:

ϕ0 =
∏
α∈A

(α, x)mαexp(k, x)

and

ϕi+1 = (L+ k2)ϕi. (29)

It’s obvious that ϕ0 belongs to V , hence by the lemma ϕi also belongs to V . From the
definition of these functions and the property 1 of V it is clear that ϕi can be presented
in the form ϕi = Ri(k, x)exp(k, x) , where Ri = Qi

∏
α∈A(α, x)−mα for some polynomial

Qi(k, x) . From (29) it follows that the degrees of the polynomials Qi in x decrease:
degQi+1 < degQi . Therefore, for some N ϕN 6= 0 but ϕN+1 = (L + k2)ϕN = 0 . Thus,
φ = ϕN is an eigenfunction for the Schrödinger operator L . Let’s prove that N in fact
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equals to M =
∑

α∈Amα . If we denote by R0
i the highest homogeneous terms of Ri in

x , we see from (29) that

R0
i+1 = −2

n∑
j=1

kj∂/∂xj
(
R0
i

)
.

From this we obtain immediately that for i = M =
∑

α∈Amα

R0
M = (−2)MM !

∏
α∈A

(α, k)mα . (30)

From this we conclude that for i > M Ri (which is polynomial in k ) will be of the
negative degree in x . Thus, it cannot be an eigenfunction for the Schrödinger operator
L because of the following lemma due to F.A.Berezin [22].

Lemma. If a quasipolynomial ψ in k ψ = P (k, x)exp(k, x) satisfies the Schrödinger
equation (−∆ + u(x))ψ = −k2ψ then the highest term in k of the polynomial P must
be polynomial in x .

This contradiction proves that the last non-zero function in the sequence (29) is
φM . Moreover, since φM belongs to the space V we obtain using (30) that ψ(k, x) =
(R0

M)−1ϕM satisfies axiomatics (7),(8) in x as well as in k according to the theorem 2.3.
So, we proved that ψ(k, x) defined by the formula (28) is the BA function associated to
a configuration A .
Remark. The remarkable formula (28) for ψ was discovered by Yu. Berest ([18]), who
proved that if ψ does exist then it should have the form (28).

4. Analysis of the locus equations and locus configu-

rations.

The next step would be to classify all the solutions of the locus equations (locus configu-
rations). Unfortunately, this problem seems to be very difficult. In this section we present
some results in this direction and all the known examples.
4.1. Coxeter systems.

The most natural examples of the locus configurations are given by the mirrors of the
Coxeter groups. Recall that a Coxeter group W is by definition a finite group generated
by some orthogonal reflections sα(x) = x − 2(α,x)

(α,α)
α with respect to hyperplanes in Rn

(see [23]). If we consider all the reflections from the Coxeter group W , then the set A of
the corresponding hyperplanes (α, x) = 0 will be invariant under the action of W . The
configuration A of these hyperplanes with arbitrary W -invariant multiplicities mα ∈ Z+

gives an example of locus configuration. This fact follows immediately from the symmetry
of the corresponding potential u(x) with respect to any reflection sα, α ∈ A .

In this case the Schrödinger operator L is the quantum Hamiltonian of the generalised
Calogero – Moser system (see [24], [6]). The existence of the BA function for the root
system of type An with mα = 1 was proved in [4], where some explicit formula for ψ
has been found. For the general Coxeter system it was done in [5], using the Heckman’s
formula [7] for the so-called shift operators in terms of the Dunkl operators [25]. Notice
that our approach gives a new proof of this result.
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Remark. In principle, one may try to extend these examples to the complex case, by
considering a finite group generated by orthogonal reflections in complex Euclidean space.
However, it is known (see e.g. [26]) that all such groups are nothing but the complexified
Coxeter groups.
4.2. Deformed root systems.

The first non-Coxeter locus configuration An(m) was introduced in [8]. It consists
of the following vectors in Rn+1 : ei − ej with multiplicity m ( 1 ≤ i < j ≤ n ) and
ei −

√
men+1 with multiplicity 1 ( i = 1, . . . , n ). Notice that for m = 1 we have the

root system An . We can allow the parameter m to be negative simply considering the
vectors ei − ej with the multiplicity −1−m in that case (then, of course, we will have
a complex configuration in Cn+1 ).

Corresponding Schrödinger operator has the form:

L = −∆ +
n∑
i<j

2m(m+ 1)

(xi − xj)2
+

n∑
i=1

2(m+ 1)

(xi −
√
mxn+1)2

. (31)

In the simplest nontrivial case n = 2 we have the following configuration (see figure
1).

A2(m)

θ cosθ = m

m +1

m

1 1

Figure 1

The next example is related to the root system of Cn - type. Let’s consider the
following set of vectors in Rn+1 :

Cn+1(m, l) =


ei ± ej with multiplicity k
2ei with multiplicity m

2
√
ken+1 with multiplicity l

ei ±
√
ken+1 with multiplicity 1

13



where l and m are integer parameters such that k = 2m+1
2l+1

∈ Z , 1 ≤ i < j ≤ n . In the
case of C2(m, l) - system the parameters m, l can be arbitrary integers, the corresponding
quantum problem was considered in [8, 9]. The corresponding configuration has the form
shown on the figure 2.

m

ϕ

1 1C2(m,l) l

cos2ϕ =
m− l

m + l+1

Figure 2

For n > 1 the corresponding Schrödinger operator has the form:

L = −∆n+1 +
n∑
i<j

4k(k + 1)(x2
i + x2

j)

(x2
i − x2

j)
2

+
n∑
i=1

m(m+ 1)

x2
i

+

(32)

l(l + 1)

x2
n+1

+
n∑
i=1

4(k + 1)(x2
i + kx2

n+1)

(x2
i − kx2

n+1)2
,

where k = 2m+1
2l+1

. In the case l = m the system Cn+1(m, l) coincides with the classical
root system Cn+1 (or Dn+1 for l = m = 0 ). Again, as for the An(m) system, the
parameters k, l,m may be negative, in that case the corresponding multiplicities in ()
should be −1− k , −1−m or −1− l respectively.

The simplest way to check the validity of the locus equations for these configurations
is to use the following important property of the system (27):

Theorem 4.1. A configuration A satisfies locus equations (27) if and only if each
two-dimensional subsystem of A gives a locus configuration. In other words, for each
two-dimensional plane π ⊂ Cn the vectors α ∈ A∩ π with their multiplicities mα must
satisfy the locus equations.
Remark. Notice the analogy with the similar property of the Coxeter and root systems.

Proof. Let us denote by β̂ the orthogonal projection of a vector β onto the hy-
perplane (α, x) = 0 , then (β̂, x) ≡ (β, x) on this hyperplane. Let π < α, γ > denote
the two-dimensional plane spanned by α and γ 6= α . Then the subsum of (27) over
β ∈ π < α, γ > becomes proportional to (γ̂, x)−2j−1 being restricted to the hyperplane
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(α, x) = 0 . All these subsums for different two-dimensional hyperplanes are independent,
so we come to the following equivalent form of (27):

for any two-dimensional plane π ∈ Cn and for each α ∈ A ∩ π and j = 1, . . . ,mα∑
β∈A∩π
β 6=α

mβ(mβ + 1)(β, β)(α, β)2j−1(β, x)−2j−1 ≡ 0 for (α, x) = 0. (33)

That gives the statement of the theorem.
If we analyse the configurations An(m) and Cn+1(m, l) from this point of view, we will

have in each two-dimensional plane either a usual root system or one of their deformations
A2(m) and C2(m, l) . For these two cases the locus equations can be checked by direct
calculation.

One can see that our configurations An(m) and Cn+1(m, l) have one common feature:
they are obtained from Coxeter configurations by adding a special orbit of the Coxeter
group with multiplicity 1 (a sort of ”one-orbit deformation” of a Coxeter configuration).
The following result demonstrates that such property is not accidental: the hyperplanes
with large multiplicities always form a Coxeter subsystem.

Definition. Let’s say that the hyperplane Πβ ∈ A has a large multiplicity mβ if in
each two-dimensional plane containing vector β there are no more than mβ + 1 vectors
from A (without taking into account the multiplicities).

Theorem 4.2. The set B ⊂ A of all hyperplanes with large multiplicities forms
a Coxeter configuration and all other hyperplanes and their multiplicities are invariant
under the action of this Coxeter group.

Proof. We shall prove that for each β ∈ B the corresponding reflection sβ preserves
the set A together with multiplicities. This implies, in particular, that sβ(B) ⊂ B . To
prove the invariance of A under sβ let’s consider as in theorem 4.1 an arbitrary two-
dimensional planeπ , which contains β , and the corresponding two-dimensional locus
equation (33): ∑

γ∈A∩π
γ 6=β

mγ(mγ + 1)(γ, γ)(β, γ)2j−1(γ, x)−2j−1|(β,x)=0 ≡ 0,

where j = 1, . . . ,mβ . Now we look at these equations for generic fixed x as a linear
system for unknowns zγ = mγ(mγ + 1)(γ, γ)(β, γ)(γ, x)−3 of the form

∑
γ 6=β

zγ

(
(β, γ)2

(γ, x)2

)j−1

|(β,x)=0 ≡ 0, j = 1, . . . ,mβ. (34)

We need the following elementary lemma:
Lemma. If three unit vectors β, γ, γ′ belong to some two-dimensional subspace in Cn

and
(β, γ)2

(γ, x)2
=

(β, γ′)2

(γ′, x)2

for all x such that (β, x) = 0 then either γ = ±γ′ or sβ(γ) = ±γ′ .
Let’s regroup the terms in (34) into the groups corresponding to different values of

(β,γ)2

(γ,x)2 . From the properties of the Vandermond determinant we easily conclude that the
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sum of zγ in each group should vanish. On the other hand, using lemma we see that
there are only two terms in each group, and they correspond to the pairs of vectors γ, γ′

with sβ(γ) = ±γ′ . Finally, we arrive to the condition zγ + zγ′|(β,x)=0 = 0 , which gives
mγ(mγ + 1) = mγ′(mγ′ + 1) , i.e. mγ = mγ′ .
Remark. The Schrödinger operators (31), (32) remain integrable in a usual (Liouville)
sense for the general (non-integer) values of the parameters m, l : there exists at least
n = dimV independent commuting operators L1 = L,L2, . . . , Ln . Indeed, for An(m)
case (m is integer) it’s easy to check that the polynomials ps = ks1 + ks2 + . . . + ksn +

m
s−2

2 ksn+1 (s = 1, 2, . . . ) satisfy the conditions (11) and, according to the theorem 1.2,
there exist differential operators Ls with the highest symbols ps such that Lsψ = psψ
and therefore [Ls, Lt] = 0 (see the explicit formula (12)). Since the coefficients of these
operators depend on

√
m in a rational way, one can define such operators for general m .

For s = 2 one has the Schrödinger operator (31), and other Ls give its quantum integrals.
In the case of Cn+1(m, l) - system the similar arguments prove the integrability of the
Schrödinger operator (32) for the general l,m , and the commuting quantum integrals Ls
have the symbols ps = k2s

1 + . . .+ k2s
n + qs−1k2s

n+1 (q = 2m+1
2l+1

, s = 1, 2, . . . ) .
4.3. Locus configurations on the plane.

Yu.Berest and I.Lutsenko [11] in the context of the Huygens’ Principle have introduced
the following family of the real potentials u on the real plane. In the polar coordinates
they have a form

u(r, ϕ) = − 2

r2

∂2

∂ϕ2
logW [χ1(ϕ), . . . , χM(ϕ)], (35)

where χj(ϕ) = cos(kjϕ+ θj), kM > . . . > k1 > 0, kj ∈ N, θj ∈ R and W [χ1, . . . , χM ] is
the Wronskian of χ1, . . . , χM .

One can consider the natural complexification of the Berest–Lutsenko family in the
following way. The set of all non-isotropic lines in C2 is isomorphic to the cylinder
C∗ ' CP 1\{0,∞} and can be parametrised by a complex parameter ϕ(modπ)

x cosϕ+ y sinϕ = 0.

Any configuration corresponds to a finite number of points in C∗ : ϕ1, . . . , ϕN with
multiplicities m1, . . . ,mN . The corresponding potential has the form

u =
1

r2

N∑
j=1

mj(mj + 1)

sin2(ϕ− ϕj)
, (36)

where r2 = x2 + y2 ∈ C\{0} and ϕ(modπ) = arctan y
x

. The complex Berest–Lutsenko
potentials given by the formula (35) with the complex parameters θj , have the form (36)
with ϕj being the roots of the trigonometric polynomial W [ϕ] , their multiplicities are

known to have a ”triangular” form
mj(mj+1)

2
(see [13]).

Theorem 4.3. All the locus configurations on the plane are determined by the complex
Berest–Lutsenko formula (35).

Proof. First of all the locus equations (27) in this case are equivalent to the following

one-dimensional locus equations (cf. [13]) for the potential v(ϕ) =
∑N

j=1
mj(mj+1)

sin2(ϕ−ϕj) :(
d

dϕ

)2s−1
(∑

j 6=i

mj(mj + 1)

sin2(ϕ− ϕj)

)∣∣∣∣∣
ϕ=ϕi

= 0 (i = 1, . . . , N, s = 1, 2, , . . . ,mi).
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Now we can use the result from [21], which says that in its turn this is equivalent to
the existence of the differential operator D with π -periodic coefficients, intertwining the
operator L = − d2

dϕ2 + v(ϕ) with L0 = − d2

dϕ2 :

L ◦D = D ◦ L0. (37)

The idea of the proof is close to the one demonstrated in the proof of the theorem 3.1,
and we shall not reproduce it here.

So, the only remaining thing to prove is that the relation (37) implies that L can
be obtained from L0 by classical Darboux transformations. Let’s assume that D has
the minimal order among all the intertwiners of L and L0 and consider its kernel:
V = KerD . As it follows from (37) V is invariant under L0 : if Df = 0 then D(L0f) =
LDf = 0 . Due to π -periodicity of the coefficients of D , KerD is also invariant under
the shift T : f(ϕ)→ f(ϕ+ π) .

We would like to show that the spectrum of L0|V is simple and has the form
(k2

1, k
2
2, . . . , k

2
M) , where 0 < k1 < k2 < . . . < kM are some integers. Suppose that there

exists an eigenfunction f ∈ V with the eigenvalue λ 6= k2, k ∈ Z . Since L0 commutes
with T , we can assume that f is a Bloch eigenfunction:{

L0f = λf
Tf = µf

If λ 6= k2 f has to be pure exponent: f = Ce
√
−λϕ or f = Ce−

√
−λϕ . Since Df = 0

the operator D can be factorised as

D = D̃ ◦ F, F =
d

dϕ
− f ′

f
,

where D̃ is a π -periodic differential operator of the order one less than D (see e.g. [27]).

When f = Ce±
√
−λϕ we have F = d

dϕ
±
√
−λ and L ◦ D̃ ◦F = D̃ ◦F ◦ L0 = D̃ ◦ L0 ◦F .

Thus L ◦ D̃ = D̃ ◦ L0 , so D̃ is also an intertwiner with the order one less than the order
of D .

Thus the spectrum of L0|V consists only of the squares of integers: λ = k2, k ∈ Z .
The same arguments show that λ 6= 0 . So we have only to prove that the spectrum
is simple. First of all there could be only one eigenfunction, corresponding to a given
λ = k2 . Indeed, otherwise KerD contain the whole Ker(L0 − λ) and therefore D
can be factorised D = D1 ◦ (L0 − λ) with D1 being another intertwiner of less order.
Suppose that L0 has a Jordan block with λ = k2 . Consider the Jordan basis f0, f1, . . . :
(L0 − λ)f0 = 0, (L0 − λ)f1 = f0, . . . . Since f0 can not be pure exponent (see above),
f0 = A cos(kϕ+θ0) , then f1 = Aϕ

2k
sin(kϕ+θ0)+B cos(kϕ+θ1) . Now from the invariance

of KerD under the shift T we conclude that Aπ
2k

sin(kϕ + θ0) also belongs to KerD .
Together with f0 the last function generates Ker(L0 − λ) , which leads to factorisation
D = D1 ◦ (L0 − λ) and reducibility of D .

Thus we have proven that KerD is generated by the functions χ1, . . . , χn of the
form χj = cos(kjϕ+ θj) . The general formula (see e.g. [29]) from the theory of Darboux

transformations says that u = −2 d2

dϕ2 logW [χ1, . . . , χn] . The theorem is proven.
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We should mention that although the formula (35) is explicit, it is not so easy to
extract the geometric information about the locus configurations. For example, it is not
clear how to prove the following theorem using this formula.

It is very easy to show that all two-line locus configurations consist of two perpen-
dicular lines with arbitrary multiplicities. Let’s consider the first non-trivial case of
three lines (α, x) = 0, (β, x) = 0 and (γ, x) = 0, x ∈ C2 with arbitrary multiplicities
mα,mβ,mγ ∈ Z+ , and ask when they form a locus configuration. Modulo the natural
rotational equivalence we have the following classification.

Theorem 4.4. All the three lines locus configurations are listed below:
1) the Coxeter A2 configuration with multiplicities (m,m,m) ;
2) the deformed A2(m) configuration (31) with multiplicities (1, 1,m) when m is positive
and (1, 1,−m− 1) when m is negative;
3) the three lines complex Berest-Lutsenko configurations, which can be parametrised in
this case as:

α = (1, a), β = (1, b), γ = (0, 1) : a2 − ab+ b2 + 1 = 0,

the multiplicities are (1, 1, 1) .
Proof. Let A be an arbitrary three lines locus configuration. Let us consider the

first case when A has at least two vectors with multiplicities greater than 1. Then the
theorem 4.2 states that A has to be a Coxeter A2 - system. Now let us suppose that
there is only one vector γ = (0, 1) with multiplicity m > 1 . The theorem 4.2 states that
other two vectors have to be symmetric with respect to the vector γ , so we may fix the
normalisation α = (1, λ), β = (1,−λ) . The locus equation (27) for α has a form:

2(1 + λ2)(1− λ2)

(x− λy)3
+
m(m+ 1)λ

y3
= 0 if x+ λy = 0.

From that it immediately follows that λ can take only the following values: λ =
± 1√

2m+1
,± i√

2m+1
, and it is easy to check that A is equivalent to the system A2(m)

or A2(−m− 1) . The last case we have to consider is the case when all the three vectors
α = (1, a), β = (1, b), γ = (0, 1) have multiplicity 1. The locus equation (27) for vector γ
takes the form

2a(a2 + 1)

(x+ ay)3
+

2b(b2 + 1)

(x+ by)3
= 0 if y = 0

or
(a+ b)(a2 + b2 − ab+ 1) = 0.

The locus equations (27) corresponding to α and β can be written as follows:{
(1 + a2)(1 + ab) + b(a− b)3 = 0
(1 + b2)(1 + ab) + a(b− a)3 = 0

In the case a + b = 0 this system of equations is fullfilled if and only if a4 = 1
9

, which
implies that A is either Coxeter system A2 or deformed system A2(−2) . In the case a2+
b2−ab+ 1 = 0 the above system holds automatically without any additional restrictions.
Thus, the theorem is proven.
Remark 1. We should mention that some of the configurations 3) contain an isotropic
line ( a = ±i, b = 0 or a = 0, b = ±i ) and therefore actually reduce to the two-line
configurations. Notice also that when a = i/

√
3 = −b we have A2(−2) configuration.
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Remark 2. It can be checked that for the configurations 3) from the theorem 4.4 the
function φ with the properties (13-14) doesn’t exist. This demonstrates that the converse
for the statement of the Corollary 2.7 is not true.

Notice that from this result it follows that the locus of n lines is non-empty only for
the special sets of multiplicities. Moreover, if the locus configuration is real than the set
of multiplicities determines it uniquely up to rotation due to the following result.

Theorem 4.5. There exists no more than one locus configuration in R2 with given
cyclically ordered set of multiplicities.

Proof. Let A = {α1, . . . , αN} be such a configuration for given set of multiplicities
{m1, . . . ,mN} , and let us fix normalisation αi = (− sinϕi, cosϕi), 0 ≤ ϕ1 < ϕ2 < . . . <
ϕN < π . Considering the locus equations, we have, in particular, that

N∑
j=1
j 6=i

mj(mj + 1) cos(ϕj − ϕi)
sin3(ϕj − ϕi)

= 0 for i = 1, . . . , N.

Let’s now introduce the function

U(ϕ1, . . . , ϕN) =
∑
i<j

mi(mi + 1)mj(mj + 1)

sin2(ϕi − ϕj)
.

We conclude that if Φ = (ϕ1, . . . , ϕN) defines a locus configuration then necessarily

∂

∂ϕi
U(ϕ1, . . . , ϕN) = 0.

Function U being a sum of convex functions is a convex function in the domain 0 ≤
ϕ1 < ϕ2 < . . . < π . Suppose it has one more extremum in the point Φ̃ = (ϕ̃1, . . . , ϕ̃N) .

Then U(ϕ1, . . . , ϕN) should be a constant along the segment Φ+(Φ̃−Φ)t, 0 ≤ t ≤ 1 , as

well as each function
mi(mi+1)mj(mj+1)

sin2(ϕi−ϕj) . From that it follows that ϕ̃i = ϕi + ϕ0 for some

constant ϕ0 for all i . This means that system {αi} is defined uniquely up to a rotation.
Corollary 4.6. If all the multiplicities are equal then the only real configuration on

the plane is Coxeter, i.e. dihedral.
The consideration of all two-dimensional subsystems implies the following more general

result.
Corollary 4.7 Any real locus configurations in Rn with equal multiplicities must be

Coxeter.

5. Affine locus.

In this section we present some results concerning the case, when the singular set of the
potential u(x) of the Schrödinger operator is an affine configuration S of hyperplanes.
So, we consider a Schrödinger operator L = −∆ + u(x) with rational potential having
second order poles along some non-isotropic hyperplanes in Cn . Let (αs, x) + cs = 0
( s = 1, . . . , K ) be the equations of these hyperplanes. We will suppose also that the
potential u(x) decays at infinity, i.e. u(x) → 0 while x → ∞ along the rays outside
singularities.
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Impose now the condition that L has local trivial monodromy around its singularities.
Then the Theorem 2.1 from the section 2 allows us to reformulate this condition as some
algebraic conditions on the arrangement S of the singular hyperplanes (αj, x) + cj = 0 .
First of all, it follows that the potential u(x) must be of the form

u(x) =
K∑
j=1

mj(mj + 1)(αj, αj)

((αj, x) + cj)2
(38)

for some integers m1, . . . ,mK . Then the conditions (19) imply that the Schrödinger
operator with the potential of the form (38) has local trivial monodromy around its
singularities if and only if the following relations are satisfied:∑

j 6=i

mj(mj + 1)(αj, αj)(αi, αj)
2s−1

((αj, x) + cj)2s+1
≡ 0 (39)

identically on the hyperplane (αi, x) + ci = 0 for all i = 1, . . . , K and s = 1, . . . ,mi .
We will call the relations (39) as locus equations. The equations (27) from the Section

3 are their particular case, when all the hyperplanes pass through the origin. Sometimes
we will refer to (39) and (27) as to affine and linear cases correspondently.

As it follows from the section 2, the locus equations (39) are necessary for the existence
of a certain eigenfunction of the corresponding Schrödinger operator L (see theorem 2.2).
As well as in the linear case (Section 3) the equations (39) are sufficient for this. The
following result has been proven in [21].

Theorem 5.1. Let L = −∆+u(x) be a Schrödinger operator with the potential of the
form (38) which satisfies the affine locus equations (39). Then L has an eigenfunction
φ of the form φ(k, x) = P (k, x)exp(k, x) , where P is polynomial in k , Lφ = −k2φ .

This eigenfunction (up to a normalization factor ) is given by the Berest’s formula
analoguous to (28):

ψ(k, x) = [(−2)MM !C(k)]−1(L+ k2)M [
K∏
j=1

((αj, x) + cj)
mj exp(k, x)], (40)

where M =
∑K

j=1 mj and C(k) =
∏K

j=1(αj, k)mj . The normalization is chosen in such
way that ψ(k, x) = (1 + o(1))exp(k, x) as k →∞ .

We start the analysis of the affine locus equations and their solutions (locus configu-
rations) from the one-dimensional case.
5.1. One-dimensional case.

In this case we have a configuration of K points z1, . . . , zK with multiplicities
m1, . . . ,mK on the complex plane and the potential

u(z) =
K∑
j=1

mj(mj + 1)

(z − zj)2
.

The locus equations in this case (for mj = 1 ) have been introduced in the paper by
Airault, McKean and Moser [13]. Duistermaat and Grünbaum [14] obtained them for
the general multiplicities and proved that they are equivalent to the existence of the
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differential operator D with rational coefficients, intertwining L = − d2

dz2 + u(z) and

L0 = − d2

dz2 :
L ◦D = D ◦ L0.

All such operators L are the results of the classical Darboux transformations applied to
L0 , so the potential u(z) can be given in this case in terms of the Wronskians by the
well-known explicit formula:

u(z) = −2
d2

dz2
logW [χ1, . . . , χm],

where the polynomials χ1, . . . , χm are defined by the recurrent relations χ′′1 = 0, χ′′2 =
χ1, . . . , χ

′′
m = χm−1 (see Burchnall–Chaundy [32], Adler–Moser [15]). The Wronskian is a

polynomial Pm(z, c1, . . . , cm) with the coefficients depending on the additional integration
constants c1, . . . , cm (see [15] for the details).

Thus, the locus in the one-dimensional case is a union of the rational algebraic varieties
of the dimensions m = 1, 2, 3, . . . , parametrised by c1, . . . , cm , and the locus configu-
rations are simply the roots of the corresponding Schur polynomials Pm(z, c1, . . . , cm) .
The solution ψ of the corresponding Schrödinger equation −ψ′′ + u(z)ψ = −λ2ψ has a
form

ψ =

(
1 +

m∑
i=1

ai(z)λ−i

)
eλz. (41)

This is a degenerate rational case of the hyperelliptic BA function, corresponding to a
general finite-gap operator [2]. These rational BA functions ψ (41) are characterized by
the following properties in the spectral parameter (cf. [33]). Let ξ1, . . . , ξm be arbitrary
parameters, ψs be the Laurent coefficients of ψ at λ = 0 : ψ =

∑+∞
s=−m λ

sψs(z) . Impose
the following m linear conditions on the coefficients ψ−m, . . . , ψm−1 :

ψm−1 +
m∑
s=1

ξsψm−2s = 0

ψm−3 +
m−1∑
s=1

ξsψm−2s−2 = 0

ψm−5 +
m−2∑
s=1

ξsψm−2s−4 = 0

. . .
ψ−m+1 + ξ1ψ−m = 0

(42)

They are equivalent to a non-degenerate system for m unknown functions ai(z) and
determine ψ of the form (41) uniquely. The usual arguments [1], [33] show that such
a function satisfies the Schrödinger equation −ψ′′ + u(z)ψ = −λ2ψ with the rational
potential

u(z) = 2a′1(z). (43)

Notice that for given ξ1, . . . , ξm the system (42) determines a m -dimensional linear
subspace V (ξ1, . . . , ξm) in C2m and therefore corresponds to a point of the Grassmannian

21



Gr(m, 2m) . It is more convinient to identify the system of conditions (42) with a point

of some infinite-dimensional Grassmannian Gr
(2)
0 (see [33] for the details). Namely, let’s

consider the linear space C[[λ]] of formal series in λ , and let W be a subspace of C[[λ]]
with the following properties:
1) λmC[λ] ⊂ W ⊂ λ−mC[λ] where C[λ] is the space of polynomials and both inclusions
have the same codimension m ;
2) λ2W ⊂ W .
We will suppose that the number m = m(W ) in 1) cannot be reduced. The set of all

such subspaces for m = 0, 1, 2, . . . we will denote as Gr
(2)
0 following [33].

It is easy to see that the subspace of C[[λ]] consisting of all Laurent series ψ =∑+∞
s=−m λ

sψs which satisfy the conditions (42) represent nothing but a general point of

Gr
(2)
0 . In these notations the one-dimensional BA function corresponding to W is the

unique element ψW of the form (41) which Laurent expansion at λ = 0 belongs to W
for each z . We will denote by uW the corresponding potential (43).

These considerations suggest the following extension of the axiomatics (7-8) of the
multidimensional BA function.
5.2. Equipped configurations and BA functions.

Let A be again a finite set of non-collinear vectors in Cn . We will prescribe to each
vector α ∈ A a subspace W (α) ∈ Gr(2)

0 , and denote the corresponding integer m(W (α))
as mα . We will call the corresponding set of hyperplanes Πα : (α, k) = 0 with the
prescribed subspaces W (α) as equipped configuration A .

Definition. For a given equipped configuration A the function ψ(k, x) is called the
Baker-Akhiezer function if it satisfies the following two conditions:
1) ψ has the form

ψ =
P (k, x)

A(k)
e(k,x), (44)

where A(k) =
∏

α∈A(α, k)mα , P is a polynomial in k with the highest term A(k) ;
2) for each α ∈ A the Laurent expansion of ψ in k in α -direction calculated at any
point of the hyperplane Πα must belong to W (α) .

Here by the Laurent expansion of a meromorphic function F (k) in α -direction at a
point k0 we mean the Laurent expansion of the function f(λ) = F (k0 + λα) at λ = 0 .

If for each subspace W (α) the corresponding parameters ξ in (42) are zeros, our
definition reduces to the definition of the BA function from the Section 1. Now we will
prove the analogues of the theorems 1.1, 1.2 for a general equipped configuration.

Theorem 5.2. If for a given equipped configuration A there exists BA function ψ
then it is unique and satisfies the Schrödinger equation(

−∆ +
∑
α∈A

(α, α)uα((α, x))

)
ψ = −k2ψ, (45)

where uα(z) = uW (α)(z) are the one-dimensional potentials, corresponding to the sub-
spaces W (α) .

Theorem 5.3. Let R be the ring of polynomials f(k) with the following properties:
for each α ∈ A and any point k0 ∈ Πα the polynomial fα,k0(λ) = f(k0+λα) preserves

the space W (α) : fα,k0W
(α) ⊂ W (α) .
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If the Baker-Akhiezer function ψ(k, x) exists then for any polynomial f(k) ∈ R there
exists some differential operator Lf (x,

∂
∂x

) such that

Lfψ(k, x) = f(k)ψ(k, x).

All such operators form a commutative ring isomorphic to the ring R . The Schrödinger
operator (45) corresponds to f(k) = −k2 .

The proofs of the theorems above follow in a standard way (cf. [4]) from the following
two lemmas.

Lemma 1. If some function ψ of the form (44) (without the restrictions on the
highest term of the polynomial P ) satisfies the conditions 2 from the definition of the BA
function then the highest term in P must be divisible by A(k) =

∏
α∈A(α, k)mα .

Lemma 2. The BA function corresponding to an equipped configuration A has the
following asymptotic behaviour at infinity:

ψ(k, x) = exp(k, x)

(
1 +

∑
α∈A

a
(α)
1 ((α, x))

(α, α)

(α, k)
+ o(k−1)

)

where a
(α)
1 (z) are the first coefficients in the corresponding functions (41) ψα = ψW (α)

and o(k−1) means the rational function of k which degree is less than -1.
To prove the lemmas, let’s expand ψ in Laurent series in (α, k) on the hyperplane

(α, k) = 0 . For convenience we may suppose that (α, α) = 1 and choose orthonormal
basis in k such that (α, k) = k1 , the other coordinates k2, . . . , kn we shall denote by k̃ .
Then up to unessential factor exp(k2x2 + . . .+ knxn) ψ -function (44) takes the form:

ψ̃(k, x) = ex1k1

∑
s≥−mα

ks1as(k̃, x), (46)

and the Laurent coefficients as are rational functions of k̃ with possible singularities at
zeros of homogeneous polynomial Ã(k̃) = k−m1 A(k)|k1=0 . Since the sum

∑
s≥−mα k

s
1as

is the Laurent expansion for P (k,x)
A(k)

, the degrees in k̃ of its coefficients as decrease at

s→∞ (by definition, deg p
q

= degp− degq ). Now we restrict our attention to the terms

ks1as with the maximal degree of as in k̃ . From the remark above it follows that we have
a finite number of such terms, and if we extract the highest homogeneous part in k̃ in
each term, we obtain the following finite expression

ψ̃0(k1, x) = ex1k1

∑
s≥−mα

ks1a
0
s(k̃, x), (47)

where a0
s is the highest term in as and all the a0

s have the same degree in k̃ . It is clear
now that constructed in that way ψ̃0 must obey the same restrictions (42). This implies,
in particular, that the sum (47) contains at least one term with s ≥ 0 . The outcome
is that if we expand P (k, x) in the series in k1 , P =

∑
j≥0 k

j
1pj(k̃) , and then extract

from this sum the terms with the maximal degree in k̃ , the result must contain at least
one term with j ≥ mα . Now let’s present P as a sum of homogeneous in k1, . . . , kn
components P = P0 +P1 + . . . , and suppose that the highest term P0 is not divisible by
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kmα1 . In this case some other term Pi must contain kmα1 , but its degree in k̃ is clearly
less than the degree of the term coming from P0 . This contradiction proves the lemma
1.

Moreover, in the extreme case when P0 has the form P0 = kmα1 Q0 with Q0|k1=0 6= 0
the reduced ψ -function (47) up to a factor coincides with the one-dimensional BA function
(41) ψ(k1, x1) . It’s easy to see that this factor is simply Q0|k1=0 .

In particular, this implies that the second homogeneous term P1 in P (k, x) for the
BA function ψ satisfies the following condition:[

k1−mα
1 P1

]
k1=0

= a1(x1)
[
k−mα1 P0

]
k1=0

,

where a1 is the first coefficient in the corresponding one-dimensional BA function (41).
We obtained this formula under assumption that (α, α) = 1 , in general it looks as follows:[

(α, k)1−mαP1

]
(α,k)=0

= (α, α)a1((α, x))
[
(α, k)−mαP0

]
(α,k)=0

. (48)

Taking into account the restrictions (48) for all the hyperplanes (α, k) = 0 , and we
obtain that if P0 = A(k) =

∏
α∈A(α, k)mα , then

P1 = A(k)
∑
α∈A

a
(α)
1 ((α, x))

(α, α)

(α, k)
, (49)

which proves the lemma 2.
Let’s consider now for a given equipped configuration A the corresponding Schrödin-

ger operator (45). It is clear that the potential has the form (38). The corresponding
affine configuration of the hyperplanes S we will call dual to the equipped configuration
A . Suppose that the corresponding BA function does exist, then from the theorem 2.2
we conclude that the Schrödinger operator (45) has local trivial monodromy and hence
satisfies the locus equations (39). In other words, the dual configuration S must be a
locus configuration. We believe that the converse is true, that is, each locus configuration
appears in such way for appropriate BA function. The part 2 of the Theorem 5.6 below
shows that each locus configuration is dual to some equipped configuration. So, the only
problem is to check that for the function defined by the formula (40) the properties 2
from the definition of the BA function hold. Unfortunately, we couldn’t find a proof for
this. We can only remark that for all known affine locus configurations it is true.
5.3. Geometry of affine locus.

First of all, it is easy to check that the following operations preserve the locus equations
and therefore allow to produce the locus configurations:

1) motions of the complex Euclidean space Cn ;
2) extensions of the configurations in Cn to Cm , m > n , induced by an orthogonal

projection Cm → Cn ;
3) union of two configurations which are orthogonal to each other.
At the moment all known examples of the affine locus configurations can be con-

structed using these operations from one-dimensional affine and multidimensional linear
locus configurations.

In particular, this is true for the configurations, corresponding to the operators intro-
duced by Yu.Berest and P.Winternitz [16]. Analysis of these examples, however, reveals
one more geometrical way to produce the locus configurations.
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Let S be any affine configuration of hyperplanes in Cn . Let’s imbed Cn in Cn+2

in the following way: x = (x1, . . . , xn) → (x1, . . . , xn, 1, 0) . For any hyperplane Π in

Cn let’s define the hyperplane Π̃ in Cn+2 as a linear span of Π ⊂ Cn ⊂ Cn+2 and the
isotropic vector e = (0, . . . , 0, 1, i) . If (α, x) + c = 0 is the equation of Π in Cn then

the corresponding equation of Π̃ will be (α, x) + c(xn+1 + ixn+2) = 0 .

Corresponding configuration S̃ in Cn+2 we will call as isotropic projectivisation of
S .

Theorem 5.4. The isotropic projectivisation of an affine locus configuration S in
Cn is a linear locus configuration S̃ in Cn+2 .

Proof. We shall check the first of the locus equations for S̃ , the others can be checked
in the same way. So, we need to prove that on a hyperplane (αs, x)+cs(xn+1 + ixn+2) = 0
the following identity holds:∑

j 6=s

mj(mj + 1)(α̃j, α̃j)(α̃s, α̃j)

((αj, x) + cj(xn+1 + ixn+2))3
≡ 0,

where α̃j denotes the normal vector of the hyperplane Π̃j ⊂ Cn+2 . If Π̃j ⊂ Cn has the
the normal vector αj = (α1

j , . . . , α
n
j ) , then α̃j is the vector (α1

j , . . . , α
n
j , cj, icj) . ¿From

that we immediately see that (α̃j, α̃j) = (αj, αj) and (α̃s, α̃j) = (αs, αj) . Now since
λ = xn+1 + ixn+2 6= 0 almost everywhere on the hyperplane (αs, x)+cs(xn+1 + ixn+2) = 0
we come to the identity ∑

j 6=s

mj(mj + 1)(αj, αj)(αs, αj)

((αj, x) + cjλ)3
≡ 0

for (αs, x) + csλ = 0 . But this identity after the rescaling x→ λx takes the form∑
j 6=s

mj(mj + 1)(αj, αj)(αs, αj)

((αj, x) + cj)3
≡ 0 for (αs, x) + cs = 0,

which is exactly the first locus equation for the configuration S .
Example. Let S be a direct sum of three-point one-dimensional configurations with

the corresponding potential

u(x1, . . . , xn) =
n∑
i=1

6x4
i − 12τixi

(x3
i + τi)2

.

Then after the isotropic projectivisation we obtain the locus configuration with the po-
tential of the form (cf. [16]):

ũ(x1, . . . , xn+2) =
n∑
j=1

6x4
j − 12τj(xn+1 + ixn+2)3xj

(x3
j + τj(xn+1 + ixn+2)3)2

.

In order to obtain a more general Berest–Winternitz’s potential [16]

ũ(x1, . . . , xn+2) =
n∑
j=1

6x4
j − 12τj(xn+1 + ixn+2 + cj)

3xj

(x3
j + τj(xn+1 + ixn+2 + cj)3)2
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we should shift the pairwise-orthogonal triples of hyperplanes

xj + τ
1
3
j (xn+1 + ixn+2) = 0 (j = 1, . . . , n)

by cj in xn+1 .
Remark. The BA function in this example can be obtained easily using the following
general remark. If ψi = Ri(k, x)exp(k, x) ( i = 1, 2 ) are given by the formula (40) for
two orthogonal locus configurations S1 and S2 then the function ψ = R1R2exp(k, x)
will correspond to the locus configuration S = S1

⋃
S2 . This is clear from the structure

of the formula (40).
Thus, iterating such geometric procedures one can construct many new affine locus

configurations. However, all of them are degenerate in the following sense. Let V (S) be
the linear space of the normals to all the hyperplanes in S . We call S degenerate if the
restriction of the complex Euclidean form on V (S) is degenerate.

For a degenerate affine configuration one can define the following isotropic reduction
procedure, which is inverse to the isotropic projectivisation.

Let K be the kernel of the restriction of the Euclidean form onto V (S) . Consider
the orthogonal complement V ⊥ of V in Cn and choose a subspace L such that

V + V ⊥ = K ⊕ L.

By an isotropic reduction of the degenerate configuration S we shall mean the configu-
ration S ∩ {a+ L} , where {a+ L} is a shift of L by a generic vector a ∈ Cn .

Theorem 5.5. An isotropic reduction of a degenerate locus configuration is a non-
degenerate locus configuration.

The proof is similar to the case of isotropic projectivisation.
These results may be interpreted in two ways. First, we can say that any affine locus

configuration is a result of the isotropic reduction of some (degenerate) linear configura-
tion. So, the classification problem for affine locus configurations reduces to the linear
case. On the other hand, as we have shown, to classify all locus configurations it is
sufficient to consider non-degenerate configurations only. Moreover, we can consider irre-
ducible configurations only, i.e. exclude the unions of orthogonal subconfigurations. At
the moment all the known non-degenerate irreducible locus configurations are linear or
one-dimensional. It may well be the only possible examples.

The following general result clarifies the geometrical structure of affine locus configu-
rations.

Theorem 5.6. Any affine locus configuration S has the following properties:
(1) for each point x0 ∈ Cn the subset Sx0 ⊆ S of the hyperplanes passing through

x0 form a linear locus configuration;
(2) for each hyperplane Π ∈ Σ the subset S(Π) ⊆ A of the hyperplanes parallel to Π

forms an extended one-dimensional locus configuration.
Conversely, any affine configuration with properties (1), (2) belongs to the locus.
Proof. (1) Let’s consider the locus equations for some hyperplane Πi : (αi, x)+ci = 0

passing through x0 :∑
j 6=i

mj(mj + 1)(αj, αj)(αi, αj)
2s−1

((αj, x) + cj)2s+1
≡ 0 for x ∈ Πi, (50)
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s = 1, . . . ,mi .
Now take x = x0 + y , then x ∈ Πi iff (αi, y) = 0 and we have the following relation:∑
j:x0∈Πj
j 6=i

mj(mj + 1)(αj, αj)(αi, αj)
2s−1

(αj, y)2s+1
+

∑
k:x0 /∈Πk

mk(mk + 1)(αk, αk)(αi, αk)
2s−1

((αk, x0) + ck + (αk, y))2s+1
≡ 0

for all y such that (αi, y) = 0 . Since the second sum is regular at y = 0 , the first sum
should vanish on the hyperplane (αi, y) = 0 . Thus, we obtain linear locus equation for
the configuration Sx0 .

(2) To prove the second property, let’s divide all the hyperplanes which are non-parallel
to Π into the subgroups in the following way: Π′ and Π′′ belong to the same group if
and only if their intersection is contained in Π . Then in each group the sum of the
corresponding terms in (50) should vanish due to the property (1). The remaining terms
is exactly the locus equation for the set of parallel planes S(Π) .

The converse statement now is clear.
We conclude this section by some negative results about locus configurations in Rn .
Theorem 5.7. For any locus configuration in the real plane there exists a point all

the lines pass through.
Proof. First we note that parallel lines cannot appear in locus configurations in R2 .

Indeed, the subset of parallel lines according to the previous theorem must give a real
solution for the one-dimensional locus equations, which is impossible.

Now let’s fix some terminology: by vertices we will mean the intersection points for
the lines from the configuration and by a ray – any ray from the configuration with the
origin at some vertex (some rays may contain other vertices). Let’s choose an orientation
on the plane. This allows us to determine the oriented angle ϕ(l1, l2) between the ordered
pair of rays l1, l2 , which varies from −π to π . We need the following property of the
locus configurations in R2 :

Lemma 1. For each ray l1 from the locus configuration in R2 there exists another
ray l2 with the same vertex and acute angle between l1 and l2 :

0 < ϕ(l1, l2) ≤ π

2
.

Similarly, there exists a ray l3 with the same vertex such that −π
2
≤ ϕ(l1, l3) < 0 .

Proof of the lemma follows from the linear locus equations (27) for the lines passing
through a given vertex: it’s clear that the sign of each term in it depends only on the sign
of the cotangent of the oriented angle between α and β .

Lemma 2. Let l1 and l2 be chosen as in Lemma 1. Then if l1 contains another
vertex of the configuration, the same is true for l2 .

The proof follows from simple geometrical considerations.
Let’s consider now any vertex and all the rays of our configuration outgoing from this

vertex. As it easily follows from the lemmas we have only two possibilities:
1) there are no other vertices on these rays or
2) there is at least one more vertex on each ray.
Since we have a finite number of vertices, we obtain immediately that our configuration
has only one vertex. Theorem is proven.
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The same is probably true in Rn but at the moment we can prove this only in the
special case when all the multiplicities are equal.

Theorem 5.8. Any affine locus configuration in Rn with equal multiplicities is a
linear Coxeter configuration.

Proof. It’s sufficient to prove that the configuration must be symmetric with respect
to each its hyperplane. Since the parallel hyperplanes cannot appear in a real locus
configuration, the statement follows from the theorem 5.6 and the corollary 4.7.

6. Locus configurations and Huygens’ Principle.

Let us consider a linear hyperbolic equation

Lϕ(x) = 0, L = 2N+1 + u(x), (51)

where 2N+1 is the D’Alembert operator, 2N+1 = ∂2

∂x2
0
− ∂2

∂x2
1
− . . .− ∂2

∂x2
N

.

We say after J.Hadamard [30] that it satisfies Huygens’ Principle (HP) if its funda-
mental solution is located on the characteristic conoid, i.e. this solution vanishes in the
conoid’s complement.

Hadamard found some criterion for HP to be satisfied in terms of the so-called Ha-
damard’s coefficients Uν(x, ξ). They are uniquely determined by the following system of
equations

N∑
i=0

(xi − ξi)
∂Uν
∂xi

+ νUν = −1

2
L(Uν−1) (52)

and the conditions that U0(x, ξ) ≡ 1 and Uν(x, ξ) are regular at x = ξ . These coefficients
are symmetric with respect to x and ξ : Uν(x, ξ) = Uν(ξ, x) (for the details see the book
[31]).

Hadamard proved that the equation (51) satisfies Huygens’ Principle if and only if N
is odd and Uν |Γ = 0 for ν ≥ N−1

2
, where Γ = {(x, ξ) : (x0 − ξ0)2 −

∑N
i=1(xi − ξi)2 = 0}

is the characteristic conoid. For the case when potential u (and, as a corollary, all the
Hadamard’s coefficients Uν ) does not depend on at least one of the coordinates (say, x0 ),
the Hadamard’s criterion is equivalent to the condition UN−1

2
≡ 0 .

We consider the Hadamard’s problem of description of all huygensian equations of the
form:

(2N+1 + u(x1, . . . , xN))ϕ = 0 (53)

In fact, in our case for any locus configuration in Cn the corresponding potential will
depend only on the first n coordinates : u = u(x1, . . . , xn), n ≤ N .

It turns out that huygensian equations of the form (53) are closely related to the locus
configurations. For the linear locus configuration in Cn the corresponding potential

u(x) =
∑
α∈A

mα(mα + 1)(α, α)

(α, x)2
. (54)

is homogeneous of degree –2.
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Theorem 6.1. For any real potential u(x1, . . . , xn) related to a linear locus config-
uration the hyperbolic equation (53) satisfies HP if N is odd and N ≥ 2

∑
α∈Amα + 3 .

In that case the fundamental solution can be expressed via BA function.
Conversely, if the hyperbolic equation (53) with homogeneous potential u(x) : u(λx) =

λ−2u(x) satisfies HP and all the Hadamard’s coefficients are rational functions, then the
potential u(x) must have the form (54) for some linear locus configuration.

Proof. The proof of the first statement repeats the arguments of the paper [10],
where this result has been proven in the Coxeter case. It is based on the following relation
between BA function and Hadamard’s coefficients. If we have the Baker-Akhiezer function
ψ of the form (7), we can present it in the form

ψ(ξ, x) = (U0(ξ, x) + U1(ξ, x) + . . .+ UM(ξ, x))e(ξ,x), (55)

where U0 = 1, Uν(x, ξ) is homogeneous of degree −ν in ξ , M = degA(k) =
∑

α∈Amα .
Since ψ is symmetric in ξ and x (theorem 2.3), Uν has the same degree in x . From
the Schrödinger equation (9) for ψ , Lψ = −ξ2ψ , L = −∆ + u(x) , we obtain:

−2
n∑
i=1

ξi
∂

∂xi
Uν + L[Uν−1] = 0 (ν = 1, . . . ,M + 1 with UM+1 = 0).

Since Uν are homogeneous in x this implies the relations (52), so Uν coincide with the
Hadamard’s coefficients. Now since UM+1 = 0 the Hadamard’s criterion guarantees HP if
N ≥ 2M+3 . Notice that it gives also the explicit formula for the Hadamard’s coefficients
and the fundamental solution for (51) (see for the details [10]).

Conversely, from the chain (52) for the Hadamard’s coefficients Uν(x, ξ) for the ho-
mogeneous potential u it follows that Uν are also homogeneous in x (and, therefore, in
ξ ):

Uν(λx, ξ) = λ−νUν(x, ξ) = Uν(x, λξ).

This can be proven by the same calculation as in lemma 1 from [12], where the case n = 2
was considered. Let’s now consider the function ψ defined by the formula (55). Then,
from the Hadamard chain (52) and homogeneity of Uν it follows in the same way as above
that ψ satisfies the Schrödinger equation

(−∆N + u(x))ψ = −ξ2ψ.

Notice that the potential u(x) must be rational since all the Hadamard’s coefficients are
supposed to be rational. This follows from the first equation of the Hadamard’s chain
(52). Now using the theorems 2.1 and 2.2 and the fact that u(x) is homogeneous of
degree (–2) we conclude that u(x) has the form (54) for some locus configuration.
Remark. In the case when n = 2 i.e. u = u(x1, x2) , a stronger result (namely, without
the assumption that the Hadamard’s coefficients are rational) follows from the results by
Yu.Berest and I.Lutsenko [11], [12].

Now let’s consider an arbitrary (affine) locus configuration S such that the corre-
sponding potential u(x) given by the formula (38) is real for real x . This is equivalent
to the condition S = Σ̄ where S̄ is a natural complex conjugation of a configuration
S . The following result generalises the Theorem 6.1 for the general (affine) locus config-
urations.
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Theorem 6.2. For any affine locus configuration S ⊂ Cn with S = Σ̄ the cor-
responding hyperbolic equation (53) satisfies Huygens’ Principle if N is odd and large
enough: N ≥ 2M + 3,M =

∑K
j=1 mj .

Conversely, if the equation (53) satisfies Huygens’ Principle and all the Hadamard’s
coefficients are rational functions, then the potential u(x) must be of the form (38) for
some affine locus configuration.

Proof. The first part of this theorem can be derived from the theorem 5.1 and the
results by Yu.Berest [34] (see also [19]). We would like, however, to present here another,
more illuminating proof. It is based on a different idea which will help us to prove the
second part also. The idea is to reduce the affine case to the linear one using the isotropic
projectivisation procedure.

The main observation is encapsulated in the following lemma. Let Uν(x, ξ) ( ν =
0, 1, . . . ) be some analytic functions of 2n variables x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn)
which satisfy the equations (52) with some potential u(x) . Let’s define now the new
functions depending on x̃ = (x1, . . . , xn, xn+1, xn+2) and ξ̃ = (ξ1, . . . , ξn, ξn+1, ξn+2) :

Ũν(x̃, ξ̃) = (xn+1 + ixn+2)−ν(ξn+1 + iξn+2)−νUν(
x

xn+1 + ixn+2

,
ξ

ξn+1 + iξn+2

) (56)

and

ũ(x̃) = (xn+1 + ixn+2)−2u(
x

xn+1 + ixn+2

). (57)

Lemma. The relations (52) for Uν(x, ξ) and u(x) are equivalent to the similar

relations in x̃, ξ̃ for Ũν(x̃, ξ̃) and ũ(x̃) defined by the formulas (56) and (57).
The proof is straightforward.
Now suppose that we have the real potential u(x) related to some affine locus con-

figuration S = S̄ ⊂ Cn . Then the potential ũ(x̃) defined by (57) corresponds to some

locus configuration S̃ ⊂ Cn+2 which is exactly the result of the isotropic projectivisation
defined in the previous section (see Theorem 5.4). Thus, according to the Theorem 3.1

the corresponding Schrödinger operator L̃ = −∆n+2 + ũ(x̃) in Cn+2 has the BA function

ψ̃(ξ̃, x̃) which is given by the formula (28). Therefore, ψ̃ can be presented in the form
analogous to (55),

ψ̃(ξ̃, x̃) = (Ũ0(ξ̃, x̃) + Ũ1(ξ̃, x̃) + . . .+ ŨM(ξ̃, x̃))e(ξ̃,x̃), (58)

where Ũ0 = 1 and the components Ũν(x̃, ξ̃) are homogeneous of degree −ν in ξ̃ and
x̃ , non-singular for x̃ = ξ̃ and satisfy the relations (52) in x̃, ξ̃ with the potential ũ(x̃) .
Now let’s consider their restriction for xn+1 + ixn+2 = ξn+1 + iξn+2 = 1 ,

Uν(x, ξ) = Ũν(x̃, ξ̃)|xn+1+ixn+2=1

ξn+1+iξn+2=1

. (59)

We claim that the formula (59) determines the Hadamard’s coefficients for the initial
potential u(x) .

First of all, let’s notice that this formula really determines some functions of x, ξ
only. This can be derived directly from the formula (28). Indeed, it’s easy to see from
the inductive procedure (29) that the pre-exponent in the BA function (28) is a linear
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combination of the ”monomial” terms
∏

α∈A(α, x)pα(α, k)qα with some integers pα, qα .

Thus, xn+1, xn+2, ξn+1, ξn+2 will enter in ψ̃ only as combinations xn+1+ixn+2 and ξn+1+
iξn+2 . This means that the coefficients Uν defined by (59) indeed do not depend on

xn+1, xn+2, ξn+1, ξn+2 . As a corollary of the homogeneity of Ũν in x̃ and ξ̃ we may
invert the formula (59) and obtain that Ũν are related to Uν by the formula (56). Now
using the lemma we get the equations (52) for Uν . It is clear then from (59) that U0 = 1
and Uν are non-singular when x = ξ . The last remark is that the procedure (59) gives
us the real-valued functions Uν of x, ξ ∈ Rn in the case when the initial potential u(x)
is real, S = S̄ .

So, for any affine locus configuration we constructed the Hadamard’s coefficients Uν
for the corresponding hyperbolic equation (53), and UM+1 = 0 . Applying the Hadamard’s
criterion, we obtain the first part of the theorem.

To prove the inverse statement, we suppose that the hyperbolic equation (53) is huy-
gensian and has rational Hadamard’s coefficients Uν with UM+1 = 0 . In that case we can
define the homogeneous functions Ũν(x̃, ξ̃) by the formula (56). According to the lemma,
they obey the equations (52) with the homogeneous potential (57). Then in the same
way as in the Theorem 6.1, we conclude that the function (58) satisfies the Schrödinger

equation L̃ψ̃ = −ξ2ψ with L̃ = −∆n+2 + ũ(x̃) . Now using the Theorem 2.2 in the same
way as in the theorem 6.1 we deduce that the potential ũ(x̃) must correspond to some

(linear) locus configuration S̃ of non-isotropic hyperplanes in Cn+2 . But in that case
the initial potential u(x) (see the formula (57)) will correspond to the isotropic reduction

S of S̃ which should satisfy the locus equations due to the theorem 5.5. The theorem
is proven.
Remark. We have assumed that the potential u of the hyperbolic equation does not
depend on x0 , but essentially we have used only the fact that the sequence of the
Hadamard’s coefficients terminates at some step M . Actually all the results of this
section can be generalised formally for any equation of the form (51) (even with the com-
plex potential), which possesses the last property. In that case the singularities of the
potential should satisfy the locus equations in CN,1 with the complex Euclidean structure
defined by the metrics diag(−1, 1, . . . , 1) .

We conjecture that any hyperbolic equation (2N+1 + u(x))ϕ = 0 with terminating
sequence of the Hadamard’s coefficients has a rational potential u(x) which corresponds
to some locus configuration in CN,1 . We have proved this under the assumption that
the Hadamard’s coefficients are rational. The proof of this conjecture would lead to the
solution of the famous Hadamard’s problem in the class (53). Until now this problem is
solved only when u depends on one of the coordinates (K.Stellmacher, J.Lagnese [17])
and when u is homogeneous and depends on two of the coordinates (Yu.Berest [12]).

7. Some other relations and generalisations.

7.1. The Baker–Akhiezer function ψ(k, x) related to an equipped configuration has the
following remarkable property: it satisfies a system of differential equations not only in
x but also in k –variables. Corresponding bispectral property of the one-dimensional BA
function has been observed in the fundamental paper by Duistermaat and Grünbaum [14].
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Let ψ(k, x) be a BA function related to some equipped configuration A , S be the
corresponding dual configuration of the poles of the potential u(x) given by (38).

Let R be the ring of polynomials defined in the Theorem 5.3. Define also the dual
ring S as the ring of all polynomials q(x) in x , satisfying the relations(

αs,
∂

∂x

)2j−1

[q(x)] |(αs,x)+cs=0 ≡ 0

for all j = 1, 2, . . . ,ms and for all the hyperplanes of the configuration S .
Theorem 7.1. For any p(k) ∈ R and q(x) ∈ S there exist the differential operators

Lp(x, ∂/∂x) and Mq(k, ∂/∂k) such that the BA function ψ(k, x) satisfies the following
bispectral problem: {

Lp(x, ∂/∂x)ψ(k, x) = p(k)ψ(k, x)
Mq(k, ∂/∂k)ψ(k, x) = q(x)ψ(k, x)

(60)

The existence of the operator Lp(x, ∂/∂x) is claimed in the Theorem 5.3. The ex-
istence of Mq(k, ∂/∂k) follows from the characterisation of ψ by its analytic properties
in x . Namely, one can show that the BA function ψ(k, x) is the unique function of the
form

ψ =
B(x) + . . .

B(x)
e(k,x),

where B(x) =
∏N

s=1((αs, x) + cs)
ms and the dots denote the polynomial in x of a smaller

degree, such that the following conditions are fulfiled:(
αs,

∂

∂x

)2j−1

[((αs, x) + cs)
msψ] |(αs,x)+cs=0 ≡ 0

for each j = 1, 2, . . . ,ms and s = 1, . . . , N . The fact that the BA function satisfies
these conditions follows from the Schrödinger equation (45) and the theorem 2.2.
7.2. Similar approach can be developed for the trigonometric versions of our Schrödinger
operators (1). As well as in the rational case discussed in the present paper, the axiomatics
of [4] has to be amended in order to cover the most general case. We intend to discuss such
axiomatics in a separate paper. The corresponding locus conditions have been described
in [21]. The bispectral property for the corresponding BA functions results in difference
operators in the spectral parameter, which can be viewed as deformations of the rational
Ruijsenaars and Macdonald operators (see [35]).
7.3. The most of the results of this paper can be generalised to the case when the potential
u(x) of the Schrödinger operator is a matrix-valued function. The locus equations for
that case in dimension 1 have been described in [36]. Multidimensional case is considered
in [37].
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