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ABSTRACT. We investigate (2+1)-dimensional hierarchies associated with integrable
PDE’s of the form

Qtt - F(Qa:my Qa:ta Qa:y);
which generalize the dispersionless KP hierarchy. The integrability is understood as the
existence of infinitely many hydrodynamic reductions.

MSC: 35Q58, 37K05, 37K10.

Keywords: Integrable hierachies of dKP type, Hydrodynamic Reductions, Pseudopo-
tentials.

*Center for Nonlinear Studies, Landau Institute for Theoretical Physics, Kosygina 2, Moscow, 117940,
Russia.
**On the leave from: Institute of Mechanics, Ufa Branch of the Russian Academy of Sciences, Karl
Marx Str. 6, Ufa, 450000, Russia.
1



CLASSIFICATION OF INTEGRABLE (2+1)-DIMENSIONAL QUASILINEAR HIERARCHIES 2

1. Introduction

Let us consider a function € of infinitely many independent variables t°, t', #2,
satisfying a system of second order PDE’s

Qi = (I)nk(QO()a Qo1, Qo2 - Qo,n+k);
here Q2,1 = 00482, n > 1, k > 1. Explicitly, one has

Q11 = q)ll(QOO7 QOI; Q02)7

Q12 = (1)12(QOOa Q01) Q02> QOB))

Q13 = (1)13(900; QOla Q027 Q[)?n QO4)> (1)
Q22 = CI)22(9007 QOI; Q027 Q037 QO4)7

etc. Equations of this type generalize the dispersionless KP hierarchy

1
Q1 = Qo2 — 5930,
g = Qoz — Qoof01,
1
Qs = Qos — Qoollo2 — —9(2)1,

Qo2 = Qos+ 3900 — Q00Q02 — O,

etc. Further examples arise in the theory of Dirichlet’s problem in multi-connected do-
mains [8]. The compatibility conditions of the equations (1) impose strong restrictions
on the functions ®,,; implying, in particular, that ®;; uniquely determines the rest of the
functions @, [10], [2]. The function ®y; itself satisfies a complicated over-determined
system of third order PDE’s (see Sect. 2 where we re-derive this system based on the
method of hydrodynamic reductions [7], [4], [6], [9]). Its general solution can be reduced
to either of the four essentially different canonical forms

by = Qo+ 4A(AQ()1 +2BQ)? + Cle Ao,

QOQ 1 A 2 B B2 A/Q
dy = Qi p—g) Ce?/Sho

YT G (ﬂ ! 4930) AT A

Q 1

¢, = 9_02 + U(QO(J)QOh
01
1900
(I)H = hl QOQ — ll’l 81 (Q()l, ng) — Z/’I](T)dT,
see [10]. Here n(7) is a solution of the Chazy equation
0" + 2" = 30", (2)

which can be represented in parametric form

1) = FKEI2 DK - 3B, 7=,
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where K(s) and E(s) are complete elliptic integrals of the first and second kind, respec-
tively [1]. The theta-function

01(z,7) =2 (—1)"e” "D T sin[(2n + 1)7]
n=0

is defined as a solution of the involutive system
0,01 = —kby, 0,0, = Z(k* — )6,

Ock =1, Dok = 3\/403 — 4l — Syl — S — Yk, 3)

8.l = \/413 —dnl2 =8yl — 3, OA=1"—nl—n — %’“\/‘”3 — Al = Sl = 5",

where, again, 7 solves the Chazy equation (2). We emphasize, however, that one does not
need the explicit formulae for ; and 1 to work with the above expressions for ®;;: what
one actually needs are the equations (2), (3).

The dKP hierarhy corresponds to a simple degeneration of the first canonical form:
A= —-2B% B — 0, C = 0. Similarly, the hierarchy of the modified dKP equation,

B2
Qi1 = Qo2 + BQoo 201 + ?ng;

can be obtained by the degeneration C = —2B%A473, A — 0 (along with an appropriate
linear change of the variable ¢?).
In Sect. 2 we concentrate on the first equation

Q11 - (I)ll(QOO7 QOI; Q02)7 (4)

dropping any assumptions on the structure of higher flows of the hierarchy. Introducing
the notation t* =z, t' = ¢, > =y, &1 = G, Qoo = a, Qo1 = b, Qo2 = ¢ we rewrite (4) in
a quasilinear form

ar = by, ay =cz, by =ci, by = G(a,b,c),. (5)
Applying to (5) the method of hydrodynamic reductions (as outlined in [6]), we arrive
at the same system of PDE’s for ®;; as the one obtained in [10]. This confirms that
the symmetry approach of [10] based on equations (1) yields a complete list of integrable
PDE'’s of the form (4).

In Sect. 3 we discuss scalar pseudopotentials

wt = Q(%, Q00, Q01)7 7/Jy = L(wz, QOOa Q01, Q02)

which play a role of dispersionless Lax pairs [12] for equations (4). To calculate pseudopo-
tentials we introduce negative times =1, t72, ... and consider the corresponding negative
flows of the hierarchy.

2. Classification of integrable PDEs of the form Qy = G(Qyuy, Qut, Quy)

In this section we demonstrate how the classification results of [10] (see also [2]) follow
from the method of hydrodynamic reductions as proposed in [6]. Introducing the notation
Qe = a, Uy = b, Qyyy = ¢, Qe = G(a,b,c) we first rewrite our PDE in the quasilinear
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form (5). Looking for hydrodynamic reductions in the form a = a(R!,...,R"), b =
b(RY,...,R"), c=c(R',..., R") where the Riemann invariants satisfy the equations

Rj=XN(R) Ri. Rj=i(R)R. (©)
and substituting into (5), one arrives at
;b = N'0sa, O;c = 1'O;a
along with the dispersion relation
(A2 = Gy + G\ + Gt
The commutativity conditions of the flows (6) are of the form

8j/\i . @-,ui . . .
)\j_/\i_ﬂj_,ui’z%']’ aj_a/gRﬂﬁ (7)

see [11]. Differentiating the dispersion relation and taking into account (7) one obtains
the expressions for 9;\" in the form

N = % (GaaGe + GapGe(N + N) + GG NN+
(Gae + XNGp) (V)2 = GuoN — G,) (8)

+(()‘2)2 - Gb)‘Z - Ga)[Gac + Gbc>\j + %CCC

(V)2 =GN — G,))).
The compatibility conditions of the equations 9;b = \'9;a and d;c = u'd;a imply

;N AN
92+
NN NN

@(’3]-@ = (9j&. (9)

One can see that the consistency conditions of the equations (8), that is, Op0;\"' — 9,0k A" =
0, are of the form P 0;adxa = 0 where P is a complicated rational expression in A\, A, \¥
whose coefficients depend on partial derivatives of G(a, b, ¢) up to third order (to obtain the
integrability conditions it suffices to consider 3-component reductions setting i = 1, j =
2, k = 3). Requiring that P vanishes identically we obtain the expressions for all third
order partial derivatives of G. Similarly, the compatibility conditions of the equations
(9), that is, 0x(0;0;a) — 0;(9;0ka) = 0, take the form S 0;a0;a0ra = 0 where, again, S is
rational in A%, M, \¥. Equating S to zero one obtains exactly the same conditions as the
ones obtained on the previous step. The resulting set of integrability conditions looks as
follows:
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G = 222 Goce = ng’f“, G = 2G§CG“,

Gage = 25;210’ Gape = QGgCGbC, Gope = 22626,

G = é (GoG2. + GGGy + 26 ) — Coo(GoGlp + 2Gn)) .

Gany = Gig (GaGie + Gac(GeGry 4 Gac) — Gee(GaGrp + Gaa)) (10)
G = é (GorGyGan — 2GuGap) — G GyGg — 26.Gap) — Gon(GeGg — 2GuGar))
e — é ((Gu+ G2)G2, + G224+ G2(G2y — CaaGly)

_'_Gach(Gaa + 2<Gabe - GbGab)) + 2C;bc(C*Yb(C:cGULa - GaGac) - GaGcGab>
— Coel(Ga + GGy — 2GoGiGup)) -

This system is in involution and its general solution depends on 10 integration constants
(indeed, the values of G and its partial derivatives up to second order can be prescribed
arbitrarily at any point ag, by, o).

The integration of the first six equations in (10) yields

1
G(a,b,c) = g In(aa + Bb + v +ec) + F(a,b).

The substitution of this ansatz into the remaining equations imposes further constraints
on the function F(a,b),

beb — 45Fab - QEFbeb = 0,
Fabb — 2€Faa - QEFCLbe = O, (11)
Faab -+ 25FbFaa - 4€FaFab = O,
Foua — 26 FyFoy + 2F 0 Fyy — 26 F2F,y — 2F% + 4eF, FyFy — 2eF2 Fy, = 0,
which identically coincide with the ones derived in [10]. The first equation in (11) has
the general solution
1

1
F=—-— [n(@da—-nb(a,b), 40, = by, (12)

and the substitution of (12) into the remaining equations (11) and further integration
lead to the four essentially different cases as shown in [10].

This confirms that the method of higher symmetries adopted in [10] gives all integrable
hierarchies of the form (1).

3. Pseudopotentials

Let us introduce the negative times t=1, t72, t73, ... and extend the hierarchy (1) by
the equations

Qn,fk = (I)m,k(Qo’,k, QO,*kle’ ceey QOO7 QOI; ) QOn)7
Qne = Pon—£(Qo—n—r> Qo,—n—tt1, > Qo0);
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in particular,
Ql,fl = CI)1,71(g20,717 Q007 QOl)a
Qo1 = Py _1(Q0,-1, Qo0, Qo1, Qo2)-
In the notation t* =z, ! = ¢, * =y, t ' =2, ®;_; = Q, Py _; = L we can rewrite these
equations in the form
Qtz = Q(Q{L‘Z7 Qx:pu th)a
Qyz = L(sza Qxx: th7 Qaﬂy)

In terms of 1 = €2, this provides a pseudopotential

wt = Q(wmv sza ta)a
,lvby - L(q/}a:: waa taa Qxy)
for the equation (4). Below we demonstrate how one can obtain explicit expressions for
both functions ) and L.
Remark: The hierarchy of the Boyer-Finley equation [3]
Q1, —1 = exp Qg

can be obtained by a simple degeneration B = C = 0, A = —2 in the first canonical form;
the first commuting flow of this hierarchy is

1
QH == QOQ - 5931

Let us first derive the explicit form for the function @ applying the method of hydro-
dynamic reductions to the PDE

ta - Q(me Q:v:cy Qﬂf)

Introducing the notation Q,, = a, Qu = b, Q.. =€, Q,; = Q(e,a,b), one can rewrite
this PDE in the quasilinear form
ay = bxa a, = €y, bz =€ = Q(eaa>b)x~ (13)
Looking for reductions in the form a = a(R', ..., R"), b = b(R',...,R"), e = e(R', ..., R")
where the Riemann invariants satisfy the equations
R, =X (R) R,, R.=C((R)R,

and substituting into (13), one arrives at

8217 = )\i&»a, 6,-6 = Q@Za
along with the dispersion relation

N = Qa + QX' + QcC".
As before, the commutativity conditions (7) lead to the expressions for ;N\, (i # j),
and the compatibility conditions of the equations 9;b = \'0;a, d;e = ('d;a yield (9). The
consistency conditions 9y9;\" — 9;0,\" = 0 are of the form R 0;adka = 0 where R is a
rational expression in A%, A, A\¥ whose coefficients depend on partial derivatives of Q(e, a, b)
up to the third order. Requiring that R vanishes identically we obtain the expressions

for all third order partial derivatives of (). Similarly, the compatibility conditions of the
equations (9), that is, 0x(0;0;a) — 0;(0;0ra) = 0, take the form M 0,a0;a0ra = 0 where,
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again, M is a rational expression in A, M, \*. Equating M to zero one obtains exactly
the same conditions as on the previous step. The final set of integrability conditions looks
as follows:

Qo = Qup(QuQpe + QeQup + Qap) Quee = Qee(QeeQp + QeQpe + Que)
QvQe + Qa b QvQe + Qa ’
Qe — Qup(Qee@p + QecQpe + Qae) Oboe — Qee(QpQre + QeQrp + Qup)
QpQe + Q4 7 “ QpQe + Q, ’
Quee — Qee(QvQac + QcQap + Qaa) Oty — Qus(QpQae + QeQap + Qaa)
o Qe + Qa ’ ¢ QvQe + Qq ’
Quap — Qab(2QcQap + Qaa) + Qub(2Q0Qac — QeQaa) — Qve(2Q0Qab — QvQaa)
“ Qe + Qa ’
Qure = QacQab + Qa(QuQee — Q) + Que(QvQae + QeQap) (14)
e QvQe + Qa ’
Qe — 2QuQwQee + QaaQaec + Que(QeQua — 2Q0Quc) + Qu(2Q2, — QuaQee)
e QvQe + Qa ’

Qaaa = (Qaa [Q(Qnge + Qngb) + Qane + QeQab + Qaa - 2Qbe<Qa + QQer)]
+2Qab[Qa(Qae + QQeQbe) + 2@()(@6@(16 - QaQee) - QgQab]
+2Que[Qu(2Q4Qse — 2QQu) — Q5 Que] +2Q2QuQee — Qii]) /(Q4Qe + Q).

This system is in involution and its general solution depends on 10 integration constants.
It is easy to see that the general solution of the first six equations is

1. Ula,p)

="V

AU, = U,p, 4V, =V,

where
p=>b-—e, g="b+e.
The general solution of the system (14) can be obtained by the substitution of this ansatz
into the remaining equations. Let us introduce the notation
Qp = _ikv Qpp = _}ll’ Qq = im’ Qqq = }ln’
here 0, = 0, + 0,, 0. = 0, — 0,. Then the equation (14)s takes the form

dnng —ng(ng — 2mn) +2n[2l, + ki, — 21%] = 4ll, — 1,(I, — 2kl) + 21[2n, +mn, — 2n?] (15)

where
Qi = —[H4n+k—m, Qu==(n+l), Q=—(m—k)
a 16 n m-|, be — 4 n ) b — A m )
1 1 1
Qe - Z(m+k)7 be:Z<n_Z)7 Qee:Z(n_l)7 (16)
Que = 1—16[nq—2mn+lp—2kl], Qab—l%[nq—Zmn—lp—i-le].

The differentiation of (15) twice with respect to p and ¢ implies
ng[2l, + ki, — 20%], = 1,[2n, + mn, — 2n?),.
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Assuming that n, # 0 and [, # 0 one obtains

1 1
lo=1"— §klp —n(a)l — C(a), Ng =n* — 3G = n(a)n — B(a),

where n(a), B(a) and C(a) are functions to be determined. Substituting n, and [, into
(15) one has

12 =4l —4n(a)l?—4[B(a)+C(a)]l—E(a),  nl =4n’—4n(a)n®—4[B(a)+C(a)ln—E(a),

where F(a) is yet another undetermined function. Checking the compatibility conditions
(lp)a = (la)p; (nq)a - (na)q one obtains

B=C=v, E=y

where 7 is a solution of the Chazy equation (2).With these formulas the remaining ex-
pressions for Quua, Qaar and Quqe hold identically.
Thus, the general solution of the involutive system (14) yields the main classification
result of this section:
1 9 Qazxa Qx - sz
0, = tmhl : )
4 91 (Qx:w Q:ct _I' Q:cz)
where 6, is the Jacobi theta-function defined by (3).
Remark: This formula provides a pseudopotential for the general case

QQ:.’JC

1
Qtt = ln Qxy — ln 91 (ta7 Qxx) - Z /n(T)dTa

see the Introduction. All other particular cases can be obtained by appropriate degener-
ations, see [2].

Remark: Under linear transformation of independent variables (z,t) this equation
can be written in more symmetric form

€01 (Qay Vo) = €701 (Qag, Q).
To calculate L we consider the compatibility condition
0.G(a,b,c) = 0,Q(e,a,b)
which implies
Goer + GyQ(a,b,e), + G.L(e,a,b,¢), = Qc.Q(a,b,e), + Quby + QuG(a,b, ¢);

recall that ¢, = L(e, a,b,c),. Therefore,

L = Qe+ f(e,a,b).
along with

be = 5(@(1 + Qer)) Qab = g(QaQe + QbFa - Fan),
Qbe = 5(Qg_FbQ6_Fa)7 .fb:(a/a_{_ﬁb_l',}/)(Qa“'Qer)a

fa = (aa+ﬁb+7)(QaQe+QbFa_Fan)+§(aQb_ﬂQa)7
fo = (oa+ 0+ )@~ FQe— F) ~ L(3Q. + ).



CLASSIFICATION OF INTEGRABLE (2+1)-DIMENSIONAL QUASILINEAR HIERARCHIES 9
These relations are sufficient for the reconstruction of L.

4. Conclusion

We have proved that the method of hydrodynamic reductions applied to quasilinear
equations (5) and (13) yields the same classification results as the symmetry approach
used in [10]. Thus, both methods allow to classify integrable (2+41)-dimensional equations
and find their commuting flows, see [10] for the details.
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