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Abstract

An analysis of mode-locked solutions that may arise in periodically forced

integrate-and-fire (IF) neural oscillators is introduced based upon a firing map

formulation of the dynamics. A q:p mode-locked solution is identified with

a spike train in which p firing events occur in a period q∆, where ∆ is the

forcing period. A linear stability analysis of the map of firing times around

such solutions allows the determination of the Arnold tongue structure for

the regions in parameter space where stable solutions exist. The analysis is

verified against direct numerical simulations for both a sinusoidally forced

IF system and one in which a periodic sequence of spikes is used to induce

a biologically realistic synaptic input current. This approach is extended

to the case of two synaptically coupled IF oscillators, showing that mode-

locked states can exist for some self-consistently determined common period

of repetitive firing. Numerical simulations show that such solutions have

a bursting structure where regions of spiking activity are interspersed with

quiescent periods before repeating. The influence of the synaptic current upon

the Arnold tongue structure is explored in the regime of weak coupling.
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I. INTRODUCTION

It has long been known that nerve membranes can exhibit exotic responses to periodic

stimulation whether it be in the form of a smooth alternating current [1] or the injection of

current pulses [2]. Among the most commonly observed and studied behaviors are mode-

locked states in which a repetitive regular output is entrained to some multiple of the forcing

period. In addition to mode-locked rhythms it is often possible to observe irregular or

aperiodic rhythms in which entrainment is non-existent [3]. Interestingly for many biological

oscillators the stable behaviors which are most commonly observed correspond to low-order

ratios between the number of cycles of forcing and the subsequently generated rhythm.

Moreover, the stable rhythms can be organized in a regular fashion such that aperiodic

motion is often generated in regions of parameter space separating rhythmic behavior [2,3].

Rhythmic behavior is also produced by many neural systems in the absence of a pace-maker

signal. Neurons communicate by firing and transmitting action potentials. Commonly, in

response to a constant applied stimuli, action potentials occur in a periodic fashion. However,

many cell types exhibit more complex behavior characterized by brief bursts of oscillatory

activity interspersed with quiescent periods. The swimming and heartbeat networks of

the medicinal leech, the swimming network of the pelagic mollusc, the feeding network

of the fresh-water snail and the gastric network of the crustacean stomatogastric ganglion

are all examples of central pattern generators of the above type [4]. When a waveform of

bursting activity is present it is natural to use the taxonomy of mode-locking to classify

possible rhythms. Rhythmic solutions may be distinguished by the number of intra-burst

events within a period of oscillation. Since neural membranes generate brief electrical pulses

or spikes a theory of mode-locking in both driven neurons and networks of neurons must

necessarily relate output spike trains to incoming synaptic currents. In this paper we focus

on the integrate-and-fire (IF) oscillator as a model neuron that submits to an exhaustive

analysis of all mode-locked states. Moreover, with the introduction of an IF Liapunov

exponent we are also able to probe any apparent aperiodic or chaotic behavior.
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In section II we introduce the dynamics of an IF oscillator and consider the construction

of a map of the firing times of the oscillator in response to an arbitrary periodic input

signal. The conditions under which this map reduce to the lift of a degree one circle map are

discussed in detail. Although much is known about mode-locked behavior in circle maps (see

[5] for a discussion of smooth circle maps and [6] for a review of piecewise linear models) the

firing times for an IF oscillator are determined as a set of threshold crossings so that standard

tools of dynamical systems theory are not so easily applied. At the heart of this paper is the

notion of a mode-locked state and its realization in an IF dynamical system. By introducing

a set of firing phases and considering the period of the output spike train to be rationally

related to the period of forcing we show how to describe such dynamical behavior using an

implicit map of the firing times. If p spikes are fired within a window of time that is q times

the input period (for integer q) the resulting train is shown to have an average firing rate of

p/q and is called a q:p mode-locked state. By considering perturbations of the firing times

and considering how they would evolve under a linearization of the full nonlinear IF dynamics

we obtain conditions for the linear stability of mode-locked solutions. The same analysis is

used to define the borders of regions in parameter space where stable mode-locked solutions

exist (Arnold tongue structure). Since analytic results about mode-locked solutions can be

readily obtained in the limit of zero forcing and can be shown to persist into the regime

of non-zero forcing we consider numerical continuation as a natural means of constructing

the full Arnold tongue structure. To complete this theoretical prelude we discuss the notion

of Liapunov exponents in discontinuous dynamical systems and use the recently introduced

notion of IF Liapunov exponent [7] to classify IF dynamics as periodic, aperiodic or chaotic.

Section III illustrates the theory of mode-locking in driven IF systems for both sinusoidal

forcing and forcing with a biologically plausible train of synaptic pulses. In both cases

Arnold tongues are constructed and compared against direct numerical integration of the

IF equations of motion. In section IV we consider the extension of this work to cover a pair

of pulse-coupled IF oscillators that can sustain mode-locked behavior in the absence of any

periodic forcing. Based upon earlier work of the authors (see [8] for a review) we show that
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the architectures capable of supporting mode-locked solutions with bursting patterns are

those with a mixture of excitatory and inhibitory coupling. For the case of pure excitatory

or pure inhibitory coupling the mode-locked solutions typically have a simpler structure that

is most readily analyzed in the limit of weak coupling. We end with a brief discussion in

section V.

II. INTEGRATE-AND-FIRE DYNAMICS

The IF oscillator may be regarded as a caricature of a real neuron that captures some

essence of its firing or spiking properties. Indeed the IF model may be obtained as a reduction

of the biologically realistic Hodgkin-Huxley equations that have been so successfully applied

to the study of excitable nerve tissue [9]. The IF model considered in this paper (often

referred to as the leaky IF oscillator) is a model of a leaky, current-clamped membrane in

terms of a state variable U(t) (membrane potential), a decay constant τ and an applied

signal A(t). The output of the oscillator is a sequence of firing events that are defined as

those times at which U(t) reaches some threshold. Immediately after a firing event the state

variable is reset to some resting level. The evolution of the state variable between firing

events is prescribed by a smooth dynamical system which may or may not be linear. Of

course the system as a whole is nonlinear due to the effects of the resetting mechanism.

A recent review of the properties of such IF oscillators, particularly at the network level,

may be found in [8]. IF mechanisms are also studied in the context of time-series analysis

where they allow reconstruction of attractors from threshold crossing times [10,11]. In more

detail we consider an externally forced (non-autonomous) integrate-and-fire (IF) oscillator

evolving according to the equation

dU

dt
= f(U, t), f(U, t) = −U

τ
+ A(t) (1)

subject to reset

U−(T n) ≡ lim
δ→0

U(T n − δ) = 1, U+(T n) ≡ lim
δ→0

U(T n + δ) = 0 (2)
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The input function A(t) will be taken to be periodic in time such that A(t) = A(t+ 1). The

firing times are defined as

T n = inf{t | U(t) ≥ 1 ; t ≥ T n−1} (3)

An implicit map of the firing times may be obtained by integrating (1) between reset and

threshold:

U−(T n+1)eT
n+1/τ = U+(T n)eT

n/τ +

∫ Tn+1

Tn
es/τA(s)ds (4)

Introducing the function

G(t) =

∫ 0

−∞
es/τA(t+ s)ds =

e−1/τ

(1− e−1/τ )

∫ 1

0

es/τA(t+ s)ds (5)

so that G(t) = G(t+ 1) and defining F (t) = et/τ [G(t)− 1] a map of the firing times can be

obtained from (4) as

F (T n+1) = F (T n) + eT
n/τ (6)

For a constant external input A(t) = I0 and I0τ > 1 the map of the corresponding interspike

interval (ISI) ∆n = T n+1 − T n has a fixed point with limn→∞∆n = τ ln[I0τ/(I0τ − 1)]. For

simplicity we consider IF oscillators to have at least a constant input I0 so that in the absence

of any other external forcing their behavior will be oscillatory. The case of non-oscillatory

behavior may be handled in exactly the same fashion as long as the external forcing is

sufficient to produce repetitive output firing patterns. In effect we exclude the study of

oscillator death. Our approach is consistent with recent work on the periodically driven

FitzHugh-Nagumo neuron model where Arnold tongues are shown to change continuously

when the model switches from excitable to oscillatory behavior [12]. If F is invertible

(F ′(t) 6= 0 for all t) and F−1 is defined on the range of F (t) + et/τ then we have an explicit

map of the form

T n+1 = Ψ(T n), Ψ(t) = F−1[F (t) + et/τ ] (7)
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If F is not invertible then the mapping T n 7→ T n+1 is defined according to (3). This highlights

the fact that, in general, the map of firing times is only implicitly available. From (5) it is

easy to establish that τG′(t)+G(t) = τA(t) so that the condition F ′(t) = et/τ [A(t)−τ−1] 6= 0

can be guaranteed if A(t) 6= τ−1. Whenever this is the case and F−1 is defined on the range

of F (t) + et/τ one may establish that F (Ψ(t) + 1) = e1/τF (Ψ(t)) = F (Ψ(t + 1)) and hence

that Ψ(t+1) = Ψ(t)+1. Indeed (7) may now be viewed as the iteration of a circle mapping.

Introducing the function g(t) = Ψ(t) − k such that 0 ≤ g(0) < 1 leads to the mapping

T n+1 = g(T n) + k with g(t+ 1) = g(t) + 1. Introducing

ρ(t) = lim inf
n→∞

gn(t)

n
, ρ(t) = lim sup

n→∞

gn(t)

n
(8)

allows the definition of the rotation interval of g as L(g) = [ρ−, ρ+] where

ρ− = inf
t∈R

ρ(t), ρ+ = sup
t∈R

ρ(t) (9)

When the rotation interval reduces to a single point, denoted by ρ (so that ρ− = ρ+), then

ρ is called the rotation number of g and the lim sup and lim inf in (8) can be replaced by a

simple limit. The choice of k ensures 0 ≤ ρ < 1 so that ρ measures an average phase rotation

per iteration. If ρ exists and is rational then there is an initial T 0 such that the sequence

{T n mod 1} approaches a periodic sequence asymptotically for large enough n, ie mode-

locking occurs. However, if ρ is irrational then every solution is ergodic and the sequence

{T n mod 1} is dense in the interval [0, 1) (assuming that Ψ(t) is continuous). When a

non-trivial rotation interval exists a positive value for the topological entropy is implied.

For a detailed account of the possible routes to chaos (or more precisely positive topological

entropy) in circle maps see [5]. If the explicit map of firing times defined by (7) is to describe

an invertible circle map we must also have that Ψ′(t) 6= 0. Since Ψ′(t) = A(t)et/τ/F ′(Ψ) this

is the case whenever A(t) 6= 0. If A(t) is such that A(t) > τ−1 for all t then both A(t) 6= τ−1

and A(t) 6= 0 are true simultaneously and the firing map dynamics can always be reduced

to an invertible map of the circle. Chaotic dynamics is not possible in this situation.
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A. Mode-locking

One would expect the IF oscillator to fire one or more spikes at times which are integer

multiples of the driving period. This pattern of activity may be considered as a bursting

state with inter-burst intervals mainly influenced by the driving period and intra-burst

intervals dependent upon system parameter values. With this in mind it is natural to seek

mode-locked solutions of the form

T n =

[
n

p

]
∆− φn(p)∆, n(p) = n mod p (10)

where [ . ] denotes the integer part and the φn(p) ∈ [0, 1) denote a collection of firing phases.

∆ is assumed to be rationally related to the forcing period (which we have taken as unity).

Such an ansatz has previously been discussed by Chow [13] within the context of harmonic

locking in two pulse-coupled spike response neurons. Here we show how to systematically

analyze such solutions. We distinguish three types of solutions: (i) simple bursting, (ii)

skipping and (iii) a mixed spike train which combines elements of the first two solutions.

Simple bursting is described by ∆ = 1 and p > 1 whilst skipping is defined by ∆ = q and

p = 1, for q ∈ Z. We define the average firing period 〈∆〉 in terms of the ISIs as

〈∆〉 = lim
N→∞

1

N

N∑
n=1

∆n (11)

It is easily established that the ansatz (10) describes solutions which satisfy 〈∆〉 = q/p.

Solutions with p spikes in a period q describe q:p mode-locked solutions. When 〈∆〉 is

independent of initial conditions and both q:p and q′:p′ solutions can be found then another

mode-locked solution is expected (in some intermediate region of parameter) where the

entrainment is q + q′:p+ p′ (at least for the case where the firing map is an invertible circle

mapping). An example of a 2:3 mode-locked solution is shown in figure 1, where the periodic

driving signal is sinusoidal.

From equation (6) the p firing phases may be determined by the simultaneous solution
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of the p equations

Hn(p)(Φ,∆) ≡ G(−φ(n+1)(p)∆)− 1

G(−φn(p)∆)
−

exp ∆
τ

([
n
p

]
− φn(p)

)
exp ∆

τ

([
(n+1)
p

]
− φ(n+1)(p)

) = 0 (12)

The stability of these solutions may be found by perturbing the firing times such that

T n → T n + δn and expanding (6) to first order in the δns (assuming F ′(T n) 6= 0) around a

mode-locked solution. It is convenient to denote a mode-locked solution by the set of phases

Φ = (φ0, . . . , φp−1) and the period ∆. One may now establish that δn+1 = κn(p)(Φ,∆)δn,

where

κn(p)(Φ,∆) = exp

[
−∆

τ

([
(n+ 1)

p

]
− φ(n+1)(p) −

[
n

p

]
+ φn(p)

)]
A(−φn(p)∆)

A(−φ(n+1)(p)∆)− τ−1

(13)

In particular, numerical continuation of q:p mode-locked solutions is possible from the state

with constant drive where A(t) = I0. In this case the phases are given by φn(p) = 1−n(p)/p

and the decay parameter τ satisfies I0τ = [1− exp(−q/(pτ)]−1. The persistence of a mode-

locked state with p phases and period ∆ depends upon the behavior of the map

δn+1 =

(
p−1∏
m=0

κm(Φ,∆)

)
δn+1−p (14)

This has solutions of the form δn = enν/p for ν ∈ C. Hence, the stability of a mode-locked

state is guaranteed for Re(ν(Φ,∆)) < 0 where

Re(ν(Φ,∆)) = ln |κ(Φ,∆)| (15)

and

κ(Φ,∆) =

p−1∏
m=0

κm(Φ,∆) = e−∆/τ

p−1∏
m=0

[
A(−φm(p)∆)

A(−φ(m+1)(p)∆)− τ−1

]
(16)

If κ(Φ,∆) < 0 then ω ≡ Im(ν) = π. The borders of the regions where such mode-locked

solutions become unstable are defined by the conditions Re(ν(Φ,∆)) = 0, where the set of

phases Φ is obtained from the solution of equations (12). Typically, for non-invertible circle

maps, the borders of such regions (Arnold tongues) split into two branches in parameter
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space. Consequently Arnold tongues can cross, leading to a situation in which two or more

different periodic orbits associated with different rotation numbers are found at the same

parameter values (multi-stability). The complete Arnold tongue structure is often complex,

with borders defined by tangent and period doubling bifurcations. Moreover, beyond the

accumulation points of the period doubling sequences there is chaos (in the sense of a

positive Liapunov exponent). The systems studied in this paper typically occupy regions of

parameter space where the firing times are either described by an invertible circle-map or a

map of the real line that does not allow a period doubling cascade. In either case chaotic

motion is non-generic and the dynamics is either periodic or quasi-periodic. A study of

chaotic motion in IF systems is presented elsewhere [7].

For a classification of the behavior of spike trains explicit knowledge of the dynamics

is desirable which suggests working with the original dynamics (1) and (2) that underlies

the map of firing times generated by (3). However, the analysis of IF dynamics is far from

trivial owing to the presence of harsh nonlinearities at reset. Recently, techniques originally

developed for the study of impact oscillators have been used in the construction of the

Liapunov exponent for IF systems so that the robustness of spike trains may be examined

[7]. The Liapunov exponent for the discontinuous dynamical system defined by (1) and (2)

is derived in appendix I as

λ = −1

τ
+ lim

k→∞

1

(T k − T 0)

k∑
j=1

ln

∣∣∣∣f(0, T j)

f(1, T j)

∣∣∣∣ (17)

There are two contributions to λ, one from the smooth flow between successive firings and

the other from the discontinuous nature of the resetting mechanism. Hence, spike trains

may be termed periodic, aperiodic or chaotic if λ < 0, λ = 0 or if λ > 0 respectively.

III. MODE-LOCKING IN A PERIODICALLY FORCED IF OSCILLATOR

Return maps constructed from the data generated by a periodically stimulated squid

giant axon show that mode-locked dynamics is governed by a one-dimensional deterministic
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description [14]. Since the IF oscillator is a (possibly quite severe) one-dimensional reduction

of the physiologically realistic Hodgkin-Huxley neuron model it may provide a framework

for organizing the behavior seen in real experiments. Indeed this philosophy has recently

been adopted in an analysis of the periodically stimulated FitzHugh-Nagumo neuron model,

where the dynamics was described in terms of a one-dimensional map that approximates the

Poincare map of the forced system. The benefit of working with the IF oscillator from the

outset is that, as we have just shown, precise statements about the dynamics and Arnold

tongue structure can be made without recourse to approximations. Of course,as in many

studies of neural systems, one makes a trade-off between biological realism and mathematical

tractability. Sinusoidal forcing of IF oscillators has previously been analyzed in [15], although

by not using an ansatz for the firing times such as given by (10) the authors were not able

to explore the possibility of constructing Arnold tongues. As well as extending the work on

sinusoidally forced IF systems we also consider the case of periodic pulsatile stimulation that

gives rise to post synaptic potentials with a finite rise and fall time. In both cases borders of

Arnold tongue defined by tangent bifurcations (κ(Φ,∆) = 1) can occur in the regime where

the map of firing times is described by an invertible circle map. In practice the solutions

for constant forcing (where the dynamics reduces to that of an invertible circle map) are

numerically continued into other regimes of parameter space (where connected solutions can

be shown to exist using the implicit function theorem) including the region where the map

of firing times is not a circle map.

A. Sinusoidal forcing

Consider a periodic forcing with A(t) = I0 + ε sin 2πt. In this case

G(t) = I0τ −
ετ√

1 + 4π2τ 2
sin(θ − 2πt), tan θ = 2πτ (18)
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For example, in the case of 1:1 frequency locking the stability of solutions is determined

from (13) by |κ| < 1 with

κ = e−1/τ

[
1 +

τ−1

I0 − τ−1 − ε sin(2πφ)

]
(19)

where φ is the solution of G(−φ) = (1 − e−1/τ )−1. A necessary condition for defining an

explicit firing map of the form (7) is that I0 + ε sinωt 6= τ−1 for all t. This is guaranteed

for the choice I0 − |ε| > τ−1. In this case the measure of the parameter set for mode-

locking goes to zero as τ → ∞. When I0 − |ε| < τ−1 it is known that mode-locking can

occur almost everywhere, ie for parameter values on the complement of a set of measure

zero [15]. These points are illustrated in figure 2 where we show the bifurcation sequence

of the ISI as a function of τ for fixed I0 and ε. In the regime of non-circle map dynamics

(left hand region of bifurcation diagram) the IF Liapunov exponent is seen to be always

negative indicating periodic behavior for the sequence of ISIs or equivalently the existence

of mode-locked solutions. After crossing into the region where the map of firing times is

a circle map the Liapunov exponent is either zero (indicating quasi-periodic behavior) or

negative, as expected. To illustrate a possible bifurcation sequence consider the right hand

borders of stability for the 1:1 mode-locked state shown in the bottom part of figure 3 for

τ ∼ 0.65. As ε increases a stable/unstable pair of 1:1 mode-locked solutions is created in a

tangent bifurcation. At this point the map of firing times is described by an invertible circle

map and a well defined rotation number (for the circle map) exists. In the region that is

not mode-locked (outside the tongue) ergodic dynamics is also possible since the circle map

is invertible. With increasing ε the firing map no longer reduces to dynamics on a circle,

although mode-locked solutions continue to exist. Hence, the natural quantity to associate

with a mode-locked state is the average firing frequency 〈∆〉−1, since rotation numbers can

only be defined for restricted regions of parameter space. We plot 〈∆〉−1 as a function of τ

with ε = I0− τ−1 (ie along the border separating the firing dynamics into a map of the real

line and a lift of a map of the circle) in figure 3. The resulting devil’s staircase structure

shows that the preferred mode-locked solutions are those with low ratios of q to p. For large ε
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it is possible for the tongues to overlap (see the bottom part of figure 3). In this case mode-

locked solutions with different average firing frequencies co-exist at a point in parameter

space leading to multi-stability. In numerical simulations the mode-locked solution that is

reached will depend upon the basin structure for the co-existing attractors and the choice

of initial conditions.

B. Periodic synaptic input

In neural systems a more realistic input takes the form of a stream of pulses, each of which

is convolved with some kernel describing the effects of synaptic and dendritic processing as

well as axonal delays [16–18]. For a kernel function α(t) an input stream with period 1 may

be written A(t) = I0 + εE(t) with E(t) =
∑

k∈Zα(t − k) and E(t) is periodic such that

E(t) = E(t+ 1). For synaptic processing the kernel α(t) is often taken to be a difference of

two exponentials or more simply a so-called alpha function with α(t) = α2t exp(−αt)Θ(t).

Θ(t) is a step function such that Θ(t) = 1 if t > 0 and is zero otherwise. Focusing on this

typical synaptic kernel we have

E(t) =
α2e−αt

(1− e−α)

[
t+

e−α

(1− e−α)

]
, t ∈ [0, 1) (20)

The function G(t) is readily calculated for t ∈ [0, 1) as

G(t) = I0τ +
εe−1/τ

(1− e−1/τ )
[R(0, 1− t, t) +R(1− t, 1, t− 1)] (21)

where

R(a, b, t) =
γα2e−αt

(1− e−α)

{[
t+

e−α

1− e−α
− γ
]

(eb/γ − ea/γ) + beb/γ − aea/γ
}

(22)

and γ−1 = τ−1 − α. Denoting the maximum value of E(t) as E∗, the border between circle

map and non-circle map dynamics is defined by I0 + εE∗ = τ−1 for ε < 0. In figure 4

we plot the average firing frequency of the driven IF oscillator for the case of inhibitory

coupling (ε < 0). This nicely illustrates the possibility of skipping solutions in which the

dominant solutions (in the sense of occupying relatively large regions of parameter space) are
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those which are q:1 mode-locked. The overlap for the tongues in parameter space where ε is

negative and α is large can be considerable (see the bottom of figure 4). We have not probed

this multi-stable structure in detail except to note that for random initial data one typically

sees a devil’s staircase structure for the average firing frequency as a function of ε rather

than just the plateaus defined by the overlapping q:1 solutions. Once again for the reasons

discussed in section II the dynamics is expected to be either periodic or quasi-periodic. This

was confirmed numerically by evaluation of the IF Liapunov exponent (not shown).

In both the examples presented here the dynamics may be regarded as belonging to

motion on invariant circle or attractor in the phase space of ISIs. For example 1:1 mode-

locking would correspond to a fixed point of the map of ISIs which would manifest itself as

a point in a plot of the delay embedding (∆n−1,∆n). Mode-locked solutions correspond to

periodic orbits as illustrated in the top part of figure 5 whilst very high order or possibly

aperiodic ones take the form shown in the bottom part of figure 5 which also illustrates the

possibility of ergodic behavior on the attractor of the firing map.

IV. MODE-LOCKING IN A PAIR OF PULSE-COUPLED IF OSCILLATORS

Much is known about the types of phase-locked solutions that can arise in 1:1 frequency

locking of two synaptically coupled IF oscillators [16,19]. However, much less is known about

the existence and stability of more general q:p mode-locked solutions. To date it seems that

only a comprehensive study of two linearly weakly coupled integrate-and-fire oscillators has

been performed [20]. Here we pursue the more general case of synaptic coupling.

Consider two non-identical integrate-and-fire oscillators labeled by i = 1, 2 such that

neuron 1 couples to neuron 2 and vice-versa. We specify these interactions with the aid of a

coupling matrix with components Wij. In general the equations of motion may be written

dUi
dt

= fi(Ui, t), t ∈ (T ni , T
n+1
i ), i 6= j (23)

where fi(Ui, t) = −Ui + Ii + ε
∑

jWijEj(t). For simplicity we have chosen units of time such

that τ = 1. As in section III B we consider a synaptic kernel given by an alpha function
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so that Ej(t) =
∑

k∈Zα(t − T kj ). Integrating the equations of motion over the interval

(T ni , T
n+1
i ), subject to reset, yields

1 = (1− e−(Tn+1
i −Tni ))Ii + εe−(Tn+1

i −Tni )

∫ Tn+1
i −Tni

0

et
∑
j

WijEj(t+ T ni )dt (24)

In a similar fashion to the analysis of section II we introduce the following ansatz for the

firing times

T ni =

[
n

pi

]
∆− φin(i)∆, n(i) = n mod pi (25)

These may be regarded as bursting patterns where oscillator i fires pi times in a time ∆

before repeating. For example, one may imagine neuron 1 firing a doublet of spikes in a

time-window ∆, whereas neuron 2 might fire a triplet. Note that (by definition) Ej(t) is

periodic in ∆. Moreover it may be written in the form

Ej(t) =

pj−1∑
k=0

E(t+ φjk(j)∆) (26)

where E(t) =
∑

k α(t− k∆) and E(t) = E(t + ∆). Hence, we have M = p1 + p2 equations

of the form:

1 = (1− e−∆n
i )Ii + εe−∆n

i

∫ ∆n
i

0

et
pj−1∑
k=0

∑
j

WijE
(
t+ (φjk(j) − φin(i))∆

)
dt (27)

for n = 0, . . . , pi− 1 where ∆n
i = T n+1

i − T ni . By fixing one of the phases we may then solve

for the remaining M −1 phases and the period ∆. The conditions under which mode-locked

or bursting patterns arise in this model for strong coupling are most easily established by

considering a reduction to a firing rate or analog model valid in the limit α → 0. Such an

approach has previously been used to study the loss of stability of the 1:1 frequency locked

state in networks of two or more IF oscillators [21,22]. In this reduction the average steady

state firing rate response of an oscillator is related to the uncoupled (ε = 0) firing rate

function f(x)−1 = ln[x/(x − 1)]Θ(x − 1) and the dynamics may be formulated in terms of

a set of coupled ODEs. By choosing Ii = I − εf(I)
∑

jWij for some I > 1 it is possible to

show that the analog model may undergo a Hopf bifurcation (with increasing ε) if the weight
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matrix W has a pair of complex eigenvalues. Since periodically time varying firing rates in

the analog model correspond to bursting patterns in the IF model one would therefore expect

mode-locked solutions in the full IF model for a mixture of excitatory and inhibitory coupling

between oscillators. Indeed we show a numerical example of such behavior in figure 6. It is

interesting to note that the firing patterns have clearly defined regions of bursting separated

by quiescent periods before repeating. This suggests that IF networks support bursting

solutions even in the absence of any intrinsic slow calcium like currents often adopted in

physiologically realistic neuron models. Other neuronal networks that support bursting in

the absence of such currents typically utilize diffusive coupling arising from electrical gap

junctions (see [23] for a discussion).

In order to investigate the linear stability of mode-locked solutions we consider pertur-

bations δni of the firing times. That is, we let T ni → T ni + δni with T ni given by (25) and

integrate (23) form T ni to T n+1
i using the reset condition. This leads to a mapping of the

firing times that can be expanded to first order in the perturbations:

δn+1
i − δn+1−pi

i = ε

pi−1∑
m=0

1

Ai((n−m)(i))
e−∆n+m

i

∑
j

Wij

×
∫ ∆n+m

i

0

dtet
∑
k

α′(t− T kj + T n−mi )(δkj − δn−mi ) (28)

where Ai(n(i)) = Ii− 1 + εEj(−φi(n+1)(i)∆). Equation (28) has a discrete spectrum that can

be found by taking δnj = enλ/pjδj, λ ∈ C and 0 ≤ Im(λ) ≤ 2π. The resulting eigenvalue

equation is infinite dimensional since the dynamics depends upon the whole history of firing

times. In the strong coupling regime it is possible for bifurcations to occur via a Hopf

bifurcation in the firing times. This phenomenon has previously been linked to the loss

of stability of the 1:1 mode-locked state in networks of two or more IF oscillators [21,22].

Rather than pursue bifurcations in the strong coupling regime we turn to the limit of weak

coupling in which the linear stability analysis becomes considerably more tractable. In this

case solutions for λ lie in the neighborhood of the real solution λ = 0 or else can be shown

to have negative real part [18]. In the limit of zero coupling the firing times occur on a
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regularly spaced lattice such that T ni = (n− φi)∆i where ∆i = ln[Ii/(Ii− 1)] and φi ∈ [0, 1)

is some arbitrary phase shift. We consider the case in which the periods ∆1 and ∆2 are

commensurate such that they satisfy p1∆1 = p2∆2. The mode-locking ansatz given by (25)

generates an equivalent set of firing times upon choosing φin(i) = 1 − n(i)/pi + φi/pi with

∆ = pi∆i. One would expect that for sufficiently weak coupling the firing times will lie

close to those generated by the uncoupled system. In fact averaging theory can be used to

predict that this is true for time scales of O(ε−1) [18]. For simplicity we restrict attention

to the architecture Wij = 1 − δij since the more general case may be handled in the same

fashion as outlined below. By combining the M equations given by (27) the relative phase

Φ ≡ φ2/p2 − φ1/p1 can be found from the solution of

K(Φ) ≡ H1(Φ)−H2(−Φ) = 0 (29)

where

Hi(Φ) =

pi−1∑
m=0

e−∆/pi

∫ ∆/pi

0

etBj(t+ Φ∆ +m∆/pi)dt, Bj(t) =
∑
k

α(t− k∆j)

(30)

and Bj(t) is periodic with Bj(t) = Bj(t+ ∆j). To first order in ε we substitute δnj = enλ/pjδj

into (28) set λ = 1 on the right hand side to obtain

λ

δ1

δ2

 = ε

−G1(Φ) G1(Φ)

G2(−Φ) −G2(−Φ)


δ1

δ2

 (31)

with

Gi(±Φ) = ± H ′i(±Φ)

∆i(Ii − 1)
(32)

The non-zero eigenvalue is calculated from (31) as λ = −ε(G1(Φ) + G2(−Φ)). The zero

eigenvalue merely corresponds to uniform shifts in the phases φi such that the relative

phase remains unchanged. Hence, in the weak coupling regime the stability for mode-locked

solutions with phase Φ determined from (29) is determined by

ε[H ′1(Φ)−H ′2(−Φ)] > 0 (33)
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This result is consistent with the one obtained using averaging theory (see appendix II).

Interestingly the expressions we have derived for the existence and stability of mode-locked

solutions have the same formal structure as those obtained in studies of weakly coupled

limit cycle oscillators where the uncoupled system has a set of hyperbolic stable limit cycle

with resonant cycle periods (ie they are rationally related to one another). If there are no

resonances amongst the cycle periods then the system behaves as if it were uncoupled even

for non-zero (but small) coupling (see [24] for a review). For weak coupling only, we have

restricted our discussion to the resonant condition p1∆1 − p2∆2 = 0, since from the results

in [24] one would not expect mode-locked behavior if this were not the case. In practice

a numerical solution for the borders requires an explicit representation for the interaction

functions given by (30). Rather than construct the interaction function K(Φ) for each p1

and p2 (by explicitly integrating (30)) it is preferable to work with a closed form expression

parameterized by p1 and p2. This is naturally achieved by adopting a Fourier series expansion

for Hi(Φ) (periodic in 1/pj), which can be shown to take the form

Hi(Φ) =
(1− e−∆i)

∆j

pi−1∑
m=0

∞∑
n=−∞

α̃(ω(n, j))

1 + iω(n, j)
eiω(n,j)[Φ∆+m∆i] (34)

where

α̃(w) =

∫ ∞
−∞

e−iωtα(t)dt =
α2

(α + iω)2
, ω(n, j) =

2πn

∆j

(35)

An example of the interaction function K(Φ) is shown in figure 7 from which it is also

easy to see that the borders of regions in parameter space sustaining mode-locked solutions

may be found by solving maxK(Φ) = 0 and minK(Φ) = 0. For the 1:1 mode-locked case

H1(Φ) = H2(Φ) so that, by symmetry, phase-locked solutions with Φ = 0 and Φ = 1/2 are

guaranteed to exist for any values of the system parameters. However one would expect that

when this symmetry condition is violated, as will be the case when p1 6= p2, then regions in

parameter space which support p1:p2 mode-locked solutions may shrink. This is illustrated

in the bottom part of figure 7 where it is clearly seen that mode-locked solutions with p1 6= p2

satisfying K(Φ) = 0 cannot be found for small α (with a fixed ∆).
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V. CONCLUSION

In this paper we constructed Arnold tongues for a periodically forced IF neuron. Our

approach was based on a firing map formulation of the dynamics in which the existence

and stability of q:p mode-locked solutions for the firing times were derived. In the course

of our analysis we highlighted the relationship between mode-locked solutions and bursting

states in coupled IF networks, and introduced the notion of a Liapunov exponent that takes

into account the presence of discontinuities in the dynamics arising from reset (see also [7]).

There are a number of possible extensions of our work.

1. In our analysis of a driven IF neuron we restricted ourselves to periodic forcing. An

interesting question concerns what happens in response to quasiperiodic or aperiodic

signals. A recently highlighted experimental paradigm concerns the measurement of

the reliability of spike timing when a neuron is repeatedly stimulated by the same

identical time-varying input. It has been demonstrated that spike train reliability

is much greater for aperiodic signals than for constant current stimuli [25,26]. Such

an effect is found even when variations in the aperiodic signal relative to the DC

level are small, as has been demonstrated in experiments on aplysia motorneurons

[27]. These experiments have also revealed a resonance effect for neural spike time

reliability, in the sense that reliability is enhanced when the spectrum of the input

contains a resonant frequency equal to the firing rate of the neuron in response to the

DC component. Similar results were obtained for an IF model neuron. One possible

measure of spike train reliability (at least for small-amplitude variations in input) is

the Liapunov exponent introduced in appendix 1.

2. When considering aperiodic synaptic inputs the role of synaptic depression may be

important. For it is has been found that the postsynaptic response of cortical neu-

rons depends on the temporal sequence of action potentials arriving at the presynaptic

terminal [28]. This form of short-term synaptic plasticity can lead to an effective re-
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duction in the amplitude of response and provides a possible mechanism of dynamical

gain control [29–31]. The effects of synaptic depression can be incorporated into our

analysis of mode-locking in section IIIB by taking A(t) = I0 + εE(t) with E(t) de-

fined along the lines of the phenomenological model considered in Refs. [29–31]. This

essentially involves the introduction of an amplitude factor C(Tm) that adjusts the

magnitude of the response to a spike arriving at time time Tm based on previous input

history: E(t) =
∑

m∈ZC(Tm)α(t − Tm). Following the arrival of a spike at a presy-

naptic terminal, C is reduced by a multiplicative factor γ < 1 such that C → γC. In

between spikes, C is assumed to return to its equilibrium value of one according to the

exponential process τcdC/dt = 1−C where τc is an appropriately chosen time constant

of the order 100msecs. For a given sequence of input firing times {Tm, m ∈ Z} one

finds that C(Tm) = 1 + (γ − 1)
∑

m′<m γ
m−m′−1e−(Tm−Tm′ )/τc . Note that in the special

case of periodic synaptic inputs Tm+1 = Tm+ ∆ considered in section IIIB, the ampli-

tude C(Tm) simply relaxes to its steady-state value C∞ = [1 − e−∆/τc ]/[1 − γe−∆/τc ],

which can be absorbed into the parameter ε.

3. Another important question that we hope to address elsewhere concerns the extent to

which the mode-locking behavior exhibited by driven or mutually coupled IF neurons is

mirrored by more biophysically detailed models of spiking neurons that also include the

effects of noise. For example, it would be interesting to construct “stochastic” Arnold

tongues for IF neurons along the lines of the recent analysis of the FitzHugh-Nagumo

model of a neuron [32].
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APPENDIX I: LIAPUNOV EXPONENT FOR AN IF OSCILLATOR

Introduce a perturbed dynamics Ũ and denote the deviation between perturbed and

unperturbed trajectories as δU . Consider the propagation of an initial perturbation δU(0)

such that the unperturbed trajectory reaches threshold first. Denoting the time of the kth

threshold crossing of the unperturbed trajectory as T k and that of the perturbed trajectory

as T k + δk we have

0 = Ũ−(T k + δk)− 1

≈ Ũ−(T k) + f(Ũ−(T k), T k)δk − 1

≈ U−(T k) + δU−(T k) + f(U−(T k) + δU−(T k), T k)δk − 1

≈ δU−(T k) + f(U−(T k), T k)δk (36)

Hence the perturbation of the firing times is given by

δk = − δU−(T k)

f(U−(T k), T k)
(37)

The difference between the two trajectories just after the perturbed trajectory reaches

threshold is

δU+(T k + δk) = 0− U+(T k + δk)

≈ −f(U+(T k), T k)δk (38)

Using (37), the perturbations are seen to satisfy

δU+(T k + δk) =
f(0, T k)

f(1, T k)
δU−(T k) (39)

The same expression is obtained by considering the case when the perturbed trajectory

reaches threshold first. In general the Liapunov function for the flow is given by

λ = lim
t→∞

1

t
ln

∣∣∣∣ δU(t)

δU(0)

∣∣∣∣ (40)
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where the time evolution of δU(t) is obtained from a linearizaton of the dynamics. In the

IF case with initial condition δU(t0) at time t0 we have, between firing events,

δU(t) = e−t/τδU(t0) (41)

Hence, using (39) and (41) we have that

λ = lim
k→∞

1

(T k − T 0)
ln

∣∣∣∣∣e−(Tk−T 0)/τ

k∏
j=1

f(0, T j)

f(1, T j)

∣∣∣∣∣
= −1

τ
+ lim

k→∞

1

(T k − T 0)

k∑
j=1

ln

∣∣∣∣f(0, T j)

f(1, T j)

∣∣∣∣ (42)

APPENDIX II: WEAK COUPLING AND AVERAGING

Suppose that in the absence of any coupling, ε = 0, each oscillator fires with period

∆i = ∆/pi = ln[Ii/(Ii − 1)]. Between reset introduce the nonlinear transform Ui(t)→ ψi(t)

according to

mod 1 ψi(t) +
t

∆i

=
1

∆i

∫ Ui(t)

0

dU

(−Ui + Ii)
(43)

Under such a transformation the dynamics (23) becomes

ψ̇i = εFi(ψi + pit/∆)Ej(t) (44)

where

Fi(z) =
pi exp (∆z/pi)

Ii∆
, Fi(z + j) = Fi(z), j ∈ Z (45)

When ε = 0, the phase variables ψi(t) = ψi are constant in time with periods ∆i. Hence,

there is an attracting 2-torus. The assumption of strong contraction in the neighborhood

of the limit cycles enables one to use normal hyperbolicity to predict persistence of an

2-torus which is asymptotically attracting when ε is small. To a first approximation one

might suppose that for weak coupling each oscillator fires with a period ∆i but that the

phase ψi(t) drift slowly according to (44). Furthermore, approximating the firing times
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by T nj = (n − ψi(t))∆i the right-hand side of (44) becomes a ∆/pj periodic function of t.

Since we are concerned with mode-locked solutions which satisfy the resonance condition

p1∆1 − p2∆2 = 0 it is natural to average the right-hand side of (44) over ∆ = pi∆i to

obtain a first order normal form for the asymptotic dynamics of equations (44). Using the

periodicity properties of Fi(z) we obtain

1

pi
ψ̇i =

ε

Ii∆2

pi−1∑
m=0

∫ ∆/pi

0

etBj(t+ ∆(ψj/pj − ψi/pi) +m∆/pi)dt

Hence, defining Ψ = ψ2/p2 − ψ1/p1 we have

Ψ̇ = −ε[K1(Ψ)−K2(−Ψ)] (46)

where Ki(Ψ) = e∆/piHi(Ψ)/(∆2Ii). Phase locked solutions satisfy K1(Ψ∗) −K2(−Ψ∗) = 0.

Writing the phase-locked solutions as ψi(t) = φi + piΩt (so that Ψ∗ = φ2/p2 − φ1/p1),

we find that Ω is an O(ε) contribution to the effective frequency of the oscillators given

Ω = εK1(Ψ∗) = εK2(−Ψ∗). Linear stability analysis implies that fixed-point solutions are

stable if ε[K ′1(Ψ∗)−K ′2(−Ψ∗)] > 0.
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FIGURES

φ φφ
0 1 2

FIG. 1. An example of a 2:3 mode-locked solution that may arise in a sinusoidally forced IF

system with A(t) = 2 + 1.1 sin(2πt) and τ = 1. Note that the system fires 3 spikes (with phases

φ0, φ1, φ2) for every two periods of the driving signal.
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FIG. 2. Top: Bifurcation diagram for the interspike interval ∆n = Tn+1 − Tn as a function

of the decay time τ . Bottom: The Liapunov exponent λ shows that orbits are either periodic

(λ < 0) or quasiperiodic (λ = 0). Parameters are I0 = 2 and ε = 1. From τ = 0.5 till the first

bifurcation point the system is 1:1 frequency locked with the external signal. Note the transition

at τ = 1 (I0− ε = τ−1) from a phase-locked regime to one in which a mixture of quasiperiodic and

mode-locked behavior may occur. In this regime the measure of the parameter set for phase-locking

goes to zero as τ →∞.
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< ∆ >
−1

ε

τ

FIG. 3. Top: Plot of the average firing frequency, by directly integrating the IF equations of

motion, as a function of the decay parameter τ for ε = I0 − τ−1 with I0 = 2 (ie along the border

between circle map and non circle map dynamics for the firing times.) Note that the dominant

mode solutions are 1:1, 3:4, 2:3 and 3:5 (with increasing τ). In the bottom figure we show the

Arnold tongue structure for these dominant modes, predicted from our theoretical analysis. Below

the dashed line ε = I0− τ−1 a well defined rotation number for the circle map of firing times exists

and the tongues do not overlap.
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< ∆ >

ε

−1

α

ε
FIG. 4. Numerical experiments show that for τ = 1 and I0 = 2 the synaptically driven IF

neuron can easily generate skipping solutions for ε < 0. The top figure shows the average firing

rate in the inhibitory regime for α = 20, I0 = 2 and τ = 1, illustrating the dominance of the

skipping solutions (q:1 mode-locking). In the bottom figure we plot the theoretically determined

borders of stability for such mode-locked solutions in the (ε, α) plane.
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∆

∆

∆

∆
FIG. 5. Top figure: An example of periodic motion on an attracting invariant circle for the

ISIs in a sinusoidally forced IF system with ε = 1, I0 = 2 and τ = 1. Bottom figure: an example

of high order periodic motion on an attracting invariant circle for the ISIs in a synaptically forced

IF system with α = 2, ε = 1, I0 = 2 and τ = 1.
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FIG. 6. Example of bursting behavior in a pair of IF oscillators with a mixture of excitatory

and inhibitory coupling. α = 0.5, I = 2, W11 = W22 = 0, W12 = −W21 = 1. Spike trains for the

two neurons are distinguished by the height of the spike. Note that both trains may be described

by solutions of the form (25).
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FIG. 7. In the top figure we show a plot of the interaction function K(Φ) ≡ H1(Φ)−H2(−Φ)

for 2:3 mode-locking with ∆ = 2 and α = 15. In the bottom figure we show the solutions to

K(Φ) = 0 for ∆ = 2 as a function of α for the 1:1, 1:2 and 2:3 mode-locked states. Note that

the 1:1 state has solutions for all values of α whilst all other mode-locked solutions occupy smaller

regions of parameter space.
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