This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Gel'fand inverse problem for a quadratic operator pencil

PLEASE CITE THE PUBLISHED VERSION

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD
Kurylev, Y.V., and M. Lassas. 2019. "Gel'fand Inverse Problem for a Quadratic Operator Pencil". figshare. https://hdl.handle.net/2134/847.

Gelf'and Inverse Problem for a Quadratic Operator Pencil

Kurylev Y.* and Lassas M.**

\author{

* Department of Mathematical Sciences, Loughborough University Loughborough, LE11 3TU, UK
 ** Rolf Nevanlinna Institute, University of Helsinki Helsinki, PL4, FIN-00014, Finland
}

1. Introduction. Main result. In the paper we deal with an inverse problem for a quadratic operator pencil

$$
\begin{gather*}
A(\lambda) u=a(x, D) u-i b_{0} \lambda u-\lambda^{2} u \tag{1}\\
B u:=\partial_{\nu} u-\left.\sigma u\right|_{\partial M}=0 \tag{2}
\end{gather*}
$$

on a differentiable compact connected manifold M, $\operatorname{dim} M=m \geq 1$, with nonempty boundary $\partial M \neq \emptyset$. Here $a(x, D)$ is a uniformly elliptic symbol

$$
a(x, D)=-g^{-1 / 2}\left(\partial_{j}+b_{j}\right) g^{1 / 2} g^{j l}\left(\partial_{l}+b_{l}\right)+q,
$$

where $\left[g^{j l}\right]_{j, l=1}^{m}$ defines a C^{∞}-smooth Riemannian metric and $b=\left(b_{1}, \ldots, b_{m}\right)$ and q are, correspondingly, C^{∞}-smooth complex-valued 1-form and function on M. σ is a C^{∞}-smooth complex-valued function on ∂M and ∂_{ν} stands for the normal derivative.

Let R_{λ} be the resolvent of (1), (2) which is meromorphic for $\lambda \in \mathbb{C}$ (see Sect. 3 and [1]) and let $R_{\lambda}(x, y)$ be its Schwartz kernel. A natural analog of the Gel'fand inverse problem [2] is
Problem I. Let ∂M and $R_{\lambda}(x, y) ; \lambda \in \mathbb{C}, x, y \in \partial M$ be given. Do these data (Gel'fand boundary spectral data, GBSD) determine ($M, a(x, D), b_{0}, \sigma$) uniquely?
Remark 1. Let \mathcal{G}_{λ} be the Neumann-to-Dirichlet map $\mathcal{G}_{\lambda} f:=\left.u_{\lambda}^{f}\right|_{\partial M}$ where

$$
\begin{equation*}
A(\lambda) u^{f}(\lambda)=0, \quad B u^{f}(\lambda)=f \tag{3}
\end{equation*}
$$

Then GBSD means that \mathcal{G}_{λ} are known for all λ.
Remark 2. By Fourier transform, $u(x, \lambda) \rightarrow u(x, t)$, Problem I is equivalent to the inverse boundary problem for the dissipative wave equation

$$
\begin{gather*}
u_{t t}^{f}+b_{0} u_{t}^{f}+a(x, D) u^{f}=0, \tag{4}\\
B u^{f}=\left.f\right|_{\partial M \times \mathbb{R}_{+}} ;\left.\quad u^{f}\right|_{t=0}=\left.u_{t}^{f}\right|_{t=0}=0, \tag{5}
\end{gather*}
$$

where inverse data is given in the form of the response operator R^{h};

$$
\begin{equation*}
R^{h}(f):=\left.u^{f}\right|_{\partial M \times \mathbb{R}_{+}} . \tag{6}
\end{equation*}
$$

This hyperbolic inverse problem and its analogs were considered in [3-5a]. Paper [3] dealt with the inverse scattering problem, $M=\mathbb{R}^{m}$, with $g^{j l}=\delta^{j l}$. It was generalised in [4] onto the Gel'fand inverse boundary problem in a bounded domain
in $\mathbb{R}^{m} ; g^{j l}=\delta^{j l}$. In [5] the uniqueness of the reconstruction of the conformally euclidian metric in $M \in \mathbb{R}^{m}$ and the lower order terms (with some restrictions upon these terms) was proven for the geodesically regular domains M. At last a local variant of the problem with data prescribed on a part of the boundary was studied in [5a]. As for the case $b_{0}=0$ and self-adjoint studied in full generality in $[6,7]$.

In the paper we give the answer to Problem I assuming some geometric conditions upon (M, g). The main technique used is the boundary control (BC) method (see e.g. [8]) in the geometrical version [7].

Definition 1. (M, g) satifies Bardos-Lebeau-Rauch (BLR) condition if there is $t_{*}>0$ and an open conic neighbourhood \mathcal{O} of the set of not-nondiffractive points in $T^{*}\left(\partial M \times\left[0, t_{*}\right]\right)$ such that any generalised bicharacteristic of the wave operator $\partial_{t}^{2}-\Delta_{g}$ passes through a point of $T^{*}\left(\partial M \times\left[0, t_{*}\right]\right) \backslash \mathcal{O}$.

Theorem A. Let $\left(\partial M ; \mathcal{G}_{\lambda}, \lambda \in \mathbb{C}\right)$ be $G B S D$ for a quadratic operator pencil (1), (2). Assume that the corresponding Riemannian manifold (M, g) satisfies the BLRcondition. Then these data determine M and b_{0} uniquely while $a(x, D)$ and σ to within a gauge transformation

$$
a(x, D) \longrightarrow \kappa a(x, D) \kappa^{-1} ; \quad \kappa \in C^{\infty}(M ; \mathbb{C}),\left.\quad \kappa\right|_{\partial M}=1, \quad \kappa \neq 0 \quad \text { on } \quad M .
$$

2. Auxiliary constructions.. In view of the gauge invariance we can assume that $\sigma=0$. By λ-linearisation;

$$
u \rightarrow U=(u, \lambda u)^{t}
$$

the pencil (1), (2) takes the form

$$
\begin{gathered}
\mathcal{A} U=\lambda U ; \quad \mathcal{A}=\mathcal{A}_{0}+\mathcal{A}_{1} ; \\
\mathcal{A}_{0}=\left(\begin{array}{cc}
0 & I \\
A_{0} & 0
\end{array}\right) ; \quad \mathcal{A}_{1}=\left(\begin{array}{cc}
0 & 0 \\
a_{1}(x, D) & -i b_{0}
\end{array}\right) .
\end{gathered}
$$

Here $A_{0}=-\Delta_{g}$ is the Laplace operator with Neumann boundary condition;

$$
\mathcal{D}\left(A_{0}\right)=H_{\nu}^{2}(M):=\left\{u \in H^{2}(M):\left.\partial_{\nu} u\right|_{\partial M}=0\right\}
$$

and $a_{1}(x, D)=a(x, D)+\Delta_{g}$. Operators $\mathcal{A}_{0}, \mathcal{A}$ with

$$
\mathcal{D}\left(\mathcal{A}_{0}\right)=\mathcal{D}(\mathcal{A})=H_{\lambda}^{2}(M) \times L^{2}(M)
$$

are closed in $\mathcal{H}=\left[L^{2}(M)\right]^{2}$. By the transformation $\lambda \rightarrow \lambda+i d ; A_{0} \rightarrow A_{0}+d^{2}$ we get

$$
\begin{equation*}
\left\|A_{0}^{-1}\right\|<1 ; \quad\left\|a_{1}(x, D) A_{0}^{-3 / 4}\right\|<1 / 2 \tag{7}
\end{equation*}
$$

The adjoint operator, \mathcal{A}^{*} is then

$$
\begin{gathered}
\mathcal{A}^{*}=\left(\begin{array}{cc}
0 & A^{*} \\
I & i \bar{b}_{0}
\end{array}\right), \quad \mathcal{D}\left(\mathcal{A}^{*}\right)=L^{2}(M) \times \mathcal{D}\left(A^{*}\right) ; \\
\mathcal{D}\left(A^{*}\right)=H_{\nu, b}^{2}:=\left\{u \in H^{2} ; \quad B^{*} u:=\partial_{\nu} u-\left.2 b_{\nu} u\right|_{\partial M}=0\right\},
\end{gathered}
$$

where $b_{\nu}=(\nu, b)$.
Using A^{*} instead of A we define operators $\mathcal{A}_{\mathrm{ad}}$ and $\mathcal{A}_{\mathrm{ad}}^{*}$;

$$
\mathcal{A}_{\mathrm{ad}}=\left(\begin{array}{cc}
0 & I \\
A^{*} & i \bar{b}_{0}
\end{array}\right), \quad \mathcal{D}\left(\mathcal{A}_{\mathrm{ad}}\right)=H_{\nu, b}^{2} \times L^{2}
$$

Our goal is to use eigenfunction expansion corresponding to $\mathcal{A}, \mathcal{A}^{*}$ and $\mathcal{A}_{\text {ad }}, \mathcal{A}_{\text {ad }}^{*}$. To this end we introduce operators $T_{0}, T=T_{0}+T_{1}$ where

$$
\begin{gather*}
T_{0}=\left(\begin{array}{cc}
0 & A_{0}^{1 / 2} \\
A_{0}^{1 / 2} & 0
\end{array}\right), \quad T_{1}=\left(\begin{array}{cc}
0 & 0 \\
A_{0}^{-1 / 4} a_{1} A_{0}^{-1 / 4} & -i A_{0}^{-1 / 4} b_{0} A_{0}^{-1 / 4}
\end{array}\right) ; \tag{8}\\
\mathcal{D}(T)=\mathcal{D}\left(T_{0}\right)=\left[\mathcal{D}\left(A_{0}^{1 / 2}\right)\right]^{2}=\left[H^{1}(M)\right]^{2} .
\end{gather*}
$$

By (7) T ia bounded-invertible. We have

$$
\begin{gather*}
T_{0} U=L^{-1} \mathcal{A}_{0} L U ; \quad T U=L^{-1} \mathcal{A} L U \text { for } U \in \mathcal{D}\left(A_{0}^{3 / 4}\right) \times \mathcal{D}\left(A_{0}^{1 / 2}\right) \tag{9}\\
L=\left(\begin{array}{cc}
A_{0}^{-1 / 4} & 0 \\
0 & A_{0}^{1 / 4}
\end{array}\right)
\end{gather*}
$$

3. Abel-Lidskii expansion. From (18) $T_{0}^{-1} \in \Sigma_{p}, \quad p>m$ where Σ_{p} is the Schatten-von Neumann class (see e.g. [9]). As T_{1} is bounded $T=T_{0}+T_{1}$ is a weak perturbation of T_{0}. Due to the general theory of weak perturbations of self-adjoint operators (see e.g. [1, Sect.6.2-6.4]) the spectrum $\sigma(T)$ of T is normal.

Let $\beta>m$ be an even integer, $\tau>0$ and Γ - a finite contour in $\mathbb{C}, \Gamma \cap \sigma(T)=\emptyset$. Denote by $P_{\Gamma, \tau}^{\beta}(T)$ the modified Riesz projector for T;

$$
P_{\Gamma, \tau}^{\beta}(T)=-\frac{1}{2 \pi i} \int_{\Gamma} e^{-\tau z^{\beta}}(T-z)^{-1} d z
$$

and by $P_{\Gamma, \tau}^{\beta}\left(T_{0}\right)$-the analogous projector for T_{0}.
Let Γ be a contour in \mathbb{C} consisting of two segments $\operatorname{Imz}= \pm a, \operatorname{Rez} \in[-b, b]$, and four semiaxes $\operatorname{Imz}= \pm c R e z$ (see Fig. 1).

Fig. 1
Parameters a, b, c are chosen so that
i) $\quad \sigma(T)$ lies inside Γ;
ii) $R e z^{\beta} \geq c_{0}\left|z^{\beta}\right|, c_{0}>0$ for $|I m z| \leq c|\operatorname{Re} z|$.

Theorem 1 (Abel-Lidskii convergence). There exist real numbers $\alpha_{N}>0$, $N=1,2, \ldots$, which depend only upon $\sigma(T)$ such that

$$
\begin{equation*}
Y=\lim _{\tau \rightarrow+0} \lim _{N \rightarrow \infty} P_{N, \tau}^{\beta}(T) Y \tag{10}
\end{equation*}
$$

The convergence in (10) takes place in $\left[H^{s}\right]^{2}, s \in[-1 / 2,1 / 2]$ when $Y \in\left[H^{s}\right]^{2}$ and in the graph norm of T^{n} when $Y \in \mathcal{D}\left(T^{n}\right), n=1,2, \ldots$. Here $P_{N, \tau}^{\beta}(T)$ correspond to the contours Γ_{N} obtained from Γ by cutting it by vertical lines $\operatorname{Rez}= \pm \alpha_{N}$ (see Fig.2).

Fig. 2
Proof. Since $T_{0} \in \Sigma_{p}, \quad p>m$ and T_{1} is bounded the results of [1, Sect. 6.2-6.4] (see also [10]) show the existence of α_{N}^{\prime} which depend upon $\sigma\left(T_{0}\right), \sigma(T)$ such that

$$
P_{N, \tau}^{\beta}(T) \underset{N \rightarrow \infty}{\stackrel{s}{\longrightarrow}} P_{\tau}^{\beta}(T)
$$

The proof of the strong convergence is based upon exponential estimates for ($T-$ $z)^{-1},\left(T_{0}-z\right)^{-1}$. However since $P_{N, \tau}^{\beta}(T)$ remains intact under small deviations of α_{N}^{\prime} it is possible to choose α_{N} independent of $\sigma\left(T_{0}\right)$. Moreover the results of [1] show that

$$
\begin{gather*}
P_{\tau}^{\beta}(T)-P_{\tau}^{\beta}\left(T_{0}\right)=-\frac{1}{2 \pi i} \int_{\Gamma} e^{-\tau z^{\beta}}(T-z)^{-1} T_{1}\left(T_{0}-z\right)^{-1} d z \tag{11}\\
\left\|(T-z)^{-1} T_{1}\left(T_{0}-z\right)^{-1}\right\|_{s} \leq c_{s}|z|^{-3 / 2}, \quad s \in[-1 / 2,1 / 2], \quad z \quad \text { lies outside } \Gamma \tag{12}
\end{gather*}
$$

where $\|\cdot\|_{s}$ stands for the operator norm in $\left[H^{s}\right]^{2}$. As s $-\lim P_{\tau}^{\beta}\left(T_{0}\right)=I$ and the rhs of (11) tends to 0 when $\tau \rightarrow+0$ the statement follows for $Y \in\left[H^{s}\right]^{2}$.

The last part of Theorem follows from the case $s=0$ since for $Y \in \mathcal{D}\left(T^{n}\right)$

$$
T^{n} P_{N, \tau}^{\beta}(T) Y=P_{N, \tau}^{\beta}(T) T^{n} Y
$$

Since \mathcal{A} has only point spectrum and $\sigma_{p}(\mathcal{A})=\sigma(T)$ equation (9) yields that \mathcal{A} has normal spectrum.

Lemma 1. Let $U=\left(u^{1}, u^{2}\right)^{t} \in H^{1}(M) \times L^{2}(M) \quad$ or $\quad\left[C_{0}^{\infty}(M)\right]^{2}$. Then

$$
U=\lim _{\tau \rightarrow 0} \lim _{N \rightarrow \infty} P_{N, \tau}^{\beta}(\mathcal{A}) U,
$$

where the convergenve takes place in $H^{1} \times L^{2}$ when U lies in this space or in $C^{N}(\Omega)$ for any $N>0, \Omega \ll M$ when $U \in\left[C_{0}^{\infty}(M)\right]^{2}$.
Proof. As $Y=L^{-1} U \in\left[H^{1 / 2}\right]^{2}$ when $U \in H^{1} \times L^{2}$ Theorem 1, $s=1 / 2$ proves the statement for this case. As $L^{-1}\left[C_{0}^{\infty}(M)\right]^{2} \subset \mathcal{D}\left(T^{n}\right)$ for any $n>0$ and $\mathcal{D}\left(T^{n}\right) \subset\left[H^{n}\right]^{2}$ this case also follows from Theorem 1 and the fact that L is a pseudodifferential operator of the order $1 / 2$.
Corollary 1. Let $U \in L^{2}(M) \times H^{1}(M)$ or $\left[C_{0}^{\infty}(M)\right]^{2}$. Then

$$
\begin{equation*}
U=\lim _{\tau \rightarrow 0} \lim _{N \rightarrow \infty} P_{N, \tau}^{\beta}\left(\mathcal{A}^{*}\right) U \tag{13}
\end{equation*}
$$

where the convergenve takes place in $L^{2} \times H^{1}$ and $C^{N}(\Omega)$ for any $N>0, \Omega \ll M$, respectively.
Proof. As $\left\|\left(T^{*}-\bar{z}\right)^{-1}-\left(T_{0}-\bar{z}\right)^{-1}\right\|_{s}=\left\|(T-z)^{-1}-\left(T_{0}-z\right)^{-1}\right\|_{-s}$ estimate (12) remains valid for T^{*}, T_{0} and $s=1 / 2$ for z outside Γ. The same arguments as in Theorem 1 show that

$$
Y=\lim _{\tau \rightarrow+0} \lim _{N \rightarrow \infty} P_{N, \tau}^{\beta}\left(T^{*}\right) Y \quad \text { in } \quad\left[H^{1 / 2}\right]^{2}
$$

As $Y=L U \in\left[H^{1 / 2}\right]^{2}$ when $U \in L^{2} \times H^{1}$ (13) follows. As for the case $U \in$ $\left[C_{0}^{\infty}(M)\right]^{2}$ the arguments are the same as in Lemma 1.

Using the representation

$$
\begin{gather*}
\mathcal{A}_{\mathrm{ad}}^{*}=J \mathcal{A} J^{-1} ; \quad \mathcal{A}^{*}=J^{*} \mathcal{A}_{\mathrm{ad}}\left[J^{*}\right]^{-1} ; \tag{14}\\
J\left[\left(u^{1}, u^{2}\right)^{t}\right]=\left(u^{2}+i b_{0} u^{1}, u^{1}\right)^{t}
\end{gather*}
$$

we come to
Corollary 2. The statement of Lemma 1 is valid for $\mathcal{A}_{\mathrm{ad}}^{*}$. The statement of Corollary 2 is valid for $\mathcal{A}_{\text {ad }}$.
4. Root functions and boundary spectral data.. Let $\mu_{j}:=\operatorname{dim} \mathcal{H}_{j}=$ $\operatorname{dim} \mathcal{H}_{j}^{*}$ where $\mathcal{H}_{j}:=P_{\lambda_{j}}(\mathcal{A}) \mathcal{H} ; \mathcal{H}_{j}^{*}:=P_{\bar{\lambda}_{j}}\left(\mathcal{A}^{*}\right) \mathcal{H}$ and $r_{j}:=\operatorname{dimKer}\left(\mathcal{A}-\lambda_{j}\right)=$ $\operatorname{dimKer}\left(\mathcal{A}^{*}-\bar{\lambda}_{j}\right)$. Denote by $\Phi_{j, k, 0}=\left(\phi_{j, k, 0}^{1}, \phi_{j, k, 0}^{2}\right)^{t}, \Psi_{j, k, 0}, k=1, \ldots, r_{j}$ the eigenvectors of $\mathcal{A}, \mathcal{A}^{*}$ at $\lambda_{j}, \bar{\lambda}_{j}$, correspondingly, and by $n_{j, k}, n_{j, 1} \geq n_{j, 2} \geq \ldots \geq n_{j, r_{j}}$, their partial null multiplicities; $\mu_{j}=n_{j, 1}+\ldots+n_{j, r_{j}}$. Let $\Phi_{j, k, l}, \Psi_{j, k, l}, l=1, \ldots, n_{j, k}$ be the root functions associated with $\Phi_{j, k, 0}, \Psi_{j, k, 0}$;

$$
\begin{equation*}
\left(\mathcal{A}-\lambda_{j}\right) \Phi_{j, k, l}=\Phi_{j, k, l-1} ; \quad\left(\mathcal{A}^{*}-\bar{\lambda}_{j}\right) \Psi_{j, k, l}=\Psi_{j, k, l-1} . \tag{15}
\end{equation*}
$$

It is possible to choose $\Phi_{j, k, l}, \Psi_{j, k, l} ; j=1,2, \ldots, k=1, \ldots, r_{j}, l=1, \ldots, n_{j, k}$ so that

$$
\begin{equation*}
\left(\Phi_{j, k, l}, \Psi_{j^{\prime}, k^{\prime}, l^{\prime}}\right)_{\mathcal{H}}=\delta_{j, j^{\prime}} \delta_{k, k^{\prime}} \delta_{l, n_{j, k}-l^{\prime}-1} \tag{16}
\end{equation*}
$$

(see e.g. [11; Sect. 2] or [12; Sect. 1.2]). The choice of $\Phi_{j, k, l}, \Psi_{j, k, l}$ when j is fixed is non-unique. The group of admissible transformations form a subgroup in $G L\left(\mu_{j}, \mathbb{C}\right)$ defined by conditions (15), (16) (see e.g. [11; sect. 2]).

Let $U, V \in \mathcal{H}$. Denote by

$$
\begin{aligned}
& \mathcal{F}(U)=\mathcal{U}:=\left\{U_{j, k, l} ; U_{j, k, l}=\left(U, \Psi_{j, k, n_{j, k}-l-1}\right)\right\} \\
& \mathcal{F}^{*}(V)=\mathcal{V}^{*}:=\left\{V_{j, k, l}^{*} ; V_{j, k, l}^{*}=\left(V, \Phi_{j, k, n_{j, k}-l-1}\right)\right\}
\end{aligned}
$$

their Fourier transforms with respect to $\mathcal{A}, \mathcal{A}^{*}$, correspondingly. Using Lemma 1 and Corollary 2 we obtain
Corollary 3. Let $U \in H^{1} \times L^{2}, V \in L^{2} \times H^{1}$. Then their Fourier transforms $\mathcal{U}, \mathcal{V}^{*}$ determine (U, V) uniquely.

Due to the relations (14) the analogous results take place for $\mathcal{A}_{\text {ad }}, \mathcal{A}_{\text {ad }}^{*}$ with basis

$$
\begin{equation*}
\tilde{\Psi}_{j, k, l}=J \Phi_{j, k, l} ; \quad \tilde{\Phi}_{j, k, l}=\left(J^{*}\right)^{-1} \Psi_{j, k, l} . \tag{17}
\end{equation*}
$$

The basis $\Phi_{j, k, l}, \Psi_{j, k, l}$ makes sense to the following
Definition. Boundary spectral data (BSD) of the pencil (1), (2) is the collection $\left(\partial M ; \lambda_{j},\left.\phi_{j, k, l}^{1}\right|_{\partial M},\left.\psi_{j, k, l}^{2}\right|_{\partial M}, j=1,2, \ldots, k=1, \ldots, r_{j}, l=1, \ldots, n_{j, k}\right)$.
Theorem 2. GBSD determine BSD to within the group of transformations of the biorthogonal basis which preserve properties (15), (16).

Proof. Given $R_{\lambda}(x, y), x, y \in \partial M$ it is possible to find $\left.u_{\lambda}^{f}\right|_{\partial M}$ where u_{λ}^{f} is the solution to (3). Consider $U_{\lambda}^{f}=\left(u_{\lambda}^{f}, \lambda u_{\lambda}^{f}\right)^{t}$. Then

$$
(a-\lambda) U_{\lambda}^{f}=0
$$

where a is an operator on $H^{2} \times L^{2}$;

$$
a=\left(\begin{array}{cc}
0 & I \\
a(x, D) & -i b_{0}
\end{array}\right) .
$$

Let $e \in H^{2},\left.\partial_{\nu} e\right|_{\partial M}=f$ and $E=(e, 0)^{t}$. Then

$$
U_{\lambda}^{f}=E-(\mathcal{A}-\lambda)^{-1}(a-\lambda) E .
$$

U_{λ}^{f} is a meromorphic function of λ with possible singularities only at $\lambda_{j} \in \sigma(\mathcal{A})$ and $U_{\lambda}^{f}-P_{\lambda_{j}}(\mathcal{A}) U_{\lambda}^{f}$ is analytic at λ_{j}. But

$$
\left.\left[P_{\lambda_{j}}(\mathcal{A}) U_{\lambda}^{f}\right]^{1}\right|_{\partial M}=\left.\sum_{k=1}^{r_{j}} \sum_{l=0}^{n_{j, k}-1} U_{j, k, l}^{f}(\lambda) \phi_{j, k, l}^{1}\right|_{\partial M} .
$$

By Green's formula

$$
\begin{equation*}
\left(\lambda-\lambda_{j}\right)\left(U_{\lambda}^{f}, \Psi_{j, k, n_{j, k}-l-1}\right)=\left.\int_{\partial M} f\left(\psi_{j, k, n_{j, k}-l-1}^{2}\right)\right|_{\partial M} d S- \tag{18}
\end{equation*}
$$

$$
-\left(U_{\lambda}^{f}, \Psi_{j, k, n_{j, k}-l-2}\right)
$$

By means of equation (18) (with different f) it is possible to find all $\lambda_{j} \in \sigma(\mathcal{A})=$ $\sigma(A(\lambda))$ as well as the boundary values $\left.\phi_{j, k, l}^{1}\right|_{\partial M},\left.\psi_{j, k, l}^{2}\right|_{\partial M}$ to within a linear transformation preserving (15), (16) (for details see e.g. [11; Sect. 3]).

Let $u^{f}(x, t)$ be the solution to (4), (5) and $v^{g}(x, s)$ be the solution to the initialboundary value problem

$$
\begin{gather*}
v_{s s}^{g}-\bar{b}_{0} v_{s}^{g}+a^{*}(x, D) v^{g}=0 \tag{19}\\
\left.B^{*} v\right|_{\partial M \times \mathbb{R}_{+}}=g,\left.\quad v^{g}\right|_{s=0}=\left.v_{s}^{g}\right|_{s=0}=0, \tag{20}
\end{gather*}
$$

which is associated with $\mathcal{A}_{\text {ad }}$. Let

$$
U^{f}(t)=\left(u^{f}(t), i u_{t}^{f}(t)\right)^{t}, \quad V^{g}(s)=\left(v^{g}(s), i v_{s}^{g}(s)\right)^{t}
$$

Then

$$
U_{t}^{f}+i \mathcal{A} U^{f}=0, \quad V_{s}^{g}+i \mathcal{A}_{\mathrm{ad}} V^{g}=0
$$

Lemma 3. For any $f, g \in L^{2}\left(\partial M \times \mathbb{R}_{+}\right)$$B S D\left\{\lambda_{j},\left.\phi_{j, k, l}^{1}\right|_{\partial M},\left.\psi_{j, k, l}^{2}\right|_{\partial M}\right\}$ determine $\mathcal{F} U^{f}(t)$ and $\mathcal{F}_{\text {ad }} V^{g}(s)=\mathcal{V}_{\mathrm{ad}}=\left\{\left(V^{g}(s), \tilde{\Psi}_{j, k, n_{j, k}-l-1}\right)\right\}$.

Proof. Part integration together with relation (15) for Ψ yields that

$$
\begin{aligned}
i \partial_{t}\left(U^{f}(t), \Psi_{j, k, n_{j, k}-l-1}\right) & =\lambda_{j}\left(U^{f}(t), \Psi_{j, k, n_{j, k}-l-1}\right)+\left(U^{f}(t), \Psi_{j, k, n_{j, k}-l-2}\right)+ \\
& +\int_{\partial M} f(t) \psi_{j, k, n_{j, k}-l-1}^{2} \mid \partial M d S
\end{aligned}
$$

As $\left.U^{f}\right|_{t=0}=0$ this equation proves Lemma for $U^{f}(t)$. Taking into account (17) the same considerations prove Lemma for $V^{g}(s)$.
Corollary 3. Let $f, g \in L^{2}\left(\partial M \times \mathbb{R}_{+}\right)$. Given $B S D$ and $t, s \geq 0$ it is possible to evaluate

$$
\begin{gathered}
\left(U^{f}(t), J^{*} V^{g}(s)\right)= \\
=i \int_{M}\left[u_{t}^{f}(x, t) \bar{v}^{g}(x, s)-u^{f}(t) \bar{v}_{s}^{g}(x, s)+b_{0}(x) u^{f}(x, t) \bar{v}^{g}(x, s)\right] d x
\end{gathered}
$$

Proof. The statement is an immediate corollary of the fact that $U^{f}(t) \in H^{1} \times L^{2}$, $J^{*} V^{g}(s) \in L^{2} \times H^{1}$, Lemma 1, Corollary 1, definition (14), and Lemma 3.
5. Reconstruction of (M, g). Denote by $\mathcal{L}^{s}, s \in \mathbb{R}$ the subspace in $H^{s+1} \times H^{s}$ of the functions which satisfy natural compatibility conditions for the hyperbolic problem (4), (5) (see e.g [13]) and by $\mathcal{L}_{\text {ad }}^{s}$ the analogous subspace for (19), (20).
Theorem 2 [14]. Let (M, g) satisfies the BLR-condition. Then

$$
\left\{U^{f}(T) ; f \in H_{0}^{s}(\partial M,[0, T])\right\}=\mathcal{L}^{s}, \quad T>t_{*}, s \geq-1 / 2
$$

Corollary 4. Let (M, g) satisfies the BLR-condition. Then BSD determine $\mathcal{F}\left(\mathcal{L}^{s}\right)$, $\mathcal{F}_{\text {ad }}\left(\mathcal{L}_{\text {ad }}^{s}\right), \quad s \geq-1 / 2$.

Proof. The statement follows from Lemma 3 and Theorem 2.
Let $\Gamma \subset M$ be open, $t \geq 0$. Denote

$$
M(\Gamma, t)=\{x \in M: d(x, \Gamma) \leq t\} .
$$

Lemma 4. Let $\mathcal{U} \in \mathcal{F}\left(\mathcal{L}^{s}\right), s \geq 0, \mathcal{U}=\mathcal{F} U$. Then for any $\Gamma \subset \partial M, t_{0} \geq 0 B S D$ determine whether $m_{g}(\operatorname{supp} U \cap M(\Gamma, t))=0$ or not. Analogous statement takes place for $\mathcal{V}_{\mathrm{ad}}$.

Here m_{g} is the measure on (M, g).
Proof. Consider $\mathcal{U}(t)=\left\{U_{j, k, l}(t)\right\}$ where

$$
\begin{gather*}
\frac{d}{d t} U_{j, k, l}(t)+i \lambda_{j} U_{j, k, l}(t)+i U_{j, k, l+1}(t)=0, \quad t \in \mathbb{R} \tag{21}\\
U_{j, k, l}(0)=U_{0 ; j, k, l} \tag{22}
\end{gather*}
$$

where $\left\{U_{0 ; j, k, l}\right\}=\mathcal{U}_{0} \in \mathcal{F}\left(\mathcal{L}^{s}\right)$. Then $\mathcal{U}(t) \in \mathcal{F}\left(\mathcal{L}^{s}\right)$ for all t and $\mathcal{U}(t)=\mathcal{F} U(t)$ where

$$
U_{t}(t)+i \mathcal{A} U(t)=0, \quad U(0)=U_{0} .
$$

As $s \geq 0$ Lemma 1 and Sobolev embedding theorem show that

$$
\begin{equation*}
\left.u^{1}(t)\right|_{\partial M}=\lim _{\tau \rightarrow 0} \lim _{N \rightarrow \infty}\left[P_{\tau}^{\beta}(\mathcal{A}) U(t)\right]^{1} \tag{23}
\end{equation*}
$$

where the convergence takes place in $L^{2}(\partial M)$. In view of the Homgren-John theorem [15] the fact that $m_{g}(\operatorname{supp} U \cap M(\Gamma, t))=0$ is equivalent to the fact that

$$
\begin{equation*}
\text { suppu }\left.^{1}\right|_{\partial M \times \mathbb{R}} \cap\left(\Gamma \times\left[-t_{0}, t_{0}\right]\right)=\emptyset \tag{24}
\end{equation*}
$$

However $\left.\phi_{j, k, l}^{1}\right|_{\partial M}$ are known so that the statement follows from (21), (22) and (23), (24).

Corollary 5. Let $\Gamma \subset \partial M, t_{0} \geq 0$ and $s \geq 0$. Then $B S D$ determine subspaces $\mathcal{F}\left(\mathcal{L}^{s}\left(\Gamma, t_{0}\right)\right), \mathcal{F}\left(\left[\mathcal{L}^{s}\left(\Gamma, t_{0}\right)\right]^{c}\right)$, and $\mathcal{F}_{\text {ad }}\left(\mathcal{L}_{\text {ad }}^{s}\left(\Gamma, t_{0}\right)\right), \mathcal{F}_{\text {ad }}\left(\left[\mathcal{L}_{\text {ad }}^{s}\left(\Gamma, t_{0}\right)\right]^{c}\right)$, where

$$
\begin{aligned}
\mathcal{L}^{s}\left(\Gamma, t_{0}\right) & =\left\{U \in \mathcal{L}^{s}: \operatorname{supp} U \subset \operatorname{cl}\left(M\left(\Gamma, t_{0}\right)\right)\right\} \\
{\left[\mathcal{L}^{s}\left(\Gamma, t_{0}\right)\right]^{c} } & =\left\{U \in \mathcal{L}^{s}: \operatorname{supp} U \subset \operatorname{cl}\left(M \backslash M\left(\Gamma, t_{0}\right)\right\}\right.
\end{aligned}
$$

and analogous definitions are valid for $\mathcal{L}_{\mathrm{ad}}^{s}\left(\Gamma, t_{0}\right),\left[\mathcal{L}_{\mathrm{ad}}^{s}\left(\Gamma, t_{0}\right)\right]^{c}$.
Proof. By Lemma 4 BSD determine $\left[\mathcal{L}^{s}\left(\Gamma, t_{0}\right)\right]^{c},\left[\mathcal{L}_{\text {ad }}^{s}\left(\Gamma, t_{0}\right)\right]^{c}$. As $U \in \mathcal{L}^{s}\left(\Gamma, t_{0}\right)$ is equivalent to the fact that $\left(U, J^{*} V\right)=0$ for all $V \in\left[\mathcal{L}_{\text {ad }}^{s}\left(\Gamma, t_{0}\right)\right]^{c}$ the remaining part of Corollary 5 follows from Corollary 3 .

Corollary 6. Let $\Gamma_{i} \subset \partial M, t_{i}^{+}>t_{i}^{-} \geq 0 ; i=1, \ldots, I$. Denote by M_{I} the set

$$
\begin{equation*}
M_{I}=\cap_{i=1}^{I}\left(M\left(\Gamma, t_{i}^{+}\right) \backslash M\left(\Gamma, t_{i}^{-}\right)\right) . \tag{25}
\end{equation*}
$$

Then BSD determine whether $m_{g}\left(M_{I}\right)=0$ or not.
Corollary 6 is the basic analytic tool in the reconstruction of (M, g). For this end introduce $\mathcal{R}: M \rightarrow L^{\infty}(\partial M)$;

$$
\mathcal{R}(x)=r_{x}(y)=d(x, y), \quad y \in \partial M .
$$

It is shown in [7] that $\mathcal{R}(M) \subset L^{\infty}(\partial M)$ has a natural structure of a Riemannian manifold such that $\mathcal{R}: M \rightarrow \mathcal{R}(M)$ is an isometry.

Theorem 3. BSD of the operator pencil (1), (2) which satisfies the BLR-condition determine (M, g) uniquely.

Proof. In view of the above remark about isometry between (M, g) and $\mathcal{R}(M)$ it is sufficient to show that BSD determine $\mathcal{R}(M)$. Choose $\delta>0$ and a collection of $\Gamma_{i}, i=1, \ldots, I(\delta)$ such that $\operatorname{diam}\left(\Gamma_{i}\right) \leq \delta, \cup \Gamma_{i}=\partial M$. Let

$$
\begin{equation*}
p=\left(p_{1}, \ldots, p_{I(\delta)}\right), \quad p_{i} \in \mathbb{N}, \quad t_{i}^{+}=\left(p_{i}+1\right) \delta ; \quad t_{i}^{-}=\left(p_{i}-1\right) \delta . \tag{26}
\end{equation*}
$$

Denote by $M_{I}(p)$ the set M_{I} (see (25)) with $t_{i}^{ \pm}$of form (26) and correspond to every p such that $m_{g}\left(M_{I}(p)\right)>0$ a piecewise constant function $r_{p}(y)=p_{i} \delta$ when $y \in \Gamma_{i}$. Let $\mathcal{R}_{\delta}(M)$ be the collection of these functions. Then

$$
\operatorname{Dist}\left(\mathcal{R}_{\delta}(M), \mathcal{R}(M)\right) \leq 3 \delta
$$

Taking $\delta \rightarrow 0$ we construct $\mathcal{R}(M)$.
6. Reconstruction of the lower-order terms.. Let $x_{0} \in \operatorname{int} M$ and

$$
\begin{equation*}
M_{I}(\delta) \longrightarrow x_{0} \quad \text { when } \quad \delta \rightarrow 0 \tag{27}
\end{equation*}
$$

Consider a family $\mathcal{V}(\delta) \in \mathcal{F}_{\text {ad }}\left(\mathcal{L}^{0}\right)$ such that

$$
\begin{equation*}
\operatorname{supp} V(\delta) \subset \operatorname{cl}\left(M_{I}(\delta)\right), \quad \mathcal{V}=\mathcal{F}_{\mathrm{ad}} V(\delta) \tag{28}
\end{equation*}
$$

and for any $\mathcal{U} \in \mathcal{F}\left(\mathcal{L}^{s}\right), s<m / 2<s+1$ there is a limit $\mathcal{W}^{x_{0}}(\mathcal{U})$;

$$
\mathcal{W}^{x_{0}}(\mathcal{U})=\lim _{\delta \rightarrow 0}(U, \mathcal{V}(\delta))
$$

where the inner product in the rhs of (28) is understood in Abel-Lidskii sense. Such families exist, indeed it is sufficient to take C_{0}^{∞}-approximations to $\left(\delta\left(\cdot-x_{0}\right), 0\right)^{t}$. On the other hand since

$$
(\mathcal{U}, \mathcal{V}(\delta))=\left(U, J^{*} V(\delta)\right)
$$

the existence of the limit means that there is a limit $W^{x_{0}} \in\left[D^{\prime}(M)\right]^{2}$ of $V(\delta)$. By (27) $\operatorname{supp} W^{x_{0}} \subset\left\{x_{0}\right\}$. Moreover as the limit exists for $U \in \mathcal{L}^{s}, s<m / 2<s+1$, $W^{x_{0}}=\left(0, \kappa\left(x_{0}\right) \delta\left(\cdot-x_{0}\right)\right)^{t}$.

Lemma 5. Let BSD of an operator pencil (1), (2) be given and (M, g) satisfies the BLR-condition. Then it is possible to construct a map $\mathbb{W}: M \longrightarrow \mathbb{C}^{\infty}$;

$$
\mathbb{W}\left(x_{0}\right)=\mathcal{W}^{x_{0}} ; \quad W_{j, k, l}^{x_{0}}=\overline{\mathcal{W}}^{x_{0}}\left(\mathcal{E}^{(j, k, l)}\right)
$$

(where $\mathcal{E}^{(j, k, l)}$ is the sequence with 1 at the (j, k, l)-place and 0 otherwise) such that

$$
\begin{gather*}
\mathcal{W}\left(x_{0}\right)(\mathcal{U})=\kappa\left(x_{0}\right) u^{1}\left(x_{0}\right), \quad \mathcal{U} \in \mathcal{F}\left(\mathcal{L}^{s}\right), \quad s<m / 2<s+1 ; \\
\kappa \in C^{\infty}(M),\left.\quad \kappa\right|_{\partial M}=1, \quad \kappa \neq 0 \quad \text { on } M . \tag{29}
\end{gather*}
$$

Proof. To prove Lemma it is sufficient to show the existence of $\mathcal{V}^{x_{0}}(\delta)$ such the their limits $\mathcal{W}^{x_{0}}$ satisfy the following conditions
i. $\quad \mathcal{W}^{x_{0}} \neq 0$;
ii. $\quad \mathcal{W}^{x_{0}}(\mathcal{U}) \in C^{\infty}(M)$ when $\mathcal{U} \in \mathcal{F}\left(\left[C_{0}^{\infty}(M)\right]^{2}\right.$;
iii. $\mathcal{W}^{x_{0}}(\mathcal{U})=u^{1}\left(x_{0}\right)$ when $x_{0} \in \partial M ; \mathcal{U} \in \mathcal{F}\left(\mathcal{L}^{s}\right), s<m / 2<s+1$.

To prove the existence of such $\mathcal{V}^{x_{0}}(\delta)$ we can take adjoint Fourier transforms of some smooth approximations to $\left(0, \delta\left(\cdot-x_{0}\right)\right)^{t}$. On the other hand, conditions i-iii may be algorithmically verified due to Lemma 3, Corollary 3, Corollary 4, Lemma 4 and Lemma 1.

Corollary 7. BSD of a pencil (1),(2) with (M, g) satisfying the BLR-condition determine the functions $\kappa(x) \phi_{j, k, l}^{1}(x) ; j=1,2, \ldots, k=1, \ldots, r_{j}, l=1, \ldots, n_{j, k}$ where κ satisfies relations (29).

Proof. Since

$$
\kappa\left(x_{0}\right) \phi_{j, k, l}^{1}\left(x_{0}\right)=\mathcal{W}_{j, k, l}^{x_{0}},
$$

and $\Phi_{j, k, l} \in \mathcal{L}^{s}$ for any s the statement follows from Lemma 5 .
The functions $\kappa \phi_{j, k, l}^{1}$ are the root functions for the pencil $A_{\kappa}(\lambda)$;

$$
\begin{gather*}
A_{\kappa}\left(\lambda_{j}\right)\left(\kappa \phi_{j, k, l}^{1}\right):=a_{\kappa}(x, D)\left(\kappa \phi_{j, k, l}^{1}\right)-i \lambda_{j} b_{0}\left(\kappa \phi_{j, k, l}^{1}\right)-\lambda_{j}^{2}\left(\kappa \phi_{j, k, l}^{1}\right)=\kappa \phi_{j, k, l-1}^{1}, \tag{30}\\
B_{\kappa}\left(\kappa \phi_{j, k, l}^{1}\right):=\left.\left(\partial_{\nu}\left(\kappa \phi_{j, k, l}^{1}\right)-\sigma_{\kappa}\left(\kappa \phi_{j, k, l}^{1}\right)\right)\right|_{\partial M}=0 \tag{31}
\end{gather*}
$$

where

$$
a_{\kappa}(x, D)=\kappa a(x, D) \kappa^{-1} ; \quad \sigma_{\kappa}=\sigma+\partial_{\nu}[\ln \kappa] .
$$

Lemma 6. Functions $\kappa \phi_{j, k, l}^{1}, j=1,2, \ldots, k=1, \ldots, r_{j}, l=1, \ldots, n_{j, k}$ where κ satisfies (66) determine $a_{\kappa}, \sigma_{\kappa}, b_{0}$.

Proof. By Lemma 1 finite linear combinations of $\kappa \Phi_{j, k, l}=\left(\kappa \phi_{j, k, l}^{1}, \lambda_{j} \kappa \phi_{j, k, l}^{1}\right)^{t}$ are dense in $\left[C^{N}(\Omega)\right]^{2}$ for any $N \geq 0, \Omega \ll M$. In particular for $x_{0} \in \operatorname{int} M$ the vectors $\left(\kappa\left(x_{0}\right) \phi_{j, k, l}^{1}\left(x_{0}\right), \nabla\left(\kappa \phi_{j, k, l}^{1}\right)\left(x_{0}\right), \lambda_{j} \kappa\left(x_{0}\right) \phi_{j, k, l}^{1}\left(x_{0}\right)\right)^{t} \in \mathbb{C}^{m+2}$ span \mathbb{C}^{m+2}. Then equations (30) determine a_{κ} and b_{0}.

On the other hand for any $y \in \partial M$ there is $\phi_{j, k, l}^{1}$ such that $\phi_{j, k, l}^{1}(y) \neq 0$. Hence equations (31) determine σ_{κ}.

Theorem A is now a corollary of Lemma 6, Lemma 7 and properties (29) of κ.

Some remarks.

i. The BLR-condition is always satisfied for $M \subset \mathbb{R}^{m}$ with the metric $g^{j, l}=\delta^{j, l}$ or its C^{1}-small perturbations (see e.g. $[14,16]$);
ii. In particular the results of the paper are always valid for $m=1$ even when GBSD are prescribed at only one boundary point (see also [17]);
iii. Using the nonstationary variant of the BC-method (see e.g. [8, 18]) it is possible to prove an analog of Theorem A when the data is the response operator $R^{h}(t)$ of form (6) for the problem (4), (5) in the case when (M, g) satisfies the BLR-condition and $t>2 t_{*}$.

Acknowledgements. The authors are grateful to M.S.Agranovich, C.Bardos, A.S.Markus and E.Somersalo for fruitful discussions and friendly support. The research was partly supported by Volkswagen-Stiftung (RiP-Program, Oberwolfach) and by EPSRC Grant GR/M36595.

References.

1. Agranovich M. S. Elliptic Boundary Problems, Encycl. Math. Sci. 79 (1996), 1-140.
2. Gel'fand I. M., Proc. Intern. Congress Math. 1 (1957), 253-277.
3. Shiota T. An inverse problem for the wave equation with first order perturbations, Amer. J. Math. 107 (1987), 241-251.
4. Romanov V. G. Uniqueness theorems in inverse problems for some second-order equations, Dokl. Math. 44 (1992), 678-682.
5. Lassas M. Inverse boundary spectral problem for a hyperbolic equation with first order perturbation, to appear in Applic. Anal.
5a. Isakov V. Inverse Problems for Partial differential Equations, Appl. Math. Sci. 127, Springer (1998), 284.
6. Kurylev Y.V. A multidimensional Gel'fand-Levitan inverse boundary problem, Differential Equations and Mathematical Physics (ed. I.Knowles), Intern. Press (1995), 117-131.
7. Kurylev Y. V. Multidimensional Gel'fand inverse problem and boundary distance map, Inverse Probl. related with Geometry (ed. H.Soga) (1997), 1-15.
8. Belishev M. I. Boundary control in reconstruction of manifolds and metrics, Inv. Probl. 13 (1997), R1-R45.
9. Gohberg I.C., Krein M.G. Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr. 18 (1969), AMS 378.
10. Katsnel'son V. E. Convergence and summability of series in root vectors for some classes of non-self-adjoint operators (in Russian), Candidate Thesis, Kharkov (1967).
11. Kurylev Y.V., Lassas M.The multidimensional Gel'fand inverse problem for non-selfadjoint operators, Inverse Problems 13 (1997), 1495-1501.
12. Nazarov S.A., Plamenevsky B.A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, W. de Gruyter (1994), 525.
13. Rauch J., Massey F. Differentiability of solutions to hyperbolic initial-boundary value problem, Trans. Amer. Math. Soc. 189 (1974), 303-318.
14. Bardos C., Lebeau G., Rauch J. Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024-1065.
15. Tataru D. Uniwue continuation for the solutions to PDE's; between Hormander's theorem and Holmgren's theorem, Comm. Part. Diff. Eq. 20 (1995), 855-884.
16. Tataru D.Boundary controllability for conservative PDE's, Appl. Math. Optim. 31 (1995), 257-295.
17. Kabanikhin S., Yamamoto M.
18. Belishev M. I., Kurylev Y.V. Nonstationary inverse problem for the wave equation "in large" (in Russian), Zap. Nauchn. Semin. LOMI 165 (1987), 21-30
