

This item was submitted to Loughborough's Research Repository by the author. Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Gel'fand inverse problem for a quadratic operator pencil

PLEASE CITE THE PUBLISHED VERSION

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Kurylev, Y.V., and M. Lassas. 2019. "Gel'fand Inverse Problem for a Quadratic Operator Pencil". figshare. https://hdl.handle.net/2134/847.

Gelf'and Inverse Problem for a Quadratic Operator Pencil

Kurylev Y.* and Lassas M.**

* Department of Mathematical Sciences, Loughborough University Loughborough, LE11 3TU, UK

> ** Rolf Nevanlinna Institute, University of Helsinki Helsinki, PL4, FIN-00014, Finland

1. Introduction. Main result. In the paper we deal with an inverse problem for a quadratic operator pencil

$$A(\lambda)u = a(x, D)u - ib_0\lambda u - \lambda^2 u,\tag{1}$$

$$Bu := \partial_{\nu} u - \sigma u|_{\partial M} = 0 \tag{2}$$

on a differentiable compact connected manifold $M, \dim M = m \geq 1$, with non-empty boundary $\partial M \neq \emptyset$. Here a(x, D) is a uniformly elliptic symbol

$$a(x, D) = -g^{-1/2}(\partial_j + b_j)g^{1/2}g^{jl}(\partial_l + b_l) + q,$$

where $[g^{jl}]_{j,l=1}^m$ defines a C^{∞} -smooth Riemannian metric and $b=(b_1,...,b_m)$ and q are, correspondingly, C^{∞} -smooth complex-valued 1-form and function on M. σ is a C^{∞} -smooth complex-valued function on ∂M and ∂_{ν} stands for the normal derivative.

Let R_{λ} be the resolvent of (1), (2) which is meromorphic for $\lambda \in \mathbb{C}$ (see Sect. 3 and [1]) and let $R_{\lambda}(x,y)$ be its Schwartz kernel. A natural analog of the Gel'fand inverse problem [2] is

Problem I. Let ∂M and $R_{\lambda}(x,y)$; $\lambda \in \mathbb{C}, x,y \in \partial M$ be given. Do these data (Gel'fand boundary spectral data, GBSD) determine $(M,a(x,D),b_0,\sigma)$ uniquely?

Remark 1. Let \mathcal{G}_{λ} be the Neumann-to-Dirichlet map $\mathcal{G}_{\lambda}f := u_{\lambda}^{f}|_{\partial M}$ where

$$A(\lambda)u^f(\lambda) = 0, \quad Bu^f(\lambda) = f.$$
 (3)

Then GBSD means that \mathcal{G}_{λ} are known for all λ .

Remark 2. By Fourier transform, $u(x,\lambda) \to u(x,t)$, Problem I is equivalent to the inverse boundary problem for the dissipative wave equation

$$u_{tt}^f + b_0 u_t^f + a(x, D) u^f = 0, (4)$$

$$Bu^f = f|_{\partial M \times \mathbb{R}_+}; \quad u^f|_{t=0} = u_t^f|_{t=0} = 0,$$
 (5)

where inverse data is given in the form of the response operator \mathbb{R}^h ;

$$R^h(f) := u^f|_{\partial M \times \mathbb{R}_+}. \tag{6}$$

This hyperbolic inverse problem and its analogs were considered in [3-5a]. Paper [3] dealt with the inverse scattering problem, $M = \mathbb{R}^m$, with $g^{jl} = \delta^{jl}$. It was generalised in [4] onto the Gel'fand inverse boundary problem in a bounded domain

in \mathbb{R}^m ; $g^{jl} = \delta^{jl}$. In [5] the uniqueness of the reconstruction of the conformally euclidian metric in $M \in \mathbb{R}^m$ and the lower order terms (with some restrictions upon these terms) was proven for the geodesically regular domains M. At last a local variant of the problem with data prescribed on a part of the boundary was studied in [5a]. As for the case $b_0 = 0$ and self-adjoint studied in full generality in [6,7].

In the paper we give the answer to Problem I assuming some geometric conditions upon (M, g). The main technique used is the boundary control (BC) method (see e.g. [8]) in the geometrical version [7].

Definition 1.(M,g) satisfies Bardos-Lebeau-Rauch (BLR) condition if there is $t_* > 0$ and an open conic neighbourhood \mathcal{O} of the set of not-nondiffractive points in $T^*(\partial M \times [0,t_*])$ such that any generalised bicharacteristic of the wave operator $\partial_t^2 - \Delta_g$ passes through a point of $T^*(\partial M \times [0,t_*]) \setminus \mathcal{O}$.

Theorem A. Let $(\partial M; \mathcal{G}_{\lambda}, \lambda \in \mathbb{C})$ be GBSD for a quadratic operator pencil (1), (2). Assume that the corresponding Riemannian manifold (M, g) satisfies the BLR-condition. Then these data determine M and b_0 uniquely while a(x, D) and σ to within a gauge transformation

$$a(x,D) \longrightarrow \kappa a(x,D)\kappa^{-1}; \quad \kappa \in C^{\infty}(M;\mathbb{C}), \quad \kappa|_{\partial M} = 1, \quad \kappa \neq 0 \quad on \quad M.$$

2. Auxiliary constructions. In view of the gauge invariance we can assume that $\sigma = 0$. By λ -linearisation;

$$u \to U = (u, \lambda u)^t,$$

the pencil (1), (2) takes the form

$$AU = \lambda U$$
; $A = A_0 + A_1$;

$$\mathcal{A}_0 = \begin{pmatrix} 0 & I \\ A_0 & 0 \end{pmatrix}; \quad \mathcal{A}_1 = \begin{pmatrix} 0 & 0 \\ a_1(x, D) & -ib_0 \end{pmatrix}.$$

Here $A_0 = -\Delta_g$ is the Laplace operator with Neumann boundary condition;

$$\mathcal{D}(A_0) = H_{\nu}^2(M) := \{ u \in H^2(M) : \partial_{\nu} u |_{\partial M} = 0 \}$$

and $a_1(x, D) = a(x, D) + \Delta_g$. Operators $\mathcal{A}_0, \mathcal{A}$ with

$$\mathcal{D}(\mathcal{A}_0) = \mathcal{D}(\mathcal{A}) = H_{\lambda}^2(M) \times L^2(M)$$

are closed in $\mathcal{H} = [L^2(M)]^2$. By the transformation $\lambda \to \lambda + id$; $A_0 \to A_0 + d^2$ we get

$$||A_0^{-1}|| < 1; \quad ||a_1(x, D)A_0^{-3/4}|| < 1/2.$$
 (7)

The adjoint operator, A^* is then

$$\mathcal{A}^* = \begin{pmatrix} 0 & A^* \\ I & i\bar{b}_0 \end{pmatrix}, \quad \mathcal{D}(\mathcal{A}^*) = L^2(M) \times \mathcal{D}(A^*);$$

$$\mathcal{D}(A^*) = H_{\nu,b}^2 := \{ u \in H^2; \quad B^*u := \partial_{\nu}u - 2b_{\nu}u|_{\partial M} = 0 \},$$

where $b_{\nu} = (\nu, b)$.

Using A^* instead of A we define operators \mathcal{A}_{ad} and \mathcal{A}_{ad}^* ;

$$\mathcal{A}_{\mathrm{ad}} = \begin{pmatrix} 0 & I \\ A^* & i\bar{b}_0 \end{pmatrix}, \quad \mathcal{D}(\mathcal{A}_{\mathrm{ad}}) = H_{\nu,b}^2 \times L^2.$$

Our goal is to use eigenfunction expansion corresponding to $\mathcal{A}, \mathcal{A}^*$ and $\mathcal{A}_{ad}, \mathcal{A}_{ad}^*$. To this end we introduce operators $T_0, T = T_0 + T_1$ where

$$T_0 = \begin{pmatrix} 0 & A_0^{1/2} \\ A_0^{1/2} & 0 \end{pmatrix}, \quad T_1 = \begin{pmatrix} 0 & 0 \\ A_0^{-1/4} a_1 A_0^{-1/4} & -iA_0^{-1/4} b_0 A_0^{-1/4} \end{pmatrix}; \quad (8)$$

$$\mathcal{D}(T) = \mathcal{D}(T_0) = [\mathcal{D}(A_0^{1/2})]^2 = [H^1(M)]^2.$$

By (7) T ia bounded-invertible. We have

$$T_0 U = L^{-1} \mathcal{A}_0 L U; \quad T U = L^{-1} \mathcal{A} L U \quad \text{for} \quad U \in \mathcal{D}(A_0^{3/4}) \times \mathcal{D}(A_0^{1/2}); \qquad (9)$$

$$L = \begin{pmatrix} A_0^{-1/4} & 0\\ 0 & A_0^{1/4} \end{pmatrix}.$$

3. Abel-Lidskii expansion. From (18) $T_0^{-1} \in \Sigma_p$, p > m where Σ_p is the Schatten-von Neumann class (see e.g. [9]). As T_1 is bounded $T = T_0 + T_1$ is a weak perturbation of T_0 . Due to the general theory of weak perturbations of self-adjoint operators (see e.g. [1, Sect.6.2-6.4]) the spectrum $\sigma(T)$ of T is normal.

Let $\beta > m$ be an even integer, $\tau > 0$ and Γ - a finite contour in \mathbb{C} , $\Gamma \cap \sigma(T) = \emptyset$. Denote by $P_{\Gamma,\tau}^{\beta}(T)$ the modified Riesz projector for T;

$$P_{\Gamma,\tau}^{\beta}(T) = -\frac{1}{2\pi i} \int_{\Gamma} e^{-\tau z^{\beta}} (T-z)^{-1} dz,$$

and by $P_{\Gamma,\tau}^{\beta}(T_0)$ -the analogous projector for T_0 .

Let Γ be a contour in \mathbb{C} consisting of two segments $Imz = \pm a, Rez \in [-b, b]$, and four semiaxes $Imz = \pm cRez$ (see Fig. 1).

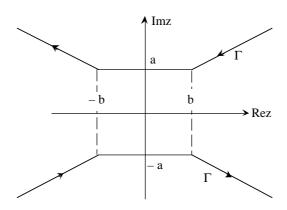


Fig. 1

Parameters a, b, c are chosen so that

- i) $\sigma(T)$ lies inside Γ ;
- ii) $Rez^{\beta} \ge c_0|z^{\beta}|, c_0 > 0$ for $|Imz| \le c|Rez|$.

Theorem 1 (Abel-Lidskii convergence). There exist real numbers $\alpha_N > 0$, N = 1, 2, ..., which depend only upon $\sigma(T)$ such that

$$Y = \lim_{\tau \to +0} \lim_{N \to \infty} P_{N,\tau}^{\beta}(T)Y. \tag{10}$$

The convergence in (10) takes place in $[H^s]^2$, $s \in [-1/2, 1/2]$ when $Y \in [H^s]^2$ and in the graph norm of T^n when $Y \in \mathcal{D}(T^n)$, n = 1, 2, ... Here $P_{N,\tau}^{\beta}(T)$ correspond to the contours Γ_N obtained from Γ by cutting it by vertical lines $Rez = \pm \alpha_N$ (see Fig.2).

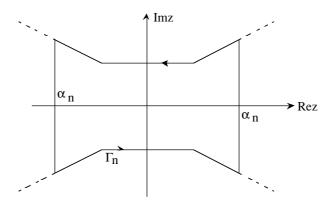


Fig.2

Proof. Since $T_0 \in \Sigma_p$, p > m and T_1 is bounded the results of [1, Sect. 6.2-6.4] (see also [10]) show the existence of α'_N which depend upon $\sigma(T_0), \sigma(T)$ such that

$$P_{N,\tau}^{\beta}(T) \xrightarrow[N \to \infty]{s} P_{\tau}^{\beta}(T).$$

The proof of the strong convergence is based upon exponential estimates for $(T-z)^{-1}$, $(T_0-z)^{-1}$. However since $P_{N,\tau}^{\beta}(T)$ remains intact under small deviations of α'_N it is possible to choose α_N independent of $\sigma(T_0)$. Moreover the results of [1] show that

$$P_{\tau}^{\beta}(T) - P_{\tau}^{\beta}(T_0) = -\frac{1}{2\pi i} \int_{\Gamma} e^{-\tau z^{\beta}} (T - z)^{-1} T_1 (T_0 - z)^{-1} dz; \tag{11}$$

$$||(T-z)^{-1}T_1(T_0-z)^{-1}||_s \le c_s|z|^{-3/2}, \quad s \in [-1/2, 1/2], \quad z \quad \text{lies outside } \Gamma,$$
 (12)

where $||\cdot||_s$ stands for the operator norm in $[H^s]^2$. As $s - \lim P_{\tau}^{\beta}(T_0) = I$ and the rhs of (11) tends to 0 when $\tau \to +0$ the statement follows for $Y \in [H^s]^2$.

The last part of Theorem follows from the case s=0 since for $Y\in\mathcal{D}(T^n)$

$$T^n P_{N,\tau}^{\beta}(T)Y = P_{N,\tau}^{\beta}(T)T^nY.$$

Since \mathcal{A} has only point spectrum and $\sigma_p(\mathcal{A}) = \sigma(T)$ equation (9) yields that \mathcal{A} has normal spectrum.

Lemma 1. Let $U = (u^1, u^2)^t \in H^1(M) \times L^2(M)$ or $[C_0^{\infty}(M)]^2$. Then

$$U = \lim_{\tau \to 0} \lim_{N \to \infty} P_{N,\tau}^{\beta}(\mathcal{A})U,$$

where the convergence takes place in $H^1 \times L^2$ when U lies in this space or in $C^N(\Omega)$ for any N > 0, $\Omega \ll M$ when $U \in [C_0^{\infty}(M)]^2$.

Proof. As $Y = L^{-1}U \in [H^{1/2}]^2$ when $U \in H^1 \times L^2$ Theorem 1, s = 1/2 proves the statement for this case. As $L^{-1}[C_0^{\infty}(M)]^2 \subset \mathcal{D}(T^n)$ for any n > 0 and $\mathcal{D}(T^n) \subset [H^n]^2$ this case also follows from Theorem 1 and the fact that L is a pseudodifferential operator of the order 1/2.

Corollary 1. Let $U \in L^2(M) \times H^1(M)$ or $[C_0^{\infty}(M)]^2$. Then

$$U = \lim_{\tau \to 0} \lim_{N \to \infty} P_{N,\tau}^{\beta}(\mathcal{A}^*)U, \tag{13}$$

where the convergence takes place in $L^2 \times H^1$ and $C^N(\Omega)$ for any $N > 0, \Omega \ll M$, respectively.

Proof. As $||(T^* - \bar{z})^{-1} - (T_0 - \bar{z})^{-1}||_s = ||(T - z)^{-1} - (T_0 - z)^{-1}||_{-s}$ estimate (12) remains valid for T^*, T_0 and s = 1/2 for z outside Γ . The same arguments as in Theorem 1 show that

$$Y = \lim_{\tau \to +0} \lim_{N \to \infty} P_{N,\tau}^{\beta}(T^*) Y$$
 in $[H^{1/2}]^2$.

As $Y=LU\in [H^{1/2}]^2$ when $U\in L^2\times H^1$ (13) follows. As for the case $U\in [C_0^\infty(M)]^2$ the arguments are the same as in Lemma 1.

Using the representation

$$\mathcal{A}_{\text{ad}}^* = J\mathcal{A}J^{-1}; \quad \mathcal{A}^* = J^*\mathcal{A}_{\text{ad}}[J^*]^{-1};$$

$$J\left[(u^1, u^2)^t\right] = (u^2 + ib_0u^1, u^1)^t,$$
(14)

we come to

Corollary 2. The statement of Lemma 1 is valid for \mathcal{A}_{ad}^* . The statement of Corollary 2 is valid for \mathcal{A}_{ad} .

4. Root functions and boundary spectral data. Let $\mu_j := \dim \mathcal{H}_j = \dim \mathcal{H}_j^*$ where $\mathcal{H}_j := P_{\lambda_j}(\mathcal{A})\mathcal{H}$; $\mathcal{H}_j^* := P_{\bar{\lambda}_j}(\mathcal{A}^*)\mathcal{H}$ and $r_j := \dim \ker(\mathcal{A} - \lambda_j) = \dim \ker(\mathcal{A}^* - \bar{\lambda}_j)$. Denote by $\Phi_{j,k,0} = (\phi_{j,k,0}^1, \phi_{j,k,0}^2)^t$, $\Psi_{j,k,0}, k = 1, ..., r_j$ the eigenvectors of $\mathcal{A}, \mathcal{A}^*$ at $\lambda_j, \bar{\lambda}_j$, correspondingly, and by $n_{j,k}, n_{j,1} \geq n_{j,2} \geq ... \geq n_{j,r_j}$, their partial null multiplicities; $\mu_j = n_{j,1} + ... + n_{j,r_j}$. Let $\Phi_{j,k,l}, \Psi_{j,k,l}, l = 1, ..., n_{j,k}$ be the root functions associated with $\Phi_{j,k,0}, \Psi_{j,k,0}$;

$$(A - \lambda_j)\Phi_{j,k,l} = \Phi_{j,k,l-1}; \quad (A^* - \bar{\lambda}_j)\Psi_{j,k,l} = \Psi_{j,k,l-1}.$$
 (15)

It is possible to choose $\Phi_{j,k,l}, \Psi_{j,k,l}; j = 1, 2, ..., k = 1, ..., r_j, l = 1, ..., n_{j,k}$ so that

$$(\Phi_{j,k,l}, \Psi_{j',k',l'})_{\mathcal{H}} = \delta_{j,j'} \delta_{k,k'} \delta_{l,n_{j,k}-l'-1}$$
(16)

(see e.g. [11; Sect. 2] or [12; Sect. 1.2]). The choice of $\Phi_{j,k,l}, \Psi_{j,k,l}$ when j is fixed is non-unique. The group of admissible transformations form a subgroup in $GL(\mu_j, \mathbb{C})$ defined by conditions (15), (16) (see e.g. [11; sect. 2]).

Let $U, V \in \mathcal{H}$. Denote by

$$\mathcal{F}(U) = \mathcal{U} := \{U_{j,k,l}; U_{j,k,l} = (U, \Psi_{j,k,n_{j,k}-l-1})\};$$

$$\mathcal{F}^*(V) = \mathcal{V}^* := \{V_{j,k,l}^*; V_{j,k,l}^* = (V, \Phi_{j,k,n_{j,k}-l-1})\}$$

their Fourier transforms with respect to $\mathcal{A}, \mathcal{A}^*$, correspondingly. Using Lemma 1 and Corollary 2 we obtain

Corollary 3. Let $U \in H^1 \times L^2$, $V \in L^2 \times H^1$. Then their Fourier transforms $\mathcal{U}, \mathcal{V}^*$ determine (U, V) uniquely.

Due to the relations (14) the analogous results take place for \mathcal{A}_{ad} , \mathcal{A}_{ad}^* with basis

$$\tilde{\Psi}_{j,k,l} = J\Phi_{j,k,l}; \quad \tilde{\Phi}_{j,k,l} = (J^*)^{-1}\Psi_{j,k,l}.$$
 (17)

The basis $\Phi_{i,k,l}, \Psi_{i,k,l}$ makes sense to the following

Definition. Boundary spectral data (BSD) of the pencil (1), (2) is the collection $(\partial M; \lambda_j, \phi_{j,k,l}^1|_{\partial M}, \psi_{j,k,l}^2|_{\partial M}, j=1,2,...,k=1,...,r_j, l=1,...,n_{j,k}).$

Theorem 2. GBSD determine BSD to within the group of transformations of the biorthogonal basis which preserve properties (15), (16).

Proof. Given $R_{\lambda}(x,y), x,y \in \partial M$ it is possible to find $u_{\lambda}^{f}|_{\partial M}$ where u_{λ}^{f} is the solution to (3). Consider $U_{\lambda}^{f} = (u_{\lambda}^{f}, \lambda u_{\lambda}^{f})^{t}$. Then

$$(a-\lambda)U_{\lambda}^f = 0,$$

where a is an operator on $H^2 \times L^2$;

$$a = \begin{pmatrix} 0 & I \\ a(x, D) & -ib_0 \end{pmatrix}.$$

Let $e \in H^2$, $\partial_{\nu} e|_{\partial M} = f$ and $E = (e, 0)^t$. Then

$$U_{\lambda}^{f} = E - (A - \lambda)^{-1} (a - \lambda) E.$$

 U_{λ}^f is a meromorphic function of λ with possible singularities only at $\lambda_j \in \sigma(\mathcal{A})$ and $U_{\lambda}^f - P_{\lambda_j}(\mathcal{A})U_{\lambda}^f$ is analytic at λ_j . But

$$[P_{\lambda_j}(\mathcal{A})U_{\lambda}^f]^1|_{\partial M} = \sum_{k=1}^{r_j} \sum_{l=0}^{n_{j,k}-1} U_{j,k,l}^f(\lambda) \phi_{j,k,l}^1|_{\partial M}.$$

By Green's formula

$$(\lambda - \lambda_j)(U_{\lambda}^f, \Psi_{j,k,n_{j,k}-l-1}) = \int_{\partial M} f(\psi_{j,k,n_{j,k}-l-1}^2)|_{\partial M} dS -$$
 (18)

$$-(U_{\lambda}^f, \Psi_{j,k,n_{j,k}-l-2}).$$

By means of equation (18) (with different f) it is possible to find all $\lambda_j \in \sigma(\mathcal{A}) = \sigma(A(\lambda))$ as well as the boundary values $\phi_{j,k,l}^1|_{\partial M}$, $\psi_{j,k,l}^2|_{\partial M}$ to within a linear transformation preserving (15), (16) (for details see e.g. [11; Sect. 3]).

Let $u^f(x,t)$ be the solution to (4), (5) and $v^g(x,s)$ be the solution to the initial-boundary value problem

$$v_{ss}^g - \bar{b}_0 v_s^g + a^*(x, D) v^g = 0, (19)$$

$$B^*v|_{\partial M \times \mathbb{R}_+} = g, \quad v^g|_{s=0} = v_s^g|_{s=0} = 0,$$
 (20)

which is associated with \mathcal{A}_{ad} . Let

$$U^f(t) = (u^f(t), iu_t^f(t))^t, \quad V^g(s) = (v^g(s), iv_s^g(s))^t.$$

Then

$$U_t^f + i\mathcal{A}U^f = 0, \quad V_s^g + i\mathcal{A}_{ad}V^g = 0.$$

Lemma 3. For any $f, g \in L^2(\partial M \times \mathbb{R}_+)$ BSD $\{\lambda_j, \phi_{j,k,l}^1|_{\partial M}, \psi_{j,k,l}^2|_{\partial M}\}$ determine $\mathcal{F}U^f(t)$ and $\mathcal{F}_{ad}V^g(s) = \mathcal{V}_{ad} = \{(V^g(s), \tilde{\Psi}_{j,k,n_{j,k}-l-1})\}.$

Proof. Part integration together with relation (15) for Ψ yields that

$$i\partial_{t}(U^{f}(t), \Psi_{j,k,n_{j,k}-l-1}) = \lambda_{j}(U^{f}(t), \Psi_{j,k,n_{j,k}-l-1}) + (U^{f}(t), \Psi_{j,k,n_{j,k}-l-2}) + \int_{\partial M} f(t)\psi_{j,k,n_{j,k}-l-1}^{2}|_{\partial M} dS.$$

As $U^f|_{t=0} = 0$ this equation proves Lemma for $U^f(t)$. Taking into account (17) the same considerations prove Lemma for $V^g(s)$.

Corollary 3. Let $f, g \in L^2(\partial M \times \mathbb{R}_+)$. Given BSD and $t, s \geq 0$ it is possible to evaluate

$$(U^f(t), J^*V^g(s)) =$$

$$= i \int_{M} [u_t^f(x,t)\bar{v}^g(x,s) - u^f(t)\bar{v}_s^g(x,s) + b_0(x)u^f(x,t)\bar{v}^g(x,s)]dx.$$

Proof. The statement is an immediate corollary of the fact that $U^f(t) \in H^1 \times L^2$, $J^*V^g(s) \in L^2 \times H^1$, Lemma 1, Corollary 1, definition (14), and Lemma 3.

5. Reconstruction of (M, g)**.** Denote by $\mathcal{L}^s, s \in \mathbb{R}$ the subspace in $H^{s+1} \times H^s$ of the functions which satisfy natural compatibility conditions for the hyperbolic problem (4), (5) (see e.g [13]) and by \mathcal{L}^s_{ad} the analogous subspace for (19), (20).

Theorem 2 [14]. Let (M, g) satisfies the BLR-condition. Then

$$\{U^f(T); f \in H_0^s(\partial M, [0, T])\} = \mathcal{L}^s, \quad T > t_*, s \ge -1/2.$$

Corollary 4. Let (M, g) satisfies the BLR-condition. Then BSD determine $\mathcal{F}(\mathcal{L}^s)$, $\mathcal{F}_{\mathrm{ad}}(\mathcal{L}^s_{\mathrm{ad}}), \quad s \geq -1/2$.

Proof. The statement follows from Lemma 3 and Theorem 2.

Let $\Gamma \subset M$ be open, $t \geq 0$. Denote

$$M(\Gamma, t) = \{ x \in M : d(x, \Gamma) \le t \}.$$

Lemma 4. Let $\mathcal{U} \in \mathcal{F}(\mathcal{L}^s)$, $s \geq 0$, $\mathcal{U} = \mathcal{F}\mathcal{U}$. Then for any $\Gamma \subset \partial M$, $t_0 \geq 0$ BSD determine whether $m_g(supp U \cap M(\Gamma, t)) = 0$ or not. Analogous statement takes place for \mathcal{V}_{ad} .

Here m_g is the measure on (M, g).

Proof. Consider $\mathcal{U}(t) = \{U_{j,k,l}(t)\}$ where

$$\frac{d}{dt}U_{j,k,l}(t) + i\lambda_j U_{j,k,l}(t) + iU_{j,k,l+1}(t) = 0, \quad t \in \mathbb{R},$$
(21)

$$U_{j,k,l}(0) = U_{0;j,k,l}, (22)$$

where $\{U_{0;j,k,l}\} = \mathcal{U}_0 \in \mathcal{F}(\mathcal{L}^s)$. Then $\mathcal{U}(t) \in \mathcal{F}(\mathcal{L}^s)$ for all t and $\mathcal{U}(t) = \mathcal{F}\mathcal{U}(t)$ where

$$U_t(t) + i\mathcal{A}U(t) = 0, \quad U(0) = U_0.$$

As $s \geq 0$ Lemma 1 and Sobolev embedding theorem show that

$$u^{1}(t)|_{\partial M} = \lim_{\tau \to 0} \lim_{N \to \infty} [P_{\tau}^{\beta}(\mathcal{A})U(t)]^{1}, \tag{23}$$

where the convergence takes place in $L^2(\partial M)$. In view of the Homgren-John theorem [15] the fact that $m_q(supp U \cap M(\Gamma, t)) = 0$ is equivalent to the fact that

$$suppu^{1}|_{\partial M \times \mathbb{R}} \cap (\Gamma \times [-t_{0}, t_{0}]) = \emptyset.$$
(24)

However $\phi_{j,k,l}^1|_{\partial M}$ are known so that the statement follows from (21), (22) and (23), (24).

Corollary 5. Let $\Gamma \subset \partial M$, $t_0 \geq 0$ and $s \geq 0$. Then BSD determine subspaces $\mathcal{F}(\mathcal{L}^s(\Gamma, t_0))$, $\mathcal{F}([\mathcal{L}^s(\Gamma, t_0)]^c)$, and $\mathcal{F}_{ad}(\mathcal{L}^s_{ad}(\Gamma, t_0))$, $\mathcal{F}_{ad}([\mathcal{L}^s_{ad}(\Gamma, t_0)]^c)$, where

$$\mathcal{L}^{s}(\Gamma, t_{0}) = \{ U \in \mathcal{L}^{s} : suppU \subset cl(M(\Gamma, t_{0})) \};$$

$$[\mathcal{L}^s(\Gamma, t_0)]^c = \{ U \in \mathcal{L}^s : supp U \subset cl(M \setminus M(\Gamma, t_0)) \}$$

and analogous definitions are valid for $\mathcal{L}^s_{\mathrm{ad}}(\Gamma, t_0), [\mathcal{L}^s_{\mathrm{ad}}(\Gamma, t_0)]^c$.

Proof. By Lemma 4 BSD determine $[\mathcal{L}^s(\Gamma, t_0)]^c$, $[\mathcal{L}^s_{ad}(\Gamma, t_0)]^c$. As $U \in \mathcal{L}^s(\Gamma, t_0)$ is equivalent to the fact that $(U, J^*V) = 0$ for all $V \in [\mathcal{L}^s_{ad}(\Gamma, t_0)]^c$ the remaining part of Corollary 5 follows from Corollary 3.

Corollary 6. Let $\Gamma_i \subset \partial M, t_i^+ > t_i^- \geq 0$; i = 1, ..., I. Denote by M_I the set

$$M_I = \bigcap_{i=1}^{I} (M(\Gamma, t_i^+) \setminus M(\Gamma, t_i^-)). \tag{25}$$

Then BSD determine whether $m_q(M_I) = 0$ or not.

Corollary 6 is the basic analytic tool in the reconstruction of (M, g). For this end introduce $\mathcal{R}: M \to L^{\infty}(\partial M)$;

$$\mathcal{R}(x) = r_x(y) = d(x, y), \quad y \in \partial M.$$

It is shown in [7] that $\mathcal{R}(M) \subset L^{\infty}(\partial M)$ has a natural structure of a Riemannian manifold such that $\mathcal{R}: M \to \mathcal{R}(M)$ is an isometry.

Theorem 3. BSD of the operator pencil (1), (2) which satisfies the BLR-condition determine (M, g) uniquely.

Proof. In view of the above remark about isometry between (M, g) and $\mathcal{R}(M)$ it is sufficient to show that BSD determine $\mathcal{R}(M)$. Choose $\delta > 0$ and a collection of Γ_i , $i = 1, ..., I(\delta)$ such that $\operatorname{diam}(\Gamma_i) \leq \delta$, $\cup \Gamma_i = \partial M$. Let

$$p = (p_1, ..., p_{I(\delta)}), \quad p_i \in \mathbb{N}, \quad t_i^+ = (p_i + 1)\delta; \quad t_i^- = (p_i - 1)\delta.$$
 (26)

Denote by $M_I(p)$ the set M_I (see (25)) with t_i^{\pm} of form (26) and correspond to every p such that $m_g(M_I(p)) > 0$ a piecewise constant function $r_p(y) = p_i \delta$ when $y \in \Gamma_i$. Let $\mathcal{R}_{\delta}(M)$ be the collection of these functions. Then

$$Dist(\mathcal{R}_{\delta}(M), \mathcal{R}(M)) < 3\delta.$$

Taking $\delta \to 0$ we construct $\mathcal{R}(M)$.

6. Reconstruction of the lower-order terms.. Let $x_0 \in \text{int} M$ and

$$M_I(\delta) \longrightarrow x_0 \quad \text{when} \quad \delta \to 0.$$
 (27)

Consider a family $\mathcal{V}(\delta) \in \mathcal{F}_{\mathrm{ad}}(\mathcal{L}^0)$ such that

$$\operatorname{supp}V(\delta) \subset \operatorname{cl}(M_I(\delta)), \quad \mathcal{V} = \mathcal{F}_{\operatorname{ad}}V(\delta), \tag{28}$$

and for any $\mathcal{U} \in \mathcal{F}(\mathcal{L}^s)$, s < m/2 < s+1 there is a limit $\mathcal{W}^{x_0}(\mathcal{U})$;

$$\mathcal{W}^{x_0}(\mathcal{U}) = \lim_{\delta \to 0} (U, \mathcal{V}(\delta)),$$

where the inner product in the rhs of (28) is understood in Abel-Lidskii sense. Such families exist, indeed it is sufficient to take C_0^{∞} -approximations to $(\delta(\cdot - x_0), 0)^t$. On the other hand since

$$(\mathcal{U}, \mathcal{V}(\delta)) = (U, J^*V(\delta)),$$

the existence of the limit means that there is a limit $W^{x_0} \in [D'(M)]^2$ of $V(\delta)$. By (27) supp $W^{x_0} \subset \{x_0\}$. Moreover as the limit exists for $U \in \mathcal{L}^s$, s < m/2 < s + 1, $W^{x_0} = (0, \kappa(x_0)\delta(\cdot - x_0))^t$.

Lemma 5. Let BSD of an operator pencil (1), (2) be given and (M,g) satisfies the BLR-condition. Then it is possible to construct a map $\mathbb{W}: M \longrightarrow \mathbb{C}^{\infty}$;

$$\mathbb{W}(x_0) = \mathcal{W}^{x_0}; \quad W^{x_0}_{j,k,l} = \overline{\mathcal{W}}^{x_0}(\mathcal{E}^{(j,k,l)}),$$

(where $\mathcal{E}^{(j,k,l)}$ is the sequence with 1 at the (j,k,l)-place and 0 otherwise) such that

$$W(x_0)(\mathcal{U}) = \kappa(x_0)u^1(x_0), \quad \mathcal{U} \in \mathcal{F}(\mathcal{L}^s), \quad s < m/2 < s + 1;$$

$$\kappa \in C^{\infty}(M), \quad \kappa|_{\partial M} = 1, \quad \kappa \neq 0 \quad on \ M. \tag{29}$$

Proof. To prove Lemma it is sufficient to show the existence of $\mathcal{V}^{x_0}(\delta)$ such the their limits \mathcal{W}^{x_0} satisfy the following conditions

- i. $W^{x_0} \neq 0$;
- ii. $\mathcal{W}^{x_0}(\mathcal{U}) \in C^{\infty}(M)$ when $\mathcal{U} \in \mathcal{F}([C_0^{\infty}(M)]^2;$
- iii. $\mathcal{W}^{x_0}(\mathcal{U}) = u^1(x_0)$ when $x_0 \in \partial M$; $\mathcal{U} \in \mathcal{F}(\mathcal{L}^s)$, s < m/2 < s+1.

To prove the existence of such $\mathcal{V}^{x_0}(\delta)$ we can take adjoint Fourier transforms of some smooth approximations to $(0, \delta(\cdot - x_0))^t$. On the other hand, conditions i-iii may be algorithmically verified due to Lemma 3, Corollary 3, Corollary 4, Lemma 4 and Lemma 1.

Corollary 7. BSD of a pencil (1),(2) with (M,g) satisfying the BLR-condition determine the functions $\kappa(x)\phi_{j,k,l}^1(x)$; $j=1,2,...,k=1,...,r_j,l=1,...,n_{j,k}$ where κ satisfies relations (29).

Proof. Since

$$\kappa(x_0)\phi_{j,k,l}^1(x_0) = \mathcal{W}_{j,k,l}^{x_0},$$

and $\Phi_{j,k,l} \in \mathcal{L}^s$ for any s the statement follows from Lemma 5.

The functions $\kappa \phi_{i,k,l}^1$ are the root functions for the pencil $A_{\kappa}(\lambda)$;

$$A_{\kappa}(\lambda_{j})(\kappa\phi_{j,k,l}^{1}) := a_{\kappa}(x,D)(\kappa\phi_{j,k,l}^{1}) - i\lambda_{j}b_{0}(\kappa\phi_{j,k,l}^{1}) - \lambda_{j}^{2}(\kappa\phi_{j,k,l}^{1}) = \kappa\phi_{j,k,l-1}^{1}, (30)$$

$$B_{\kappa}(\kappa\phi_{j,k,l}^{1}) := (\partial_{\nu}(\kappa\phi_{j,k,l}^{1}) - \sigma_{\kappa}(\kappa\phi_{j,k,l}^{1}))|_{\partial M} = 0, \tag{31}$$

where

$$a_{\kappa}(x, D) = \kappa a(x, D)\kappa^{-1}; \quad \sigma_{\kappa} = \sigma + \partial_{\nu}[\ln \kappa].$$

Lemma 6. Functions $\kappa \phi_{j,k,l}^1, j = 1, 2, ..., k = 1, ..., r_j, l = 1, ..., n_{j,k}$ where κ satisfies (66) determine $a_{\kappa}, \sigma_{\kappa}, b_0$.

Proof. By Lemma 1 finite linear combinations of $\kappa \Phi_{j,k,l} = (\kappa \phi_{j,k,l}^1, \lambda_j \kappa \phi_{j,k,l}^1)^t$ are dense in $[C^N(\Omega)]^2$ for any $N \geq 0, \Omega \ll M$. In particular for $x_0 \in \text{int} M$ the vectors $(\kappa(x_0)\phi_{j,k,l}^1(x_0), \nabla(\kappa \phi_{j,k,l}^1)(x_0), \lambda_j \kappa(x_0)\phi_{j,k,l}^1(x_0))^t \in \mathbb{C}^{m+2}$ span \mathbb{C}^{m+2} . Then equations (30) determine a_{κ} and b_0 .

On the other hand for any $y \in \partial M$ there is $\phi_{j,k,l}^1$ such that $\phi_{j,k,l}^1(y) \neq 0$. Hence equations (31) determine σ_{κ} .

Theorem A is now a corollary of Lemma 6, Lemma 7 and properties (29) of κ .

Some remarks.

- i. The BLR-condition is always satisfied for $M \subset \mathbb{R}^m$ with the metric $g^{j,l} = \delta^{j,l}$ or its C^1 -small perturbations (see e.g. [14, 16]);
- ii. In particular the results of the paper are always valid for m = 1 even when GBSD are prescribed at only one boundary point (see also [17]);
- iii. Using the nonstationary variant of the BC-method (see e.g. [8, 18]) it is possible to prove an analog of Theorem A when the data is the response operator $R^h(t)$ of form (6) for the problem (4), (5) in the case when (M, g) satisfies the BLR-condition and $t > 2t_*$.

Acknowledgements. The authors are grateful to M.S.Agranovich, C.Bardos, A.S.Markus and E.Somersalo for fruitful discussions and friendly support. The research was partly supported by Volkswagen-Stiftung (RiP-Program, Oberwolfach) and by EPSRC Grant GR/M36595.

References.

- 1. Agranovich M. S. Elliptic Boundary Problems, Encycl. Math. Sci. 79 (1996), 1-140.
- 2. Gel'fand I. M., Proc. Intern. Congress Math. 1 (1957), 253-277.
- 3. Shiota T. An inverse problem for the wave equation with first order perturbations, Amer. J. Math. **107** (1987), 241-251.
- 4. Romanov V. G. Uniqueness theorems in inverse problems for some second-order equations, Dokl. Math. 44 (1992), 678-682.
- 5. Lassas M. Inverse boundary spectral problem for a hyperbolic equation with first order perturbation, to appear in Applic. Anal.
- 5a. Isakov V. Inverse Problems for Partial differential Equations, Appl. Math. Sci. 127, Springer (1998), 284.
- Kurylev Y.V. A multidimensional Gel'fand-Levitan inverse boundary problem, Differential Equations and Mathematical Physics (ed. I.Knowles), Intern. Press (1995), 117-131.
- 7. Kurylev Y. V. Multidimensional Gel'fand inverse problem and boundary distance map, Inverse Probl. related with Geometry (ed. H.Soga) (1997), 1-15.
- 8. Belishev M. I. Boundary control in reconstruction of manifolds and metrics, Inv. Probl. 13 (1997), R1-R45.
- 9. Gohberg I.C., Krein M.G. Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr. **18** (1969), AMS 378.
- 10. Katsnel'son V. E. Convergence and summability of series in root vectors for some classes of non-self-adjoint operators (in Russian), Candidate Thesis, Kharkov (1967).
- 11. Kurylev Y.V., Lassas M.The multidimensional Gel'fand inverse problem for non-self-adjoint operators, Inverse Problems 13 (1997), 1495-1501.
- 12. Nazarov S.A., Plamenevsky B.A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, W. de Gruyter (1994), 525.
- 13. Rauch J., Massey F. Differentiability of solutions to hyperbolic initial-boundary value problem, Trans. Amer. Math. Soc. 189 (1974), 303-318.
- 14. Bardos C., Lebeau G., Rauch J. Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim. **30** (1992), 1024-1065.
- 15. Tataru D. Uniwue continuation for the solutions to PDE's; between Hormander's theorem and Holmgren's theorem, Comm. Part. Diff. Eq. **20** (1995), 855-884.

- 16. Tataru D.Boundary controllability for conservative PDE's, Appl. Math. Optim. **31** (1995), 257-295.
- 17. Kabanikhin S., Yamamoto M.
- 18. Belishev M. I., Kurylev Y.V. Nonstationary inverse problem for the wave equation "in large" (in Russian), Zap. Nauchn. Semin. LOMI **165** (1987), 21-30