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1. Introduction. Main result. In the paper we deal with an inverse problem
for a quadratic operator pencil

AMNu = a(z, D)u — ibgdu — A\, (1)

Bu := 0,u — oulop =0 (2)
on a differentiable compact connected manifold M,dim M = m > 1, with non-
empty boundary OM # (). Here a(z, D) is a uniformly elliptic symbol

a(:z:, D) = _g_1/2(6j + bj)gl/2gjl(6l + bl) +q,

where [gjl]?}lzl defines a C*°-smooth Riemannian metric and b = (by, ..., b,,) and
q are, correspondingly, C°*°-smooth complex-valued 1-form and function on M. o
is a C*°-smooth complex-valued function on M and 0, stands for the normal
derivative.

Let Ry be the resolvent of (1), (2) which is meromorphic for A € C (see Sect. 3
and [1]) and let Ry(z,y) be its Schwartz kernel. A natural analog of the Gel’fand
inverse problem [2] is

Problem I. Let OM and Ry(z,y); A € C,x,y € OM be given. Do these data
(Gel’fand boundary spectral data, GBSD) determine (M, a(z, D), by, o) uniquely?

Remark 1. Let Gy be the Neumann-to-Dirichlet map Gy f := u§|aM where
AMu/(A) =0, Buf(N) =/ (3)

Then GBSD means that G, are known for all \.

Remark 2. By Fourier transform, u(x,\) — wu(z,t), Problem I is equivalent to the
inverse boundary problem for the dissipative wave equation

ul, + bou! + a(z, D)u/ =0, (4)

Bul = flonxr,; wlli=o = ufli=0 =0, (5)

where inverse data is given in the form of the response operator R";
RM(f) = u[onrxr. - (6)

This hyperbolic inverse problem and its analogs were considered in [3-5a]. Paper

[3] dealt with the inverse scattering problem, M = R™, with ¢/ = §/!. It was

generalised in [4] onto the Gel’fand inverse boundary problem in a bounded domain
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in R™; ¢! = §7'. In [5] the uniqueness of the reconstruction of the conformally
euclidian metric in M € R™ and the lower order terms (with some restrictions
upon these terms) was proven for the geodesically regular domains M. At last a
local variant of the problem with data prescribed on a part of the boundary was
studied in [5a]. As for the case by = 0 and self-adjoint studied in full generality in
6,7].

In the paper we give the answer to Problem I assuming some geometric conditions
upon (M, g). The main technique used is the boundary control (BC) method (see
e.g. [8]) in the geometrical version [7].

Definition 1.(M,g) satifies Bardos-Lebeau-Rauch (BLR) condition if there is
t. > 0 and an open conic neighbourhood O of the set of not-nondiffractive points
in T*(OM x [0,t.]) such that any generalised bicharacteristic of the wave operator
02 — A, passes through a point of T*(OM x [0,t.]) \ O.

Theorem A. Let (OM;Gx, A € C) be GBSD for a quadratic operator pencil (1),
(2). Assume that the corresponding Riemannian manifold (M, g) satisfies the BLR-
condition. Then these data determine M and by uniquely while a(x, D) and o to
within a gauge transformation

a(x,D) — ka(z, D)™ Y k€ C®(M;C), klow=1, x#0 on M.

2. Auxiliary constructions.. In view of the gauge invariance we can assume
that 0 = 0. By A-linearisation;

u— U = (u, \u)’,
the pencil (1), (2) takes the form

AU =\U; A=Ay + Aq;

0 IY, B 0 0
AO:(AO 0)’ Al_(al(x,D) —ibo)'

Here Ag = —A, is the Laplace operator with Neumann boundary condition;
D(Ag) = HZ(M) := {u € H*(M) : d,ulop = 0}
and aq(z, D) = a(z, D) + A,. Operators Ay, A with
D(Ao) = D(A) = HX(M) x L*(M)

are closed in H = [L?(M)]?. By the transformation A — X + id; A9 — Ag + d* we
get
14511 < 15 laa(w, DYAG || < 1/2. (7)

The adjoint operator, A* is then

A (? ﬁ)()) , D(AT) = L*(M) x D(A”);

D(A*) = Hs’b ={u € H? B*u:=0d,u— 2b,ulgpn = 0},



where b, = (v, ).
Using A* instead of A we define operators A,q and A ;

(0 1 _ rr2 2
Aad — <A>I< ’LB()) ’ D(Aad) — Hu,b X L*.

Our goal is to use eigenfunction expansion corresponding to A, A* and A.q, Al,.

To this end we introduce operators Ty, T = T + 17 where

(0 AP B 0 0 .
Ty = (A(l)/g 0 ) T, = A31/4a1A51/4 —iAal/A‘bvo_l/4 ;o (8)

1/2
D(T) = D(Ty) = [D(Ay*)]? = [H' (M)]*.
By (7) T ia bounded-invertible. We have

ToU = LY AgLU; TU =L YALU for U € D(AY*) xDAY?);  (9)

L= (A51/4 ?/4).
0o Al

3. Abel-Lidskii expansion. From (18) TO_1 € Xp, p > m where X, is the
Schatten-von Neumann class (see e.g. [9]). As Ty is bounded T' = Ty + T3 is a weak
perturbation of T. Due to the general theory of weak perturbations of self-adjoint
operators (see e.g. [1, Sect.6.2-6.4]) the spectrum o(7") of T' is normal .

Let 8 > m be an even integer, 7 > 0 and I - a finite contour in C, ' No(T) = 0.
Denote by Pﬁ’T(T) the modified Riesz projector for T

P (T) = - [ e (T - o),
o 2mi Jp

and by Pﬁ’T(TO) -the analogous projector for Tj.

Let T" be a contour in C consisting of two segments Imz = +a, Rez € [-b, 1],
and four semiaxes Imz = +cRez (see Fig. 1).
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Fig. 1

Parameters a, b, c are chosen so that
i) o(T) lies inside T}
ii) Rez” > colz?|,co > 0 for [Imz| < c|Rez|.
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Theorem 1 (Abel-Lidskii convergence). There exist real numbers ay > 0,
N = 1,2, ..., which depend only upon o(T) such that

Y = lim lim Py (T)Y. (10)
The convergence in (10) takes place in [H*]2, s € [-1/2,1/2] when Y € [H*]? and
in the graph norm of 7" when Y € D(T™),n = 1,2, .... Here P]’?T (T') correspond

to the contours I' y obtained from I' by cutting it by vertical lines Rez = +ay (see
Fig.2).

Imz

a—/—
.

> Rez
an

¥
ﬁ

Fig.2

Proof. Since Ty € ¥,,, p > m and T} is bounded the results of [1, Sect. 6.2-6.4]
(see also [10]) show the existence of oy, which depend upon o(71y), o(T") such that

S
Py (T) = PA(T).
—00
The proof of the strong convergence is based upon exponential estimates for (7" —
2)7 1 (Ty — 2)~ 1. However since Pﬁ,ﬁ (T') remains intact under small deviations of

a/y it is possible to choose an independent of o(7p). Moreover the results of [1]
show that

1
P2(T) = PY(To) = —5 ;a”%T—z>Vnab—@wz (11)

(T — 2) 7 T (T — 2) Y| < edl2| ™%, se[-1/2,1/2], =z lies outsidel, (12)

where || - ||s stands for the operator norm in [H*]?. As s — lim P?(T,) = I and the
rhs of (11) tends to 0 when 7 — +0 the statement follows for Y € [H*]?.
The last part of Theorem follows from the case s = 0 since for Y € D(T™)

TPy (T)Y = Py (T)T"Y.

Since A has only point spectrum and o,(A) = o(T') equation (9) yields that A
has normal spectrum.



Lemma 1. Let U = (u,u?)* € HY(M) x L>(M) or [C§(M))?. Then

U= lim lim Py (A,

7T—0 N—oo

where the convergenve takes place in H' x L? when U lies in this space or in CN ()
for any N > 0,Q < M when U € [C§°(M)]>.

Proof. As Y = LU € [H'Y?)? when U € H' x L? Theorem 1, s = 1/2 proves
the statement for this case. As L7YC$(M)]? C D(T") for any n > 0 and
D(T™) C [H™)? this case also follows from Theorem 1 and the fact that L is a
pseudodifferential operator of the order 1/2.

Corollary 1. Let U € L3(M) x HY (M) or [C§°(M)]2. Then

U= lim lim Py (A", (13)

T—0 N—o00
where the convergenve takes place in L? x H' and CN () for any N > 0,Q < M,
respectively.

Proof. As ||[(T* —2)"t —(To — 2)7Y|s = ||(T — 2) 7t — (Ty — 2) Y| _s estimate (12)
remains valid for 7%, Ty and s = 1/2 for z outside I'. The same arguments as in
Theorem 1 show that

_ - B : 1/272
Y TEIEOJ\}EHOOPN’T(T )Y in [HY#)%.

AsY = LU € [H'Y?)? when U € L? x H' (13) follows. As for the case U €
[C§°(M)]? the arguments are the same as in Lemma 1.

Using the representation
= JATTY AT = T AT (14)
J [(u',u®)"] = (u* + ibou', u')’,
we come to

Corollary 2. The statement of Lemma 1 is valid for A%,. The statement of Corol-
lary 2 is valid for A.q.

4. Root functions and boundary spectral data.. Let p; := dimH; =
dimH; where H; 1= Py, (A)H; H; = Py (A")H and r; := dimKer(A — \;) =
dimKer(A* — ;). Denote by ®; o = (gzﬁ;’k’O, gbik’o)t, U0,k =1,..,1; the eigen-
vectors of A, A* at )\j,S\j, correspondingly, and by n;x,n;1 > nj2 > ... > nj.,
their partial null multiplicities; p; = nj1+... + 1. Let @ p 0, Wy, l =1, 05
be the root functions associated with ®; 1 0, V; 1 0;

(A=X)Pjkr=Pjni1; (A =)0 =Tjpi1. (15)
It is possible to choose @, 1, V;r1j =1,2,...,k=1,...,7r;,l =1,...,n; so that

(@jkests Vo ks 1)1 = 05,5 Ok kOt o~ —1 (16)
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(see e.g. [11; Sect. 2] or [12; Sect. 1.2]). The choice of ®;;, ¥, x; when j is
fixed is non-unique. The group of admissible transformations form a subgroup in
GL(;,C) defined by conditions (15), (16) (see e.g. [11; sect. 2]).

Let U,V € 'H. Denote by

FU)=U={Ujr1; Ujrg = (U, ¥k, —1-1)};

F (V)= = {V,k,la gkl =(V, ‘I’j,k,nj,HA)}

their Fourier transforms with respect to A, A*, correspondingly. Using Lemma 1
and Corollary 2 we obtain

Corollary 3. LetU € H' x L?,V € L?* x H'. Then their Fourier transforms U, V*
determine (U, V) uniquely.

Due to the relations (14) the analogous results take place for A,q, A}, with basis
Vgt = IPjeg; ®ina = (J) 7 W (17)

The basis ®; 1, ¥, 1, makes sense to the following

Definition. Boundary spectral data (BSD) of the pencil (1), (2) is the collection
(GM, /\j, Qﬁl’ , ¢?,k,l|aM’ j = 1, 2, caey k= 1, ceny ’I“j,l = 1, ...,nj7k).

Theorem 2. GBSD determine BSD to within the group of transformations of the
biorthogonal basis which preserve properties (15), (16).

Proof. Given Ry(z,y),z,y € OM it is possible to find U>\|8M where u{ is the
solution to (3). Consider U{ = (u/\,)\u/\) . Then

(a - )\)U)J\c =0,

where a is an operator on H? x L?;

“= <a(a:(,)D) —fb0> '

Let e € H2,0,¢e|lonr = f and E = (e,0)t. Then
Ul =FE—(A- X" (a—NE.

U )Jf is a meromorphic function of A\ with possible singularities only at A\; € o(A)
and U/{c — Py, (.A)U/]\c is analytic at A;. But

Ty Mg k— 1

[Py, (A) Uf Mom = Z Z ],kz,l J,,

By Green’s formula

A AU W o 11) = /8 Do dS- (18)



_(U)\f7 Qjakvnj,k_l_2)'

By means of equation (18) (with different f) it is possible to find all \; € o(A) =
o(A(X)) as well as the boundary values ¢;,k,l|3M’ wik’l\aM to within a linear trans-
formation preserving (15), (16) (for details see e.g. [11; Sect. 3]).

Let u/ (x,t) be the solution to (4), (5) and v9(x, s) be the solution to the initial-
boundary value problem

v9, — bovd + a*(x, D)v? = 0, (19)

B*vlomxr, =9, v7|s=0 =vJ|s=0 =0, (20)
which is associated with A,q. Let
U'(t) = (uf (1), iul ()", VI(s) = (v9(s),ivd(s))".
Then
Ul +iAUT =0, VI +idqV? =0.
Lemma 3. For any f,g € L*(OM x Ry) BSD {\j, ¢ lons; 9057 1. iloar} determine

FU/(t) and FaqVI(s) = Vaq = {(VI(s), VS kngo—1-1) )
Proof. Part integration together with relation (15) for ¥ yields that

10, (U (£), W seiny o —1-1) = MU (1), W5k 1) + (U (1), Wk -1-2) +

[ H O lowds.
oM
As U/|;—g = 0 this equation proves Lemma for U/ (¢). Taking into account (17) the

same considerations prove Lemma for V9(s).

Corollary 3. Let f,g € L>(OM x R,) . Given BSD and t,s > 0 it is possible to
evaluate

(U7 (t), J*V(s)) =

= z'/M [u! (@, )09 (z, s) — u! ()09 (x, ) + bo(z)u! (x, )09 (x, 5)]dz.

Proof. The statement is an immediate corollary of the fact that Uf(t) € H' x L?,
J*V9(s) € L? x H', Lemma 1, Corollary 1, definition (14), and Lemma 3.

5. Reconstruction of (M, g). Denote by £%,s € R the subspace in H**! x H*
of the functions which satisfy natural compatibility conditions for the hyperbolic
problem (4), (5) (see e.g [13]) and by L, the analogous subspace for (19), (20).

Theorem 2 [14]. Let (M, g) satisfies the BLR-condition. Then

{(UN(T); f € H3(OM,[0,T))} = L°, T >t,,s>—1/2.
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Corollary 4. Let (M, g) satisfies the BLR-condition. Then BSD determine F(L®),
Fad(Liy), s>—1/2,

Proof. The statement follows from Lemma 3 and Theorem 2.

Let I' C M be open, t > 0. Denote
M, t)={z e M :d(z,T') < t}.

Lemma 4. LetU € F(L%),s >0, U = FU. Then for any T' C OM,ty > 0 BSD
determine whether mg(suppU N M(I',t)) = 0 or not. Analogous statement takes
place for Vaq.

Here my is the measure on (M, g).

Proof. Consider U(t) = {U, ()} where

d ) .
%Uj’k’l(t) + Z)\jUjvkyl(t) + ZUj,k,l—f—l(t) =0, teR, (21)
Uj k1 (0) = Uosjke i, (22)

where {Uo.jri} = Uy € F(L%). Then U(t) € F(L?) for all t and U(t) = FU(t)
where

Up(t) +iAU(t) =0, U(0) = Up.

As s > 0 Lemma 1 and Sobolev embedding theorem show that

W (®)oar = lim lim [PP(AU®)], (23)

T7T—0 N—oo

where the convergence takes place in L2(OM). In view of the Homgren-John theo-
rem [15] the fact that my(suppU N M (T',t)) = 0 is equivalent to the fact that

suppullaMxR N (T x [—to, to]) = 0. (24)
However ¢5]1-7 k.1lon are known so that the statement follows from (21), (22) and (23),
(24).
Corollary 5. Let I' € OM,tg > 0 and s > 0. Then BSD determine subspaces
F(LT,t0)), F(IL3T, 10)]), and Faa(L34(T,t0)), Faa([£54(T, 0)]), where
L3I, tg) ={U € L% : suppU C cl(M(T,ty))};

[L3(T,t0)]¢ ={U € L : suppU C cl(M \ M(T,ty)}
and analogous definitions are valid for L3 4(T, %), [L54(T, to)]¢.

Proof. By Lemma 4 BSD determine [L*(I, %)%, [£34(T,t0)]¢. As U € L3(T', %) is
equivalent to the fact that (U, J*V) =0 for all V' € [L,(T,%9)]° the remaining part
of Corollary 5 follows from Corollary 3.



Corollary 6. LetI'; C OM, t:r >t >0; i=1,...,1. Denote by M the set
My = 0j_ (M (T, 1)\ M(T,t;)). (25)

Then BSD determine whether mg(Mp) =0 or not.
Corollary 6 is the basic analytic tool in the reconstruction of (M, g). For this
end introduce R : M — L*(0M);
R(x) = rz(y) = d(z,y), yeIM.
It is shown in [7] that R(M) C L*°(0M) has a natural structure of a Riemannian
manifold such that R : M — R(M) is an isometry.

Theorem 3. BSD of the operator pencil (1), (2) which satisfies the BLR-condition
determine (M, g) uniquely.

Proof. In view of the above remark about isometry between (M, g) and R(M) it
is sufficient to show that BSD determine R(M). Choose § > 0 and a collection of
Ii,i=1,...,1(9) such that diam(I';) < §, UI'; = OM. Let

p=(p1,-prs)), Pi €N, tf=(p;+1)8 t; = (pi—1)d. (26)

Denote by M;(p) the set M; (see (25)) with t of form (26) and correspond to
every p such that mgy(M;(p)) > 0 a piecewise constant function 7,(y) = p;é when
y € I';. Let Rs5(M) be the collection of these functions. Then

Dist(Rs(M), R(M)) < 3.
Taking § — 0 we construct R(M).
6. Reconstruction of the lower-order terms.. Let z¢ € intM and
M;(§) — x9 when § — 0. (27)
Consider a family V() € F,q(L°) such that
suppV (9) C cl(M;(9)), V = FaaV(0), (28)
and for any U € F(L?%),s < m/2 < s+ 1 there is a limit W (U);

6—0

where the inner product in the rhs of (28) is understood in Abel-Lidskii sense. Such
families exist, indeed it is sufficient to take C§°-approximations to (§(- — zg),0)".
On the other hand since

(U, V(9)) = (U, "V (5)),

the existence of the limit means that there is a limit W@ € [D'(M)]? of V(§). By
(27) suppW? C {xp}. Moreover as the limit exists for U € L% s < m/2 < s+ 1,
Weo = (0, k(x9)d(- — x0))°.
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Lemma 5. Let BSD of an operator pencil (1), (2) be given and (M, g) satisfies
the BLR-condition. Then it is possible to construct a map W : M — C*°;

W(xo) = W5 Wip, = W™ (£0RD),
(where EUFV s the sequence with 1 at the (j,k,1)-place and O otherwise) such that
W(zo)U) = k(zo)u (zg), U € F(L%), s<m/2<s+1;
k€ C®(M), kloy=1, K#0 on M. (29)

Proof. To prove Lemma it is sufficient to show the existence of V*°(§) such the
their limits W*° satisfy the following conditions

i. W?r #£0;

ii. W2 (U) e C®(M) when U € F([C§°(M)]?;

iii. WP (U) = u'(zy) when xg € OM; U € F(L),s <m/2 < s+ 1.

To prove the existence of such V0 (§) we can take adjoint Fourier transforms of
some smooth approximations to (0,d(- — xg))*. On the other hand, conditions i-iii
may be algorithmically verified due to Lemma 3, Corollary 3, Corollary 4, Lemma
4 and Lemma 1.

Corollary 7. BSD of a pencil (1),(2) with (M,g) satisfying the BLR-condition
determine the functions m(x)qﬁik’l(:p);j =1,2,...k=1,..,r;,l =1,...nj1 where
K satisfies relations (29).

Proof. Since
%($0)¢},k,l($0) = Wf,?@l’

and ®; 1 ; € L° for any s the statement follows from Lemma 5.

The functions /-iqﬁ}’ 1, are the root functions for the pencil Ax(N);
Am()‘j)(’%/);,k,l) = ay(z, D)(’fﬁb;,k,l) - i)‘jbo(’“b},k,l) - )\?(/‘fﬁb},k,z) = ’“b},k,l—lv (30)

Bn(’fﬁb},k,z) = (3u("i¢;,k,z) - Un(’fﬁé},k,zmaM =0, (31)

where
ax(z, D) = ka(z, D)™ 0. =0+0,[Ink].

Lemma 6. Functions I{QS}’k’l,j =12, k=1,..,r;,l =1,...n; where k satis-
fies (66) determine a, o0, bg.

Proof. By Lemma 1 finite linear combinations of k®; 1 = (k@; . 1, \jr¢j . )" are
dense in [CN(Q2)]? for any N > 0,Q < M. In particular for zg € intM the vec-
tors (k(20)9] 11 (%0), V(K] 1. 1) (o), Ajk(20) 9] 1 1 (20))" € C™F2 span C™F2. Then
equations (30) determine a, and by.

On the other hand for any y € OM there is (b;,lc,l such that ¢Jlkl(y) # 0. Hence
equations (31) determine o.

Theorem A is now a corollary of Lemma 6, Lemma 7 and properties (29) of .



So
i.

ii.

iii.
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me remarks.

The BLR-condition is always satisfied for M C R™ with the metric /' = 6! or its
Cl-small perturbations (see e.g. [14, 16]);

In particular the results of the paper are always valid for m = 1 even when GBSD are
prescribed at only one boundary point (see also [17]);

Using the nonstationary variant of the BC-method (see e.g. [8, 18]) it is possible to
prove an analog of Theorem A when the data is the response operator R"(t) of form
(6) for the problem (4), (5) in the case when (M, g) satisfies the BLR-condition and
t > 2t,.
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