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Abstract

This is the third in a series of three papers on quantum billiards with elliptic and ellipsoidal

boundaries. In the present paper we show that the integrable billiard inside a prolate

ellipsoid has an isolated singular point in its bifurcation diagram and, therefore, exhibits

classical and quantum monodromy. We derive the monodromy matrix from the requirement

of smoothness for the action variables for zero angular momentum. The smoothing procedure

is illustrated in terms of energy surfaces in action space including the corresponding smooth

frequency map. The spectrum of the quantum billiard is computed numerically and the

expected change in the basis of the lattice of quantum states is found. The monodromy

is already present in the corresponding two-dimensional billiard map. However, the full

three degrees of freedom billiard is considered as the system of greater relevance to physics.

Therefore, the monodromy is discussed as a truly three-dimensional e�ect.

PACS:

03.65Sq Semiclassical theories and applications

03.65Ge Solution of wave equations: bound states

03.20+i Classical mechanics of discrete systems: general mathematical aspects
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1 Introduction

Even though quantum monodromy is present in the quantization of many old and prominent

examples of classical mechanics, most notably the spherical pendulum, it had not been found

until 1988 by Cushman and Duistermaat [1]. The origin of the phenomenon is that the action-

angle variables of a completely integrable system need not be globally de�ned even in the

absence of singularities of the energy momentum mapping. This question was �rst studied by

Duistermaat [2]. The reason that monodromy was not observed in the classical works might

be that in the tradition of analytical mechanics action variables were more a device for the

integration of the system then an object with interesting global geometric properties.

The geometrisation of mechanics started with Arnold [3]. The Liouville-Arnold theorem

shows that in a neighborhood of a regular point of the energy momentum mapping action-

angle variables exist. However, they are only unique up to unimodular transformations and

there is no statement about their global properties (or even existence). The study of global

properties of integrable mechanical systems has been developed in (among others) [4, 5]. The

energy momentum mapping of a completely integrable system is the map from phase space

to the constants of motion. A regular value of this map has as preimage a d-torus where d

is the number of degrees of freedom. The image of the map is a subset of R2 . For d = 2 an

equilibrium point with a complex quadruplet of eigenvalues is an examples of a critical point

in phase space that has an isolated critical value in the image. This gives the possibility

to encircle the isolated point in the image. The circle is started with a certain choice of

fundamental cycles on the torus (and hence corresponding actions). Smoothly deforming this

basis of cycles around the critical value monodromy occurs if the basis has changed when

returning to the initial torus. The unimodular matrix that transforms the old into the new

cycles is called the monodromy matrix.

Classical monodromy has been reported for many systems (see [5, 6] and the references

therein) and for two degrees of freedom the monodromy theorem [7] states that if the preim-

age of the isolated critical point is a torus with n pinches then the monodromy matrix is 
1 0

n 1

!
. A good method to calculate the number of pinches is via singular reduction, see

[5] for the details.

Quantum monodromy is a related change in the basis of the lattice of eigenvalues of the

corresponding commuting operators. The obvious connection between classical and quantum

monodromy is via semiclassical EBK quantization of the actions as it was done in [1, 8]. A

rigorous treatment using microlocal analysis instead is given in [9].

In this paper we are going to show that in the quantum problem of a particle con�ned

to a prolate ellipsoid in R
3 exhibits monodromy. The corresponding classical problem is the

billiard inside that region. This system has three degrees of freedom but due to the hard walls

of the ellipsoid it is not a smooth system. This is the reason why we resort to the analysis

of actions to calculate monodromy. Let us remark that this is the third paper in a series

that deals with ellipsoidal quantum billiards [10, 11]. Our method rests on separability of the

system. From separation we de�ne what we call natural actions. Besides the critical values

of the energy momentum mapping these actions can have additional singularities related

to singularities in the separating coordinate system. Namely, they are continuous but not

di�erentiable for angular momentum zero. This phenomenon has been �rst observed in [12]

for the Lagrange top, but was at that time not related to monodromy. In fact, this is a
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more general phenomenon that also occurs in the Kovalevskaya top [13, 14] where (within

the current framework of the theory) there is no monodromy.

From the analytical point of view the additional singularities of the natural actions occur

when in an action integral of third kind a branch point collides with a pole. The isolated

point in the bifurcation diagram occurs when two branch points collide with a pole. This

seems to be a general mechanism leading to monodromy.

Ellipsoidal quantum billiards and, in particular, quantum billiards with a prolate ellip-

soidal boundary serve as model systems in various areas of physics. We mention the jellium

model of metal clusters [15, 16], the similarity between shell structures of prolate ellipsoidal

cavities and the Woods-Saxon potential of nuclear physics [17, 18], and the quasi particle

dynamics in Bose condensates [19]. The current paper may contribute to the classi�cation of

the quantum states in these systems.

The outline of this paper is as follows. In Sec. 2 the prolate ellipsoidal billiard is introduced

as a classical system whose equations of motion are separated in elliptic coordinates. Its

bifurcation diagram is derived from the corresponding billiard map. In Sec. 3 the classical

monodromy of the system is calculated from the requirement of the existence of locally smooth

actions. In Sec. 4 the monodromy is then further discussed in terms of energy surfaces

in action space and the corresponding frequency map. In particular, the examination of

three invariant two degrees of freedom subsystems included in the three degrees of freedom

billiard 
ow give a kind of dynamical description of the monodromy. In Sec. 5 the quantum

mechanical version of the billiard is introduced and the implication of monodromy on the

quantum spectrum is discussed. Concluding remarks and an outlook are given in Sec. 6.

2 The Classical System

The prolate ellipsoidal billiard is de�ned as follows. Consider a prolate ellipsoid in R
3 with

coordinates r = (x; y; z)t de�ned by

E1(r) = x2 +
y2 + z2

1� a2
� 1 = 0 (a2 < 1) : (1)

A particle of mass 1 with momentum p = (px; py; pz)
t moves on straight lines in the direction

of p with velocity jpj inside the ellipsoid. Encountering the boundary at r the momentum is

re
ected according to the re
ection map

R(r;p) = p� 2(p;n(r))n(r); n(r) = c(r � a2xex) (2)

where n(r) is the normal at the re
ection point, c2 = 1=(1� a2) is a normalization constant,

and (�; �) is the standard Euclidean scalar product. The billiard can be considered as a singular
limit of the geodesic 
ow on an ellipsoid in R4 with two equal middle axis where the shortest

semi axis collapses to zero.

2.1 Billiard Map

For the derivation of the bifurcation diagram below it is useful to forget about the trivial

free 
ight inside the billiard and to consider instead the discrete system from re
ection to

re
ection. This gives the billiard map P which is de�ned by moving from a point r on the
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boundary E1(r) = 0 in an inward direction p ((p;n(r)) � 0) until the moment right after

the next re
ection. The energy E = p
2=2 which determines the velocity is a constant of no

interest for the billiard map. For de�niteness we choose E = 1=2. Then P acts on the phase

space

f(r;p) : E = 1=2; E1 = 0; (p;n(r)) � 0g : (3)

This phase space has the topology of T �S2 where from the cotangent spaces at each point

on the sphere S2 only the closed disks of radius 1 are allowed. Hence, it is a closed compact

manifold with boundary, the unit disk bundle of S2. The center of the disk corresponds to

a motion perpendicular to the billiard boundary. The phase space boundary contains all the

motions that are tangent to the billiard boundary.

The billiard map P is completely integrable. With the angular momenta

L = r � p; L+ = (r � a)� p; L� = (r + a)� p (4)

about the origin and the two focus points of the prolate ellipsoidal coordinates at �a =

(�a; 0; 0)t the constants of motion are Lx = ypz � zpy and

K = (L�;L+) + 2a2E = L
2 + a2p2x : (5)

In the limit of a spherical billiard, a ! 0, K becomes the square of the total angular mo-

mentum. Both K and Lz are trivially constant along the free 
ight r + tp. The non-trivial

property is the invariance under the re
ection map p
0 = R(r;p). The invariance of Lx

immediately follows from (r �n(r))x = 0. For K we have to check that K = K 0, i.e.

(L�;L+) = (L� +�(ax+ 1);L+ +�(ax� 1)); � = 2c(p;n)r � a : (6)

After some simpli�cation this is equivalent to

4a2cx(p;n)E1(r)((y2 + z2)px + x(a2 � 1)(ypy + zpz)) = 0 ; (7)

so that K is a constant of motion on the ellipsoid E1(r) = 0. K and Lx commute with respect

to the standard Poisson bracket on R
3 because Lx commutes with L

2 and also with px.

2.2 Separation

The billiard system can be separated in prolate ellipsoidal coordinates, see, e.g., [20]. The

coordinate surfaces of prolate ellipsoidal coordinates are given as a family of confocal rota-

tionally symmetric quadrics

Es(r) = x2

s2
+
y2 + z2

s2 � a2
� 1 = 0 ; (8)

with family parameter s 2 f�; �g. For a2 � �2 � 1 the surfaces E�(r) = 0 are confocal prolate

ellipsoids, see Fig. 1a. Their intersections with the (x; y)-plane and (x; z)-plane are planar

ellipses with foci (x; y) = (�a; 0) and (x; z) = (�a; 0), respectively. Their intersections with
the (y; z)-plane are circles of radius

p
�2 � a2. �2 = 1 gives the billiard boundary E1(r) = 0.

For 0 � �2 � a2 the surfaces E�(r) = 0 are rotationally symmetric two sheeted hyperboloids,

see Fig. 1b. Their intersections with the (x; y)-plane and (x; z)-plane are confocal hyperbolas

with foci at (x; y) = (�a; 0) and (x; z) = (�a; 0), respectively.
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Figure 1: Surfaces of the prolate ellipsoidal coordinates: �-ellipsoid (a) and two-sheeted �-hyperboloid (b).

With ' giving the angle about the x-axis the prolate ellipsoidal coordinates q = ('; �; �)t

are related to the Euclidean coordinates by the transformation

(x; y; z) =
1

a
(��;

p
(�2 � a2)(a2 � �2) cos';

p
(�2 � a2)(a2 � �2) sin') (9)

whereby the two sheets of the �-hyperboloids are distinguished by di�erent signs of �. The

coordinate ranges

�a � � � a � � � 1 ; 0 � ' < 2� (10)

yield a full cover of the interior of the prolate ellipsoid. The coordinate transform (9) is

singular for � = �a and for � = a, i.e. along the x-axis.

Extending the coordinate transformation (9) to a canonical point transformation gives

the old momenta p = (@r=@q)�tpq in terms of the new momenta pq = (p'; p�; p�)
t. The new

Hamiltonian describing the free motion becomes

H =
1

2

1

�2 � �2
((�2 � a2)p2� + (a2 � �2)p2�) +

a2

2

p2'

(�2 � a2)(a2 � �2)
: (11)

The free motion generated by this Hamiltonian can easily be separated. In addition, the

momentum change upon a re
ection at the boundary � = 1 is simply given by the sign

change

(p'; p�; p�) 7! (p'; p�;�p�) : (12)

Therefore these coordinates separate both the free motion and the re
ection condition.

Below we �nd it useful to consider another parametrization of the separating coordinates

(�; �) given by

(�; �) = (a sin ; a cosh �) (13)

with conjugate momentum variables (p ; p�) = (
p
a2 � �2p�;

p
a2 � �2p�) (see e.g. [10]).

Since both the Hamiltonian H and the re
ection condition (12) are independent of '

the angle ' is cyclic and the momentum component p', which is the angular momentum Lx
about the x-axis, is a constant of motion. Multiplying Eq. (11) by �2 � �2 we obtain the

separation constant

K = 2E�2 � (�2 � a2)p2� � a2
p2'

�2 � a2
(14)
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= 2E�2 + (a2 � �2)p2� + a2
p2'

a2 � �2
(15)

which is the K previously de�ned in (5).

2.3 Bifurcation Diagram

The energy momentum mappingM of the discrete integrable system is the map from phase

space (3) to the values of the constants of motion Lx and K. Phase space is foliated into

invariant manifolds given by the preimages of M. The invariant manifold that is a preimage

of a regular value ofM is a 2-torus. This follows from the discrete analogue of the Liouville-

Arnold theorem, see, e.g., [21]. Critial points of M are determined by

rank
@(E; E1; Lx;K)

@(r;p)
< 4 (16)

with (r;p) from phase space (3). For the calculation of critical points it is useful to stick

to the separating coordinates whenever they are non-singular and else turn to Euclidean

variables (x; y; z).

In the separating coordinates the condition E1 = 0 is satis�ed by restricting to � = 1. The

condition E = 1=2 is used to eliminate p� in K, i.e. we use (15). This elimination is singular

when p� = 0, i.e. for motions tangent to the billiard boundary. Note that � = 1; p� = 0

describes the boundary of phase space. Using  of Eq. (13) instead of � in (15) gives

K = 2Ea2 sin2  + a2p2 +
p2'

cos2  
: (17)

Critical points occur when p = 0 and  = 0 mod �=2, i.e. at � = 0;�a. For � = 0 this

gives K = p2' which describes motion in the equatorial plane x = 0. In the other canonical

plane ('; p') we never have critical points because p' is a constant of motion. It remains to

express the condition p� = 0 in terms of the constants of motion. For this we eliminate p�
using E = 1=2, i.e. we use (14). With � = 1 and p� = 0 we �nd K = 2E � p2'a

2=(1� a2).

If there are further critical points they have to lie in the coordinate singularity, i.e. at

the intersection of the x-axis with the boundary ellipsoid. Condition (16) is equivalent to the

existence of a solution with not all �i equal to zero for

�2
�
r � a2xex

�
+ �3p� ex + �4p� r � p = 0 (18)

�1p+ �3ex � r + �4
�
r � p� r + a2expx

�
= 0 : (19)

For (x; y; z) = (�1; 0; 0) one �nds by direct calculation that the only solution besides the

tangent case has py = pz = 0 for which the gradients of Lx and K vanish identically. There

is no other solution.

Therefore, there are only three critical cases

I : (p; r � a2xex) = 0 ; (20)

II : x = px = 0 ; (21)

III : y = z = py = pz = 0 : (22)
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Figure 2: Bifurcation diagram of the billiard map in the (l'; �
2)-plane.

The constants of motion K and Lx = p' are homogeneous functions of the momenta. It

is convenient to scale the momenta by energy and introduce

(l'; �
2) = (

Lxp
2E

;
K

2E
) (23)

as new constants of motion. The square in Eq. (23) indicates that K is a positive function

on phase space with dimension of a squared angular momentum. In terms of the constants

(l'; �
2) the images of the critical points I, II, and III are

I : �2 = 1� a2l2'

1� a2
; (24)

II : �2 = l2' ; (25)

III : (l'; �
2) = (0; a2) : (26)

The set of critical values I[II[III is called the bifurcation diagram which we show in Fig. 2.

The parabolas ABA0 and ACA0 correspond to case I and II, respectively. The isolated point

F (a so-called focus point) represents case III. Each interior regular value in Fig. 2 represents

an invariant 2-torus of the billiard map. Because of the isolated critical value F the interior

region is not simply connected, i.e. cycles encircling F cannot be contracted to a point. This

is the major condition for the appearance of monodromy as will be explained in Sections 3

and 5.

Case I, the upper parabola ABA0, corresponds to the geodesic 
ow on the boundary of the

billiard. From the point of view of the billiard map this is singular because the time between

re
ections becomes zero so that every point becomes a �xed point. Note that phase space is a

compact manifold (the unit disk bundle of S2) whose boundary is the unit cotangent bundle

of S2, and case I corresponds to the boundary, which is invariant under the dynamics. The

continuous dynamics on this invariant set is the geodesic 
ow on the billiard boundary.

Case II, the lower parabola ACA0, is the motion in the equatorial plane x = 0, which is

bounded by a circle of radius
p
1� a2. The billiard map restricted to the invariant set II is

just the billiard map of the circle. The invariant sets in the preimage of II are 1-tori. Case
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Figure 3: a) Invariant 1-tori of the billiard map for l' = 0, b) the doubly pinched 2-torus derived from

rotating the separatrix in (a), and c) the corresponding singly pinched 2-torus from incorporating the action

of the billiard map.

I and II intersect at the points (l'; �
2) = (�

p
1� a2; 1 � a2) which represent a line of �xed

points in the plane x = 0 at the boundary of phase space.

Case III, the isolated critical value F , has as preimage the period two points with x = �1
and its stable and unstable manifolds. The structure of the preimage of F can be understood

as follows. Because of the rotational symmetry of the ellipsoid we can reduce by the S1

symmetry and obtain a family of billiards in the ellipse with an additional e�ective potential

proportional to l2'. Each reduced map is described by a Poincar�e map from S1�D1 to itself.

The corresponding leaf l' = const in the full phase space of the billiard map P is obtained

from this by letting the 
ow generated by Lx act on a representative of the reduced space in

full phase space. Because the symmetry axis is �xed under this 
ow this e�ectively results in

a rotation of the reduced Poincar�e map. In particular for l' = 0 we obtain the billiard map

of the ordinary billiard in the ellipse as reduced map. Its phase space is foliated by two types

of 1-tori which are the level sets of K shown in Fig. 3a. The separatrix with K = 2a2E is

given by p2 =(2E) = cos2  , and the crossings of these curves mark the period two points of

the critical orbit. Letting Lx act on this reduced phase space gives a solid 2-torus embedded

in the full phase space (3) and inside this solid torus is a doubly pinched 2-torus, the two

pinches corresponding to the two period 2 points on the symmetry axis, see Fig. 3b. The

invariant 2-torus with only one pinch shown in Fig. 3c is obtained if we factor by the action

of the map, i.e. we identify points on the doubly pinched torus that are mapped into each

other.

From the general monodromy theorem [7] we expect to �nd a monodromy of 1, because

we have a torus with a single pinch as the preimage of the isolated critical value. However,

this theorem does not apply in our setting, because we are dealing with a map and with a

phase space with boundary. In the next subsection we come back to the full billiard 
ow for

which we will derive the monodromy in the following section directly from its actions.

2.4 The Billiard Flow

Because �2 and l' both scale with E the bifurcation diagram for the three degrees of freedom

system is like a cylinder with cross section shown in Fig. 2 with a bottom E = 0 where there
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Figure 4: The polynomial f(s2) and the phase portraits (�; p�) and (�; p�).

is no motion at all. The focus point F then becomes a line of focus points.

The caustics of this three degrees of freedom system can be discussed in terms of the roots

of the polynomial

f(s2) = s4 � (�2 + a2)s2 + a2(�2 � l2') : (27)

By Equations (14) and (15) it allows to give the separated momenta p� and p� the compact

form
p2s
2E

=
f(s2)

(s2 � a2)2
=

(s2 � s21)(s
2 � s22)

(s2 � a2)2
(28)

where s 2 f�; �g and
s21;2 =

1

2

�
a2 + �2 �

q
(a2 � �2)2 + 4a2l2'

�
(29)

are the roots of f(s2). For Eq. (28) to give real valued momenta for some con�guration

�a � � � a � � � 1 the roots have to satisfy

0 � s21 � a2 � s22 � 1 ; (30)

see Fig. 4. Comparing coeÆcients of s2 in (28) gives

l2' = s21 + s22 � a2 � s21s
2
2

a2
; (31)

�2 = s21 + s22 � a2 : (32)

The bifurcation diagram in Fig. 2 essentially maps to the boundaries of Eq. (30), see

Fig. 5. This presentation of the bifurcation diagram is useful for numerical purposes. It

is, however, not a proper bifurcation diagram because the constants of motion s1; s2 are

not smooth function on phase space. The additional edges FC and FB are a consequence

of the singularities of the transformation from (s21; s
2
2) to (l'; �

2) along the line l' = 0 or,

equivalently, s21 = a2 and s22 = a2. Because the diagram in Fig. 5 does not distinguish between

di�erent signs of l' each of its interior points represents two 3-tori which di�er by their sense

of rotation about the x-axis. In Fig. 6 we present the envelopes of two such 3-tori. An

envelope is bounded by the quadrics Es1(r) = 0, Es2(r) = 0 and E1(r) = 0, where the former

two quadrics are a caustic and the latter is the billiard boundary. For the billiard map the

caustic is the annulus de�ned by � = �s1 on the ellipsoid.
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Figure 6: Envelope in the Euclidean con�guration space of a regular 3-torus of the prolate ellipsoidal billiard.
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3 Classical Monodromy

The Liouville-Arnold theorem [3] states that for regular values of the energy momentum

mapping the preimage is a torus if it is compact and that there exist action-angle variables

in the neighborhood of that torus. For a separable system the explicit construction of actions

is straightforward. However, there are two objections: 1) action-angle variables often are not

globally singularity free coordinates on phase space, and 2) action-angle variables related to

the (often not globally singularity free) separating coordinate system need not be smooth. In

the following we will make this more precise and relate it to monodromy.

3.1 Natural Actions

Action variables are obtained from integrating the di�erential pdq along the independent

cycles on a torus. The natural actions of a separable system are obtained by using a basis

of cycles Ci whose projections onto con�guration space coincide with the coordinate lines of

the separating coordinate system. For the billiard in the prolate ellipsoid we obtain

C1 : d� = d� = 0 ; C2 : d' = d� = 0 ; C3 : d' = d� = 0 : (33)

From Eq. (11) we see that the energy dependence can be removed by scaling the momentum

variables. Taking into account that � oscillates between �s1 and +s1 and � oscillates between
s2 and the re
ection at the billiard boundary � = 1 the energy scaled action variables read

I1 � 1p
2E

I' =
1

2�

I
C1

p'p
2E

d' = l' ; (34)

I2 � 1p
2E

I� =
1

2�

I
C2

p�p
2E

d� =
1

�

Z s1

�s1

p
f(�2)

a2 � �2
d� ; (35)

I3 � 1p
2E

I� =
1

2�

I
C3

p�p
2E

d� =
1

�

Z 1

s2

p
f(�2)

�2 � a2
d� : (36)

The integrants of I2 and I3 are identical up to a sign and of elliptic type. The integral I2
is complete, i.e. it is integrated between two branch points. I3 is incomplete because of

the billiard boundary. Due to the poles at �a the integrals are of the third kind, which

seems to be an essential feature for the appearance of monodromy. For the billiard in the

triaxial ellipsoid discussed in [11] the integrals are hyperelliptic but of second kind. The

introduction of rotational symmetry creates a pole in the integrand, whose residue is the

angular momentum l' = I1 with respect to the symmetry axis. For completeness we also

mention the expressions in terms of Legendre standard integrals as given in [22]. One �nds

I2 =
2

�s2

 
(s21 � a2 +

a2l2'

s22 � a2
)K(k) + s22E(k)�

a2l2'(s
2
2 � s21)

(s22 � a2)(a2 � s21)
�(��2; k)

!
; (37)

I3 =
1

�s2

 
(a2 � s21 +

a2l2'

a2 � s21
)F(�; k) � s22E(�; k) + s2 sin� � (38)

� a2l2'(s
2
2 � s21)

(s22 � a2)(a2 � s21)
�(�;�
2; k)

!
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where F(�; k), E(�; k) and �(�; n; k) are Legendre's incomplete elliptic integrals of �rst,

second and third kind, respectively, with modulus k, amplitude � and parameter n in the

notation of [23]. K(k), E(k) and �(n; k) are the corresponding complete elliptic integrals.

The modulus, the parameters and the amplitude are

k =
s1

s2
; �2 =

s22 � a2

a2 � s21
k2 ; 
2 =

a2 � s21
s22 � a2

; sin2 � =
1� s22
1� s21

; (39)

respectively.

In the following we will see that even if we stay away from the critical values of the energy

momentum mapping the natural actions (I1; I2; I3) are functions of (l'; �
2) with discontinuous

derivatives. To be more precise, I2 and I3 are continuous but not di�erentiable in the direction

l' on the line l' = 0 in Fig. 2. Except for the three points with �2 = 0; a2; 1 this line does not

contain critical values of the energy momentum mapping. This is the objection mentioned

above that natural actions of separable systems must not be smooth functions. To see this

�rst note that I2 and I3 are even in l'. For di�erentiable functions this implies zero derivative

at zero. We now show that the derivative from the right is non-zero and hence the actions

are not di�erentiable at l' = 0. Because of symmetry the derivative from the left just gives

the negative of that. The formal derivative is

@Ii

@l'
= �a

2l'

2�

I
Ci

ds

(a2 � s2)
p
f(s2)

(40)

where there is only one sign for i = 2; 3 if the integration paths Ci in the complex plane C (s)

and the branch of
p
f(s2) are chosen as in Fig. 7. The rhs of Eq. (40) can be non-zero at

l' = 0 despite of the factor l'. The reason is that for l' ! 0 the branch points �si approach
the poles at �a. The poles of order 3=2 that develop for the integrand in this limit give a

diverging contribution of the integral and the question is how this is compensated by the

vanishing prefactor l'. To see this it is useful to deform the integration path as to include the

pole(s), and then subtract the contribution from loops around the pole(s), see Fig. 7. Then

it is generally true thatI
C2

=

I
B2

+

I
R
�

+

I
R+

;

I
C3

=

I
B3

+

I
R+

; (41)

where the Bi enclose the branch cut and the two poles with the same clockwise orientation

as Ci and the contribution of the two poles at �a has to be subtracted by integrating the

loops R� around them, both in counterclockwise direction.

The contributions from the loops R� can be calculated from the residues of the integrand.

Because of the square root the integrand is a multivalued function, and we have to be careful

to evaluate the residues with a consistent choice of branch. The result is that the square root

of the residue at +a has the opposite sign from the one at �a. Since f(a2) = �a2l2' we �nd

Res
s=�a

ds

(a2 � s2)
p
f(s2)

=
1

2ia2jl'j
: (42)

This residue diverges in the limit l' ! 0. However, in Eq. (40) the residue is multiplied by

l' so that a �nite result is obtained. For the same reason any other contribution to (40) from

the regular integrals along the Bi vanishes in this limit.
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+
+i

−
−i

+

−

+

a)

b)

c)

d)

e)

C2 C3

B2

R− R+

B3

R+

C2 C3

−

Figure 7: Complex plane C (s) and choice of branch of
p
f(s2) (a), integration pathes for l' near 0 and

�2 > a2 (b) and �2 < a2 (c). (d) and (e) show the decomposition of C2 for case (b) and of C3 for case (c),

respectively. The dots and the crosses mark the branch points and the poles �s2 < �a < �s1 < s1 < a < s2,

respectively.
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For �2 > a2 (line FB in Fig. 2) the roots �s1 collide with the poles �a from the inside

so that for I2 we �nd

lim
l'!0+

@I2

@l'
= lim

l'!0+
�a

2l'

2�
2�i

�
2

2ia2jl'j

�
= �1 : (43)

Since s22 > a2 the integration path for I3 stays away from the pole and therefore @l'I3 = 0

on FB. For �2 < a2 (line FC in Fig. 2) the roots �s2 collide with the poles �a from the

outside so that for I3 we �nd

lim
l'!0+

@I3

@l'
= lim

l'!0+
�a

2l'

2�
2�i

�
1

2ia2jl'j

�
= �1

2
: (44)

Note that the origin of the minus sign in the second formula comes from the choice of branch.

Since the smaller roots satisfy s21 < a2, the integration path for I2 stays away from the poles

and therefore @l'I2 = 0 on FC. The calculations for the limit from the left are the same, so

that both functions behave like cisgn(l'), where the constants are c2 = �1 and c3 = �1=2.
A simple way to interpret this result is to say that for l' > 0 each time the integration path

is forced near a pole the integral increases by �1=2.
Note that the above calculation becomes invalid at the line of focus points F . There

�2 = a2, and therefore the branch points �si all collide with the poles �a. This multiple

collision creates a pole of e�ective order 2 that does produce a singularity in the derivative

of the actions. This an indication of the fact that the line of focus points is a line of critical

values of the energy momentum mapping.

3.2 Calculating Monodromy by Smoothing

The Liouville-Arnold theorem does hold everywhere on the line l' = 0 except at �2 = 0; a2; 1.

Away from these points it guarantees the existence of smooth action variables. The origin for

the non-smoothness in the natural actions is that the basis of cycles does not vary smoothly

across the coordinate singularity l' = 0 of the separating coordinate system. A separating

coordinate system does distinguish between con�guration space and momentum space. In

particular the cycles are only de�ned in their projection to con�guration space. For l' = 0

the complete '-cycle projects to a point in con�guration space. This is the origin of the

non-smoothness of the natural actions.

A smooth basis of cycles in phase space as guaranteed to exist by the Liouville-Arnold

theorem can be found by an appropriate unimodular transformation of the cycles of the

natural actions. Denote the natural actions for positive l' by I+, those for negative l' by

I�. Since both I2 and I3 are independent of the sign of l' and the �rst action is l' itself we

have I�(�l'; �2) = SI+(l'; �
2) with S = diag(�1; 1; 1). We have already seen that on the

line l' = 0 there are di�erent cases depending on whether �2 is less or greater than a2. In

each case we seek for a unimodular transformation Mi so that I+ and M iI� join smoothly

for I1 = l' = 0:

I+ =M1I� =M1SI+ =M1I+ for I1 = 0 ; �2 < a2 (line FC) ; (45)

I+ =M2I� =M2SI+ =M2I+ for I1 = 0 ; �2 > a2 (line FB) : (46)

Therefore (0; I2; I3)
t must be an eigenvector of M i with eigenvalue 1. This must be true for

all I2, I3 along the regular part of the line l' = 0. Both are non-constant and independent
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functions of �2, so that (0; I2; I3)
t must be an eigenvector for arbitrary values of I2 and I3.

This relation and unimodularity of M i requires

M i =

0
BB@

1 0 0

�i 1 0

�i 0 1

1
CCA : (47)

Now we make use of the fact that I+ and M iI� do not only join continuously but

di�erentiably at l' = 0, so that

M i

@I�

@l'
=
@I+

@l'
: (48)

For �2 < a2 (line FC) we have @l'I2 = 0 and from the previous subsection we know @I3=@l' =

� sgn(l')=2. Hence, in @I+=@l' we have @l'I3 = �1=2, while in @l'I� the sign is changed,

@l'I3 = 1=2. Therefore

M1(1; 0; 1=2)
t = (1; 0;�1=2)t ) �1 = 0 ; �1 = �1 : (49)

Similarly, we �nd for �2 > a2 (line FB)

M2(1; 1; 0)
t = (1;�1; 0)t ) �2 = �2 ; �2 = 0 : (50)

The monodromy matrix for a counterclockwise cycle around the focus point is obtained

from the transformation from I+ to its smooth continuation across FB byM 2S followed by

the inverse transformation (M1S)
�1 backwards across FC, which gives

M = (M 1S)
�1
M2S =

0
BB@

1 0 0

2 1 0

�1 0 1

1
CCA : (51)

The monodromy matrixM has eigenvalue one with multiplicity three. We are interested

in the normal form of this matrix with respect to conjugation by matrices T 2 SL(3;Z). This
is like a Jordan normal form where, however, the o�-diagonal element cannot be normalized

due to the restriction to unimodular transformations. Let us assume a monodromy matrix

to be given in the general form where the �rst column is equal to (1; �; �)t . If one of �, � is

zero the matrix is in normal form up to a permutation. Otherwise we have

TMT
�1 =N ; N =

0
BB@

1 0 0

0 1 0

n 0 1

1
CCA ; n = gcd(�; �) (52)

where the transformation matrix T is

T =

0
BB@

1 0 0

t2 1 0

t3 t4 1

1
CCA
0
BB@

s 0 0

0 �=n ��=n
0 k l

1
CCA (53)
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where s = �1, k, l are solutions of k� + l� = ns, and t2; t3; t4 are arbitrary integers.

This equation always has solutions (see, e.g., [24]) and for de�niteness we take the one with

smallest Euclidean norm for k; l. The choice of the position of the n in N is not essential but

convenient; similarly, we will choose s = 1 in the following.

The new actions J = TI transform by N under continuation around a loop enclosing the

focus point. The second row of the second factor of T therefore determines the linear combi-

nation J2 = �I2=n��I3=n of natural actions that is invariant underM . The corresponding

solution is k = 0, l = �1 so that T becomes upper triangular if we choose the �rst factor to be

the identity. Non-zero entries ti would merely modify the new actions by linear combinations

of invariant actions. Even though T is not uniquely de�ned, the second invariant action is

unique modulo the trivial invariant action; naturally the \bad" action cannot be uniquely

de�ned. In the prolate ellipsoid we have � = 2 and � = �1 so that the monodromy invariant
actions are I1 and I2 + 2I3.

The essential ingredient for the appearance of classical monodromy in smooth two de-

grees of freedom system is a focus point, i.e. an equilibrium point with complex (or at least

degenerate) multipliers. To show the relation to our setting we calculate the stability of the

periodic orbit corresponding to the focus line F . It is the orbit that is bouncing back and

forth along the symmetry axis of the prolate ellipsoid. Its stability is obtained from the two

matrices (see [25])

ST =

0
BBBBB@

1 0 l 0

0 1 0 l

0 0 1 0

0 0 0 1

1
CCCCCA ; SR =

0
BBBBB@

�1 0 0 0

0 1 0 0

2=Rk 0 �1 0

0 �2=R? 0 1

1
CCCCCA (54)

where l is the Euclidean length between two consecutive re
ections, and Rk and R? are the

radii of curvature parallel and perpendicular to the re
ection plane. The monodromy matrix

(in the sense of Floquet theory) of the period 2 orbit is given by

S = SRSTSRST ; (55)

with l = 2 and identical negative radii of curvature Rk = R? = a2 � 1 due to the rotational

symmetry. Hence, the multipliers (i.e. the eigenvalues of S) are �, 1=�, �, 1=� with

� =
(1� a)2

(1 + a)2
; (56)

so that we have degenerate hyperbolic multipliers.

4 Energy Surfaces

The essential information about an integrable system is contained in the representation of

its energy surfaces in action space [26]. Because of the simple scaling property of the action

variables with respect to the energy it is suÆcient to consider the surface for a single energy.

Fig. 8 shows the energy surface Hprol = 1=2 where Hprol denotes the Hamiltonian Eq. (11)

transformed to the action variables (I'; I�; I�). In fact, the actions (I'; I�; I�) ful�llingHprol =
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B

Figure 8: Energy surface Hprol(I) = 1=2 of the prolate ellipsoidal billiard or, equivalently, the image in R
3

of the (l'; �
2)-plane in Fig. 2 under the energy scaled actions (I1; I2; I3) from Equations (34)-(36).

1=2 are simply the scaled actions (I1; I2; I3) parameterized by l' and �2. The vectors of

frequencies

! = (!'; !�; !�)
t = (

@Hprol

@I'
;
@Hprol

@I�
;
@Hprol

@I�
)t (57)

are the normals to this surface. The energy surface is symmetric about the (I2; I3)-plane

because the natural actions I2 and I3 are even functions of l' = I1.

Most of the full phase space is obtained by attaching a 3-torus to each inner point of

every energy surface. The points on the boundary correspond to the lines of the bifurcation

diagram in Fig. 2 and demand special considerations. In particular on the lines FC and FB

the energy surface is not di�erentiable, while the bifurcation diagram indicates that these

are regular points of the energy momentum mapping. The fact that the energy momentum

mapping is regular means that it must be possible to choose actions that are smooth across

this line. This was the basis of the calculation in the last section. Here we want to illustrate

this calculation from a more dynamical point of view and obtain a dynamical characterization

of the integers appearing in the monodromy matrix. To do this we consider three invariant

two degrees of freedom subsystems contained in the three degrees of freedom billiard. They

are given by 1) the billiard in the circle containing all initial conditions with x = 0; px = 0,

2) the geodesic 
ow on the (surface of the) ellipsoid containing all initial conditions with

� = 1; p� = 0, and 3) the billiard in the ellipse containing initial conditions with no angular

momentum about the symmetry axis, l' = 0, e.g. for z = 0; pz = 0.

In the �rst two cases we repeat the smoothing calculation in two degrees of freedom.

E�ectively, we look for a transformation of actions that makes the corresponding edges of the

energy surface smooth. Assuming that one action (l' in our case) is zero at the non-smooth

point we are now led to consider 2� 2 matrices M that have (0; I)t as eigenvector, hence are

of the form

M =

 
1 0

� 1

!
: (58)
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The frequencies ! transform like the angles that are canonically conjugate to the actions, i.e.

they transform with the inverse transpose so that

!+ =M�t
!� =M�tS!+ (59)

for I1 = 0. Here S = diag(�1; 1). This gives 2!1 + �!2 = 0. The most important dynamical

quantity of a 2-torus is its winding (or rotation) number W = !1=!2. The induced action of

M on W is a M�obius transformation. The above result expressed in terms of W reads

� = �2W : (60)

We should stress again that W will be the natural winding number, i.e. the one calculated

in the basis of cycles obtained from the separating coordinate system and in the limit of l'
approaching zero from above.

4.1 Circle Billiard

Along the curves CA and CA0 we have s21 = 0 so that �2 = l2' and I2 = 0. The corresponding

motion is con�ned to the equatorial plane x = � = 0. This is the billiard motion in a circle

of radius
p
1� a2. The action integral becomes elementary. One �nds

Icirc 1 � Icirc'p
2E

= l' ; (61)

Icirc 3 � Icirc �p
2E

=

p
1� a2

�
(sin�� �j cos �j) (62)

with

sin2 � =
1� s22
1� a2

= 1� l2'

1� a2
: (63)

The angle � 2 [0; �=2] is the angle between a trajectory and the tangent to the circle at

the point of its last re
ection. The energy surface Hcirc(Icirc'; Icirc �) = 1=2 of the circle

billiard is shown in Fig. 9a. It consists of two symmetric branches corresponding to the two

senses of rotation in the circle billiard. Each point between C and A and between C and

A0 represents a 2-torus. The points A and A0 correspond to the two directions of the sliding

motion along the billiard boundary. They are the limiting cases of the so-called whispering

gallery orbits [27] which for large angular momentum evolve close to the boundary with a

large number of re
ections per rotation about the center of the circle. They are present in any

two-dimensional billiard with a smooth strictly convex boundary [28]. The whispering gallery

orbits are responsible for the energy surface to approach the I1-axis tangentially. Point C

represents the periodic orbits which oscillate through the center of the circle billiard. These

period-2 orbits appear as a one-parameter family parameterized by the orientation '. They

foliate a resonant 2-torus. Fig. 9b shows the winding number Wcirc 13 = !circ'=!circ �. It is

the negative slope of the energy surface, i.e. the winding number becomes

Wcirc 13 = �dIcirc 3

dl'
= sgn(l')

�

�
: (64)

Wcirc 13 is an odd function of l'. For the sliding orbits it approaches zero with a diverging
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Figure 9: Circle billiard: energy surface (a) and winding number Wcirc 13 versus l' (b). (c) and (d) are the

smoothed versions of (a) and (b) as explained in the text.
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slope, i.e. the curvature of the energy surface diverges here. This is again a characteristic of

billiard systems, see also [22]. For the period-2 orbits

Wcirc 13 = 1=2 or � 1=2 (65)

depending on whether we approach l' = 0 from above or from below. Accordingly, we �nd

for Eq. (58) � = �1. The smooth energy surface corresponding to the new action variables

 
I 0circ 1

I 0circ 3

!
=

8>>>>><
>>>>>:

 
Icirc 1

Icirc 3

!
; l' � 0

 
1 0

�1 1

! 
Icirc 1

Icirc 3

!
; l' � 0

(66)

and the corresponding smooth winding number W 0
circ 13 are shown in Figures 9c and d.

All the orbits in the circle billiard form a three-dimensional invariant submanifold within

the �ve-dimensional energy surface of the three degrees of freedom billiard 
ow. The winding

number in Eq. (64) characterizes the response of the 2-tori to perturbations that stay in this

submanifold. If a perturbation leaves the submanifold the motion takes place on a 3-torus,

hence the additional winding numberW23 = !�=!� evaluated for I� = 0 has to be considered.

In general it holds that

W23 = � @I�

@I�

����
E;I'

= �@I3=@�
2

@I2=@�2
(67)

so that for I� = 0 we �nd

W23 =
1

2
(1� 2

�
�); with sin2 � = 1� (1� a2) sin2 � : (68)

4.2 Geodesic Flow

Along the curves BA and BA0 we have s22 = 1. The corresponding motion is the geodesic


ow on the prolate ellipsoidal surface in Eq. (1). In this case the dynamically relevant branch

point s2 lies on the billiard boundary � = 1 so that I3 = 0. In terms of Legendre's standard

integrals we �nd

Igeod 1 � Igeod'p
2E

= l' ; (69)

Igeod 2 � Igeod �p
2E

=
2

�
(E(s1)� (1� s21)�(��2; s1)); �2 = s21

1� a2

a2 � s21
: (70)

Note that the appearance of an integral of third kind for the geodesic 
ow is due to the fact

that we consider the degenerate rotationally symmetric version of Jacobi's problem of the

geodesic 
ow on general triaxial ellipsoids [29, 30]. The energy surface Hgeod(Igeod'; Igeod �) =

1=2 is shown in Fig. 10a. Again it consists of two symmetric branches corresponding to the

two senses of rotation of the coordinate '. The points between B and A and between B

and A0 again represent 2-tori. The circle motions at A and A0 appear as a collapsing of

the two �-caustics � = �s1 for s21 ! 0. Point B represents planar periodic orbits sliding

along ellipses. These periodic orbits may be parameterized by the orientation ' and like the



Quantum Monodromy in Prolate Ellipsoidal Billiards 21

a)

geod 1I

geod 2I

0-√1-a
2 √1-a

20

2E(a)/π

A’ A

B

b)

geod 12W

ϕl0 √1-a
2

-√1-a
2

-1

1

0

-1/√1-a
2

1/√1-a
2

c)

geod 1I"

I"geod 2

0 √1-a
2

-√1-a
20

2√1-a
2

2E(a)/π

A’

B

A

d)

ϕl

W"geod 12

0 √1-a
2

-√1-a
2

1/√1-a
2

1

2-1/√1-a
2

Figure 10: Geodesic 
ow: energy surface (a) and winding number Wgeod 12 versus l' (b). (c) and (d) are

the smoothed versions of (a) and (b) as explained in the text.

periodic orbits at point C of the circle billiard they foliate a resonant 2-torus. The di�erent

senses of rotation are related by the angles ' and ' + �. The negative slope of the energy

surface is the winding number

Wgeod 12 =
!geod'

!geod �
= �dIgeod 2

dl'
(71)

= sgn(l')
2a(2� �2 � a2)

�
p
(1� a2)(1� �2)

�(��2; k) ; (72)

which is shown in Fig. 10b. The limiting value for positive l' is 1, so that � = �2 in this

case. The smooth energy surface corresponding to the new action variables

 
I 00geod 1

I 00geod 2

!
=

8>>>>><
>>>>>:

 
Igeod 1

Igeod 2

!
; l' � 0

 
1 0

�2 1

! 
Igeod 1

Igeod 2

!
; l' � 0

(73)

and the new winding number W 00

geod 12 are shown in Figures 10c and d.
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Figure 11: Ellipse billiard: energy surface (a) and winding number Wplan � � against �2 (b).

a) b)

Figure 12: Generic motions in the ellipse billiard: whispering gallery orbit (a) and bouncing ball orbit (b).

The geodesic 
ow is the limiting case of the whispering gallery orbits in the three-

dimensional prolate ellipsoidal billiard. Again there is a third frequency characterizing per-

turbations that leave the geodesic sub
ow. For them the frequency !� goes to in�nity in the

geodesic limiting case, so that W13 = 0 :

4.3 Ellipse Billiard

Along the lines FC and FB we have l' = 0, so that the motion takes place in a plane

containing the symmetry axis, i.e. it is just the ordinary billiard in the ellipse. We already

stressed that these lines in the bifurcation diagram (except for �2 = 0; a2; 1) are not critical

values of the energy momentum mapping. Therefore their preimage in phase space are 3-

tori. However, from the dynamical point of view these 3-tori are special because they are all

resonant.

Along FB the action integrals I2 and I3 reduce to

Iplan 2 � Iplan �p
2E

=
2s2

a
E(k) ; (74)

Iplan 3 � Iplan �p
2E

=
1

�
(sin�� s2E(�; k)) (75)
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with k and � from Eq. (39) with s1 replaced by a. Along FC they become

Iplan 2 � Iplan �p
2E

=
2

�
(aE(k)� a2 � s21

a
K(k)) ; (76)

Iplan 3 � Iplan �p
2E

=
1

�
(sin�+

a2 � s21
a

F(�; k) � aE(�; k)) ; (77)

with s2 replaced by a in k and �. The actions (Iplan 2; Iplan 3) correspond to the edge I1 = 0

of the energy surface of the full billiard 
ow which we represent once more in Fig. 11a. Up to

some trivial factors 2 it is the energy surface of the elliptic billiard in [10]. The two cases can be

identi�ed with the two types of motion in the ellipse billiard, see Fig. 12. On FB the caustic

is around the two foci of the ellipse, while on FC the caustic is between the foci. The negative

slope of the energy surface in Fig. 11a is the winding number Wplan � � = !plan �=!plan � for

which one �nds

Wplan 23 = � @Iplan �

@Iplan �

����
E

=

8<
:
�
�
dIplan 3
ds2

�
=
�
dIplan2
ds2

�
= 1

2
F(�;k)

K(k)
(line FB)

�
�
dIplan 3
ds1

�
=
�
dIplan2
ds1

�
= 1

2
F(�;k)

K(k)
(line FB)

; (78)

see Fig. 11b . At the focus point F the winding number Wplan 23 displays a cusp or, to be

precise, it continuously assumes the value 1=2 for �2 ! a2 but the derivative diverges in this

limit.

In order to �nd the winding numbers characterizing orbits that leave the ellipse sub
ow

let us consider again the relation in Eq. (59) but now considered in the full three degrees of

freedom system restricted to I1 = l' = 0. Inserting the 3� 3 matrices M i gives hence

2!' + �i!� + �i!� = 0 : (79)

As before we have �1 = 0 for �2 < a2 and �2 = 0 for �2 > a2. Therefore, one of the two

winding numbers of the full system is constant on the line l' = 0:

Wplan 13 =
!'

!�
= ��1=2 = 1=2 for �2 < a2 (line FC) ; (80)

Wplan 12 =
!'

!�
= ��2=2 = 1 for �2 > a2 (line FB) : (81)

The interesting winding number from the point of view of monodromy is not the one of

the ellipse billiard Wplan 23, but the ones that describe the perturbations away from it. Due

to the symmetry of the prolate ellipsoid there is no rotational motion at all if we start with

l' = 0. The generic motion in the ellipse billiard is on a 2-torus, and rotating it around

the symmetry axis generates the 3-torus of the full system. The fact that it is foliated into

invariant 2-tori is due to the resonances (79). When we loop around the focus point F in

order to determine the monodromy the main e�ect is picked up upon crossing these resonant

tori of the ellipse billiard.

4.4 Smooth Energy Surfaces

Before we proceed let us remark that the previous sections have shown that the natural actions

I2 and I3 have the nice property of being invariant under the system's discrete symmetry
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Figure 13: Partially smoothed energy surface of the prolate ellipsoidal billiard. I0 are the natural actions

transformed with the unimodular matrixM1 for l' � 0.

of time reversal combined with l' 7! �l'. This means that these actions are also \natural"

from a dynamical point of view. Nevertheless, we now want to make the actions as smooth

as possible, at the expense of breaking this invariance.

In order to smooth the energy surface of the three degrees of freedom billiard 
ow in Fig. 8

we have to apply the matrices M1 and M 2 with the �i and �i de�ned in Equations (49)

and (50). Note that these matrices are just the three-dimensional generalizations of the 2�2

matrices de�ned to smooth the actions of the circle billiard and the geodesic 
ow according

to Equations (66) and (73), respectively. This means that the boundary of the energy surface

alone determines the smooth actions of the full three degrees of freedom system. However,

the application of the matrices M 1 and M2 does not give a globally smooth energy surface

{ only half of its edge is removed by either transformation, see Figures 13 and 14. The

impossibility of �nding a globally smooth and single valued set of actions is one indicator of

classical monodromy.

We have already illustrated the importance of frequencies and winding numbers in our

analysis of the two-dimensional invariant subsystems. Now we are going to consider them for

the full system. For two degrees of freedom this is fairly simple and the smoothed winding

numbers are shown in Figures 9d and 10d. For more degrees of freedom it is most appropriate

to think about the frequency ratios in terms of the Gauss map. The Gauss map is the map

from a hypersurface of Rn to the unit sphere Sn�1. Each point of the hypersurface is mapped

to the normalized normal vector in Sn�1 at that point. In our setting the Gauss map maps

the two-dimensional energy surface in action space to the unit sphere S2 of the normalized

frequencies !. The determinant of the Jacobian of the Gauss map is the curvature of the

energy surface. Since the frequency ratios do not change if the frequencies are all multiplied by

�1 the space of frequency ratios is the real projective space RP 2 = S2=f�g. The frequencies
! can be viewed as homogeneous coordinates in the projective space, and by dehomogenizing
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Figure 14: Partially smoothed energy surface of the prolate ellipsoidal billiard. I 00 are the natural actions

transformed with the unimodular matrixM2 for l' � 0.

we can obtain the winding numbers

W12 =
!'

!�
; W23 =

!�

!�
(82)

as local coordinates.

In practice, we represent the projective space of the frequency ratios of the prolate ellip-

soidal billiard by the half-sphere

Sh = f! 2 R
3 : k!k2 = 1; !3 � 0g (83)

where (!1; !2; !3) are the normalized frequencies (!'; !�; !�) from Eq. (57). On the half

sphere Sh most points have a unique representant.

On Sh all frequencies ! that satisfy a given resonance condition

(!;m) = 0 (84)

with a resonance vector m 2 Z of coprime integers are given by the great circle contained

in the plane through the origin perpendicular to m. Completely resonant tori satisfy two

independent resonance conditions. The corresponding torus is foliated into periodic orbits.

The frequency direction that satis�es two given resonance conditions m1 and m2 is given

by the intersection of the corresponding great circles. It is therefore given by the the cross

product m1 �m2. We call a direction m =m1 �m2 2 Z
3 full resonance.

In Figure 15 full resonances are indicated as dots on the sphere. The impressive pattern of

the full resonances is the same for every integrable system with three degrees of freedom. The

only thing which does depend on the system is the curvature and which frequency directions

are possible, i.e. the range of the Gauss map.

The image of the frequencies of the prolate ellipsoidal billiard on Sh give two patches

according to the two signs of !'. The patch for !' � 0 is shown in Fig. 15a and denoted

by '0'. To �nd its boundaries we study the images of the boundaries of the energy surface

which correspond to the invariant subsystems with two degrees of freedom discussed in the

last section. We use the same labeling as for the corresponding points on the energy surface.

From two sides it is bounded by the great circles given by the constant winding numbers
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Wplan 13 and Wplan 12 of Equations (80) and (81),

2!1 � !3 = 0 ; (FC) ; (85)

!1 � !2 = 0 ; (FB) : (86)

The coordinates of the focus point F on Sh is given by the intersection of these great circles,

i.e. by the cross product of the corresponding resonance vectors

(1;�1; 0)t � (2; 0;�1)t = (1; 1; 2)t : (87)

Due to the divergence of the frequency component !� in the limiting case of the geodesic


ow the complete edge AB of the energy surface is mapped to the single point ! = (0; 0; 1)t.

The curve AC connecting this point and C on Sh results from the circle billiard winding

numbers as the cross product of the lines

!1 �Wcirc 13 !3 = 0 ; (88)

!1 �Wcirc 12 !2 = 0 ; (89)

i.e. AC is parameterized by

(1; 0;��
�
)t � (0; 1;

�

�
� 1

2
)t = (

�

�
;
1

2
� �

�
; 1)t (90)

with � and � from Equations (63) and (68).

Applying the transformationsM 1 orM 2 to the actions induces the transformationsM
t�1

i

on the frequencies !�. In Fig. 15a the corresponding patches are labeled by the indices '1'

and '2'. They again are triangularly shaped. The partial smoothness of the energy surfaces in

Figures 13 and 14 is re
ected by the fact that the patches '1' and '2' have one boundary line

in common with patch '0': CF for patch '1' and AF for patch '2'. The common boundary

line says that the frequency map is continuous across the boundary, in our case it actually is

analytic.

Figures 13 and 14 suggest to continue the smoothing procedure to the remaining edges

CF and BF , respectively. This indeed can be achieved by successively applying the transfor-

mations M̂ i =M iS. We do not have to take the inverse because M̂ i = M̂
�1

i . In this way

the rosette type of energy surface in Fig. 16 is obtained. Away from F this surface is every-

where smooth. The smoothly continued action de�ned this way is a multivalued function of

l' and �2 where the di�erent leaves are related by powers of the monodromy matrix M .

The smoothness of the surface Fig. 16 becomes apparent from the representation of its

frequencies which are shown in Fig. 15. The analogue of the monodromy matrix M in

frequency space is

M! =M
t�1 =

0
BB@

1 �2 1

0 1 0

0 0 1

1
CCA : (91)

M! has eigenvalue 1 with multiplicity 3 and eigenspace spanf(0; 1; 2)t ; (1; 0; 0)tg. The cross
product

(0; 1; 2)t � (1; 0; 0)t = (0; 2;�1)t (92)

gives the resonance that de�nes the \limiting great circle" on Sh in Figures 15a and b. Points
on the limiting great circle are invariant under M!.
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5 Quantum Monodromy

The implications of the classical monodromy on the quantum mechanical spectrum can be

understood in terms of the EBK quantization of actions. In the space of natural actions the

quantum spectrum de�nes a regular lattice. Due to the multivaluedness of smooth actions

the regular lattice in action space transforms to a lattice in the space of the smooth constants

of motion with a non-trivial global topology.

5.1 The Quantum System

The quantum mechanical billiard problem is described by Schr�odinger's equation for a freely

moving particle with a vanishing wave amplitude on the billiard boundary. For the prolate

ellipsoidal billiard this means to determine the spectrum of the three-dimensional Helmholtz's

equation

�~
2

2
r

2 = E (93)

for Dirichlet boundary conditions on the billiard boundary in Eq. (1). Similarly to the classical

problem, this boundary value problem is separable in the coordinates ('; �; �).

The di�erential equation for ' immediately separates o� and gives the eigenvalue equation

for the angular momentum operator about the x-axis L̂x with spectrum

Lx = n'~ ; n' 2 Z : (94)

Using (94) the Hamilton operator Ĥ = �~2

2
r

2 becomes

Ĥ = �~
2

2

1

�2 � �2

�
@

@�
(�2 � a2)

@

@�
+

@

@�
(a2 � �2)

@

@�

�
+
a2

2

~
2n2'

(�2 � a2)(�2 � a2)
: (95)

For a solution Ĥ (�; �) = E (�; �) the ansatz  (�; �) =  �(�) �(�) leads to the eigenvalue

equations

K̂ � �
"
�~

2

2

@

@�
(a2 � �2)

@

@�
+
a2

2

~
2n2'

a2 � �2
+E�2

#
 � = K � ; (96)

K̂ � �
"
~
2

2

@

@�
(�2 � a2)

@

@�
� a2

2

~
2n2'

�2 � a2
+E�2

#
 � = K � : (97)

The operator K̂ is the analogue of the classical separation constant K. In Euclidean coordi-

nates it reads

K̂ = L̂
2
+ a2p̂2x (98)

with the usual de�nition of the operators L̂
2
and p̂x [31]. On the Hilbert space of functions

that vanish on the ellipsoidal boundary the operators Ĥ, L̂x and K̂ are three mutually

commuting observables. The correspondence principle �i~(@=@'; @=@�; @=@�) ! (p'; p�; p�)

yield their classical pendants H, K and Lx discussed in the previous sections.

For a given n' the exact quantum mechanical spectrum is determined through the solution

of the coupled eigenvalue equations (96) and (97) which are known as the spheriodal wave

equations, see [32]. The equations are identical but have to be solved on di�erent intervals.
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This is the wave mechanical manifestation of the fact that the integrands in I2 and I3 in

Equations (35) and (36) only di�er in the sign. A pair (E;K) is an eigenvalue if it leads

to a solution  which is regular at the regular singular points �a and ful�lls the Dirichlet

boundary condition [20]. This problem can be solved numerically by a shooting method. The

treatment of the billiard in the ellipse in [10] directly applies to the present case, because the

spheroidal wave equation with \quantum number" n' = �1=2 is equivalent to the Mathieu

equation.

It is to be expected that the spectrum of the three quantum operators can be well ap-

proximated by the EBK quantization of the classical actions:

I'((l'; �
2; E)(n';n�;n�)) = ~(n' +

�'

4
) ; (99)

I�((l'; �
2; E)(n';n�;n�)) = ~(n� +

��

4
) ; (100)

I�((l'; �
2; E)(n';n�;n�)) = ~(n� +

��

4
) : (101)

Here � = (�'; ��; ��)
t is the vector of Maslov indices characterizing the topology of the

classical 3-torus speci�ed by the eigenvalues (l'; �
2; E)(n';n�;n�). The Maslov indices depend

on the choice of fundamental paths on the 3-tori. With the choice of the natural action

variables (I'; I�; I�) for the EBK quantization the three fundamental path are (C1; C2; C3) of

Eq. (33). The ' degree of freedom is of rotational type giving �' = 0. For the determination

of �� and �� we refer to the phase portraits in Fig. 4. The �-motion is a usual oscillation, i.e.

�� = 2. � oscillates between a usual turning point and the re
ection at the billiard boundary

� = 1 which wave mechanically imposes Dirichlet boundary conditions, so that �� = 3. In the

space of the actions (I'; I�; I�) the semiclassical eigenvalues are thus located on the simple

lattice

LEBK = f~(n'; n� + 1

2
; n� +

3

4
) : n�; n�;�n' 2 N0g : (102)

The transformation of the exact eigenvalues to action space shows that they are very

close to the lattice points of LEBK . Instead of a three-dimensional plot we restrict ourselves

to the presentation of the eigenvalues in the planes I' = 0 and I' = 1~, see Figures 17

and 18. The only noticeable deviations between the exact quantization and the semiclassical

EBK quantization correspond to eigenvalues in the direct neighborhood of the focus line F

in Fig. 17. A more re�ned semiclassical approach carried out in [33] shows that even the

quality of the semiclassical eigenvalues close to F can be improved (see also [8]).

5.2 Monodromy of the Quantum Spectrum

In order to see the quantum monodromy we have to look at the quantum mechanical spectrum

in the space of (E;K;Lx). This three-dimensional picture is however too complicated to be

useful. Instead we choose to select certain subsets of states with eigenvalues located on

two-dimensional planes and present them in di�erent projections.

In the discussion of the SL(3;Z) normal form of the monodromy matrix M in Sec. 3

we found that besides I' the linear combination I� + 2I� is invariant under M . Note that

the corresponding Maslov index has �� + 2�� = 0 mod 4 so that both invariant actions have

e�ective Maslov index 0. We believe that this is a general fact. In particular, the vector of

Maslov indices � is an eigenvector of all matrices with eigenvalue one,

M1� =M2� =M� = � : (103)
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Figure 17: Exact quantum mechanical eigenvalues and the lattice LEBK below the energy surface E = 2000.

I� and I� are measured in units of ~; I' = 0.
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Figure 18: Analogue of Fig. 17 for I' = ~.
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A smooth two-dimensional plane in the space of the constants of motion is e.g. obtained

by inverting I� + 2I� = n for l' � 0 with some constant n 2 N and I� + 2I� � 2I' = n with

the same n for l' � 0. The latter action is the second component of the image of the natural

actions (I'; I�; I�) under bothM 1 and M2. Note that the inverse of both matrices M 1 and

M2 map this action back to I� + 2I� in accordance with our statement that this action is

invariant under the monodromy matrixM which relates smooth actions for a full cycle about

the line F . In Fig. 19a we represent the eigenvalues of the quantum states obtained this way

for n = 45 in the plane of the energy scaled constants of motion l' and �
2. The subset contains

an in�nite number of states of which Fig. 19a shows only a small portion with eigenvalues close

to F . Locally the existence of a lattice from the EBK quantization is well pronounced. The

lattice lines in vertical direction correspond to the EBK quantum number n'. Equivalently

to the ambiguity of the \bad" action, there exists an in�nite number of choices of locally

smooth lattice lines or EBK quantum numbers transversally to the lines n' = const. The

quantum monodromy becomes apparent if a lattice cell is parallel-transported along a cycle

about F . The parallel-transport is de�ned through shifts along a local EBK lattice. How a

lattice cell is mapped after a full cycle is described by the monodromy matrix M . Due to

its non-trivial entry 1 there appears a shearing of the image lattice cell against the preimage

lattice cell by one lattice site. The e�ect is similarly observed if the same plane is projected

to the other two combinations of the constants of motion, see Figures 19b and c. Due to the

orientation of the plane of the eigenvalues in the three-dimensional space of the constants of

motion the sense of rotation of a cycle about F in Fig. 19b is opposite to the sense of rotation

in Figures 19a and c.

All states are a union of the slices in Fig. 19. Within each slice we observe monodromy

with index 1. For slices of states as e.g. I� = const or I� = const the monodromy becomes

an essentially three-dimensional e�ect, because the slice is not invariant. This is discussed

and illustrated in detail in [34].

The eigenvalue lattice suggests that for states close to the circular billiard it is natural to

replace the set of quantum numbers (n'; n�; n�) for negative n' by the new choice (n'; n�; n��
n') which gives a smooth lattice below F in Fig. 19a. In contrast to that, the natural set

of quantum numbers close to the geodesic 
ow, i.e. above F in Fig. 19a, is obtained by

(n'; n� � 2n'; n�) for n' � 0. For a similar e�ect and its implications on physics see [35].

6 Conclusion

In the present paper we discussed the phenomenon of monodromy both classically and quan-

tum mechanically for the billiard with a prolate ellipsoidal boundary. We showed that the

monodromy here is similar to the monodromy extensively discussed for the case of a two

degrees of freedom system with a focus point. The similarity becomes especially apparent in

the discussion of the two-dimensional billiard map. The bifurcation diagram of the billiard

map has an isolated point whose preimage in phase space is a singly pinched 2-torus. The

existence of a pinched 2-torus is considered as the main aspect for the appearance of mon-

odromy. The commonly used method of singular reduction [5] for calculating the number of

pinches does not apply in the present case since the billiard is a non-smooth system whose

phase space has a boundary. Instead we derived the monodromy directly from the considera-

tion of actions of the full three degrees of freedom billiard 
ow for which the isolated point of

the bifurcation diagram generalizes to an isolated line. Topologically, the preimage in phase
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Figure 19: Projections of the quantum mechanical spectrum in the plane I� + 2I� = 45 for l' � 0 and

I� + 2I� � 2I' = 45 for l' � 0 to the planes (l'; �
2) (a), (l'; E) (b) and (�2; E) (c). The circle F marks the

intersection with the isolated line of the bifurcation diagram.
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space of each point on this line is the product of a pinched 2-torus and a circle.

Other than for two degrees of freedom system the monodromy matrix calculated from the

natural actions associated with the separating coordinates does not appear in a normal form

where it has only one non-trivial o�-diagonal element which immediately would give the index

of the monodromy. Instead, the index is obtained from conjugation of the naturalmonodromy

matrix with respect to unimodular transformations. In particular, this yields a second action

besides the angular momentum which is invariant under the monodromy. Constant values

of this action de�ne smooth two-dimensional surfaces in the three-dimensional space of the

constants of motion. A two-dimensional picture of the quantum monodromy is most easily

obtained by projecting such a surface to a plane spanned by either two of the constants of

motion. In each projection the expected shearing of an EBK quantum lattice cell moved

along a full cycle about the focus line is observed.

The monodromy examined here is similar to the monodromy found in the two centers

problem which separates in the same coordinate system [36]. In principle it is possible

to analyze the monodromy for the prolate ellipsoidal billiard alone in terms of the two-

dimensional billiard map. However, the full three degrees of freedom billiard is considered as

a system of greater relevance to physics. For the two centers problem the necessity to deal

with a three degrees of freedom system is even more apparent because there are two isolated

lines to both of which there corresponds a monodromy matrix of index 1. The actions that

are invariant under the monodromy are di�erent and therefore from a global point of view

the monodromy is to be discussed as a truly three-dimensional e�ect.

The classical monodromy is connected to the collisions of branch points with a pole of

the action integrals. Typically, the natural actions are not smooth under such a collision as

we demonstrated in this paper for the natural actions related to the separating coordinate

system in the limit of a vanishing angular momentum. In particular, the isolated point in

the bifurcation diagram appears through a multiple collision of branch points with a pole.

This suggests a general discussion of the analytic behavior of the action integrals in such a

case. Such an analysis can be performed in terms of so-called Picard-Fuchs equations which

are a linear set of equations giving the actions integrals as functions of the constants of

motion [14, 37]. Such an analysis is currently under investigation. Quantum mechanically,

the collision of branch points with poles becomes apparent in the separated Schr�odinger

equation. This observation may be crucial for developing a general monodromy theory for

coupled Sturm-Liouville boundary value problems.

Ellipsoidal billiards can be viewed as singular versions of the well known integrable

geodesic 
ow on ellipsoidal surfaces [29, 30] where the shortest semi axis collapses to zero. It

is to be expected that the monodromy is also apparent in these smooth systems and also in

the related Neumann system [38, 39].
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