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Abstract

An investigation is made into the existence of rotational acoustic resonances in a

circular cylindrical waveguide, and their frequencies of oscillation are calculated

numerically. The guide is assumed to contain a number of radial fins which have

finite extent, and which are distributed at equal azimuthal angles around the guide.

A variational principle is used to prove the existence of different types of localised,

rotational motion, and the frequencies of these spinning modes are computed. The

numerical method is based on the use of a Galerkin technique to solve the integral

equation which arises in the solution of the governing Helmholtz equation. The

variation of the spinning mode frequencies with the number of fins and type of

mode is discussed, and a comparison with non-rotational resonances is made.

1 Introduction

Unforced fluid oscillations which have finite energy are known to occur in

unbounded fluids and they are localised in regions in which there is some

change in the properties or the geometry of the medium. In the context of water

waves these oscillations are known as edge waves or trapped modes, whereas

in acoustic waveguides they are known as acoustic resonances. Reviews of the
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types and occurrences of such oscillations are given by Parker & Stoneman

[19] and Evans & Kuznetsov [8]. The practical consequences of the existence

of these modes is that if the system is forced at a frequency near that of the

mode, a large response of the fluid-structure system will occur. In particular

Parker [18] made an experimental study of acoustic resonances in axial flow

compressors and observe large vibrations of the blades. Clearly such large

motions may result in damage to one or more components of the system and

a general degradation in performance. Further work on the occurrence and

effect of acoustic resonances in aeroengines has been done by Woodley &

Peake [21,22] and Cooper & Peake [4]

Mathematically these modes are eigenfunctions of a linear operator and the

frequencies at which they occur are related to the eigenvalues of the operator.

In general the modes which have been found and proven to exist have frequen-

cies which are below some cut-off frequency in the problem, which means that

they oscillate at frequencies at which no propagation of waves to infinity is

possible. Examples of such modes are edge waves which propagate along pe-

riodic coastlines, which have been found by Evans & Linton [9], and acoustic

resonances in cascades of plates, which were found both experimentally and

numerically by Parker [16,17].

Proofs of the existence of trapped modes in two and three dimensions are

given by Evans et al [7], Davies & Parnovski [5] and Groves [11], and all of

these proofs are based on variational principles. More recently the existence

of edge waves, or as they are sometimes referred to in the electromagnetic

literature Rayleigh-Bloch modes, has been established rigorously by Linton

& McIver [14]. Modes which have frequencies which are above a cut-off fre-

quency in a guide have also been found numerically by McIver et al [15] and

Evans & Porter[10]. These modes are said to be embedded, as their frequen-

cies correspond to eigenvalues which are embedded in the continuous spectrum

of the relevant operator. Unfortunately this means that the usual variational
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arguments fail, and it is very difficult to prove rigorously that such modes

exist.

The purpose of this work is to investigate the existence of trapped modes which

correspond to rotational motion in a cylindrical acoustic waveguide which

has circular cross-section. Such modes will be referred to as ‘spinning modes’

following the terminology of Parker [18], who found such modes experimentally

in an axial flow compressor. Such a compressor contains rows of large numbers

of blades arranged around a central core. A simple model of this is an infinitely

long cylinder of circular cross-section, which contains a single row of thin,

radial plates, distributed at equal angles about the centre of the cylinder.

Linton & McIver [13] compute ‘standing’ trapped modes for this geometry,

but we will show that such modes are only one class of modes that exist, and

additional spinning modes are possible.

The problem is formulated in the next section where matched eigenfunction

expansions are used to generate an integral equation for the normal velocity on

the matching plane, and then a Galerkin technique is used to solve the equa-

tion. A proof of the existence of spinning modes is given in §3 and numerical

calculations of their frequencies are presented and discussed in §4.

2 Formulation

A circular, cylindrical waveguide contains L radial fins which are uniformly

distributed around the guide, as illustrated in figure 1. Cylindrical polar coor-

dinates (ρ, θ, x) are used, where the x-axis points along the guide and the posi-

tion of the fins is given by {θ = mβ, m = 0, . . . , L−1, 0 ≤ ρ ≤ d,−a ≤ x ≤ a},

where β = 2π/L. Trapped modes are functions Re[φ e−iωt], where φ is a non-

trivial solution of the boundary-value problem

(∇ + k2)φ = 0 in the fluid (1)
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Fig. 1. Definition sketch

∂φ

∂ρ
= 0 on ρ = d, (2)

∂φ

∂θ
= 0 on θ = mβ, m = 0, . . . L− 1, |x| < a (3)

φ→ 0 as |x| → ∞ (4)

The parameter k = ω/c, where ω is the trapped mode frequency and c is the

speed of sound. An application of condition (4) to the eigenfunction expansion

of φ in the far field ensures that the trapped mode has finite energy.

Linton & McIver [13] restricted the type of modes which they considered to

ones which satisfy φ = 0 on θ = mβ, |x| > a, m = 0, . . . , L − 1. However

in order to obtain modes which represent a rotational motion around the

axis (‘spinning modes’) different conditions must be applied. To determine

these, we first consider the scattering of the wave Jp(j
′
p,1ρ/d)e

ipθ+i(k2−j′2p,1/d
2)1/2x,

where Jp is the Bessel function of the first kind of order p, p is a given integer

and j ′p,1 is the first zero of J ′
p. As the geometry is unchanged after rotation

through an angle θ = β, the only change in the scattered wave field is due

to the phase change of eipβ in the incident wave. Thus the scattered potential
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satisfies the pseudo-periodic condition

φ(ρ, θ +mβ, x) = eipmβφ(ρ, θ, x), m = 1, . . . , L− 1, 0 ≤ θ < β, x > a. (5)

A spinning mode is sought which satisfies this same condition but whose fre-

quency lies in the range kd < j ′p,1, which ensures that the potential decays

down the guide. (This argument is similar to that used by Evans & Linton [9] to

obtain the condition for edge wave propagation along a line of plates in two di-

mensions.) Thus the potential may be solved for in the sector between one pair

of fins and then extended to the whole domain with the use of (5). Furthermore

the symmetry of the geometry about the plane x = 0 allows the domain to be

reduced to that part of the sector Ω = {ρ, θ, x : 0 < ρ < d, 0 < θ < β, x > 0},

by application of either the boundary condition for modes which are symmetric

in x,
∂φ

∂x
= 0 on x = 0, (6)

or that for modes which are antisymmetric in x

φ = 0 on x = 0. (7)

In order to solve for φ in Ω the pseudo-periodic condition (5) is replaced by

the so-called Bloch conditions

φ(ρ, β, x) = eipβφ(ρ, 0, x),
∂φ

∂θ
(ρ, β, x) = eipβ

∂φ

∂θ
(ρ, 0, x), 0 < ρ < d, x > a.

(8)

We define region I to be {ρ, θ, x : 0 < θ < β, 0 < ρ < d, 0 < x < a}

and region II to be {ρ, θ, x : 0 < θ < β, 0 < ρ < d, a < x < ∞}. An

eigenfunction expansion is sought for φ in each region and the potential and

normal derivative is matched on the common boundary. Details are given here

for the potential which is symmetric in x.

The potential is written as

φI(ρ, θ, x) =
∞
∑

m=0

∞
∑

n=1

amn
coshαmnx

αmn sinhαmna
ψImn(ρ)Ψ

I
m(θ), (9)
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in region I and as

φII(ρ, θ, x) =
∞
∑

m=−∞

∞
∑

n=1

bmn
e−βmn(x−a)

−βmn
ψIImn(ρ)Ψ

II
m (θ), (10)

in region II, where

ψImn(ρ) = JmL/2(j
′
mL/2,nρ/d), ΨI

m(θ) = cos (mLθ/2) , (11)

ψIImn(ρ) = Jp+mL(j
′
p+mL,nρ/d), ΨII

m (θ) = ei(p+mL)θ, (12)

αmnd =



























(j
′2
mL/2,n − (kd)2)1/2, kd ≤ j ′mL/2,n,

−i((kd)2 − j
′2
mL/2,n)

1/2, kd > j ′mL/2,n,

(13)

and

βmnd =



























(j
′2
p+mL,n − (kd)2)1/2, kd ≤ j ′p+mL,n,

−i((kd)2 − j
′2
p+mL,n)

1/2, kd > j ′p+mL,n.

(14)

(The term cosh(αmnx)/ sinh(αmna) in (9) is replaced by sinh(αmnx)/ cosh(αmna)

in the potential which is antisymmetric in x.)

In order for φ to represent a spinning mode, φ → 0 as x → ∞ and so from

the expansion (10), for bmn 6= 0, βmnd must be real and positive for all m and

n. From (14) this means that p may be restricted to p = 0, . . . , L− 1 and

kd < min(j ′p,1, j
′
p−L,1). (15)

In particular this means that there are no spinning modes when p = 0. However

if the requirement that φ be antisymmetric about the mid-plane of a sector is

imposed, ie

φ(ρ, β/2 − θ, x) = −φ(ρ, β/2 + θ, x), 0 < θ < β/2, (16)

then several of the coefficients in the expansions of φ in (9) and (10) must

be set equal to zero. In particular b0n = 0 and so a mode is possible with a

frequency kd < j ′L,1 when p = 0 and (16) is satisfied. This corresponds to one

of the modes found by Linton & McIver [13], and for simplicity this will simply
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Table 1

Cut-off frequencies for different L and p

p\L 1 2 3 4 5 6 7 8 9 10

0 j′1,1 j′2,1 j′3,1 j′4,1 j′5,1 j′6,1 j′7,1 j′8,1 j′9,1 j′10,1

1 j′1,1 j′1,1 j′1,1 j′1,1 j′1,1 j′1,1 j′1,1 j′1,1 j′1,1

2 j′2,1 j′2,1 j′2,1 j′2,1 j′2,1 j′2,1 j′2,1

3 j′3,1 j′3,1 j′3,1 j′3,1 j′3,1

4 j′4,1 j′4,1 j′4,1

5 j′5,1

be referred to as the p = 0 mode. For general p the symmetry of the geometry

means that if φ(ρ, θ, x) is a mode then so is φ(ρ,−θ, x). From the expansion in

(10) this means that the only other independent modes apart from that given

by p = 0 are given by p = 1, . . . , L/2 for L even and p = 1, . . . , (L− 1)/2 for

L odd. Thus (15) may be replaced by

kd < j ′p,1, p 6= 0. (17)

Table 1 shows the number of possible modes for different numbers of fins and

the cut-off frequencies below which kd must lie.

An integral equation will now be derived and solved using a Galerkin proce-

dure, which is based on the ideas of Porter & Evans [20]. The analysis will be

given for the case p 6= 0, as the case p = 0 is covered by the work of Linton &

McIver [13].

Continuity of the potential and its normal derivative on x = a gives

∞
∑

m=0

∞
∑

n=1

amn
coth(αmna)

αmn
ψImn(ρ)Ψ

I
m(θ) =

∞
∑

m=−∞

∞
∑

n=1

bmn
−βmn

ψIImn(ρ)Ψ
II
m (θ), (18)
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and

f(ρ, θ) =
∞
∑

m=0

∞
∑

n=1

amnψ
I
mn(ρ)Ψ

I
m(θ) =

∞
∑

m=−∞

∞
∑

n=1

bmnψ
II
mn(ρ)Ψ

II
m (θ), (19)

for 0 < ρ < d and 0 < θ < β in both cases. Multiplication of (19) by

ρψIµν(ρ)Ψ
I
µ(θ) and ρψIIµν(ρ)Ψ

II
µ (θ), µ = 0, 1, . . ., ν = 1, 2, . . ., in turn and inte-

gration over D = {ρ, θ : 0 < ρ < d, 0 < θ < β}, gives

aµν
d2βqµν

2εµ
=
∫ d

0

∫ β

0
ρf(ρ, θ)ψIµν(ρ)Ψ

I
µ(θ)dρdθ (20)

and

bµνQµνβd
2/2 =

∫ d

0

∫ β

0
ρf(ρ, θ)ψIIµν(ρ)Ψ

II
µ (θ)dρdθ (21)

respectively, where

εµ =















1, µ = 0,

2, µ 6= 0,

(22)

qµν =



























(

1 − (µL/2)2

j
′2

µL/2,ν

)

(

JµL/2(j
′
µL/2,ν)

)2
, (µL/2, ν) 6= (0, 1),

1, (µL/2, ν) = (0, 1)

(23)

and

Qµν =



























(

1 − (p+µL)2

j
′2
p+µL,ν

)

(

Jp+µL(j
′
p+µL,ν)

)2
, (p+ µL, ν) 6= (0, 1),

1, (p+ µL, ν) = (0, 1).

(24)

The representations for aµν and bµν in terms of f(ρ, θ) will be substituted in

(18) but first it is convenient to rearrange this equation so that any terms which

correspond to imaginary αmn are on the right-hand side of the equation and

the remaining terms are on the left-hand side. (Terms in (18) for which αmn

is imaginary correspond to wave-like terms in x, in φ in region I.) The reason

for this procedure is that it will result in a finite system of integral equations,

which each have the same, positive-definite, Hermitian kernel. From (13) and

(17) imaginary values of αmn are given by the values of m and n for which

j ′mL/2,n < kd < j ′p,1. (25)
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As max(p) = L/2 for L even and (L−1)/2 for L odd, p < mL/2 if m ≥ 1 and

so imaginary values of αmn arise only when m = 0. Suppose that there are N

such terms, that is j ′0,N < kd < j ′0,N+1, then (18) may be written as

∞
∑

n=N+1

a0n
coth(α0na)

α0n
ψI0n(ρ)Ψ

I
0(θ) +

∞
∑

m=1

∞
∑

n=1

amn
coth(αmna)

αmn
ψImn(ρ)Ψ

I
m(θ)

+
∞
∑

m=−∞

∞
∑

n=1

bmn
βmn

ψIImn(ρ)Ψ
II
m (θ) = −

N
∑

n=1

a0n
coth(α0na)

α0n
ψI0n(ρ)Ψ

I
0(θ). (26)

Substitution of (20) and (21) into (26) yields the integral equation for f(ρ, θ)

∫ d

0

∫ β

0
ρ′f(ρ′, θ′)K(ρ, θ; ρ′, θ′) dρ′dθ′ =

β

2

N
∑

n=1

a0n cot(α′
0na)ψ

I
0,n(ρ)Ψ

I
0(θ)

α′
0nd

, (27)

where α′
0nd = −iα0nd and

K(ρ, θ; ρ′, θ′)=
∞
∑

n=N+1

coth(α0na)

d2α0ndq0n
ψI0n(ρ)Ψ

I
0(θ)ψ

I
0n(ρ

′)ΨI
0(θ

′)

+
∞
∑

m=1

∞
∑

n=1

2 coth(αmna)

d2αmndqmn
ψImn(ρ)Ψ

I
m(θ)ψImn(ρ

′)ΨI
m(θ′)

+
∞
∑

m=−∞

∞
∑

n=1

1

d2βmndQmn
ψIImn(ρ)Ψ

II
m (θ)ψIImn(ρ

′)ΨII
m (θ′). (28)

The function f(ρ, θ) is written as

f(ρ, θ) =
β

2

N
∑

n=1

a0n cot(α′
0na)

α′
0nd

g(n)(ρ, θ) (29)

where g(n)(ρ, θ) satisfies

Kg(n)(ρ, θ) =
∫ d

0

∫ β

0
ρ′g(n)(ρ′, θ′)K(ρ, θ; ρ′, θ′) dρ′dθ′ = ψI0n(ρ)Ψ

I
0(θ). (30)

Each of the integral equations in (30) has the same kernel, and it follows

immediately from (28) that

K(ρ, θ; ρ′, θ′) = K(ρ′, θ′; ρ, θ) (31)

and, for arbitrary g(ρ, θ) which is sufficiently smooth
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∫ d

0

∫ β

0
ρg(ρ, θ)

[

∫ d

0

∫ β

0
K(ρ, θ; ρ′, θ′)g(ρ′, θ′)ρ′dρ′dθ′

]

dρdθ

=
∞
∑

n=N+1

coth(α0na)

α0ndq0n

∣

∣

∣

∣

∣

∫ d

0

∫ β

0
ρg(ρ, θ)ψI0n(ρ)Ψ

I
0(θ)dρdθ

∣

∣

∣

∣

∣

2

+
∞
∑

m=1

∞
∑

n=1

2 coth(αmna)

αmndqmn

∣

∣

∣

∣

∣

∫ d

0

∫ β

0
ρg(ρ, θ)ψImn(ρ)Ψ

I
m(θ)dρdθ

∣

∣

∣

∣

∣

2

+
∞
∑

m=−∞

∞
∑

n=1

1

βmndQmn

∣

∣

∣

∣

∣

∫ d

0

∫ β

0
ρg(ρ, θ)ψIImn(ρ)Ψ

II
m (θ)dρdθ

∣

∣

∣

∣

∣

2

≥ 0 (32)

provided that the infinite series converge, and is only equal to zero if g = 0.

Thus K is a positive definite, self-adjoint operator and so (30) may be solved

for g(n)(ρ, θ).

Multiplication of (29) by ρψI0ν(ρ)Ψ
I
0(θ), ν = 1, . . . , N , integration over D and

substitution in (20) gives

a0νd
2q0ν =

N
∑

n=1

a0n
cot(α′

0na)

α′
0nd

∫ d

0

∫ β

0
g(n)(ρ, θ)ψI0ν(ρ)Ψ

I
0(θ)ρdθdρ, ν = 1, . . . , N.

(33)

Thus, once the functions g(n)(ρ, θ) are determined from (30), for a spinning

mode to exist there must be a non-trivial solution of (33) for the variables

{a0ν}, ν = 1, . . . , N . For this to be true, the determinant of the resulting

system of equations must be zero and so, for a given number of fins L, each

with length a, this last condition determines the frequency of the mode kd.

In order to solve the integral equation in (30) each function g(n)(ρ, θ) is ex-

panded in a complete set of functions over D. Clearly it would be possible to

do this using a combination of Bessel functions in ρ and trigonometric func-

tions in θ. However, in order to correctly model the singularity in the velocity

at the ends of the plates at θ = 0 and θ = β it is more convenient to write an

approximation to g(n)(ρ, θ) in the form

g(n)(ρ, θ) =
R
∑

r=0

S
∑

s=1

A(n)
rs grs(ρ, θ) (34)
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where

grs(ρ, θ) =
ir

π
Jr(j

′
r,sρ/d)θ

−1/2(β − θ)−1/2Tr

(

2θ − β

β

)

, (35)

and Tr is a Chebyshev polynomial of the first kind. The only place where the

behaviour of g(n)(ρ, θ) may not be well-modelled is near ρ = 0, where the form

of the velocity is unknown. However, numerical experimentation suggests that

the coefficients in the expansion for g(n)(ρ, θ) in (34) decay faster than those

in an expansion which uses trigonometric functions in θ, and so (34) was used

in all calculations presented in this work. Substitution of the expansion in

(34) into (30), multiplication by ρgµν(ρ, θ) and integration over D yields, after

considerable algebra,

∞
∑

n=N+1

coth(α0na)

α0ndq0n
A

(l)
0nU

nn
00 U

nν
0µ u0µ +

R
∑

r=0

S
∑

s=1

A(l)
rs

∞
∑

m=1

∞
∑

n=1

2 coth(αmna)

αmndqmn
Uns
mrU

nν
mµumrumµ +

R
∑

r=0

S
∑

s=1

A(l)
rs

∞
∑

m=−∞

∞
∑

n=1

1

βmndQmn
V ns
mrV

nν
mµvmrvmµ =U lν

0µu0µ,

l = 1, . . . , N, µ = 0, 1, . . . , R, ν = 1, 2, . . . S, (36)

where

Uns
mr =

∫ 1

0
ρJr(j

′
r,sρ)JmL/2(j

′
mL/2,nρ)dρ, (37)

V ns
mr =

∫ 1

0
ρJr(j

′
r,sρ)Jp+mL(j

′
p+mL,nρ)dρ, (38)

umr =
∫ β

0
ir(π)−1θ−1/2(β − θ)−1/2Tr

(

2θ − β

β

)

ΨI
m(θ)

=Jr(mLβ/4) cos(mLβ/4 + rπ/2)eirπ/2, (39)

and

vmr =
∫ β

0
ir(π)−1θ−1/2(β − θ)−1/2Tr

(

2θ − β

β

)

ΨII
m (θ)

= Jr((p+mL)β/2)e−i((p+mL)β/2. (40)
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Similarly, substitution of (35) into (33) gives

a0νq0ν −
N
∑

n=1

a0n
cot(α′

0na)

α′
0nd

A
(n)
0ν U

νν
00 = 0, ν = 1, . . . , N. (41)

The numerical solution of (36) and (41) will be discussed in §4 but first a proof

of the existence of spinning modes will be given in the next section.

3 Proof of the existence of spinning modes

The existence of rotational acoustic resonances which are symmetric in x will

be established in this section for p = 0 with the use of a standard variational

argument. This extends the work of Davies & Parnovski[5] and Groves[11]

who proved that at least one type of mode may be supported by a thin plate

in a guide, and it uses the ideas of Bonnet-Bendhia & Starling[3], who stud-

ied Rayleigh-Bloch modes which are supported by electromagnetic diffraction

gratings. As will be seen from the numerical results of the next section, modes

which are antisymmetric in x only exist when a/d is above a critical value. A

proof will be given for the existence of modes when a/d > π/j ′p,1, but from

the numerical results this value of a/d is not optimal and the authors were

unable to determine what the critical value of a/d should be.

The Sobolev space H1
pL(Ω) is formed from the completion in the H1 norm of

the space of functions C∞(Ω) which have compact support and satisfy (8). A

similar argument to that given by Bonnet-Bendhia & Starling[3] shows that

the operator −d2∇2, restricted to H1
pL(Ω), has the essential spectrum

σess = [min{j ′2p,1, j
′2
p−L,1},∞) = [j ′2p,1,∞), (42)

as the values of p are restricted to p = 1, . . . L/2 when L is even and p =

1, . . . (L− 1)/2 when L is odd. (The essential spectrum for this operator may

be thought of physically as the values of (kd)2 for which waves that satisfy (8),
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may propagate in the empty guide.) A standard variational principle shows

that the lowest point of the spectrum of the operator is given by

inf
ψ∈H1

pL(Ω)\{0}
Q[ψ], where Q[ψ] =

d2
∫

Ω |∇ψ|2 dΩ
∫

Ω |ψ|2 dΩ
. (43)

Thus if a function ψ0 ∈ H1
pL(Ω)\{0} is found for which Q[ψ0] < j ′2p,1 then there

is an eigenvalue of the operator, (k0d)
2, which is below the essential spectrum.

This agrees with the intuitive ideas of the previous section which suggest that

spinning modes may exist at frequencies for which waves cannot propagate

down the guide.

The test function

ψ0 =















Jp(j
′
p,1ρ/d)e

ipθ + ε1/2i(1 − x/a), 0 ≤ x ≤ a, 0 ≤ θ ≤ β, 0 ≤ ρ ≤ d,

Jp(j
′
p,1ρ/d)e

ipθe−ε(x/a−1), x > a, 0 ≤ θ ≤ β, 0 ≤ ρ ≤ d,

(44)

where ε is a positive constant to be chosen, belongs toH1
pL(Ω)/{0}. Elementary

integration gives

∫ a

x=0

∫ β

θ=0

∫ d

ρ=0
|ψ0|

2 ρ dρ dθ dx = βaI1 +
2a

p
sin2

(

βp

2

)

I2 ε
1/2 +O(ε), (45)

∫ ∞

x=a

∫ β

θ=0

∫ d

ρ=0
|ψ0|

2 ρ dρ dθ dx =
βa

2ε
I1, (46)

∫ a

x=0

∫ β

θ=0

∫ d

ρ=0
|ψ0|

2 ρ dρ dθ dx = βa

[

j ′2p,1
d2
I3 + p2I4

]

+O(ε) (47)

and
∫ ∞

x=a

∫ β

θ=0

∫ d

ρ=0
∇|ψ0|

2 ρ dρ dθ dx =
βa

2ε

[

j ′2p,1
d2
I3 + p2I4

]

+O(ε), (48)

where

I1 =
∫ d

0
ρJ2

p (j
′
p,1ρ/d) dρ, (49)

I2 =
∫ d

0
ρJp(j

′
p,1ρ/d) dρ, (50)

I3 =
∫ d

0
ρJ ′2

p (j ′p,1ρ/d) dρ, (51)

and

I4 =
∫ d

0

1

ρ
J2
p (j

′
p,1ρ/d) dρ. (52)
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The governing differential equation for Jp is given in [1] 9.1.1 by

z2J ′′
p + zJ ′

p + (z2 − p2)Jp = 0. (53)

Multiplication of (53) by Jp(z)/z and integration from z = 0 to j ′p,1 gives, after

some manipulation
j ′2p,1
d2
I3 + p2I4 =

j ′2p,1
d2
I1. (54)

Substitution of (45) - (52) and (54) into (43) shows that the Rayleigh quotient

evaluated at ψ = ψ0 is given by

Q[ψ0] = ′2p,1

[

1 −
4I2
βpI1

sin2

(

βp

2

)

ε3/2
]

+O(ε2). (55)

From (49) I1 is clearly positive and from (50) I2 is also positive because j ′p,1 <

jp,1, where jp,1 is the first positive zero of Jp(z) and Jp(z) > 0 for 0 < z < jp,1.

Furthermore as βp = 2πp/L and p ≤ L/2, sin(βp/2) > 0. Thus ε may be

chosen to be sufficiently small that

Q[ψ0] < j ′2p,1 (56)

and so there is an eigenvalue of the operator −d2∇2 restricted to H1
pL(Ω),

below the essential spectrum.

For modes which are antisymmetric in x the test function

ψ0 =















sin
(

πx
a

)

, 0 ≤ x ≤ a, 0 ≤ θ ≤ β, 0 ≤ ρ ≤ d,

0, x > a, 0 ≤ θ ≤ β, 0 ≤ ρ ≤ d,

(57)

is used and a simple calculation shows that Q[ψ0] = π2d2/a2. This must be

less than the cut-off j ′2p,1 to guarantee that there is an eigenvalue below the

essential spectrum, and so spinning modes which are antisymmetric in x are

guaranteed for
a

d
>

π

j ′p,1
. (58)

However, as will be seen from the results in the next section, this is not a tight

bound as there is numerical evidence that modes exist for values of a/d below

14



this.

4 Results and discussion

From the definition of umr and vmr in (39) and (40) it is straightforward

to show that umrumµ, vmrvmµ and u0,µ must be real, and so the system of

equations in (36) has real solutions {A(i)
rs }. Thus the determinant of the system

of equations for {a0n} in (41), ∆ is real. The frequencies of the spinning modes

correspond to values of kd at which ∆ = 0, and these are computed as follows.

The geometric parameters L and a/d, and the mode number p are fixed, and

so for p 6= 0 any spinning mode frequencies are known to be in the range

0 < kd < j ′p,1. The coefficients {A(l)
rs} and the determinant ∆ are calculated

for a range of values of kd in this interval, and smaller intervals in which

∆ changes sign are located. To calculate {A(l)
rs} the indices t = Sr + s and

τ = µS + ν are introduced, so each pair (r, s) and (µ, ν) correspond to a

unique value of t and τ respectively, and then a NAG routine is used to solve

the linear system of equations for the S(R + 1) unknowns B
(l)
t = A(i)

rs . Once

any intervals in which zeros of ∆ lie are located approximately, a second NAG

routine is used to determine the positions of these zeros more accurately and

hence the value of kd at which there is a spinning mode. The procedure is

then repeated for different values of the parameters L, a/d and p.

Because the singularity at the ends of the plates is modelled accurately, nu-

merical experimentation suggests that a very small matrix size, given by R = 2

and S = 3, is sufficient to obtain results which are accurate to three signif-

icant figures, provided that the infinite series in (36) are truncated at the

larger values of 64 terms each. The main computational effort is contained in

the numerical evaluation of Uns
mr, V

ns
mr. An examination of the integrals in (37)

and (38) shows that their integrands are highly oscillatory over at least part

of the range of integration for large m and n, and so a NAG routine which is

15



tailored specifically for such integrals was used for their computation.

When there is one fin in the guide (L = 1) there is only one possible mode

given by p = 0, and when L = 2 there are two independent modes given by

p = 0 and p = 1. As has already been noted, the modes which correspond to

p = 0 are equivalent to those found by Linton & McIver [13]. Those authors

also found the mode for which L = 2, and p = 1. This mode spins with leading

order azimuthal variation eiθ, and so there is an identical mode with azimuthal

variation e−iθ and a suitable combination of these two modes leads to a mode

which is zero on the extensions of the fins and satisfies the condition imposed

by Linton & McIver [13]. Numerical calculations were checked against these

results and good agreement obtained. In practice a rotational mode is more

likely to be generated than a standing mode if there is some non-axisymmetric

term in the forcing, such as a component of swirling flow.

When L > 2 additional modes to those found by Linton & McIver [13] may

be obtained. Figure 2 illustrates the spinning mode frequencies for L = 3

and these correspond to modes which are either symmetric or antisymmetric

in x. It is clear that the mode which corresponds to p = 1 has a frequency

which is in the range 0 < kd < j ′1,1, whereas the frequency of the mode which

corresponds to p = 0 lies in the range j ′3/2,1 < kd < j ′3,1. As a/d increases

more and more modes appear, alternately symmetric and antisymmetric in x,

and they all come in from the upper cut-off given in table 1 in §2 and, for

p 6= 0 they tend to zero as a/d→ ∞. There is numerical evidence that whilst

antisymmetric modes are not possible for all a/d > 0, there are modes for

plates of length a/d < π/j ′1,1 ≈ 1.7063 when p = 1. Thus the lower bound for

a/d for antisymmetric modes in (58) is not optimal.

When p = 0 the lower bound for kd corresponds to a cut-off below which

there are no oscillatory modes in the inner region. Intuitively there must be

at least one such mode for trapped motion to exist. From (9) and (13) there
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symmetric about plane x = 0
antisymmetric about plane x = 0

kd

p = 0

p = 1

Fig. 2. Spinning modes for L = 3, p = 0, 1.

is one oscillatory mode in the inner region if kd < j ′1,1 but if the condition of

antisymmetry about the centreline of the sector is imposed (which is required

when L is odd and p = 0) then a0n = 0 for all n and so there are no oscillatory

modes in the inner region when kd < j ′3/2,1. This means that there is a gap

j ′1,1 < kd < j ′3/2,1 for which there are no spinning modes for L = 3. This is

an interesting feature which always occurs when L is odd, and in general no

trapped motion has been found for

j ′(L−1)/2,1 < kd < j ′L/2,1, L odd. (59)

Thus if there is an external forcing with a frequency which corresponds to a

value of kd in this range, no large response of the system would be expected.

Figure 3 shows the spinning mode frequencies for L = 4. The upper set of

curves are for modes which correspond to p = 0, and these are antisymmetric

about the mid-plane of the sector. Their frequencies range from the cut-off for
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Fig. 3. Spinning modes for L = 4, p = 0, 1, 2.

the inner region j ′2,1 ≈ 3.0542 to the cut-off for the outer region j ′4,1 ≈ 5.3176.

The middle set of curves are for p = 2 and are confined to the region 0 < kd <

j ′2,1 ≈ 3.0542, and on each curve the frequencies tend to zero as a/d → ∞.

The lowest set of curves represent modes which correspond to p = 1, and their

frequencies range from zero as a/d→ ∞, to the cut-off j ′1,1 ≈ 1.8412. This last

set of curves is exactly the same as for the case L = 2, p = 1 and, as noted

by Linton & McIver [13], this is unsurprising as a mode which is symmetric

about the centreline of a sector formed by two fins is also a mode for four fins,

and may be constructed from combinations of spinning modes. In this case

both the potential and the normal derivative are continuous across one pair

of the fins.

Each curve in the set for p = 2 approaches a curve in the set p = 1 as

a/d → ∞, and together they tend to zero. This behaviour may be explained

by an examination of the side condition (41) as a/d → ∞. If there is only

18



one oscillatory term in the inner region this condition simplifies to give the

transcendental equation for ka

cot(ka)

ka
=

2

A01

d

a
. (60)

Furthermore coth(αmna) → 1 as a/d → ∞, provided that m and n are not

both zero, and so the system of equations for Amn in (36) tends to a system

which is independent of a/d. Thus the right-hand side of (60) tends to zero as

a/d→ ∞ and the limiting equation has solutions

kd =
(2n− 1)πd

2a
, n integer, (61)

which are independent of the number of fins L and the mode number p. To a

first approximation the modes themselves may be shown to be given by

φ =



























cos
(2n− 1)πx

2a , in region I,

0, in region II,

(62)

apart from in a transition region near x = a. Such a mode satisfies the Bloch

conditions (8) for any values of p and β.

A similar analysis shows that the asymptotic form of the antisymmetric fre-

quencies is given by

kd =
nπd

a
, n integer, (63)

and the modes themselves are given by

φ =



























sin nπxa , in region I,

0, in region II,

(64)

Figure 4 compares the accurate calculations with the asymptotic frequencies

for both the symmetric and antisymmetric modes when L = 4 and p = 1

or 2. For sufficiently large values of a/d modes are possible for all permitted
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Fig. 4. Comparison of numerical and asymptotic results for L = 4, p = 1, 2.

values of p within a narrow range of kd, and the mode which is generated in

practice will depend of the nature of any forcing. From the Bloch conditions in

(8) spinning modes with the smallest value of p correspond to those with the

least oscillatory azimuthal variation and these are more likely to be generated

than modes which correspond to larger values of p (or p = 0) unless the

forcing is dominated by a particularly high frequency θ variation. In addition

the frequencies of the modes for smaller values of p are lower, and for values of

a/d . 1 the differences may be quite significant. This becomes more noticeable

when the number of fins is increased, as is shown in figure 5 where the four

possible types of modes which exist when L = 7 are presented.

Figure 5 illustrates clearly the gap in kd in which there are no modes, namely

j ′3,1 < kd < j ′3/2,1, (65)

but it also shows the same change in structure to the curves which was ob-
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served by Linton & McIver [13] when L = 8. The modes for the cases p = 0, 1

and 2 have similar behaviour to those for a smaller number of fins, but those

for p = 3 are different in character. For a/d sufficiently large an extra set of

modes exists and the two sets of curves appear to ‘kiss’ and then separate. Lin-

ton & McIver [13] explained this phenomenon in terms of so-called diabolical

points, which were first observed by Berry & Wilkinson [2] in bounded regions.

Physically the behaviour first occurs when two waves exist in the inner region,

and so two different types of trapped oscillations are possible. From (25) this

is when j ′0,2 < kd < j ′3,1 (approximately 3.8317 < kd < 4.2012). As L increases

more and more structure in the curves for the larger values of p (and p = 0)

is expected, as the number of waves which exist in the inner region increases.

0 1 2 3 4
a/d

0

2

4

6

8

10
symmetric about plane x = 0
antisymmetric about plane x = 0

  

kd

p = 0

p = 3

p = 2

p = 1

Fig. 5. Spinning modes for L = 7, p = 0, 1, 2, 3.
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5 Conclusion

In this work the existence of spinning modes in a circular cylindrical guide

which contains a number of radial fins, arranged at equal angles around the

guide, has been investigated. Because of the symmetry of the geometry, the

mathematical problem reduces to that of determining the eigenvalues of the

Laplacian in a infinite cylindrical sector, with Neumann or Bloch conditions

on the boundary of the sector. A proof of the existence of such modes was

given and then a scheme based on a Galerkin method was used to locate the

eigenvalues numerically. Graphs of the variation of spinning mode frequencies

with plate length were presented for different mode numbers, and an inves-

tigation of the structure of these curves as the number of fins increased was

made. For sufficiently large a/d the behaviour of each curve was found to be

independent of the number of fins and the mode number. However, the overall

shape of each curve depends critically on the number of waves it is possible

to trap in the inner region between the fins.
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