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Abstract

Poor drug delivery and low rates of cell proliferation are two factors associated with
hypoxia that diminish the efficacy of many chemotherapeutic drugs. Since macrophages
are known to migrate specifically towards, and localise within, hypoxic tumour regions,
a promising resolution to these problems involves genetically engineering macrophages to
perform such anti-tumour functions as inducing cell lysis and inhibiting angiogenesis. In
this paper we outline a modelling approach to characterise macrophage infiltration into
early avascular solid tumours, and extensions to study the interaction of these cells with
macrophages already present within the tumour. We investigate the role of chemotaxis
and chemokine production, and the efficacy of macrophages as vehicles for drug delivery
to hypoxic tumour sites.

The model is based upon a growing avascular tumour spheroid, in which volume is filled
by tumour cells, macrophages and extracellular material, and tumour cell proliferation
and death is regulated by nutrient diffusion. Crucially, macrophages occupy volume, and
hence contribute to the volume balance and hence the size of the tumour. We also include
oxygen dependent production of macrophage chemokines, which can lead to accumulations
in the hypoxic region of the tumour. We find that the macrophage chemotactic sensitivity
is a key determinant of macrophage infiltration and tumour size. Although increased
infiltration should be beneficical from the point of view of macrophage-based therapies,
such infiltration in fact leads to increased tumour sizes.

Finally, we include terms representing the induced death of tumour cells by hypoxic
engineered macrophages. We demonstrate that reductions in tumour size can be achieved,
but predict that a combination of therapies would be required for complete eradication.
We also highlight some counter-intuitive predictions—for example, absolute and relative
measures of tumour burden lead to different conclusions about prognosis. In summary,
this paper illustrates how mathematical models may be used to investigate promising
macrophage-based therapies.
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1 Introduction

A characteristic feature of many solid tumours, growing in vivo or as tumour spheroids in

vitro, is the presence of regions of low oxygen or hypoxia, as evidenced by microelectrode

measurements and staining for hypoxia inducible factors (Figure 1a). In avascular tumours

that do not possess a blood supply, or in spheroids, cultured in vitro, hypoxic regions form

when tumours reach a critical size when the diffusion of oxygen and other nutrients from the

surrounding medium is insufficient to meet the metabolic demands of cells in the interior. The

same mechanism is believed to trigger the appearance of hypoxia in vascularised tumours.

Blood vessels within such tumours are typically surrounded by an annulus of proliferating cells

a few cells thick, followed by a poorly oxygenated or hypoxic layer. Often there are regions

beyond this which are so starved of oxygen that the cells are unable to survive and form a

necrotic region (see Figure 1).

Cells respond to hypoxia in a number of ways. Typically they reduce their rates of proliferation

and, hence, become less responsive to chemotherapies that target rapidly dividing cells. They

may also produce a range of chemicals, including Vascular Endothelial Growth Factor (VEGF),

which stimulate angiogenesis, the generation and directed migration of new blood vessels into

the tumour (Maxwell et al., 1997). For these reasons the degree of hypoxia within a solid

tumour often correlates with prognosis (Howell et al., 2002; Ichikura et al., 2001) and clinicians

have been striving to develop novel therapies that will target hypoxic sites within tumours.

The aim of one promising therapeutic approach is to exploit the propensity of a class of white

blood cells known as macrophages to accumulate in hypoxic regions (Lewis et al., 1999) (see Fig-

ure 1b), this localisation being widely attributed to increased rates of production of macrophage

chemoattractants such as VEGF and Macrophage Chemoattractant Protein-1 (MCP-1) under

hypoxia. The main principle of the new therapy is to equip the macrophages with therapeutic

genes whose expression is induced by hypoxia (Griffiths et al., 2000). For example, a proportion

of a patient’s macrophages could be harvested and transduced with a gene encoding cytochrome

P450 before being injected back into the patient where they aggregate preferentially in hypoxic

regions. Under hypoxia the macrophages release the enzyme cytochrome P450, which activates

the prodrug cyclophosphamide (injected shortly after the engineered macrophages), leading

to localised tumour cell kill. Since the oxygen tensions that characterise tumour hypoxia in

vivo are considerably lower than those found elsewhere in a patient’s body, it is hoped that

genetically engineered macrophages which target hypoxic regions should provide a high degree

of therapeutic specificity. In so doing, the extent of undesirable side-effects such as hair loss

and nausea that are often associated with chemotherapy should also be diminished.
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Whilst results obtained to date using this macrophage, gene-based therapy are promising, many

questions remain to be answered before the approach can be used routinely in a clinical set-

ting. For example, before the impact of treating a tumour with engineered macrophages can

be assessed, the mechanisms by which normal (i.e. non-engineered) macrophages accumulate

in hypoxic regions must be more fully elucidated and the impact that they have on the tu-

mour’s size and structure clarified. Studies in vitro demonstrate that, while chemotaxis may

enhance macrophage aggregation in hypoxic tumour regions, macrophages may also infiltrate

into multicell spheroids in significant numbers in the absence of chemotactic stimuli (Leek,

1999). Preliminary modelling by Kelly et al., designed to explain these findings, indicates that

neither hypoxia nor necrosis are necessary for macrophage infiltration: macrophages can mi-

grate towards and within tumours by random motion alone (Kelly et al., 2002). In addition,

the number of infiltrating macrophages increases with tumour size for both chemoattractant-

producing and chemoattractant-deficient spheroids.

The model developed in (Kelly et al., 2002) assumes that the tumour volume does not change

during macrophage infiltration and neglects the volume occupied by the macrophages, even

though the experimental data indicate that tumours increase in size during macrophage infil-

tration (Leek, 1999). In this paper we develop a mathematical model of macrophage infiltration

into avascular tumours in which both of these assumptions are relaxed. This is achieved by

extending the multiphase modelling framework developed by Ward and King (Ward and King,

1997; Ward and King, 1999), which accounts explicitly for the volume fractions of tumour cells

and extracellular material. Related multiphase approaches have been applied to various aspects

of tumour growth, including capsule formation (Jackson and Byrne, 2002; Lubkin and Jackson,

2002) and vascular tumour growth (Breward et al., 2003). Many other models have also been

developed for different aspects of tumour progression, including individual-based models for

avascular growth (Drasdo and Hohme, 2003) and angiogenesis (Anderson and Chaplain, 1998;

Levine et al., 2001). In addition, there has been considerable work on the detailed mathematical

analysis of models for tumour biology (Fontelos et al., 2002; Friedman and Reitich, 1999).

In Section 2 we develop our mathematical model for macrophage infiltration into tumours. In

Section 3 we demonstrate the good agreement that may be achieved between experimental

growth curves for HEPA-1 spheroids in-vitro and our basic tumour growth model when no

macrophages are present. With this foundation, we use the full model to determine the effect

of macrophage infiltration on the tumour’s size and composition, i.e. the number of live tumour

cells within the spheroid and the fraction that are proliferating. This includes a comparison

of macrophage infiltration with and without macrophage chemotaxis. In Section 4, we study

the effect of macrophage-dependent tumour cell killing. Another important practical question

that we investigate concerns the ability of engineered macrophages to displace the normal
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macrophages already present in hypoxic regions of tumours. We address this issue by extending

our model so that it describes interactions between the tumour cells and two macrophage

populations (normal and genetically engineered). Finally, in Section 5 we discuss the biological

significance of our results and make a number of suggestions for future work.

2 Generalised Macrophage Infiltration Model

In this section we present a general mathematical model that describes the growth of an avas-

cular, multicell spheroid which is being infiltrated by macrophages. We view the tumour as

comprising three, key constituents, or phases, namely macrophages l(x, t), tumour cells m(x, t)

and cellular material n(x, t). (We make no explicit mention of such components as extracellular

matrix and stroma, incorporating them into our definition of cellular material.) We assume that

cellular material is predominantly composed of water and is produced when tumour cells and

macrophages die. It acts as a source of material for cell growth and proliferation. Other model

variables that we introduce represent the oxygen concentration c(x, t) and a generic macrophage

chemoattractant a(x, t). For simplicity, and in view of our focus on hypoxia, we assume that

oxygen, which is supplied from the medium surrounding the spheroid, is the rate-limiting nu-

trient (i.e. all other nutrients, such as glucose, that are essential for cellular metabolism are

abundant). We assume that the macrophage chemoattractant is produced under hypoxia by

the tumour cells and macrophages. (In practice, the chemoattractant may represent VEGF,

MCP-1 or one of the other chemoattractants produced under hypoxia.)

Applying the principle of mass balance to each of our variables, and introducing v(x, t) to denote

the common advection velocity with which it is assumed that all species are transported, we

obtain the following system of partial differential equations which describe the evolution of

l,m, n, c and a:

∂l

∂t
= ∇ · (Dl∇l − χl∇a− vl)− dl(c)l, (1)

∂m

∂t
= ∇ · (Dm∇m− vm) + pm(n, c)m− dm(c)m− k(c)lm, (2)

∂n

∂t
= ∇ · (Dn∇n− vn) + dl(c)l + dm(c)m + k(c)lm− pm(n, c)m, (3)

∂c

∂t
= Dc∇ · (∇c− vc)− dc(l,m, c), (4)

∂a

∂t
= Da∇ · (∇a− va) + pa(l,m, c)− daa. (5)
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In equations (1)-(3), Di (i = l,m, n) denote the random motility coefficients of the three phases,

and χ represents the macrophage chemotaxis coefficient; in the following, Di (i = l,m, n) and χ

are assumed constant. This is a simplification, since hypoxia and the tumour microenvironment

can alter chemokine receptor expression (Scotton et al., 2001; Sica et al., 2000), and there is

also evidence that leukocyte random and chemotactic motility parameters vary with chemokine

concentration (Owen and Sherratt, 1997; Sherratt, 1994; Sozzani et al., 1991). Furthermore,

we omit details of the subcellular events that regulate chemoreception, such as ligand receptor

binding and signal transduction (Berg and Purcell, 1977; Wiegel, 1983).

We justify the inclusion of random motion of the cellular material on the basis that it comprises

water and cellular debris, and that the latter will undergo a certain, albeit small, degree of

random motion. The source and sink terms that appear in equations (1)-(3) may be interpreted

in the following manner. In (2), pm(n, c) denotes the rate at which the tumour cell proliferate,

dm(c) represents the rate at which tumour cells die due to apoptosis and/or necrosis, when no

macrophages are present, and k(c) represents the oxygen-dependent rate at which macrophages

kill tumour cells. In (1) we assume that, since macrophages are mature white blood cells, they

do not proliferate. We assume further that they are not affected by tumour cell lysis and denote

by dl(c) the oxygen-dependent rate at which they undergo natural death.

Adding equations (1)-(3), we remark that the net source term is zero and, hence, that there is

no local mass creation within the tumour volume: mass is merely transformed from one phase

to another. As we show below, the flux of cellular material and macrophages across the outer

tumour boundary governs the rate at which the tumour volume changes (see equation (16)).

In equations (4) and (5), Dc and Da denote the assumed constant oxygen and chemoattractant

diffusion coefficients, dc(l,m, c) represents the rate at which the tumour cells and macrophages

consume oxygen, pa(l,m, c) represents the rate at which they produce chemoattractant and da

the assumed constant rate at which the chemoattractant decays (oxygen decay is neglected).

In order to complete our model, it remains to determine the advection velocity v(x, t). Following

Ward and King (Ward and King, 1997; Ward and King, 1999), we assume that there are no

voids within the tumour and hence that throughout the spheroid

l + m + n = N0

where N0 is a constant, representing the amount of cellular material contained within a unit

control volume. Summing equations (1)-(3) then yields
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N0∇.v = ∇.(Dl∇l − χl∇a + Dm∇m + Dn∇n). (6)

In general, for three-dimensional spheroid growth, equations (1)-(6) are insufficient to determine

the 8 variables l,m, n, a, c and v: additional equations are needed to close the system. One

possible closure involves using Darcy’s law (v = −K∇P ) to relate the velocity to the pressure

P : in this case the model comprises 9 equations for 9 variables (Greenspan, 1976). Alternative

approaches, which involve employing more complex constitutive laws, are presented in (Breward

et al., 2002; Byrne et al., 2002; Franks and King, 2002). In this paper, we avoid these issues

by assuming that the spheroid undergoes one-dimensional, radially-symmetric growth. Then

equations (1)-(6) are sufficient to determine l,m, n, a, c and v (≡ (v(r, t), 0, 0) under radial

symmetry).

We assume that the tumour occupies the region 0 < r < R(t) and that the tumour boundary

r = R(t) delineates the region of space in which m > 0. We assume further that r = R(t)

moves with the tumour cell velocity vm there so that, referring to (2), we have

dR

dt
= vm|r=R(t) =

[
v − Dm

m

∂m

∂r

]
r=R(t)

. (7)

Thus our model of one-dimensional, radially-symmetric spheroid growth with macrophage in-

filtration comprises equations (1)-(7). Before specifying the kinetic terms, we present the

boundary and initial conditions.

The Boundary and Initial Conditions

We assume that the tumour is symmetric about the origin so that

0 =
∂l

∂r
=

∂m

∂r
=

∂n

∂r
=

∂c

∂r
=

∂a

∂r
= v at r = 0. (8)

We denote by l∞ and n∞ the concentrations of macrophages and cellular material exterior to the

spheroid and assume that the flux of these species across the tumour boundary is proportional

to the differences (l∞ − l(R, t)) and (n∞ − n(R, t)) respectively. Since the tumour boundary

is itself moving with velocity vm(R, t) (see equation (7)), we deduce that the appropriate flux

boundary conditions on r = R(t) are:

−l(vl − vm) = hl(l∞ − l) and − n(vn − vm) = hn(n∞ − n) on r = R(t), (9)
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where the non-negative constants hl and hn represent the permeabilities of the tumour boundary

to macrophages and cellular material and vl and vn represent the velocities of the macrophages

and cellular material so that

vl(R, t) = v − Dl

l

∂l

∂r
+ χ

∂a

∂r

∣∣∣∣∣
r=R(t)

, vm(R, t) = v − Dm

m

∂m

∂r

∣∣∣∣∣
r=R(t)

, vn(R, t) = v − Dn

n

∂n

∂r

∣∣∣∣∣
r=R(t)

.

Substituting for vl, vm and vn in (9) we obtain

Dl
∂l

∂r
− χl

∂a

∂r
−Dm

l

m

∂m

∂r
= hl(l∞ − l) and Dn

∂n

∂r
−Dm

n

m

∂m

∂r
= hn(n∞ − n). (10)

We remark that since l + m + n = N0 throughout the tumour, it is not necessary to impose

an additional boundary condition on r = R(t) for m. We note also that, in (10), l∞ and n∞

may be time-dependent. For example, if the spheroid is infused with macrophages for a finite

period of time (ton < t < toff ), then

l∞(t) =

{
l∞ if ton < t < toff ,
0 otherwise.

(11)

Since oxygen is a small, highly diffusible molecule, we assume that the oxygen concentration on

the tumour boundary is in equilibrium with that exterior to the tumour where c = c∞. Thus

we fix

c = c∞ on r = R(t). (12)

Denoting by ha the permeability of the tumour boundary to the chemoattractant, which, being

a larger molecule than oxygen, will diffuse less rapidly, we assume further that

Da
∂a

∂r
−Dm

a

m

∂m

∂r
= ha(a∞ − a) on r = R(t), (13)

where a∞ represents the chemoattractant concentration exterior to the tumour.

We remark that in equations (10) and (13) we suppose that the permeabilities hl, hn and ha

are non-negative constants. More generally, since the chemoattractant is believed to enhance
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the ability of macrophages to infiltrate the tumour, we might consider hl = hl(a) where hl(a)

is a monotonically decreasing function of a (Kelly, 2002).

We suppose that initially the tumour is devoid of macrophages and chemoattractant. We

specify the distribution of cells, cellular material and oxygen, together with the tumour radius,

at t = 0. Thus we have:

l(r, 0) = 0, m(r, 0) = m0(r), n(r, 0) = 1−m0(r),
c(r, 0) = c0(r), a(r, 0) = 0, R(0) = R0

}
(14)

where R0 and the functions m0(r) and c0(r) are prescribed.

Before specifying the kinetic terms, we show how boundary conditions (10) and equation (6)

may be used to simplify equation (7). Integrating (6) subject to (8) we have

v(r, t) =
1

N0

(
Dl

∂l

∂r
− χl

∂a

∂r
+ Dm

∂m

∂r
+ Dn

∂n

∂r

)
. (15)

Substituting with v(R, t) in (7) then yields

dR

dt
=

1

N0

[
Dl

∂l

∂r
− χl

∂a

∂r
+ Dn

∂n

∂r
+ Dm

(
1− N0

m

)
∂m

∂r

]
r=R

.

Using boundary conditions (10) and noting that l + m + n = N0 we deduce that

dR

dt
=

1

N0

[hl(l∞ − l) + hn(n∞ − n)]r=R . (16)

Henceforth we use (16) in place of (7) and remark that (16) is equivalent to prescribing

d

dt

(
tumour
volume

)
=

d

dt

(
4

3
πR3N0

)
=

∫ π

θ=0

∫ 2π

φ=0
[hl(l∞ − l) + hn(n∞ − n)]R2 sin θ dθ dφ

= [hl(l∞ − l) + hn(n∞ − n)]× (surface area of tumour).

Thus the rate at which the tumour volume changes is determined by the flux of macrophages and

cellular material across the tumour boundary (material contained within the tumour volume

can only change phase: it cannot be created or destroyed).
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The Kinetic Terms

We now motivate our choice of the kinetic terms that appear in equations (1)-(5). Our philos-

ophy is to use the simplest expressions possible in order to capture the essential behaviour of

the system.

Since tumour cells require oxygen and cellular material to proliferate, we write pm = pm(n, c) in

equation (2). We assume that tumour cells proliferate at a rate which is an increasing, saturating

function of c and n. In particular, when the oxygen concentration is low, the proliferation rate

is proportional to c whereas when c is high (and oxygen is readily available) proliferation

is limited merely by the availability of cellular material. Similary, when the concentration of

cellular material is low, proliferation is limited by its availability and when n exceeds a threshold

level (n > n0), proliferation is limited by oxygen availability. We introduce the non-negative

constants pmax
m , cp, α and n0 < N0, and, for simplicity, we write

pm(n, c) = pmax
m S(c, cp)Cap(n/n0) (17)

where S(c, cp) =
cα(cα

p + cα
∞)

cα
∞(cα

p + cα)
and Cap(x) = min(x, 1).

The function S(c, c∗) is a “switch”, scaled so that S(c∞, cp) = 1. Its steepness is regulated by

α and it attains its half-maximal value when c = cp.

We do not distinguish between apoptosis and necrosis as distinct mechanisms of cell death,

assuming instead that there is a low, background level of cell death at all oxygen concentrations

and that this rate increases as c decreases. We introduce the positive constants cc and dmax
m

and write

dm(c) = dmax
m [1− S(c, cc)] . (18)

In (18) cc denotes the oxygen concentration at which the cell death rate is half-maximal.

Similarly, in equation (1) we introduce dmax
l and write

dl(c) = dmax
l [1− S(c, cc)] . (19)

We now consider the tumour cell lysis term, k(c). Since macrophages can be engineered to pro-

duce cytotoxic enzymes under hypoxia, we assume that k(c) increases as c decreases. Following

(18), we introduce kmax and write

k(c) = kmax [1− S(c, cp)] , (20)
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We remark that since l,m → 0 as c → 0, k(c)lm → 0 as c → 0. Thus the overall lysis rate will

exhibit biphasic dependence on the oxygen tension and attain its maximum value within the

hypoxic region.

When specifying kmax, it is important to recall the two-stage manner in which the macrophage-

based therapy kills the tumour cells. Under hypoxia the modified macrophages express cy-

tochrome P450 (CYP450). The prodrug cyclophosamide (CPA), which is injected after the

macrophages, is activated by CYP450 to stimulate lysis on absorption by the tumour cells. By

analogy with (11), assuming that the prodrug is introduced at t = Ton, we assume kmax =

kmax(t) with

kmax(t) =

{
kmax Ton < t
0 otherwise.

(21)

Following (20), in equations (4) and (5) we write

pa(l,m, c) = [1− S(c, cp)] (pmax
al l + pmax

am m) (22)

and

dc(l,m, n) = S(c, cc) [dmax
cl l + dmax

cm m] + dmax
cp pm(n, c)m, (23)

defining coefficients such as pmax
al in an obvious manner.

In (22) we have assumed that chemoattractant is produced by tumour cells and macrophages at

rates which peak under hypoxia. In (23) we have assumed that nutrient is consumed by all live

cells and that tumour cells consume additional nutrient in order to proliferate. For simplicity,

we have also assumed that the threshold oxygen concentrations are the same for both cell types,

and that the amount of chemoattractant released on cell death is negligible.

2.1 Dimensionless model and simplification

In Appendix A we recast our model in dimensionless form. We rescale lengths by the radius of

a typical tumour cell, time by the doubling time of HEPA-1 cells under nutrient-rich conditions,

and nutrient concentrations by the level at the spheroid surface. Under these rescalings nutrient

10



and chemoattractant diffusion occur on much shorter timescales than those associated with cell

proliferation and movement (or advection). Consequently, the time-derivatives and advection

terms in equations (4) and (5) may be neglected and a quasi-steady state approximation made

(Greenspan, 1976; Kelly et al., 2002; Ward and King, 1997). Eliminating n = 1 − l −m, our

dimensionless model reads:

∂l

∂t
=

1

r2

∂

∂r

[
r2

(
Dl

∂l

∂r
− χl

∂a

∂r
− lv

)]
− dl(c)l, (24)

∂m

∂t
=

1

r2

∂

∂r

[
r2

(
Dm

∂m

∂r
−mv

)]
+ pm(n, c)m− dm(c)m− k(c)lm, (25)

0 =
1

r2

∂

∂r

(
r2 ∂c

∂r

)
− dc(l,m, c), (26)

0 =
1

r2

∂

∂r

(
r2∂a

∂r

)
+ da(pa(l,m, c)− a), (27)

dR

dt
= [hl(l∞ − l) + hn(n∞ − 1 + m + l)]r=R . (28)

where

v = Dl
∂l

∂r
− χl

∂a

∂r
+ Dm

∂m

∂r
−Dn

(
∂l

∂r
+

∂m

∂r

)
. (29)

The boundary conditions become

∂l

∂r
=

∂m

∂r
=

∂c

∂r
=

∂a

∂r
= 0 at r = 0, (30)

Dl
∂l

∂r
− χl

∂a

∂r
−Dm

l

m

∂m

∂r
= hl(l∞ − l) on r = R(t), (31)

−Dn

(
∂l

∂r
+

∂m

∂r

)
−Dm

(1− l −m)

m

∂m

∂r
= hn(n∞ − 1 + l + m) on r = R(t), (32)

c = 1,
∂a

∂r
= ha(a∞ − a) on r = R(t), (33)

l(r, 0) = 0, m(r, 0) = m0(r), R(0) = R0. (34)

Our model can be generalised to study infiltration by two or more macrophage populations. For

example, we would need to include two macrophage populations in order to determine whether

engineered macrophages can displace normal, non-engineered macrophages in tumours that are

growing in vivo (see section 4). In such cases, the second macrophage equation takes the same

form as the original, and additional terms associated with the motility of this population appear

in equation (29). Labelling the two populations l1 and l2, equation (28) generalises to give:

dR

dt
= [hl1(l∞1 − l1) + hl2(l∞2 − l2) + hn(n∞ − 1 + l1 + l2 + m)]r=R , (35)

where hl1, hl2, l∞1(t) and l∞2(t) represent the permeabilities of the tumour boundary to the two

macrophage populations and their concentrations in the medium surrounding the tumour (see

section 4).
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2.2 Parameter Values and Numerical Methods

The nondimensionalisation process used to obtain equations (24)-(33) and simulate our dimen-

sionless model requires specification of a large number of parameters. While many of these

values have been reported in the literature, others are more difficult to specify accurately. In

Table 1 we summarise the parameters values we use to carry out the numerical simulations pre-

sented in sections 3 and 4. Where possible, dimensional and dimensionless values are stated,

together with supporting references. We include below brief details of some of the calculations

used to obtain these estimates.

A typical tumour cell doubling time of 18 hours has been estimated for HEPA-1 tumour cells

undergoing exponential growth and, hence, proliferating at their maximum rate (Maxwell et al.,

1997). The timescale used in our nondimensionalisation is associated with the maximum cell

growth rate pmax
m . Thus, following (Ward and King, 1999), we estimate pmax

m ∼ ln 2/18 ∼ 0.924

day−1. Since these estimates are approximate, to facilitate comparison with experiments, we

fix pmax
m = 1 day−1 so that the timescale of the simulations is in days.

We rescale lengths with the radius of a single cell, Rm ∼ 6µm and estimate the initial spheroid

radius by referring to experiments by Leek (Leek, 1999) in which 2000 cells were used to seed

a spheroid. In this way we estimate R3
0 ∼ 2000R3

m so that R0 ∼ 13Rm ∼ 80µm.

We constructed our numerical simulations by first mapping the problem onto a fixed domain

((r, t) → (ρ, τ) = (r/R(t), t)), thereby reducing the model to a system of parabolic PDEs

coupled to an ODE for the spheroid radius. The system was solved using the NAG routine

D03PHF, because it allows for the direct coupling of parabolic PDEs with ODEs such as (28). It

also allows the inclusion of the steady state equations (26,27). D03PHF uses a finite difference

spatial discretisation and the method of lines, and integrates the resulting system of ODEs using

a backward differentiation formula (BDF) or a Theta method — all the simulations presented

in this paper used the BDF method.

3 Spheroid growth and infiltration of inert macrophages

In this section we neglect macrophage-mediated tumour cell death (k(c) = 0 in (25)) and focus

on the impact that infiltration by inert (or passive) macrophages has on the spheroid’s growth

and composition. We present a series of numerical simulations showing how the infiltration

pattern depends on the relative importance of random motion and chemotaxis as macrophage

migratory mechanisms. Variations in these mechanisms may arise through differing rates of pro-
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duction of macrophage chemokines (for example, C4 tumour cells do not produce VEGF (Kelly

et al., 2002; Leek, 1999)) or through differing responses of macrophages to chemokines (this

may vary from individual to individual, and in particular may be manipulated experimen-

tally/clinically via insertion of additional copies of the genes encoding for specific chemokine

receptors).

3.1 Macrophage-free spheroid growth

We begin by considering spheroid growth in the absence of macrophages. With l = 0, our

model reduces to that studied by Ward and King (Ward and King, 1999). As figure 2(a)

shows, initially cell proliferation occurs throughout the tumour. However, as the spheroid

increases in size, nutrient levels near the centre decline and there is increased cell death. The

resulting cellular material is transported towards the tumour surface, and growth saturates

when m = 1− n∞ on the tumour boundary.

We remark that the limiting behaviour of our macrophage-free model of spheroid growth de-

pends on the system parameters that we use. For example, the simulations presented show a

spheroid which evolves to a time-independent steady state. Increasing the nutrient consump-

tion rate dmax
m decreases the steady state size. For other parameter values the spheroid may

continue to grow, the system adopting a steady travelling wave profile. For example, as n∞

increases the equilibrium tumour size increases, until a bifurcation to travelling wave solutions.

More details and analysis of this bifurcation can be found in (Ward and King, 1999). We do

not anticipate any other types of solution behaviour, even with the additional complexity of

macrophages and tumour cell lysis, since the spatial structure of the system is dominated by

the nutrient profile.

In figure 2(b) we compare our numerical simulations with experiments in which HEPA-1

spheroids were grown in vitro (Leek, 1999). Two types of measurement were made, in vitro and

after fixing, sectioning and staining. The latter type allows the necrotic region to be identified

and measured, but the process causes the spheroid to shrink by approximately 25% (Leek,

1999). The values used in the figure are scaled accordingly, to allow for comparison with the

in vitro measurements and our model results. The good agreement between the experimental

and numerical results for both the outer spheroid radius and the locus of the necrotic boundary

suggests that our model provides a reasonable description of spheroid growth and, as such, is a

sound basis for our studies of macrophage infiltration. We remark that in our simulations the

necrotic and hypoxic boundaries are defined implicitly, as contours of c on which c = cp and

c = cc respectively. When other criteria were used to determine these boundaries (e.g. contours
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of the tumour cell density) the agreement between the numerical simulations and experimental

results was less good.

3.2 Macrophage infiltration by random motion alone

In practice, not all tumour cell lines produce macrophage chemoattractants (Kelly et al., 2002;

Leek, 1999). In order to test whether chemoattractant production is necessary for macrophage

localisation within hypoxic regions, we performed simulations in which chemotaxis was ne-

glected and the macrophages migrated by random motion alone. The results, which are pre-

sented in figure 3(a), show the macrophages accumulating predominantly near the tumour

boundary and, to a lesser extent, in the hypoxic region.

The limiting size of the spheroid when it is infiltrated by inert macrophages depends on the

parameter values associated with the macrophages. Thus, comparing figures 2(a) and 3(a) we

note that the spheroid decreases in size when the inert macrophages are introduced. This is

because, when the macrophages migrate by random motion alone, they compete for space with

tumour cells in the outer, nutrient-rich parts of the spheroid, thereby reducing the spheroid’s

overall growth rate (we assume that the macrophages do not proliferate and that they die at the

same rate as the tumour cells). However if the death rate of the macrophages (dmax
l ) is reduced

sufficiently (e.g. dmax
l = 1.3) then the limiting size of the spheroid is larger when macrophages

are present.

3.3 Macrophage infiltration by random motion and chemotaxis

The results presented in figure 3(b) show that significant macrophage localisation within the

hypoxic region can be achieved when chemotaxis operates. Comparing figures 3 (a) and (b) we

observe that with chemotaxis more macrophages infiltrate the tumour and its proliferating rim

is thinner.

From a therapeutic viewpoint, it is of interest to consider whether macrophages displace tumour

cells in hypoxic regions: if all the tumour cells are displaced, the therapeutic value of engineering

macrophages to kill tumour cells under hypoxia may be compromised. The results presented in

figure 3(b) indicate that if the tumour cells are the sole source of chemoattractant then some

tumour cells remain in the hypoxic region (recall that at this stage our macrophages are passive

and do not kill tumour cells). In practice, it is likely that once they reach hypoxic regions the

macrophages will also produce chemoattractant. Further simulations (not shown) demonstrate
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that macrophage infiltration and localisation is enhanced when both the tumour cells and the

macrophages produce chemoattractant. A local minimum in the tumour cell population is

evident in the hypoxic region, the tumour cells having been displaced by macrophages.

3.4 Summary

Before considering how macrophage-mediated tumour cell kill influences the spheroid’s growth,

we place the above results in context. In order to do this, it is useful to know the total flux of

macrophages, Jtot(t) say, that have migrated into the spheroid at a prescribed time, t. Using

(24) and (31) we deduce that

Jtot(t) = 4π
∫ t

0
hl[l∞ − l(R(τ), τ)]R2(τ)dτ.

Referring to figure 4 we note firstly that when passive macrophages infiltrate by random motion

and chemotaxis the spheroid’s size increases markedly (compare (1) and (3) in figure 4). Since

the spheroid size increases further when the macrophage death rate is reduced (compare (4)

and (5) in figure 4), we deduce that the increase in size is not simply due to macrophage death

providing an extra source of cellular material for tumour cell proliferation.

While the number of infiltrating macrophages undoubtedly contributes to the increase in

spheroid size described above, the middle panels of figure 4 show that the number of tumour

cells also increase. These results, taken in isolation, suggest that the presence of macrophages is

deleterious, causing the tumour burden to increase. However, by calculating the proportion of

the spheroid occupied by tumour cells and macrophages a different picture emerges. Referring

to the botton panels in figure 4 we see that the proportion of the spheroid occupied by tumour

cells actually decreases and that the macrophages displace the tumour cells from the hypoxic

region. In this way, we might infer that the macrophages have diluted or weakened the tumour.

In summary, when studying the impact on spheroid growth of infiltration by inert macrophages,

care should be taken to ensure that any predictions or results are stated as clearly as possible

and that potential ambiguities are highlighted.

4 Macrophage-dependent tumour cell killing

In this section we concentrate on the role of macrophage-induced tumour cell lysis, assuming

that both macrophage motility mechanisms are active. Initially we consider infiltration by
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a single population of engineered macrophages. In order to replicate the situation that is

likely to arise when engineered macrophages are used to target tumours growing in vivo, we

then consider infiltration by two populations of macrophages: in this case, the infiltration of

a population of passive (or non-engineered) macrophages is interrupted by a population of

engineered macrophages infiltrating for a finite period.

4.1 Infiltration by a single population of engineered macrophages

The results presented in figure 5 show how a spheroid shrinks when it is continuously infused

with engineered macrophages for t ≥ 10 and macrophage-mediated cell death commences when

the prodrug is administered, at t = 12. When the macrophages reach the hypoxic region

(t ∼ 15) there is a rapid reduction in the tumour’s volume (15 < t < 20). Thereafter the

macrophages dominate the hypoxic region and the spheroid evolves to an equilibrium structure

in which the tumour cells are localised on the periphery, where they will be more vulnerable to

other treatments (e.g. chemotherapy) that target rapidly proliferating cells.

The reduction in spheroid size is dependent on initial conditions and the timing of macrophage

and prodrug administration, since it is in fact the steady state size that is reduced. Thus, if

treatment is applied sufficiently early the spheroid will simply grow more slowly than without

treatment, rather than actually shrinking. This slower growth is still a beneficial outcome,

and hence it may be more appropriate to consider the ratio of sizes for treated and untreated

spheroids at a given time.

In practice both the number of infiltrating macrophages (l∞) and the rate at which they kill

tumour cells (kmax) can be manipulated. Different tumours will express different chemokines,

and some may express none at all, so macrophage chemotaxis will also vary. Furthermore, it is

expected that the macrophage chemotaxis coefficient (χ) can be modulated by inserting extra

copies of genes coding for chemokine receptors into the engineered macrophages. In figure 6 we

show how the spheroid’s size and composition change as χ and kmax vary (see (21 and (25)).

There is a marked reduction in spheroid size as kmax increases. While the tumour is never

completely eliminated by the macrophages, for sufficiently large values of kmax the proportion

of the spheroid occupied by tumour cells is negligible: the macrophages constitute most of its

volume (data not shown). Additionally, we observe that as kmax increases the corresponding

reduction in tumour volume declines. Indeed the reduction in tumour volume as kmax increases

from kmax = 8 to kmax = 10 is negligible. Thus we conclude that there may be a natural upper

limit to kmax such that further increases will not yield large enough reductions in tumour size

to justify their use. Interestingly, increasing χ actually increases the spheroid size due to the
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space occupied by the additional infiltration of macrophages. However, the right hand panel of

figure 6 shows that the fractional reduction in tumour size is in fact enhanced with increasing χ.

As noted above, for large lysis rates macrophages constitute most of the spheroid volume, and

as such are relatively homogeneously distributed, so that it makes little difference if macrophage

motility is predominantly random or chemotactic. Further simulations (not shown) demonstrate

that, for smaller lysis rates, if macrophages are longer lived (either intrinsically, or because they

are better able to tolerate hypoxia) then chemotactically aggregating macrophages outperform

those which only move randomly. Varying the surface level of macrophages has the expected

effect on these results – decreasing l∞ leads to reduced infiltration and reduced tumour cell

lysis.

As with existing cancer treatments, it may not be practical to infuse the tumour with a con-

tinuous supply of macrophages. Therefore, in figure 7(a) we assume that the macrophages are

applied for a finite period of time (10 < t < 12). For comparison with figure 5 we suppose that

the macrophage-mediated cell kill is initiated at t = 12, so that Ton = 12 in equation (21). The

macrophages migrate towards the hypoxic region and the spheroid shrinks until the macrophage

level there declines and growth resumes. When macrophages move only randomly, the initial

infiltration is concentrated at the tumour surface, but then the majority of those macrophages

are advected into the spheroid, inducing tumour cell lysis as they go. For this reason, the effect

of such macrophages is comparable to those which chemotactically aggregate. However, in a

similar manner to that described above for continuous infiltration, if macrophages are longer

lived then chemotaxis results in a greater reduction in tumour size (data not shown).

4.2 Multiple macrophage populations

As stated above, when assessing the impact of genetically engineered macrophages as drug de-

livery vehicles in vivo, it is important to take account of resident macrophages already present in

the tumour and the circulation. Thus we now consider spheroid infiltration by two macrophage

populations: inert, non-engineered macrophages (l1) and active, engineered macrophages (l2).

We suppose that the evolution of both populations are governed by similar partial differential

equations (see (25)), that they are subject to similar boundary and initial conditions (see (30)

and (31)) and that the evolution of the tumour radius is governed by (35). Previous studies of

macrophage trafficking indicate that systemically injected untransfected macrophages are out-

numbered by resident host macrophages in tumours (Andreesen et al., 1998), which suggests

that l∞2 < l∞1. However, since intratumoural injection may be used to increase the number of

modified macrophages reaching the tumour, the relative magnitudes of l∞1 and l∞2 may vary.
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Figure 7(b) shows an example which mimics a possible experimental protocol, whereby a

spheroid is initially grown in the presence of normal macrophages, these are then washed off at

day 10 and replaced by modified macrophages for days 10 to 12, and then normal macrophages

are again allowed to infiltrate the spheroid at the same time as tumour cell lysis is induced

by the application of prodrug. We account for the finite period over which the engineered

macrophages infiltrate the spheroid by writing

l∞1 =

{
0 t ∈ (10, 12)
l∞1 otherwise,

l∞2 =

{
l∞2 t ∈ (10, 12)
0 otherwise,

(36)

in equations (31) and (35). The example illustrated in the figure uses l∞1 = l∞2 = 0.8, and

lysis is induced at t = 12 by setting Ton = 12 in equation (21).

From figure 7(b) we note that when the second macrophage population induces tumour cell

lysis, the spheroid shrinks until the engineered macrophage level declines and growth resumes.

Comparing figures 7(a) and (b), we note that when the engineered macrophages have to compete

with inert macrophages, they attain lower levels than when they are the only macrophage

population. Consequently, the reduction in tumour volume is less pronounced and shorter-

lived.

5 Discussion

We have extended a continuum model of avascular spheroid growth originally developed by

Ward and King (Ward and King, 1999), in order to study the impact of normal and engi-

neered macrophages on such tumours. Both types of macrophages are assumed to migrate

through the tumour by a combination of random motion and chemotaxis, the chemoattractant

being produced by the tumour cells (and possibly macrophages) under hypoxia. The modified

macrophages were assumed to stimulate tumour cell lysis under hypoxia.

By performing a series of numerical experiments we have compared the effect that normal

(passive) and engineered macrophages have on the size and composition of the spheroids. For

example, we found that the distribution of passive macrophages (i.e. macrophages which are

incapable of killing tumour cells) within the tumour depends on the relative importance of

chemotaxis and random motion, with greater localisation in the hypoxic region occurring when

chemotaxis operates (compare figures 3(a) and (b)). Our simulations also show that on contin-

uous infiltration by passive macrophages the limiting size of the spheroid is larger than when

no macrophages are present (see figure 4), suggesting that the macrophages have a deleteri-

ous effect. On more detailed inspection we found that, while the overall tumour burden (i.e.
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the number of tumour cells) increased when macrophages were present, the proportion of the

spheroid volume occupied by tumour cells declined. Further, the proportion of tumour cells in

the hypoxic region reduced markedly as they were displaced by the macrophages, thus making

the tumour more responsive to standard chemotherapeutic agents that target proliferating cells.

These contrasting points of view may contribute to uncertainty about the use of macrophage

infiltration as a prognostic indicator.

In an attempt to simulate the action of macrophage-mediated therapies, we then considered

the additional impact on the spheroid of macrophage-mediated tumour cell lysis. We chose

to include this in a relatively simple fashion, mimicking the genetically engineered hypoxia

induced production of substances inducing cell kill with an additional tumour cell death term

dependent jointly on the macrophage and tumour cell density, with a rate increasing as nutrient

levels decrease. This gives a biphasic response—a low lysis rate in the necrotic core since

there are few macrophages and tumour cells there, a high rate in the hypoxic/quiescent layer,

and a low rate in the proliferative rim since nutrient levels are high and thus lysis is not

induced. As expected, continuous infiltration of such macrophages causes shrinkage, or at

least slower growth, of tumour spheroids, with stronger responses as the maximum lysis rate

is increased. Figure 6 shows that, as the lysis rate is increased, the tumour size decreases

with diminishing effect. This is because the proportion of tumour cells falls to negligible

levels, and there is little hypoxia to stimulate macrophage mediated lysis (data not shown).

Maintaining a macrophage population at the tumour surface means there is a constant supply

of macrophages, so that even if most of the tumour cells are killed, the spheroid volume is

maintained. This would in fact correspond to effective elimination of the tumour. Figure 6 also

illustrates that greater chemotaxis coefficients lead to spheroids with a larger diameter (due to

increased macrophage accumulation), yet the fractional reduction in tumour size (relative to the

untreated case with the same chemotactic parameter) is also increased. This again leaves the

prognostic role of macrophage infiltration open to interpretation. More realistically, engineered

macrophages would be delivered at intervals, rather than continuously, and simulations of

this type demonstrate the role of mathematical modelling for the optimisation of repeated

treatments.

Our model represents a first step towards the development of a more realistic model that will

be used to predict the response of different tumour cell lines to macrophage-based therapies.

Of the model extensions needed to achieve this goal, perhaps the most important is a more

accurate description of the mechanism of action of particular therapeutic gene products. In this

paper we have concentrated on killing tumour cells, a possibility that has been explored exper-

imentally for the enzyme–prodrug pair cytochrome P450–Cyclophosphamide (Griffiths et al.,

2000). Rather than the macrophages killing the tumour cells on contact at a rate which peaks
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under hypoxia, as we assume here, in practice the modified macrophages express the enzyme

under hypoxia. The enzyme then activates the prodrug, which is injected shortly after the

macrophages. The active drug then diffuses and is taken up by the tumour cells, triggering cell

death only when the cells attempt to proliferate. By combining the two-stage model of prodrug

activation developed by Jackson et al. (Jackson et al., 1999; Jackson et al., 2000) with our

model, we plan to include these additional details in a future model. Other strategies are pos-

sible, and could also be explored within our modelling framework. For example, macrophages

could deliver replication-competent viral vectors to hypoxic tumour regions (Burke et al., 2002).

Mathematical models for viral replication in tumour spheroids have been developed (Wu et al.,

2001), and could be extended to include macrophage dynamics and macrophage-dependent

viral delivery. Another issue that remains to be investigated concerns the response to combi-

nation therapies in which infusion with engineered macrophages alternates with administration

of standard chemotherapeutic drugs. Of interest is the identification of the times at which

therapies should be administered and their duration in order to optimise tumour treatment.

Much of this future work will require more detailed parameter fitting to specific experimental

situations.

Finally, by extending the model of vascular tumour growth developed by Breward et al. (Bre-

ward et al., 2003), we hope to predict the impact that genetically engineered macrophages can

have on vascular tumours growing in vivo. In this case it will be important to take account of

some of the pro-tumour functions that macrophages can perform. These include the production

of angiogenic factors that stimulate the ingrowth of new blood vessels to the tumour (Folkman,

1974). Additional anti-tumour functions of the engineered macrophages that should then be

considered include the production of anti-angiogenic chemicals and vascular targeting agents.
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A Nondimensionalisation

Equations (1)-(5) are nondimensionalised using the following rescalings of space, time and all

the dependent variables:

x∗ =
x

Rm

, t∗ = pmax
m t, v∗ =

v

Rmpmax
m

, R∗ =
R

Rm

(37)

l∗ =
l

N0

, m∗ =
m

N0

, n∗ =
n

N0

, c∗ =
c

c∞
, a∗ =

a

achar

. (38)

Here Rm is the radius of a single tumour cell, pmax
m is the maximum rate of proliferation of

nutrient rich tumour cells, c∞ is the nutrient concentration at the tumour surface, and achar is

a characteristic chemoattractant concentration. The corresponding parameter rescalings are:

d∗l (c
∗) =

dl(c)

pmax
m

p∗m(n∗, c∗) =
pm(n, c)

pmax
m

, d∗m(c∗) =
dm(c)

pmax
m

, (39)

d∗c(l
∗, m∗, c∗) =

R2
mdc(l,m, c)

Dcc∞
, p∗a(l

∗, m∗, c∗) =
pa(l,m, c)

daachar

, d∗a =
R2

mda

Da

, (40)
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D∗
l =

Dl

pmax
m R2

m

, D∗
m =

Dm

pmax
m R2

m

, χ∗ =
acharχ

pmax
m R2

m

, (41)

D∗
n =

Dn

pmax
m R2

m

, D∗
c =

Dc

pmax
m R2

m

, D∗
a =

Da

pmax
m R2

m

. (42)

h∗l =
hl

pmax
m Rm

, l∗∞ =
l∞
N0

, h∗n =
hn

pmax
m Rm

, n∗∞ =
n∞
N0

, h∗a =
ha

pmax
m RmDa

, a∗∞ =
a∞

achar

.

(43)

After dropping ∗’s, these rescalings give equations (24,25) for the macrophage and tumour cell

populations, and the following equations for nutrient and chemoattractant concentrations:

1

Dc

[
∂c

∂t
+

1

r2

∂

∂r

[
r2vc

]]
=

1

r2

∂

∂r

[
r2 ∂c

∂r

]
− dc(l,m, c) (44)

1

Da

[
∂a

∂t
+

1

r2

∂

∂r

[
r2va

]]
=

1

r2

∂

∂r

[
r2∂a

∂r

]
+ da(pa(l,m, c)− a), (45)

and the chemoattractant boundary condition at the spheroid surface:

∂a

∂r
− Dm

Da

a

m

∂m

∂r
= ha(a∞ − a) on r = R(t). (46)

Now we note that Dc and Da characterise nutrient and chemoattractant diffusion in terms of

cell radii squared per cell division cycle, which will be large. Thus 1/Dc and 1/Da will be small

parameters, and we may neglect terms involving these factors, to give quasi-steady equations

for nutrient and chemoattractant concentrations. We then arrive at the system of equations

(24)-(33).
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Tables

Parameter Dimensional Dimensionless Supporting
Estimate Estimate references

R0 80 µm 13 (Leek, 1999)
da – 0.01 –
Dm 5× 10−3µm2s−1 10 –
Dn 10−1µm2s−1 500 (Ward and King, 1999)
Dl 5× 10−3 µm2s−1 10 (Owen and Sherratt, 1997; Soz-

zani et al., 1991)
χl 2–6 ×1024 µm2s−1Mol−1 500-2000 (Owen and Sherratt, 1997; Soz-

zani et al., 1991)
Da 200 µm2s−1 - (Owen and Sherratt, 1997)

Dc 50 µm2s−1 -
(Casciari et al., 1988; Freyer and
Sutherland, 1983; Hlatky et al.,
1988)

cp – 0.6 –
cc – 0.2 –
α – 5 –

pmax
m 1 day−1 1

(Kelly et al., 2002; Maxwell et al.,
1997; Ward and King, 1999)

pmax
am 10−25da Mol µm−3 1 (Owen and Sherratt, 1997; Soz-

zani et al., 1991)
pmax

al – variable –
dmax

m – 2 –
dmax

l – 2 –
dmax

cm – 0.005 (Ward and King, 1997)
dmax

cl – 0.005 –
dmax

cp – 0.01 –
kmax – variable –
achar 10−25 Mol µm−3 1 (Owen and Sherratt, 1997; Soz-

zani et al., 1991)
hl – 2 –
hn – 100 –
ha – 0.01 –
l∞ – variable –
n∞ – 0.2 –
c∞ – 1 –
a∞ – 0 –
n0 – 0.2 –

Table 1: A summary of the dimensional and dimensionless parameter estimates (see main text

for details).
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Figures & Legends

(a) (b)

Figure 1: (a) Transverse section of a T47D Multicellular Tumour Spheroid, with a central
necrotic area (N) of cell debris, surrounded by two layers of viable cells. The outer layer
consists of normoxic cells, and the inner layer is hypoxic (dark staining is for the hypoxic marker,
HIF-1α: see arrows). (b) Section of a human breast tumour spheroid, showing macrophage
accumulation (dark staining, see arrows) in the inner hypoxic rim around the central necrotic
area (N).
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Figure 2: (a) Here we show how the tumour cells and nutrient concentration evolve when no
macrophages are present (l = 0). The spheroid reaches an equilibrium size at which both the
nutrient and tumour cell concentrations decrease with distance from the tumour boundary. At
equilibrium the rate at which nutrient-rich cells near the boundary proliferate balances the
rate at which nutrient-starved cells near the centre die. The solid white lines are contours
of the nutrient concentration which define the positions of the hypoxic (c = cp = 0.6) and
necrotic (c = cc = 0.2) boundaries. (b) Our model simulations are in good agreement with
experimental data for the growth of HEPA-1 spheroids. The solid line represents the position
of the outer tumour boundary and the dashed line the position of the necrotic boundary on
which c = cc = 0.2. Dimensional radii are shown in µm.
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Figure 3: Here we show how the spheroid’s growth and composition are influenced by
macrophage infiltration. The solid white lines are contours of c which define the positions
of the hypoxic (c = cp = 0.6) and necrotic (c = cc = 0.2) boundaries. (a) Macrophages
infiltrate by random motion alone (χl = 0). In the absence of chemotaxis, the macrophages
accumulate near the tumour boundary. The nutrient profile is qualitatively similar to that pre-
sented in Figure 2(a) and is, therefore, omitted. (b) Macrophages which infiltrate by random
motion and chemotaxis, the chemoattractant being produced by the tumour cells alone With
chemotaxis, the macrophages localise in the hypoxic region, where the chemokine concentration
is largest. The solid white lines define the positions of the hypoxic and necrotic boundaries.
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Figure 4: Here we present a series of figures showing how the spheroid’s size and composition
at t = 100 depend on the mechanisms by which the macrophages infiltrate and their death rate.
The bottom four panels provide information on the tumour’s composition, each vertical bar
being subdivided according to the proportion in the proliferating (white), quiescent (shaded)
and necrotic (black) regions of the spheroid. Key: (1) Control (no macrophages present); (2)
macrophages infiltrate by random motion alone; (3) macrophages infiltrate by random motion
and chemotaxis, with only the tumour cells producing chemoattractant; (4) as for (3), but
with the macrophages also producing chemoattractant; (5) as for (3), but with the macrophage
death rate halved (dmax

l = 1).
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Figure 5: Here we show how the tumour shrinks, but is not eliminated, when it is infiltrated
with macrophages that stimulate tumour cell death at a rate which peaks under hypoxia. The
macrophages are continuously infused from t = 10 whereas macrophage-mediated tumour cell
lysis with kmax = 6 is not initiated until the prodrug is administered at t = 12. The solid white
lines define the positions of the hypoxic and necrotic boundaries.
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Figure 6: Here we show the reduction in spheroid size at t = 40 as the maximum lysis rate,
kmax, and chemotaxis coefficient χ vary. As kmax increases, the spheroid radius decreases with
diminishing effect. When kmax is large the tumour cell fraction decreases to almost insignificant
levels (data not shown), and varying macrophage chemotaxis makes little difference. Whilst
spheroids with chemotactically infiltrating macrophages are larger, the fractional reduction in
size induced by lysis is greater.
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Figure 7: Here we show how the application of modified macrophages for a finite period affects
the spheroid’s growth. (a) A single population of macrophages is infused into the spheroid
from t = 10 to t = 12, and tumour cell lysis with kmax = 20 is switched on at t = 12. The
macrophages migrate towards the hypoxic region and the spheroid shrinks until the macrophage
level there declines and growth resumes. (b) Multiple macrophage populations with the second
infiltrating “engineered” population inducing tumour cell lysis under hypoxia. Parameter values
were l∞1 = l∞2 = 0.8 in equation (36), kmax = 20. The engineered and inert macrophages
compete for space, and the reduction in tumour volume is therefore less pronounced and shorter-
lived. The solid white lines define the positions of the hypoxic and necrotic boundaries.
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