This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Deformation coproducts and differential maps

PLEASE CITE THE PUBLISHED VERSION

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Hudson, R.L., and S. Pulmannova. 2019. "Deformation Coproducts and Differential Maps". figshare. https://hdl.handle.net/2134/720.

Deformation coproducts and differential maps*.

R L Hudson ${ }^{\dagger}$ and S Pulmannová ${ }^{\ddagger}$

Abstract

Let \mathcal{T} be the Itô Hopf algebra over an associativa algebra \mathcal{L} into which the universal enveloping algebra \mathcal{U} of the commutator Lie algebra \mathcal{L} is embedded as the subalgebra of symmetric tensors. We show that there is a one-to-one correspondence between deformations $\Delta[h]$ of the coproduct in \mathcal{T} and pairs ($\vec{d}[h], \overleftarrow{d}[h]$) of right and left differential maps which are deformations of the differential maps for $\underset{\rightarrow}{\mathcal{T}}[6]$. Corresponding to the multiplicativity and coassociativity of $\Delta[h], \vec{d}[h]$ and $\overleftarrow{d}[h]$ satisfy the Leibniz-Itô formula and a mutual commutativity condition. $\Delta[h]$ is recovered from $\vec{d}[h]$ and $\overleftarrow{d}[h]$ by a generalised Taylor expansion. As an illustrative example we consider the differential maps corresponding to the quantisation of quasitriangular commutator Lie bialgebras of [7].

1 Introduction

Motivated by quantum stochastic calculus [5], in which case the multiplication rule is essentially that for iterated stochastic integrals and the natural coproduct is related to the continuous tensor product structure of Fock space, in [6] we introduced a noncommutative generalisation of the shuffle product Hopf algebra. The universal enveloping algebra of the commutator Lie algebra of the underlying associative algebra is embedded in this as a sub-Hopf algebra. Furthermore we showed in [7] that this could be used to effect a quantisation of commutator Lie

[^0]bialgebras of quasitriangular [2] type. The quantisation is effected by conjugating the standard coproduct by a "double product integral" whose generator is derived from the solution of the classical Yang-Baxter equation determining the quasitriangular structure, to obtain a deformed coproduct.

The purpose of this article is to investigate more general deformed coproducts, and corresponding quantisations, living in the generalised shuffle product Hopf algebra, which are not given by such conjugations. We shall investigate them using the corresponding differential maps. These were introduced in [6] in the case of the undeformed coproduct where they were found to be useful in the construction of double product integrals. Here we show that deformations of the differential maps of [6] can be associated with deformations of the coproduct. Correponding to the multiplicativity, coassociativity and counitality of the deformed coproduct, the differential maps satisfy respectively the Leibniz-Itô formula, a mutual commutativity condition and a counitality condition related to an analog of the Maclaurin expansion for polynomials. Conversely given deformed differential maps satisfying these three conditions a corresponding deformed coproduct can be constructed by an analog of the Taylor expansion.

In a subsequent paper we shall show how such differential maps can be constructed, essentially from an infinitesimal which is the first order coefficient in their formal power series expansions, thus giving a general method of quantising commutator Lie bialgebras.

We use the following notational convention. If $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{n}$ are vector spaces and π is a permutaion of $\{1,2, \ldots, n\}$ then τ_{π} is the linear map from $\mathcal{V}_{1} \otimes \mathcal{V}_{2} \otimes$ $\ldots \otimes \mathcal{V}_{n}$ to $\mathcal{V}_{\pi(1)} \otimes \mathcal{V}_{\pi(2)} \otimes \ldots \otimes \mathcal{V}_{\pi(n)}$ which appropriately permutes the components of product tensors.

2 The Itô Hopf algebra

Let \mathcal{L} be a not necessarily unital associative algebra over a field \mathbb{F} and let $\mathcal{T}=\bigoplus_{n=0}^{\infty} \bigotimes^{n} \mathcal{L}$ denote the vector space of all tensors over \mathcal{L}. Thus elements of \mathcal{T} are sequences $T=\left(T_{0}, T_{1}, T_{2}, \ldots\right)$ of homogeneous tensors $T_{n} \in \bigotimes^{n} \mathcal{L}$ of which only finitely many are nonzero. \mathcal{T} becomes a unital associative algebra under the multiplication $R S=T$, where the homogeneous component T_{n} of rank n of the tensor T is defined in terms of those of R and S by

$$
T_{n}=\sum_{A \cup B=\{1,2, \ldots, n\}} R_{|A|}^{A} S_{|B|}^{B}
$$

where the sum is over all 3^{n} ordered pairs of subsets (A, B) whose union is $\{1,2, \ldots, n\}, R_{|A|}^{A}$ indicates that the $|A|$ th rank homogeneous component $R_{|A|}$ of R is placed in the tensor product $\bigotimes_{j \in A} \mathcal{L}$ of the copies of \mathcal{L} labelled by elements j of A within the full n-fold tensor product $\bigotimes^{n} \mathcal{L}, S_{|B|}^{B}$ is defined analogously, so that
$R_{|A|}^{A}$ and $S_{|B|}^{B}$ jointly occupy every copy of \mathcal{L} in $\bigotimes^{n} \mathcal{L}$, and double occupancies are reduced using the multiplication in \mathcal{L}. Note that when the multiplication in \mathcal{L} is trivial, all products vanishing, then the associative algbera \mathcal{T} is just the shuffle algebra over \mathcal{L}.

The algebra \mathcal{T} becomes a Hopf algebra when the coproduct Δ_{0} is defined by linear extension of the action on homogeneous product tensors

$$
\begin{equation*}
\Delta_{0}\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{n}\right)=\sum_{j=0}^{n}\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{j}\right) \bigotimes\left(L_{j+1} \otimes L_{j+2} \otimes \cdots \otimes L_{n}\right) . \tag{1}
\end{equation*}
$$

The counit ε is

$$
\varepsilon:\left(T_{0}, T_{1}, T_{2}, \ldots\right) \mapsto T_{0}
$$

and the antipode S acts on homogeneous product tensors as
$S\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{n}\right)=(-1)^{n} L_{n} \otimes L_{n-1} \otimes \cdots \otimes L_{1}+$ terms of lower rank.
The kernel of ε is evidently the ideal \mathcal{T}_{0} of \mathcal{T} comprising tensors whose zerorank homogeneous component is zero. We call the map

$$
\varepsilon_{1}: \mathcal{T}_{0} \ni\left(0, T_{1}, T_{2}, \ldots\right) \mapsto T_{1} \in \mathcal{L}
$$

the enabling map. Note that it is a homomorphism of associative algebras.
The map $\mathcal{L} \ni L \mapsto(0, L, 0,0, \ldots) \in \mathcal{T}$ is a Lie algebra homomorphism when both \mathcal{L} and \mathcal{T} have their commutator Lie brackets, whose univeral extension is an isomorphism of Hopf algebras from the universal enveloping algebra \mathcal{U} of \mathcal{L} onto the sub-Hopf algebra \mathcal{S} of \mathcal{T} consisting of symmetric tensors.

3 The undeformed differential maps.

We define right and left differential maps \vec{d}_{0} and \overleftarrow{d}_{0} from \mathcal{T} to $\mathcal{T} \otimes \mathcal{L}$ and $\mathcal{L} \otimes \mathcal{T}$ respectively by linear extension of the actions

$$
\begin{array}{ll}
\vec{d}_{0}\left(1_{\mathcal{T}}\right)=0 ; \quad & \vec{d}_{0}\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{n}\right)=\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{n-1}\right) \bigotimes L_{n} \\
\overleftarrow{d}_{0}\left(1_{\mathcal{T}}\right)=0 ; & \overleftarrow{d}_{0}\left(L_{1} \otimes L_{2} \otimes \cdots \otimes L_{n}\right)=L_{1} \bigotimes\left(L_{2} \otimes L_{3} \otimes \cdots \otimes L_{n}\right) \tag{3}
\end{array}
$$

respectively, for arbitrary $n \in \mathbb{N}$ and $L_{1}, L_{2}, \cdots, L_{n} \in \mathcal{L}$. Alternatively

$$
\begin{equation*}
\vec{d}_{0}(T)=\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\Delta_{0}(T)-T \otimes 1_{\mathcal{T}}\right), \overleftarrow{d}_{0}(T)=\left(\varepsilon_{1} \otimes{\underset{\mathcal{T}}{2}}^{)}\right)\left(\Delta_{0}(T)-1_{\mathcal{T}} \otimes T\right) \tag{4}
\end{equation*}
$$

for arbitrary $T \in \mathcal{T}$. As a consequence of the latter form, they both satisfy the Leibniz-Ito formula

$$
\begin{aligned}
& \vec{d}_{0}(S T)=\vec{d}_{0}(S) T+S \vec{d}_{0}(T)+\vec{d}_{0}(S) \vec{d}_{0}(T) \\
& \overleftarrow{d}_{0}(S T)=\overleftarrow{d}_{0}(S) T+S \overleftarrow{d}_{0}(T)+\overleftarrow{d}_{0}(S) \overleftarrow{d}_{0}(T)
\end{aligned}
$$

for arbitrary $S, T \in \mathcal{T}$, where, in the first two terms of the right hand sides, $\mathcal{T} \otimes \mathcal{L}$ and $\mathcal{L} \otimes \mathcal{T}$ are regarded as \mathcal{T}-modules with the natural multiplicative actions and, in the third terms, as associative algebras using the tensor product multiplication ${ }^{1}$.

For $T \in \mathcal{T}$, if both $\vec{d}_{0}(T)=0$ and $\varepsilon(T)=0$, then $T=0$. Similarly if, for $T \in \mathcal{T} \otimes \mathcal{T}$, both

$$
\begin{equation*}
\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}_{0}\right) T=0, \quad\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right) T=0 \tag{5}
\end{equation*}
$$

it follows that $T=0$.
By checking actions on homogeneous product tensors it can be verified that the differential maps satisfy the commutation relation

$$
\left(\underset{\mathcal{L}}{\mathrm{id}} \otimes \vec{d}_{0}\right) \overleftarrow{d}_{0}=\left(\overleftarrow{d}_{0} \otimes \underset{\mathcal{L}}{\mathrm{id}}\right) \vec{d}_{0}
$$

and that, in so far as

$$
\mathcal{T} \otimes \mathcal{T}=\bigoplus_{n=0}^{\infty}\left(\mathcal{T} \otimes\left(\bigotimes{ }^{n} \mathcal{L}\right)\right)=\bigoplus_{n=0}^{\infty}\left(\left(\bigotimes^{n} \mathcal{L}\right) \otimes \mathcal{T}\right)
$$

the Taylor expansions

$$
\Delta_{0}=\bigoplus_{n=0}^{\infty} \vec{d}_{0}^{(n)}=\bigoplus_{n=0}^{\infty} \overleftarrow{\leftarrow}_{0}^{(n)}
$$

hold, where the iterated differential maps are defined by $\vec{d}_{0}^{(0)}=\overleftarrow{d}_{0}^{(0)}=\operatorname{id}_{\mathcal{T}}, \vec{d}_{0}^{(1)}=\vec{d}$, $\overleftarrow{d}_{0}^{(n)}=\overleftarrow{d}_{0}$ and, for $n>1$,

$$
\vec{d}_{0}^{(n)}=\left(\vec{d}_{0} \otimes \mathrm{id} \otimes_{\otimes^{n-1} \mathcal{L}}\right) \vec{d}_{0}^{(n-1)}, \overleftarrow{d}_{0}^{(n)}=\left(\operatorname{id} \otimes_{\otimes^{n-1} \mathcal{L}} \otimes \overleftarrow{d}_{0}\right) \overleftarrow{d}_{0}^{(n-1)}
$$

Also we have the Maclaurin formulas

$$
\left(\varepsilon \otimes \operatorname{id} \otimes_{\otimes^{n} \mathcal{L}}\right) \vec{d}_{0}^{(n)}=\left(\operatorname{id}_{\otimes^{n} \mathcal{L}} \otimes \varepsilon\right){\overleftarrow{d_{0}}}_{0}^{(n)}
$$

both being equal to the projection

$$
\mathcal{T} \ni\left(T_{0}, T_{1}, T_{2}, \ldots\right) \mapsto T_{n} \in \otimes^{n} \mathcal{L}
$$

We note that Δ_{0} is the unique solution of the "differential equation", for a linear map from \mathcal{T} to $\mathcal{T} \otimes \mathcal{T}$,

$$
\begin{equation*}
\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}_{0}\right) \Delta_{0}=\left(\Delta_{0} \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}_{0},\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right) \Delta_{0}=\operatorname{id}_{\mathcal{T}} . \tag{6}
\end{equation*}
$$

[^1]Indeed, that it satisfies (6) follows from the corresponding Taylor expansion. To prove uniqueness, suppose that Δ_{0}^{\prime} also satisfies (6). Then the difference $D=\Delta_{0}-\Delta_{0}^{\prime}$ is a linear map from \mathcal{T} to $\mathcal{T} \otimes \mathcal{T}$ satisfying

$$
\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}_{0}\right) D=\left(D \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}_{0}, \quad\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right) D=0
$$

Since $\vec{d}_{0}\left(1_{\mathcal{T}}\right)=0$ we deduce that

$$
\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}_{0}\right) D\left(1_{\mathcal{T}}\right)=\left(D \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}_{0}\left(1_{\mathcal{T}}\right)=0, \quad\left(\mathrm{id}_{\mathcal{T}} \otimes \varepsilon\right) D\left(1_{\mathcal{T}}\right)=0
$$

and hence from (5) that $D\left(1_{\mathcal{T}}\right)=0$. Next consider a rank 1 tensor $(0, L, 0,0, \ldots) \in$ \mathcal{T}. From (6) we deduce that

$$
\begin{aligned}
\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}_{0}\right) D(0, L, 0,0, \ldots) & =\left(D \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}_{0}(0, L, 0,0, \ldots) \\
& =\left(D \otimes \operatorname{id}_{\mathcal{L}}\right)\left(1_{\mathcal{T}} \otimes L\right) \\
& =0
\end{aligned}
$$

since $D\left(1_{\mathcal{T}}\right)=0$, whence, since also $\left(\mathrm{id}_{\mathcal{T}} \otimes \varepsilon\right) D(0, L, 0,0, \ldots)=0$, it again follows from (5) that $D(0, L, 0,0, \ldots)=0$. A simple inductive argument shows that similalarly D vanishes on homogeneous tensors of arbitrary rank.

A similar argument shows that Δ_{0} is the unique solution of

$$
\left(\overleftarrow{d}_{0} \otimes \operatorname{id}_{\mathcal{T}}\right) \Delta_{0}=\left(\operatorname{id}_{\mathcal{L}} \otimes \Delta_{0}\right) \overleftarrow{d}_{0},\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right) \Delta_{0}=\operatorname{id}_{\mathcal{T}}
$$

4 From deformed coproducts to differential maps.

We equip the space $\mathcal{T}[[h]]$ of formal power series with coefficients in \mathcal{T} with the convolution product derived from that in \mathcal{T},

$$
\sum_{N=0}^{\infty} h^{N} S^{(N)} \sum_{N=0}^{\infty} h^{N} T^{(N)}=\sum_{N=0}^{\infty} h^{N} \sum_{j=0}^{N} S^{(j)} T^{(N-j)} .
$$

We denote by \mathcal{A} the subalgebra of $\mathcal{T}[[h]]$ consisting of formal power series $\sum_{N=0}^{\infty} h^{N} S^{(N)}$ whose zero-order coefficient $S^{(0)}$ is a symmetric tensor. Thus the universal enveloping algebra $\mathcal{U} \simeq \mathcal{S}$ is embedded as the algebra of "constants" in \mathcal{A} and we can seek quantum groups, in the form of deformations of \mathcal{U}, in \mathcal{A}. We do this by equipping \mathcal{T} with a deformation coproduct

$$
\Delta[h]=\sum_{N=0}^{\infty} h^{N} \Delta_{N}: \mathcal{T} \longrightarrow(\mathcal{T} \otimes \mathcal{T})[[h]]
$$

where the zero order coefficient Δ_{0} is the natural coproduct defined in \mathcal{T} by (1). We shall assume that the undeformed counit ε in \mathcal{T} remains counital for the deformed coproduct;

$$
\begin{equation*}
\left(\varepsilon \otimes \mathrm{id}_{\mathcal{T}}\right) \Delta[h]=\left(\mathrm{id}_{\mathcal{T}} \otimes \varepsilon\right) \Delta[h]=\operatorname{id}_{\mathcal{T}} . \tag{7}
\end{equation*}
$$

Here and elsewhere maps defined on coefficient algebras of formal power series are extended to formal power series by actions on coefficients. In particular the coefficients of order greater than zero of $\Delta[h]$ are annihilated by ε;

$$
\begin{equation*}
\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right) \Delta_{N}=\left(\mathrm{id}_{\mathcal{T}} \otimes \varepsilon\right) \Delta_{N}=0, N=1,2, \ldots \tag{8}
\end{equation*}
$$

We associate with the deformed coproduct $\Delta[h]$ the right and left deformed differential maps $\vec{d}[h]: \mathcal{T} \longrightarrow(\mathcal{T} \otimes \mathcal{L})[[h]], \overleftarrow{d}[h]: \mathcal{T} \longrightarrow(\mathcal{L} \otimes \mathcal{T})[[h]]$ defined by the generalisations of (4):
$\vec{d}[h](T)=\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\Delta[h](T)-T \otimes 1_{\mathcal{T}}\right), \overleftarrow{d}[h](T)=\left(\varepsilon_{1} \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\Delta[h](T)-1_{\mathcal{T}} \otimes T\right)$.
Note that in view of (7)

$$
\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right)\left(\Delta[h](T)-T \otimes 1_{\mathcal{T}}\right)=T-\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right)\left(T \otimes 1_{\mathcal{T}}\right)=0
$$

so that $\Delta[h](T)-T \otimes 1_{\mathcal{T}}$ belongs to the domain of id $\mathcal{T}_{\mathcal{T}} \otimes \varepsilon_{1}$ and so $\vec{d}[h](T)$, and similarly $\overleftarrow{d}[h](T)$, are well defined. Also

$$
\begin{equation*}
\vec{d}[h]=\sum_{N=0}^{\infty} h^{N} \vec{d}_{N}, \quad \overleftarrow{d}[h]=\sum_{N=0}^{\infty} h^{N} \overleftarrow{d}_{N} \tag{9}
\end{equation*}
$$

where the zero order coefficients \vec{d}_{0} and \overleftarrow{d}_{0} are the undeformed differential maps. In view of (7),

$$
\begin{aligned}
& \left(\varepsilon \otimes \operatorname{id} \mathcal{L}_{\mathcal{L}}\right) \vec{d}[h](T) \\
= & \left(\varepsilon \otimes \operatorname{id}_{\mathcal{L}}\right)\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\Delta[h](T)-T \otimes 1_{\mathcal{T}}\right) \\
= & \varepsilon_{1}\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\Delta[h](T)-T \otimes 1_{\mathcal{T}}\right) \\
= & \varepsilon_{1}\left(T-\varepsilon(T) 1_{\mathcal{T}}\right)
\end{aligned}
$$

and a similar argument shows that

$$
\left(\operatorname{id}_{\mathcal{L}} \otimes \varepsilon\right) \overleftarrow{d}[h](T)=\varepsilon_{1}\left(T-\varepsilon(T) 1_{\mathcal{T}}\right)
$$

In particular,

$$
\left(\varepsilon \otimes \operatorname{id} \mathcal{L}_{\mathcal{L}}\right) \vec{d}[h]=\left(\operatorname{id}_{\mathcal{L}} \otimes \varepsilon\right) \overleftarrow{d}[h]
$$

and

$$
\begin{equation*}
\left(\varepsilon \otimes \operatorname{id} \mathcal{L}_{\mathcal{L}}\right) \vec{d}_{N}=\left(\operatorname{id}_{\mathcal{L}} \otimes \varepsilon\right) \overleftarrow{d}_{N}=0, \quad N=1,2, \ldots \tag{10}
\end{equation*}
$$

Theorem 1 Assume that the deformed coproduct $\Delta[h]$ is multiplicative;

$$
\Delta[h](S T)=\Delta[h](S) \Delta[h](T) .
$$

Then the corresponding deformed differential maps $\vec{d}[h]$ and $\overleftarrow{d}[h]$ satisfy the Leibniz-Itô formulas

$$
\begin{aligned}
& \vec{d}[h](S T)=\vec{d}[h](S) T+S \vec{d}[h](T)+\vec{d}[h](S) \vec{d}[h](T), \\
& \overleftarrow{d}[h](S T)=\overleftarrow{d}[h](S) T+S \overleftarrow{d}[h](T)+\overleftarrow{d}[h](S) \overleftarrow{d}[h](T)
\end{aligned}
$$

Here $(\mathcal{T} \otimes \mathcal{L})[[h]]$ and $(\mathcal{L} \otimes \mathcal{T})[[h]]$ are regarded as \mathcal{T}-bimodules by means of the natural multiplicative actions on coefficents and as algebras using the convolution product for formal power series based on the tensor product multiplication for the coefficients.

Proof. Using the definition of $\vec{d}[h]$, the multiplicativity of the maps id $\mathcal{T} \otimes \varepsilon_{1}$ and $\Delta[h]$, and the forms of the left and right actions of \mathcal{T} on $(\mathcal{T} \otimes \mathcal{L})[[h]]$, we have

$$
\begin{aligned}
& \vec{d}[h](S) \vec{d}[h](T) \\
= & \left(\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\Delta[h](S)-S \otimes 1_{\mathcal{T}}\right)\right)\left(\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\Delta[h](T)-T \otimes 1_{\mathcal{T}}\right)\right) \\
= & \left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\left(\Delta[h](S)-S \otimes 1_{\mathcal{T}}\right)\left(\Delta[h](T)-T \otimes 1_{\mathcal{T}}\right)\right) \\
= & \left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\Delta[h](S) \Delta[h](T)-\Delta[h](S)\left(V \otimes 1_{\mathcal{T}}\right)-\left(S \otimes 1_{\mathcal{T}}\right) \Delta[h](T)\right. \\
& \left.+\left(S \otimes 1_{\mathcal{T}}\right)\left(T \otimes 1_{\mathcal{T}}\right)\right) \\
= & \left(\operatorname{id}_{\mathcal{U}} \otimes \varepsilon_{1}\right)\left(\Delta[h](S T)-(S T) \otimes 1_{\mathcal{T}}-\left(\Delta[h](S)-S \otimes 1_{\mathcal{T}}\right)\left(T \otimes 1_{\mathcal{T}}\right)\right. \\
& \left.-\left(S \otimes 1_{\mathcal{T}}\right)\left(\Delta[h](T)-T \otimes 1_{\mathcal{T}}\right)\right) \\
= & \vec{d}[h](S T)-(\vec{d}[h](S)) T-S(\vec{d}[h](T))
\end{aligned}
$$

from which the Leibniz-Itô formula for $\vec{d}[h]$ follows. That for $\overleftarrow{d}[h]$ is proved similarly.

Theorem 2 Assume that the deformed coproduct $\Delta[h]$ is coassociative;

$$
\begin{equation*}
\left(\operatorname{id}_{\mathcal{T}} \otimes \Delta[h]\right) \Delta[h]=\left(\Delta[h] \otimes \operatorname{id}_{\mathcal{T}}\right) \Delta[h] \tag{11}
\end{equation*}
$$

Then $\vec{d}[h]$ and $\overleftarrow{d}[h]$ satisfy the commutativity condition

$$
\begin{equation*}
\left(\operatorname{id}_{\mathcal{L}} \otimes \vec{d}[h]\right) \overleftarrow{d}[h]=\left(\overleftarrow{d}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h] \tag{12}
\end{equation*}
$$

Here formal power series whose coefficients are maps are composed by convolution, for example

$$
\left(\operatorname{id}_{\mathcal{T}} \otimes \Delta[h]\right) \Delta[h]=\sum_{N=0}^{\infty} h^{N} \sum_{j=0}^{N}\left(\operatorname{id}_{\mathcal{T}} \otimes \Delta_{j}\right) \Delta_{N-j}
$$

Proof. For arbitrary $T \in \mathcal{T}$,

$$
\begin{aligned}
& \left(\left(\operatorname{id}_{\mathcal{L}} \otimes \vec{d}[h]\right) \overleftarrow{d}[h]\right)(T) \\
= & \left(\operatorname{id}_{\mathcal{L}} \otimes \vec{d}[h]\right)(\overleftarrow{d}[h](T)) \\
= & \left(\operatorname{id}_{\mathcal{L}} \otimes \vec{d}[h]\right)\left(\left(\varepsilon_{1} \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\Delta[h](T)-1_{\mathcal{T}} \otimes T\right)\right) \\
= & \left(\left(\operatorname{id}_{\mathcal{L}} \otimes \vec{d}[h]\right)\left(\varepsilon_{1} \otimes \operatorname{id}_{\mathcal{T}}\right)\right)\left(\Delta[h](T)-1_{\mathcal{T}} \otimes T\right) \\
= & \left(\varepsilon_{1} \otimes \vec{d}[h]\right)\left(\Delta[h](T)-1_{\mathcal{T}} \otimes T\right) \\
= & \left(\left(\varepsilon_{1} \otimes \operatorname{id}_{T \otimes \mathcal{L}}\right)\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}[h]\right)\right)\left(\Delta[h](T)-1_{\mathcal{T}} \otimes T\right) \\
= & \left(\varepsilon_{1} \otimes \operatorname{id}_{T \otimes \mathcal{L}}\right)\left(\operatorname{id}_{\mathcal{T}} \otimes \operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left\{\left(\operatorname{id}_{\mathcal{T}} \otimes \Delta[h]\right)\left(\Delta[h](T)-1_{\mathcal{T}} \otimes T\right)\right. \\
& \left.-1_{\mathcal{T}} \otimes\left(\Delta[h](T)-1_{\mathcal{T}} \otimes T\right)\right\} \\
= & \left(\varepsilon_{1} \otimes \operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left\{\left(\left(\operatorname{id}_{\mathcal{T}} \otimes \Delta[h]\right) \Delta[h]\right)(T)-1_{\mathcal{T}} \otimes \Delta[h](T)\right. \\
& \left.-\Delta[h](T) \otimes 1_{\mathcal{T}}+1_{\mathcal{T}} \otimes 1_{\mathcal{T}} \otimes T\right\} .
\end{aligned}
$$

A similar argument shows that

$$
\begin{aligned}
& \left(\left(\overleftarrow{d}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h]\right)(T) \\
= & \left(\varepsilon_{1} \otimes \operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left\{\left(\left(\Delta[h] \otimes \operatorname{id}_{\mathcal{T}}\right) \Delta[h]\right)(T)-1_{\mathcal{T}} \otimes \Delta[h](T)\right. \\
& \left.-\Delta[h](T) \otimes 1_{\mathcal{T}}+1_{\mathcal{T}} \otimes 1_{\mathcal{T}} \otimes T\right\}
\end{aligned}
$$

Comparing these two expressions we see that (12) follows from (11).
The next theorem shows that the deformed coproduct $\Delta[h]$ can be regarded as a "flow" generated by either the right or the left deformed differential map.

Theorem 3 Suppose that $\Delta[h]$ is coassociative. Then it is the unique solution of either of the "differential equations"

$$
\begin{align*}
& \left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}[h]\right) \Delta[h]=\left(\Delta[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h], \quad\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right) \Delta[h]=\operatorname{id}_{\mathcal{T}} \tag{13}\\
& \left(\overleftarrow{d}[h] \otimes \operatorname{id}_{\mathcal{T}}\right) \Delta[h]=\left(\operatorname{id}_{\mathcal{L}} \otimes \Delta[h]\right) \overleftarrow{d}[h],\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right) \Delta[h]=\operatorname{id}_{\mathcal{T}} \tag{14}
\end{align*}
$$

Proof. Let us prove that $\Delta[h]$ is the unique solution of (13); the case of (14) is proved similarly. To prove that it satisfies (13), using the definition of $\vec{d}[h]$
and the coassociativity of $\Delta[h]$ we have, for arbitrary $T \in \mathcal{T}$,

$$
\begin{aligned}
& \left(\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}[h]\right) \Delta[h]\right)(T) \\
= & \left(\operatorname{id}_{\mathcal{T}} \otimes \operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\left(\left(\operatorname{id}_{\mathcal{T}} \otimes \Delta[h]\right) \Delta[h]\right)(T)-\tau_{(1,3,2)}\left(1_{\mathcal{T}} \otimes \Delta[h](T)\right)\right) \\
= & \left(\operatorname{id}_{\mathcal{T}} \otimes \operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\left(\left(\Delta[h] \otimes \operatorname{id}_{T}\right) \Delta[h]\right)(T)-\tau_{(1,3,2)}\left(1_{\mathcal{T}} \otimes \Delta[h](T)\right)\right) \\
= & \left(\Delta[h] \otimes \operatorname{id}_{\mathcal{L}}\right)\left(\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(\Delta[h](T)-1_{\mathcal{T}} \otimes T\right)\right) \\
= & \left(\Delta[h] \otimes \operatorname{id}_{\mathcal{L}}\right)(\vec{d}[h](T)) \\
= & \left(\left(\Delta[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h]\right)(T) .
\end{aligned}
$$

Also, by (7), (id $\mathcal{T} \otimes \varepsilon) \Delta[h](T)=T$. Hence (13) holds.
Let us now prove uniqueness. Equating coefficients of powers of h in (13) we see that the zero-order coefficient Δ_{0} is the solution of (6) which is unique. The first order coefficient Δ_{1} satisfies

$$
\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}_{0}\right) \Delta_{1}+\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}_{1}\right) \Delta_{0}=\left(\Delta_{0} \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}_{1}+\left(\Delta_{1} \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}_{0}
$$

together with $(\mathrm{id} \mathcal{T} \otimes \varepsilon) \Delta_{1}=0$. Suppose that both Δ_{1} and Δ_{1}^{\prime} satisfy these equations. Then their difference D_{1} satisfies

$$
\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{d}_{0}\right) D_{1}=\left(D_{1} \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}_{0}, \quad\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right) D_{1}=0
$$

But by the uniqueness of the solution to (6) such a map D_{1} must vanish and hence the first order coefficient is unique. A similar inductive argument now shows that the N th order coefficient Δ_{N} is unique.

5 From differential maps to deformed coproducts.

Now let $\vec{d}[h]$ and $\overleftarrow{d}[h]$ be arbitrary maps of the form (9) from \mathcal{T} to $(\mathcal{T} \otimes \mathcal{L})[[h]]$ and to $(\mathcal{L} \otimes \mathcal{T})[[h]]$ respectively. Our strategy in what follows is to construct a corresponding deformation coproduct $\Delta[h]$ by means of Taylor expansions

$$
\Delta[h]=\oplus_{n=0}^{\infty} \vec{d}^{(n)}[h]=\oplus_{n=0}^{\infty} \overleftarrow{d}^{(n)}[h]
$$

in terms of iterations of the maps $\vec{d}[h]$ and $\overleftarrow{d}[h]$. Our first task is to ensure that these sums are well defined formal power series.

For the moment we assume only that (9) holds, that the coefficients \vec{d}_{0} and \overleftarrow{d}_{0} of h^{0} are indeed the undeformed right and left differential maps, and that the higher order coefficients satisfy (10) for $N>0$. We denote by $\vec{d}^{(n)}[h]$ and $\overleftarrow{d}^{(n)}[h]$ the n-fold iterates

$$
\begin{aligned}
& \left(\vec{d}[h] \otimes\left(\bigotimes^{n-1} \operatorname{id}_{\mathcal{L}}\right)\right)\left(\vec{d}[h] \otimes\left(\bigotimes^{n-2} \operatorname{id}_{\mathcal{L}}\right)\right) \cdots \vec{d}[h] \\
& \left(\left(\bigotimes^{n-1} \operatorname{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right)\left(\left(\bigotimes^{n-2} \operatorname{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right) \cdots \overleftarrow{d}[h]
\end{aligned}
$$

formed by multiple convolution; it is convenient also to define $\vec{d}^{(0)}[h]=\overleftarrow{d}^{(0)}[h]=$ $\mathrm{id}_{\mathcal{T}}$.

For fixed $T \in \mathcal{T}$ consider the sequence of formal power series $\left(T_{0}[h], T_{1}[h], T_{2}[h], \ldots\right)$ in which $T_{n}[h]=\vec{d}^{(n)}[h](T)$. The coefficients of h^{0} in this sequence of formal power series consists of iterated actions of \vec{d}_{0} on T. Because by (2) each action of \vec{d}_{0} reduces by one the maximal nonzero rank of T, only finitely many of these coefficients are nonzero. More generally the coefficient of h^{N} in $T_{n}[h]$ is

$$
\sum_{j_{1}+j_{2}+\cdots+j_{n}=N}\left(\vec{d}_{j_{1}} \otimes\left(\bigotimes^{n-1} \operatorname{id}_{\mathcal{L}}\right)\right)\left(\vec{d}_{j_{2}} \otimes\left(\bigotimes^{n-2} \operatorname{id}_{\mathcal{L}}\right)\right) \cdots \vec{d}_{j_{n}}(T)
$$

where the sum is over ordered n-tuples of nonnegative integers $\left(j_{1}, j_{2}, \cdots, j_{n}\right)$ whose sum is N. For fixed N, a finite number of ordered r-tuples of positive integers $\left(k_{1}, k_{2}, \cdots, k_{r}\right)$ whose sum is N, that is partitions of N, contribute to this sum, supplemented by $n-r$ zeros corresponding to actions of \vec{d}_{0} which either fall entirely to the right of the actions of $\vec{d}_{k_{1}}, \vec{d}_{k_{2}}, \ldots, \vec{d}_{k_{r}}$ or intercede between these actions or fall entirely to the left of them. For each fixed partition, by the rank-reducing property of \vec{d}_{0}, only a finite number of actions of \vec{d}_{0} may fall entirely to the right and yield a nonzero contribution to the coefficient of h^{N} in $T_{n}[h]$. For the same reason, for each of these contributions, only a finite number of actions of \vec{d}_{0} may lie between $\vec{d}_{k_{r}}$ and $\vec{d}_{k_{r-1}}$ and yield a nonzero contribution. Continuing this argument we see that the sequence $\left(T_{0}[h], T_{1}[h], T_{2}[h], \ldots\right)$ can be rearranged as a well defined element of $\left(\bigoplus_{n=0}^{\infty}\left(\mathcal{T} \otimes \bigotimes^{n} \mathcal{L}\right)\right)[[h]] \simeq(\mathcal{T} \otimes \mathcal{T})[[h]]$. We denote this by $\vec{\Delta}[h](T)$ and regard $\vec{\Delta}[h]$ as a map from \mathcal{T} to the algebra $(\mathcal{T} \otimes \mathcal{T})[[h]]$. Note that by (10)

$$
\begin{align*}
\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right) \vec{\Delta}[h](T) & =\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\vec{d}^{(0)}[h](T), \vec{d}^{(1)}[h](T), \vec{d}^{(2)}[h](T), \ldots\right) \\
& =\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\vec{d}_{0}^{(0)}(T), \vec{d}_{0}^{(1)}(T), \vec{d}_{0}^{(2)}(T), \ldots\right) \\
& =T \tag{15}
\end{align*}
$$

Also

$$
\begin{align*}
\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right) \vec{\Delta}[h](T) & =\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right)\left(\vec{d}^{(0)}[h](T), \vec{d}^{(1)}[h](T), \vec{d}^{(2)}[h](T), \ldots\right) \\
& =\vec{d}^{(0)}[h](T) \\
& =T \tag{16}
\end{align*}
$$

In the same way, we may rearrange the sequence $\left(\overleftarrow{d}^{(0)}[h](T), \overleftarrow{d}^{(1)}[h](T)\right.$ $\left.\overleftarrow{,}^{(2)}[h](T), \ldots\right)$ to obtain a formal powere series and hence a map $\overleftarrow{\Delta}[h]$ from
\mathcal{T} to $\left(\bigoplus_{n=0}^{\infty}\left(\bigotimes^{n} \mathcal{L} \otimes \mathcal{T}\right)\right)[[h]] \simeq(\mathcal{T} \otimes \mathcal{T})[[h]]$. In view of (15),(16) and the corresponding identities for $\Delta[h]$ we have the counitality relations

$$
\begin{equation*}
\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right) \vec{\Delta}[h]=\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right) \vec{\Delta}[h]=\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right) \overleftarrow{\Delta}[h]=\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon\right) \overleftarrow{\Delta}[h]=\operatorname{id}_{\mathcal{T}} \tag{17}
\end{equation*}
$$

Evidently $\vec{\Delta}[h]$ and $\overleftarrow{\Delta}[h]$ satisfy (13) and (14) respectively for the given differential maps.

Theorem 4 Suppose that $\vec{d}[h]$ (resp. $\overleftarrow{d}[h]$) satisfies the Leibniz-Itô formula Then $\vec{\Delta}[h]$ (resp. $\overleftarrow{\Delta}[h]$) is multiplicative

Proof. We give the proof for $\vec{\Delta}[h]$; that for the left map is similar. We shall show that, for arbitrary $S, T \in \mathcal{T}$, the difference

$$
P(S, T)[h]=\sum_{N=o}^{\infty} h^{N} P_{N}(S, T)=\vec{\Delta}[h](S T)-\vec{\Delta}[h](S) \vec{\Delta}[h](T)
$$

vanishes by proving by induction on N that each $P_{N}(S, T)=0 . P_{0}(S, T)=0$ since the zero order terms of $\vec{\Delta}[h](S T)$ and $\vec{\Delta}[h](S) \vec{\Delta}[h](T)$ are $\Delta(S T)$ and $\Delta(S) \Delta(T)$ respectively and the undeformed coproduct Δ is multiplicative.

Also, by multiplicativity of ε, for $N>1$

$$
\begin{aligned}
& \left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right) P_{N}(S, T) \\
= & \left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\vec{\Delta}_{N}(S T)-\sum_{j=0}^{N} \vec{\Delta}_{j}(S) \vec{\Delta}_{N-j}(T)\right) \\
= & \left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\vec{\Delta}_{N}(S T)\right)-\sum_{j=0}^{N}\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\vec{\Delta}_{j}(S)\right)\left(\varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\vec{\Delta}_{N-j}(T)\right) \\
= & 0
\end{aligned}
$$

by (15). It follows from (5) that, in order to prove that $P_{N}(S, T)=0$, it is sufficient to show that

$$
\left(\vec{d}_{0} \otimes \operatorname{id}_{\mathcal{T}}\right) P_{N}(S, T)=0
$$

under the inductive assumption that $P_{0}(S, T)=P_{1}(S, T)=\cdots=P_{N-1}(S, T)=$ 0.

Using the fact that the map id $\mathcal{T}_{(\mathcal{L})} \otimes \vec{d}[h]$ from $\mathcal{T} \otimes \mathcal{T}$ to $(\mathcal{T} \otimes \mathcal{T} \otimes \mathcal{L})[[h]]$ satisfies the Leibniz-Itô formula when the algebra $(\mathcal{T} \otimes \mathcal{T} \otimes \mathcal{L})[[h]]$ is regarded
as a $\mathcal{T} \otimes \mathcal{T}$-bimodule using the natural multiplicative actions, we have

$$
\begin{aligned}
& \left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right) P(S, T)[h] \\
= & \left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right)(\vec{\Delta}[h](S T)-\vec{\Delta}[h](S) \vec{\Delta}[h](T)) \\
= & \left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right)(\vec{\Delta}[h](S T))-\left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right)(\vec{\Delta}[h](S)) \vec{\Delta}[h](T) \\
- & \vec{\Delta}[h](S)\left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right)(\vec{\Delta}[h](T)) \\
- & \left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right)(\vec{\Delta}[h](S))\left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right)(\vec{\Delta}[h](T))
\end{aligned}
$$

Using (13) we may write this as

$$
\begin{aligned}
& \left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right) P(S, T)[h] \\
= & \left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h](S T)-\left(\left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h]\right)(S) \vec{\Delta}[h](T) \\
- & \vec{\Delta}[h](S)\left(\left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h]\right)(T) \\
- & \left(\left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h]\right)(S)\left(\left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h]\right)(T)
\end{aligned}
$$

where now $(T \otimes \mathcal{T} \otimes \mathcal{L})[[h]]$ is a $\mathcal{T} \otimes \mathcal{T}$ module with multiplicative actions. Using the Leibniz-Itô formula again we may replace the first term on the right hand side of this expression by a sum of three terms which combine with the remaining three terms to give

$$
\begin{aligned}
& \left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right) P(S, T)[h] \\
= & \left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right)(\vec{d}[h](S) T)-\left(\left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h]\right)(S) \vec{\Delta}[h](T) \\
+ & \left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right)(S \vec{d}[h](T))-\vec{\Delta}[h](S)\left(\left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{d}[h]\right)(T) \\
+ & \left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right)(\vec{d}[h](S) \vec{d}[h](T)) \\
- & \left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right)(\vec{d}[h](S))\left(\vec{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right)(\vec{d}[h](T)) .
\end{aligned}
$$

Introducing a basis (L_{1}, L_{2}, \ldots) of \mathcal{L} and writing $\vec{d}[h]()=.\sum_{j} d^{j}[h](.) \otimes L_{j}$ where each $d^{j}[h]$ maps \mathcal{T} to $\mathcal{T}[[h]]$, we may write this as

$$
\begin{align*}
& \left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right) P(S, T)[h] \\
= & \sum_{j} P\left(d^{j}[h](S), T\right)[h] \otimes L_{j}+\sum_{k} P\left(S, d^{k}[h](T)\right)[h] \otimes L_{k} \\
+ & \sum_{j, k} P\left(d^{j}[h](S), d^{k}[h](T)\right)[h] \otimes L_{j} L_{k} \tag{18}
\end{align*}
$$

where as usual $P\left(d^{j}[h](S), T\right)[h], P\left(S, d^{k}[h](T)\right)[h]$ and $P\left(d^{j}[h](S), d^{k}[h](T)\right)[h]$ are defined by convolution so that, for example,

$$
P\left(d^{j}[h](S), d^{k}[h](T)\right)[h]=\sum_{N=0}^{\infty} h^{N} \sum_{r+s+t=N} P_{r}\left(d_{s}^{j} S, d_{t}^{k} T\right)
$$

where $d^{j}[h]=\sum_{N=0}^{\infty} h^{N} d_{N}^{j}$ and the inner sum is over ordered triples (r, s, t) of nonnegative integers whose sum is N. Let us now equate coefficients of h^{N} on both sides of (18). In view of the inductive assumption we obtain

$$
\begin{aligned}
& \left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right) P_{N}(S, T) \\
= & \sum_{j} P_{N}\left(d_{0}^{j}(S), T\right) \otimes L_{j}+\sum_{k} P_{N}\left(S, d_{0}^{k}(T)\right) \otimes L_{k}+\sum_{j, k} P_{N}\left(d_{0}^{j}(S), d_{0}^{k}(T)\right) \otimes L_{j} L_{k} .
\end{aligned}
$$

Since d_{0}^{j} and d_{0}^{k} are the component maps of the undifferentiated differential map \vec{d}_{0} in the chosen basis, they are rank reducing, and since

$$
P\left(1_{\mathcal{T}}, T\right)[h]=\vec{\Delta}[h](T)-\vec{\Delta}[h]\left(1_{\mathcal{T}}\right) \vec{\Delta}[h](T)=0
$$

and similarly $P\left(S, 1_{\mathcal{T}}\right)[h]=0$, an induction on the degrees of S and T shows that $\left(\operatorname{id}_{\mathcal{T}(\mathcal{L})} \otimes \vec{d}[h]\right) P_{N}(S, T)$ and hence also $P_{N}(S, T)$ vanishes as required.

Next we show that, if $\vec{d}[h]$ and $\overleftarrow{d}[h]$ satisfy the commutativity condition (12) of Theorem 2 , the maps $\vec{\Delta}[h]$ and $\overleftarrow{\Delta}[h]$ satisfy a modified coassociativity condition.

Theorem 5 Suppose that $\vec{d}[h]$ and $\overleftarrow{d}[h]$ satisfy (12). Then

$$
\begin{equation*}
\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{\Delta}[h]\right) \overleftarrow{\Delta}[h]=\left(\overleftarrow{\Delta}[h] \otimes \operatorname{id}_{\mathcal{T}}\right) \vec{\Delta}[h] \tag{19}
\end{equation*}
$$

Proof. (19) may be expressed informally as $\vec{\Delta}[h] \overleftarrow{\Delta}[h]=\overleftarrow{\Delta}[h] \vec{\Delta}[h]$ where appropriate ampliations are understood, and becomes intuitively clear when the commutatvity condition (12) is abbreviated similarly as $\vec{d}[h] \underset{\sim}{\mathscr{d}} \underset{\rightarrow}{[h]}=\overleftarrow{d}[h] \underset{\leftarrow}{d}[h]$ and regarded as $\vec{\Delta}[h]$ and $\overleftarrow{\Delta}[h]$ regarded as sums of powers of $\vec{d}[h]$ and $\overleftarrow{d}[h]$ respectively. More formally, we may expand the map $\left(\operatorname{id}_{\mathcal{T}} \otimes \vec{\Delta}[h]\right) \overleftarrow{\Delta}[h]$ from \mathcal{T} to

$$
(\mathcal{T} \otimes \mathcal{T} \otimes \mathcal{T})[[h]]=\left(\bigoplus_{m, n=0}^{\infty}\left(\left(\otimes^{m} \mathcal{L}\right) \otimes \mathcal{T} \otimes\left(\otimes^{n} \mathcal{L}\right)\right)\right)[[h]]
$$

as

$$
\begin{aligned}
& \left(\mathrm{id}_{\mathcal{T}} \otimes \vec{\Delta}[h]\right) \overleftarrow{\Delta}[h] \\
= & \bigoplus_{m, n=0}^{\infty}\left\{\left(\left(\otimes^{n}\left(\mathrm{id}_{\mathcal{L}}\right)\right) \otimes\right.\right. \\
& \left.\left(\left(\vec{d}[h] \otimes\left(\bigotimes^{m-1} \mathrm{id}_{\mathcal{L}}\right)\right)\left(\vec{d}[h] \otimes\left(\bigotimes^{m-2} \mathrm{id}_{\mathcal{L}}\right)\right) \cdots \vec{d}[h]\right)\right) \\
& \left.\left(\left(\left(\bigotimes^{n-1} \mathrm{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right)\left(\left(\bigotimes^{n-2} \mathrm{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right) \cdots \overleftarrow{d}[h]\right)\right\} .
\end{aligned}
$$

By making repeated use of the commutativity condition (??), we have

$$
\begin{aligned}
& \left(\left(\otimes^{n}\left(\mathrm{id}_{\mathcal{L}}\right)\right) \otimes\right. \\
& \left.\left(\left(\vec{d}[h] \otimes\left(\bigotimes^{m-1} \mathrm{id}_{\mathcal{L}}\right)\right)\left(\vec{d}[h] \otimes\left(\bigotimes^{m-2} \mathrm{id}_{\mathcal{L}}\right)\right) \cdots \vec{d}[h]\right)\right) \\
& \left(\left(\left(\bigotimes^{n-1} \mathrm{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right)\left(\left(\bigotimes^{n-2} \mathrm{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right) \cdots \overleftarrow{d}[h]\right) \\
= & \left(\left(\left(\bigotimes^{n-1} \mathrm{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right)\left(\left(\bigotimes^{n-2} \mathrm{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right) \cdots \overleftarrow{d}[h]\right) \\
& \left.\otimes\left(\otimes^{m}\left(\mathrm{id}_{\mathcal{L}}\right)\right)\right) \\
& \left(\left(\vec{d}[h] \otimes\left(\bigotimes^{m-1} \mathrm{id}_{\mathcal{L}}\right)\right)\left(\vec{d}[h] \otimes\left(\bigotimes^{m-2} \mathrm{id}_{\mathcal{L}}\right)\right) \cdots \vec{d}[h]\right)
\end{aligned}
$$

as maps from \mathcal{T} to $\left(\left(\otimes^{m} \mathcal{L}\right) \otimes \mathcal{T} \otimes\left(\otimes^{n} \mathcal{L}\right)\right)[[h]]$. Thus

$$
\begin{aligned}
& \left(\operatorname{id}_{\mathcal{L}} \otimes \overleftarrow{\Delta}[h]\right) \vec{\Delta}[h] \\
= & \bigoplus_{m, n=0}^{\infty}\left\{\left(\left(\left(\left(\bigotimes^{n-1} \mathrm{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right)\left(\left(\bigotimes^{n-2} \mathrm{id}_{\mathcal{L}}\right) \otimes \overleftarrow{d}[h]\right) \cdots \overleftarrow{d}[h]\right)\right.\right. \\
& \left.\left.\left.\otimes^{m} \mathrm{id}_{\mathcal{L}}\right)\right)\right) \\
& \left.\left(\left(\vec{d}^{2}[h] \otimes\left(\bigotimes^{m-1} \mathrm{id}_{\mathcal{L}}\right)\right)\left(\vec{d}[h] \otimes\left(\bigotimes^{m-2} \mathrm{id}_{\mathcal{L}}\right)\right) \cdots \vec{d}[h]\right)\right\} \\
= & \left(\overleftarrow{\Delta}[h] \otimes \operatorname{id}_{\mathcal{L}}\right) \vec{\Delta}[h] . \square
\end{aligned}
$$

Applying the map $\mathrm{id}_{\mathcal{T}} \otimes \varepsilon \otimes \mathrm{id} \mathcal{T}_{\mathcal{T}}$ to both sides of (19) and using (17) we obtain finally that

$$
\begin{aligned}
\vec{\Delta}[h] & =\left(\operatorname{id}_{\mathcal{T}} \otimes \operatorname{id}_{\mathcal{T}}\right) \vec{\Delta}[h] \\
& =\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\overleftarrow{\Delta}[h] \otimes \mathrm{id}_{\mathcal{T}}\right) \vec{\Delta}[h] \\
& =\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon \otimes \operatorname{id}_{\mathcal{T}}\right)\left(\mathrm{id}_{\mathcal{T}} \otimes \vec{\Delta}[h]\right) \overleftarrow{\Delta}[h] \\
& =\left(\operatorname{id}_{\mathcal{T}} \otimes \operatorname{id}_{\mathcal{T}} \overleftarrow{\Delta}[h]\right. \\
& =\overleftarrow{\Delta}[h]
\end{aligned}
$$

Denoting the common value of $\vec{\Delta}[h]$ and $\overleftarrow{\Delta}[h]$ by $\Delta[h]$, (19) now shows that $\Delta[h]$ is coassociative. This completes the construction of a deformation coproduct from the pair of differential maps $\vec{d}[h]$ and $\overleftarrow{d}[h]$

6 An example.

We consider a deformation coproduct of the quasitriangular type constructed in [7],

$$
\Delta[h](T)=R[h] \Delta_{0}(T) R[h]^{-1}
$$

where $R[h]=\vec{\prod}(1+d r[h])$ is the double product integral generated by the element $r[h]$ of $h(\mathcal{L} \otimes \mathcal{L})[[h]]$ satisfying the condition, sufficient for $R[h]$ to satisfy the quantum Yamg-Baxter equation,

$$
\begin{aligned}
& r[h]^{1,2} r[h]^{1,3}+r[h]^{1,2} r[h]^{2,3}+r[h]^{1,3} r[h]^{2,3}+r[h]^{1,2} r[h]^{1,3} r[h]^{2,3} \\
= & r[h]^{1,3} r[h]^{1,2}+r[h]^{2,3} r[h]^{1,3}+r[h]^{2,3} r[h]^{1,2}+r[h]^{2,3} r[h]^{1,3} r[h]^{1,2},
\end{aligned}
$$

so that in particular the first order coefficient r_{1} of $r[h]$ satisfies the classical Yang-Baxter equation

$$
\left[r_{1}^{1,2}, r_{1}^{1,3}\right]+\left[r_{1}^{1,2}, r_{1}^{2,3}\right]+\left[r_{1}^{1,3}, r_{1}^{2,3}\right]=0
$$

The corresponding deformed right differential map acts on $\mathcal{L} \subset \mathcal{T}$

$$
\begin{aligned}
\vec{d}[h](L) & =\left(\operatorname{id}_{\mathcal{T}} \otimes \varepsilon_{1}\right)\left(R[h]\left(L^{1}+L^{2}\right) R[h]^{-1}-L \otimes 1_{\mathcal{T}}\right) \\
& =1_{\mathcal{T}} \otimes L+\left[r_{1}, L^{1}+L^{2}\right] h+o\left(h^{2}\right)
\end{aligned}
$$

where we use the expansions [7]

$$
R[h]=1_{\mathcal{T} \otimes \mathcal{T}}+r[h]+o\left(h^{2}\right), R[h]^{-1}=1_{\mathcal{T} \otimes \mathcal{T}}-r[h]+o\left(h^{2}\right)
$$

Similarly

$$
\overleftarrow{d}[h](L)=L \otimes 1_{\mathcal{T}}+\left[r_{1}, L^{1}+L^{2}\right] h+o\left(h^{2}\right)
$$

In particular the Lie bialgebra cobracket δ determined by the quasitriangular coboundary structure r_{1} is expressed in terms of the first order coefficients of the differential maps by

$$
\begin{aligned}
\delta(L) & =\left[r_{1}-\tau_{(2,1)} r_{1}, L^{1}+L^{2}\right] \\
& =\left(\stackrel{\rightharpoonup}{d}_{1}-\tau_{(2,1)} \overleftarrow{d}_{1}\right)(L)
\end{aligned}
$$

thus

$$
\begin{equation*}
\delta=\left(\vec{d}_{1}-\tau_{(2,1)} \overleftarrow{d}_{1}\right) \upharpoonright_{\mathcal{L}} \tag{20}
\end{equation*}
$$

In a subsequent paper we shall show how to quantise more general Lie bialgebras (\mathcal{L}, δ) by constructing corresponding pairs of differential maps satisfying (20).

References

[1] P Etingof and D Kazhdan, Quantization of Lie bialgebras I, Selecta Math. 2 (1996), 1-41, II, ibid 4 (1998), 213-231, III ibid 4 (1998), 233-269.
[2] P Etingof and O Schiffman, Lectures on quantum groups, International Press, 1998.
[3] R L Hudson, Calculus in enveloping algebras, Jour. London Math. Soc. (2) 65 (2001), 361-380.
[4] R L Hudson, Itô versus Woronowicz calculus in the Itô-Hopf algebra, Math Slovaca 54 (2004), 151-159.
[5] R L Hudson and S Pulmannová, Chaotic expnsion of elements of the universal enveloping algebra of a Lie algebra associated with a quantum stochastic calculus, Proc. London Math. Soc. (3) 77 (1998), 462-480.
[6] R L Hudson and S Pulmannová, Double product integrals and Enriquez quantization of Lie bialgebras I: the quasitriangularity relations, J Math. Phys 45 (2004), 2090-2105.
[7] R L Hudson and S Pulmannová, Double product integrals and Enriquez quantization of Lie bialgebras II: the quantum Yang Baxter equation, Lett. in Math. Phys, to appear.
[8] S L Woronowicz, Differential calculus on compact matrix pseudogroups, Comm. Math. Phys 122 (1989), 125-170.

[^0]: *This work was begun when the first author was visiting the University of Lódź in 2002 and completed when the second author visited Nottingham Trent University in 2005, supported by the London Mathematical Society. We are grateful for the generosity and hospitality of these institutions.
 ${ }^{\dagger}$ Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, Great Britain
 ${ }^{\ddagger}$ Mathematical Institute, Slovak Academy of Sciences, Stefanokova 49, 81473 Bratislava, Slovakia.

[^1]: ${ }^{1}$ By modifying either the right or the left actions by the inclusion of the third term, it can be seen that both the right and left differential maps define differential calcului in the sense of Woronowicz [8],[4].

