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Deformation coproducts and differential
maps∗.

R L Hudson†and S Pulmannová‡

Abstract

Let T be the Itô Hopf algebra over an associativa algebra L into which
the universal enveloping algebra U of the commutator Lie algebra L is
embedded as the subalgebra of symmetric tensors. We show that there
is a one-to-one correspondence between deformations ∆[h] of the coprod-
uct in T and pairs (

→
d [h],

←
d [h]) of right and left differential maps which

are deformations of the differential maps for T [6]. Corresponding to the
multiplicativity and coassociativity of ∆[h],

→
d [h] and

←
d [h] satisfy the

Leibniz-Itô formula and a mutual commutativity condition. ∆[h] is re-
covered from

→
d [h] and

←
d [h] by a generalised Taylor expansion. As an

illustrative example we consider the differential maps corresponding to the
quantisation of quasitriangular commutator Lie bialgebras of [7].

1 Introduction

Motivated by quantum stochastic calculus [5], in which case the multiplication
rule is essentially that for iterated stochastic integrals and the natural coproduct
is related to the continuous tensor product structure of Fock space, in [6] we
introduced a noncommutative generalisation of the shuffle product Hopf algebra.
The universal enveloping algebra of the commutator Lie algebra of the underlying
associative algebra is embedded in this as a sub-Hopf algebra. Furthermore we
showed in [7] that this could be used to effect a quantisation of commutator Lie
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bialgebras of quasitriangular [2] type. The quantisation is effected by conjugat-
ing the standard coproduct by a “double product integral” whose generator is
derived from the solution of the classical Yang-Baxter equation determining the
quasitriangular structure, to obtain a deformed coproduct.

The purpose of this article is to investigate more general deformed coprod-
ucts, and corresponding quantisations, living in the generalised shuffle product
Hopf algebra, which are not given by such conjugations. We shall investigate
them using the corresponding differential maps. These were introduced in [6] in
the case of the undeformed coproduct where they were found to be useful in the
construction of double product integrals. Here we show that deformations of the
differential maps of [6] can be associated with deformations of the coproduct. Cor-
reponding to the multiplicativity, coassociativity and counitality of the deformed
coproduct, the differential maps satisfy respectively the Leibniz-Itô formula, a
mutual commutativity condition and a counitality condition related to an analog
of the Maclaurin expansion for polynomials. Conversely given deformed differen-
tial maps satisfying these three conditions a corresponding deformed coproduct
can be constructed by an analog of the Taylor expansion.

In a subsequent paper we shall show how such differential maps can be con-
structed, essentially from an infinitesimal which is the first order coefficient in
their formal power series expansions, thus giving a general method of quantising
commutator Lie bialgebras.

We use the following notational convention. If V1,V2, . . . ,Vn are vector spaces
and π is a permutaion of {1, 2, . . . , n} then τπ is the linear map from V1 ⊗ V2 ⊗
. . .⊗Vn to Vπ(1)⊗Vπ(2)⊗. . .⊗Vπ(n) which appropriately permutes the components
of product tensors.

2 The Itô Hopf algebra

Let L be a not necessarily unital associative algebra over a field F and let
T =

⊕∞
n=0

⊗n L denote the vector space of all tensors over L. Thus elements of
T are sequences T = (T0, T1, T2, ...) of homogeneous tensors Tn ∈

⊗n L of which
only finitely many are nonzero. T becomes a unital associative algebra under the
multiplication RS = T, where the homogeneous component Tn of rank n of the
tensor T is defined in terms of those of R and S by

Tn =
∑

A∪B={1,2,...,n}

RA
|A|S

B
|B|,

where the sum is over all 3n ordered pairs of subsets (A, B) whose union is
{1, 2, ..., n}, RA

|A| indicates that the |A|th rank homogeneous component R|A| of R

is placed in the tensor product
⊗

j∈A L of the copies of L labelled by elements j of

A within the full n-fold tensor product
⊗n L , SB

|B| is defined analogously, so that
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RA
|A| and SB

|B| jointly occupy every copy of L in
⊗n L, and double occupancies are

reduced using the multiplication in L. Note that when the multiplication in L is
trivial, all products vanishing, then the associative algbera T is just the shuffle
algebra over L.

The algebra T becomes a Hopf algebra when the coproduct ∆0 is defined by
linear extension of the action on homogeneous product tensors

∆0(L1⊗L2⊗· · ·⊗Ln) =
n∑

j=0

(L1⊗L2⊗· · ·⊗Lj)
⊗

(Lj+1⊗Lj+2⊗· · ·⊗Ln). (1)

The counit ε is
ε : (T0, T1, T2, ...) 7→ T0

and the antipode S acts on homogeneous product tensors as

S(L1 ⊗ L2 ⊗ · · · ⊗ Ln) = (−1)nLn ⊗ Ln−1 ⊗ · · · ⊗ L1 + terms of lower rank.

The kernel of ε is evidently the ideal T0 of T comprising tensors whose zero-
rank homogeneous component is zero. We call the map

ε1 : T0 3 (0, T1, T2, ...) 7→ T1 ∈ L

the enabling map. Note that it is a homomorphism of associative algebras.
The map L 3L 7→ (0, L, 0, 0, ...) ∈ T is a Lie algebra homomorphism when

both L and T have their commutator Lie brackets, whose univeral extension is
an isomorphism of Hopf algebras from the universal enveloping algebra U of L
onto the sub-Hopf algebra S of T consisting of symmetric tensors.

3 The undeformed differential maps.

We define right and left differential maps
→
d0 and

←
d0 from T to T ⊗L and L⊗T

respectively by linear extension of the actions

→
d0 (1 T ) = 0;

→
d0 (L1 ⊗ L2 ⊗ · · · ⊗ Ln) = (L1 ⊗ L2 ⊗ · · · ⊗ Ln−1)

⊗
Ln, (2)

←
d0 (1 T ) = 0;

←
d0 (L1 ⊗ L2 ⊗ · · · ⊗ Ln) = L1

⊗
(L2 ⊗ L3 ⊗ · · · ⊗ Ln) (3)

respectively, for arbitrary n ∈ N and L1, L2, · · · , Ln ∈ L. Alternatively

→
d0 (T ) =

(
id
T
⊗ε1

)
(∆0(T )− T ⊗ 1 T ) ,

←
d0 (T ) =

(
ε1 ⊗ id

T

)
(∆0(T )− 1 T ⊗ T )

(4)
for arbitrary T ∈ T . As a consequence of the latter form, they both satisfy the
Leibniz-Ito formula

→
d0 (ST ) =

→
d0 (S)T + S

→
d0 (T )+

→
d0 (S)

→
d0 (T ),

←
d0 (ST ) =

←
d0 (S)T + S

←
d0 (T )+

←
d0 (S)

←
d0 (T )
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for arbitrary S, T ∈ T , where, in the first two terms of the right hand sides,
T ⊗ L and L ⊗ T are regarded as T -modules with the natural multiplicative
actions and, in the third terms, as associative algebras using the tensor product
multiplication1.

For T ∈ T , if both
→
d0 (T ) = 0 and ε(T ) = 0, then T = 0. Similarly if, for

T ∈ T ⊗ T , both (
id T ⊗

−→
d 0

)
T = 0, (id T ⊗ ε) T = 0 (5)

it follows that T = 0.
By checking actions on homogeneous product tensors it can be verified that

the differential maps satisfy the commutation relation(
id
L
⊗
→
d0

) ←
d0=

(←
d0 ⊗ id

L

) →
d0

and that, in so far as

T ⊗ T =
∞⊕

n=0

(
T ⊗

(⊗
nL
))

=
∞⊕

n=0

((⊗
nL
)
⊗ T

)
,

the Taylor expansions

∆0 =
∞⊕

n=0

→
d

(n)

0 =
∞⊕

n=0

←
d

(n)

0

hold, where the iterated differential maps are defined by
→
d

(0)

0 =
←
d

(0)

0 = id T ,
→
d

(1)

0 =
→
d,

←
d

(n)

0 =
←
d0 and, for n > 1,

→
d

(n)

0 =
(→

d0 ⊗ id ⊗n−1L

) →
d

(n−1)

0 ,
←
d

(n)

0 =
(
id ⊗n−1L⊗

←
d0

) ←
d

(n−1)

0 .

Also we have the Maclaurin formulas

(ε⊗ id ⊗nL)
→
d

(n)

0 = (id ⊗nL ⊗ ε)
←
d

(n)

0 ,

both being equal to the projection

T 3 (T0, T1, T2, ...) 7→ Tn ∈ ⊗nL.

We note that ∆0 is the unique solution of the “differential equation”, for a
linear map from T to T ⊗ T ,(

id T ⊗
−→
d 0

)
∆0 = (∆0 ⊗ id L)

−→
d 0, (id T ⊗ ε) ∆0 = id T .. (6)

1By modifying either the right or the left actions by the inclusion of the third term, it can
be seen that both the right and left differential maps define differential calcului in the sense of
Woronowicz [8],[4].
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Indeed, that it satisfies (6) follows from the corresponding Taylor expansion.
To prove uniqueness, suppose that ∆′0 also satisfies (6). Then the difference
D = ∆0 −∆′0 is a linear map from T to T ⊗ T satisfying(

id T ⊗
−→
d 0

)
D = (D ⊗ id L)

−→
d 0, (id T ⊗ ε) D = 0 .

Since
−→
d 0 (1 T ) = 0 we deduce that(
id T ⊗

−→
d 0

)
D(1 T ) = (D ⊗ id L)

−→
d 0(1 T ) = 0, (id T ⊗ ε) D(1 T ) = 0

and hence from (5) that D(1 T ) = 0. Next consider a rank 1 tensor (0, L, 0, 0, . . .) ∈
T . From (6) we deduce that(

id T ⊗
−→
d 0

)
D(0, L, 0, 0, . . .) = (D ⊗ id L)

−→
d 0(0, L, 0, 0, . . .)

= (D ⊗ id L) (1 T ⊗ L)

= 0

since D(1 T ) = 0, whence, since also (id T ⊗ ε) D(0, L, 0, 0, . . .) = 0, it again
follows from (5) that D(0, L, 0, 0, . . .) = 0. A simple inductive argument shows
that similalarly D vanishes on homogeneous tensors of arbitrary rank.

A similar argument shows that ∆0 is the unique solution of(←−
d 0 ⊗ id T

)
∆0 = (id L ⊗∆0)

←−
d 0, (ε⊗ id T ) ∆0 = id T ..

4 From deformed coproducts to differential maps.

We equip the space T [[h]] of formal power series with coefficients in T with the
convolution product derived from that in T ,

∞∑
N=0

hNS(N)

∞∑
N=0

hNT (N) =
∞∑

N=0

hN

N∑
j=0

S(j)T (N−j).

We denote byA the subalgebra of T [[h]] consisting of formal power series
∑∞

N=0 hNS(N)

whose zero-order coefficient S(0) is a symmetric tensor. Thus the universal en-
veloping algebra U ' S is embedded as the algebra of “constants” in A and we
can seek quantum groups, in the form of deformations of U , in A. We do this by
equipping T with a deformation coproduct

∆[h] =
∞∑

N=0

hN∆N : T −→ (T ⊗ T ) [[h]]
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where the zero order coefficient ∆0 is the natural coproduct defined in T by (1).
We shall assume that the undeformed counit ε in T remains counital for the
deformed coproduct;

(ε⊗ id T ) ∆[h] = (id T ⊗ ε) ∆[h] = id T . (7)

Here and elsewhere maps defined on coefficient algebras of formal power series
are extended to formal power series by actions on coefficients. In particular the
coefficients of order greater than zero of ∆[h] are annihilated by ε;

(ε⊗ id T ) ∆N = (id T ⊗ ε) ∆N = 0, N = 1, 2, ... (8)

We associate with the deformed coproduct ∆[h] the right and left deformed

differential maps
→
d [h] : T −→ (T ⊗ L) [[h]],

←
d [h] : T −→ (L ⊗ T ) [[h]] defined

by the generalisations of (4):

→
d [h](T ) = (id T ⊗ ε1) (∆[h](T )− T ⊗ 1 T ) ,

←
d [h](T ) = (ε1 ⊗ id T ) (∆[h](T )− 1 T ⊗ T ) .

Note that in view of (7)

(id T ⊗ ε) (∆[h](T )− T ⊗ 1 T ) = T − (id T ⊗ ε) (T ⊗ 1 T ) = 0

so that ∆[h](T )−T ⊗1 T belongs to the domain of id T ⊗ ε1and so
→
d [h](T ), and

similarly
←
d [h](T ), are well defined. Also

→
d [h] =

∞∑
N=0

hN
→
dN ,

←
d [h] =

∞∑
N=0

hN
←
dN (9)

where the zero order coefficients
→
d0 and

←
d0 are the undeformed differential maps.

In view of (7),

(ε⊗ id L)
→
d [h](T )

= (ε⊗ id L) (id T ⊗ ε1) (∆[h](T )− T ⊗ 1 T )

= ε1 (ε⊗ id T ) (∆[h](T )− T ⊗ 1 T )

= ε1(T − ε(T )1 T )

and a similar argument shows that

(id L ⊗ ε)
←
d [h](T ) = ε1(T − ε(T )1 T ).

In particular,

(ε⊗ id L)
→
d [h] = (id L ⊗ ε)

←
d [h]

and
(ε⊗ id L)

→
dN= (id L ⊗ ε)

←
dN= 0, N = 1, 2, .... (10)

6



Theorem 1 Assume that the deformed coproduct ∆[h]is multiplicative;

∆[h](ST ) = ∆[h](S)∆[h](T ).

Then the corresponding deformed differential maps
→
d [h] and

←
d [h] satisfy the

Leibniz-Itô formulas

→
d [h](ST ) =

→
d [h](S)T + S

→
d [h](T )+

→
d [h](S)

→
d [h](T ),

←
d [h](ST ) =

←
d [h](S)T + S

←
d [h](T )+

←
d [h](S)

←
d [h](T ).

Here (T ⊗ L) [[h]] and (L ⊗ T ) [[h]] are regarded as T -bimodules by means of the
natural multiplicative actions on coefficents and as algebras using the convolution
product for formal power series based on the tensor product multiplication for the
coefficients.

Proof. Using the definition of
−→
d [h], the multiplicativity of the maps id T ⊗ ε1

and ∆[h], and the forms of the left and right actions of T on (T ⊗ L) [[h]], we
have

−→
d [h](S)

−→
d [h](T )

= ((id T ⊗ ε1) (∆[h](S)− S ⊗ 1 T )) ((id T ⊗ ε1) (∆[h](T )− T ⊗ 1 T ))

= (id T ⊗ ε1) ((∆[h](S)− S ⊗ 1 T ) (∆[h](T )− T ⊗ 1 T ))

= (id T ⊗ ε1) (∆[h](S)∆[h](T )−∆[h](S) (V ⊗ 1 T )− (S ⊗ 1 T ) ∆[h](T )

+ (S ⊗ 1 T ) (T ⊗ 1 T ))

= (id U ⊗ ε1) (∆[h](ST )− (ST )⊗ 1 T − (∆[h](S)− S ⊗ 1 T ) (T ⊗ 1 T )

− (S ⊗ 1 T ) (∆[h](T )− T ⊗ 1 T ))

=
−→
d [h](ST )−

(−→
d [h](S)

)
T − S

(−→
d [h](T )

)
from which the Leibniz-Itô formula for

−→
d [h] follows. That for

←−
d [h] is proved

similarly. �

Theorem 2 Assume that the deformed coproduct ∆[h] is coassociative;

(id T ⊗∆[h]) ∆[h] = (∆[h]⊗ id T ) ∆[h] (11)

Then
→
d [h] and

←
d [h] satisfy the commutativity condition(

id L ⊗
−→
d [h]

)←−
d [h] =

(←−
d [h]⊗ id L

)−→
d [h]. (12)

Here formal power series whose coefficients are maps are composed by convolu-
tion, for example

(id T ⊗∆[h]) ∆[h] =
∞∑

N=0

hN

N∑
j=0

(id T ⊗∆j) ∆N−j.
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Proof. For arbitrary T ∈ T ,((
id L ⊗

−→
d [h]

)←−
d [h]

)
(T )

=
(
id L ⊗

−→
d [h]

)(←−
d [h](T )

)
=
(
id L ⊗

−→
d [h]

)
((ε1 ⊗ id T ) (∆[h](T )− 1 T ⊗ T ))

=
((

id L ⊗
−→
d [h]

)
(ε1 ⊗ id T )

)
(∆[h](T )− 1 T ⊗ T )

=
(
ε1 ⊗

−→
d [h]

)
(∆[h](T )− 1 T ⊗ T )

=
(
(ε1 ⊗ id T⊗L)

(
id T ⊗

−→
d [h]

))
(∆[h](T )− 1 T ⊗ T )

= (ε1 ⊗ id T⊗L) (id T ⊗ id T ⊗ ε1) {(id T ⊗∆[h]) (∆[h](T )− 1 T ⊗ T )

−1 T ⊗ (∆[h](T )− 1 T ⊗ T )}
= (ε1 ⊗ id T ⊗ ε1) {((id T ⊗∆[h]) ∆[h]) (T )− 1 T ⊗∆[h](T )

−∆[h](T )⊗ 1 T + 1 T ⊗ 1 T ⊗ T} .

A similar argument shows that((←−
d [h]⊗ id L

)−→
d [h]

)
(T )

= (ε1 ⊗ id T ⊗ ε1) {((∆[h]⊗ id T ) ∆[h]) (T )− 1 T ⊗∆[h](T )

−∆[h](T )⊗ 1 T + 1 T ⊗ 1 T ⊗ T} .

Comparing these two expressions we see that (12) follows from (11). �
The next theorem shows that the deformed coproduct ∆[h] can be regarded

as a “flow” generated by either the right or the left deformed differential map.

Theorem 3 Suppose that ∆[h] is coassociative. Then it is the unique solution
of either of the “differential equations”(

id T ⊗
−→
d [h]

)
∆[h] = (∆[h]⊗ id L)

−→
d [h], (id T ⊗ ε) ∆[h] = id T (13)(←−

d [h]⊗ id T

)
∆[h] = (id L ⊗∆[h])

←−
d [h], (ε⊗ id T ) ∆[h] = id T . (14)

Proof. Let us prove that ∆[h] is the unique solution of (13); the case of (14)

is proved similarly. To prove that it satisfies (13), using the definition of
−→
d [h]
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and the coassociativity of ∆[h] we have, for arbitrary T ∈ T ,((
id T ⊗

−→
d [h]

)
∆[h]

)
(T )

= (id T ⊗ id T ⊗ ε1)
(
((id T ⊗∆[h]) ∆[h]) (T )− τ(1,3,2) (1 T ⊗∆[h](T ))

)
= (id T ⊗ id T ⊗ ε1)

(
((∆[h]⊗ id T ) ∆[h]) (T )− τ(1,3,2) (1 T ⊗∆[h](T ))

)
= (∆[h]⊗ id L) ((id T ⊗ ε1) (∆[h](T )− 1 T ⊗ T ))

= (∆[h]⊗ id L)
(−→

d [h](T )
)

=
(
(∆[h]⊗ id L)

−→
d [h]

)
(T ).

Also, by (7), (id T ⊗ ε) ∆[h](T ) = T. Hence (13) holds.
Let us now prove uniqueness. Equating coefficients of powers of h in (13) we

see that the zero-order coefficient ∆0 is the solution of (6) which is unique. The
first order coefficient ∆1 satisfies(

id T ⊗
−→
d 0

)
∆1 +

(
id T ⊗

−→
d 1

)
∆0 = (∆0 ⊗ id L)

−→
d 1 + (∆1 ⊗ id L)

−→
d 0,

together with (id T ⊗ ε) ∆1 = 0. Suppose that both ∆1 and ∆′1 satisfy these
equations. Then their difference D1 satisfies(

id T ⊗
−→
d 0

)
D1 = (D1 ⊗ id L)

−→
d 0, (id T ⊗ ε) D1 = 0.

But by the uniqueness of the solution to (6) such a map D1 must vanish and hence
the first order coefficient is unique. A similar inductive argument now shows that
the Nth order coefficient ∆N is unique. �

5 From differential maps to deformed coproducts.

Now let
−→
d [h] and

←−
d [h] be arbitrary maps of the form (9) from T to (T ⊗ L) [[h]]

and to (L ⊗ T ) [[h]] respectively. Our strategy in what follows is to construct a
corresponding deformation coproduct ∆[h] by means of Taylor expansions

∆[h] = ⊕∞n=0

−→
d (n)[h] = ⊕∞n=0

←−
d (n)[h]

in terms of iterations of the maps
−→
d [h] and

←−
d [h]. Our first task is to ensure that

these sums are well defined formal power series.

For the moment we assume only that (9) holds, that the coefficients
−→
d 0 and

←−
d 0 of h0 are indeed the undeformed right and left differential maps, and that

the higher order coefficients satisfy (10) for N > 0. We denote by
−→
d (n)[h] and

←−
d (n)[h] the n-fold iterates(−→

d [h]⊗
(⊗

n−1 id L

))(−→
d [h]⊗

(⊗
n−2 id L

))
· · ·
−→
d [h],((⊗

n−1 id L

)
⊗
←−
d [h]

)((⊗
n−2 id L

)
⊗
←−
d [h]

)
· · ·
←−
d [h]

9



formed by multiple convolution; it is convenient also to define
−→
d (0)[h] =

←−
d (0)[h] =

id T .
For fixed T ∈ T consider the sequence of formal power series (T0[h], T1[h], T2[h], . . .)

in which Tn[h] =
−→
d (n)[h](T ). The coefficients of h0 in this sequence of formal

power series consists of iterated actions of
−→
d 0 on T. Because by (2) each action

of
−→
d 0 reduces by one the maximal nonzero rank of T, only finitely many of these

coefficients are nonzero. More generally the coefficient of hN in Tn[h] is∑
j1+j2+···+jn=N

(−→
d j1 ⊗

(⊗
n−1 id L

))(−→
d j2 ⊗

(⊗
n−2 id L

))
· · ·
−→
d jn(T )

where the sum is over ordered n-tuples of nonnegative integers (j1, j2, · · · , jn)
whose sum is N. For fixed N, a finite number of ordered r-tuples of positive
integers (k1, k2, · · · , kr) whose sum is N, that is partitions of N, contribute to

this sum, supplemented by n − r zeros corresponding to actions of
−→
d 0 which

either fall entirely to the right of the actions of
−→
d k1 ,
−→
d k2 , . . . ,

−→
d kr or intercede

between these actions or fall entirely to the left of them. For each fixed partition,

by the rank-reducing property of
−→
d 0, only a finite number of actions of

−→
d 0 may

fall entirely to the right and yield a nonzero contribution to the coefficient of hN in
Tn[h]. For the same reason, for each of these contributions, only a finite number of

actions of
−→
d 0 may lie between

−→
d kr and

−→
d kr−1 and yield a nonzero contribution.

Continuing this argument we see that the sequence (T0[h], T1[h], T2[h], . . .) can be
rearranged as a well defined element of (

⊕∞
n=0 (T ⊗

⊗n L)) [[h]]' (T ⊗ T ) [[h]].

We denote this by
→
∆ [h](T ) and regard

→
∆ [h] as a map from T to the algebra

(T ⊗ T ) [[h]]. Note that by (10)

(ε⊗ id T )
−→
∆[h](T ) = (ε⊗ id T ) (

→
d

(0)

[h](T ),
→
d

(1)

[h](T ),
→
d

(2)

[h](T ), . . .)

= (ε⊗ id T ) (
→
d

(0)

0 (T ),
→
d

(1)

0 (T ),
→
d

(2)

0 (T ), . . .)

= T. (15)

Also

(id T ⊗ ε)
−→
∆[h](T ) = (id T ⊗ ε) (

→
d

(0)

[h](T ),
→
d

(1)

[h](T ),
→
d

(2)

[h](T ), . . .)

=
→
d

(0)

[h](T )

= T (16)

In the same way, we may rearrange the sequence (
←
d

(0)

[h](T ),
←
d

(1)

[h](T )

,
←
d

(2)

[h](T ), . . .) to obtain a formal powere series and hence a map
←
∆ [h] from

10



T to (
⊕∞

n=0 (
⊗n L ⊗ T )) [[h]]' (T ⊗ T ) [[h]]. In view of (15),(16) and the corre-

sponding identities for
←
∆ [h] we have the counitality relations

(ε⊗ id T )
−→
∆[h] = (id T ⊗ ε)

−→
∆[h] = (ε⊗ id T )

←
∆ [h] = (id T ⊗ ε)

←
∆ [h] = id T

(17)

Evidently
→
∆ [h] and

←
∆ [h] satisfy (13) and (14) respectively for the given

differential maps.

Theorem 4 Suppose that
−→
d [h] (resp.

←−
d [h]) satisfies the Leibniz-Itô formula.

Then
→
∆ [h] (resp.

←
∆ [h]) is multiplicative.

Proof. We give the proof for
→
∆ [h]; that for the left map is similar. We shall

show that, for arbitrary S, T ∈ T , the difference

P (S, T )[h] =
∞∑

N=o

hNPN(S, T ) =
−→
∆[h](ST )−

−→
∆[h](S)

−→
∆[h](T )

vanishes by proving by induction on N that each PN(S, T ) = 0. P0(S, T ) = 0

since the zero order terms of
−→
∆[h](ST ) and

−→
∆[h](S)

−→
∆[h](T ) are ∆(ST ) and

∆(S)∆(T ) respectively and the undeformed coproduct ∆ is multiplicative.
Also, by multiplicativity of ε, for N > 1

(ε⊗ id T ) PN(S, T )

= (ε⊗ id T )

(
−→
∆N(ST )−

N∑
j=0

−→
∆ j(S)

−→
∆N−j(T )

)

= (ε⊗ id T )
(−→

∆N(ST )
)
−

N∑
j=0

(ε⊗ id T )
(−→

∆ j(S)
)

(ε⊗ id T )
(−→

∆N−j(T )
)

= 0

by (15). It follows from (5) that, in order to prove that PN(S, T ) = 0, it is
sufficient to show that (−→

d 0 ⊗ id T

)
PN(S, T ) = 0

under the inductive assumption that P0(S, T ) = P1(S, T ) = · · · = PN−1(S, T ) =
0.

Using the fact that the map id T (L) ⊗
−→
d [h] from T ⊗ T to (T ⊗ T ⊗ L) [[h]]

satisfies the Leibniz-Itô formula when the algebra (T ⊗ T ⊗ L) [[h]] is regarded

11



as a T ⊗ T -bimodule using the natural multiplicative actions, we have(
id T (L) ⊗

−→
d [h]

)
P (S, T )[h]

=
(
id T (L) ⊗

−→
d [h]

)(−→
∆[h](ST )−

−→
∆[h](S)

−→
∆[h](T )

)
=
(
id T (L) ⊗

−→
d [h]

)(−→
∆[h](ST )

)
−
(
id T (L) ⊗

−→
d [h]

)(−→
∆[h](S)

)−→
∆[h](T )

−
−→
∆[h](S)

(
id T (L) ⊗

−→
d [h]

)(−→
∆[h](T )

)
−
(
id T (L) ⊗

−→
d [h]

)(−→
∆[h](S)

)(
id T (L) ⊗

−→
d [h]

)(−→
∆[h](T )

)
.

Using (13) we may write this as(
id T (L) ⊗

−→
d [h]

)
P (S, T )[h]

=
(→
∆ [h]⊗ id L

)−→
d [h](ST )−

((→
∆ [h]⊗ id L

)−→
d [h]

)
(S)

→
∆ [h](T )

−
→
∆ [h](S)

((→
∆ [h]⊗ id L

)−→
d [h]

)
(T )

−
((→

∆ [h]⊗ id L

)−→
d [h]

)
(S)

((→
∆ [h]⊗ id L

)−→
d [h]

)
(T )

where now (T⊗T ⊗ L) [[h]] is a T ⊗ T module with multiplicative actions. Using
the Leibniz-Itô formula again we may replace the first term on the right hand
side of this expression by a sum of three terms which combine with the remaining
three terms to give(

id T (L) ⊗
−→
d [h]

)
P (S, T )[h]

=
(−→

∆[h]⊗ id L

)(−→
d [h](S)T

)
−
((−→

∆[h]⊗ id L

)−→
d [h]

)
(S)
−→
∆[h](T )

+
(−→

∆[h]⊗ id L

)(
S
−→
d [h](T )

)
−
−→
∆[h](S)

((−→
∆[h]⊗ id L

)−→
d [h]

)
(T )

+
(−→

∆[h]⊗ id L

)(−→
d [h](S)

−→
d [h](T )

)
−
(−→

∆[h]⊗ id L

)(−→
d [h](S)

)(−→
∆[h]⊗ id L

)(−→
d [h](T )

)
.

Introducing a basis (L1, L2, . . .) of L and writing
−→
d [h](.) =

∑
j dj[h](.)⊗Lj where

each dj[h] maps T to T [[h]], we may write this as(
id T (L) ⊗

−→
d [h]

)
P (S, T )[h]

=
∑

j

P (dj[h](S), T )[h]⊗ Lj +
∑

k

P (S, dk[h](T ))[h]⊗ Lk

+
∑
j,k

P (dj[h](S), dk[h](T ))[h]⊗ LjLk (18)
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where as usual P (dj[h](S), T )[h], P (S, dk[h](T ))[h] and P (dj[h](S), dk[h](T ))[h]
are defined by convolution so that, for example,

P (dj[h](S), dk[h](T ))[h] =
∞∑

N=0

hN
∑

r+s+t=N

Pr(d
j
sS, dk

t T )

where dj[h] =
∑∞

N=0 hNdj
N and the inner sum is over ordered triples (r, s, t) of

nonnegative integers whose sum is N. Let us now equate coefficients of hN on
both sides of (18). In view of the inductive assumption we obtain(

id T (L) ⊗
−→
d [h]

)
PN(S, T )

=
∑

j

PN(dj
0(S), T )⊗ Lj +

∑
k

PN(S, dk
0(T ))⊗ Lk +

∑
j,k

PN(dj
0(S), dk

0(T ))⊗ LjLk.

Since dj
0 and dk

0 are the component maps of the undifferentiated differential map
−→
d 0 in the chosen basis, they are rank reducing, and since

P (1 T , T )[h] =
−→
∆[h](T )−

−→
∆[h](1 T )

−→
∆[h](T ) = 0,

and similarly P (S, 1 T )[h] = 0, an induction on the degrees of S and T shows that(
id T (L) ⊗

−→
d [h]

)
PN(S, T ) and hence also PN(S, T ) vanishes as required. �

Next we show that, if
−→
d [h] and

←−
d [h] satisfy the commutativity condition

(12) of Theorem 2, the maps
→
∆ [h] and

←
∆ [h] satisfy a modified coassociativity

condition.

Theorem 5 Suppose that
−→
d [h] and

←−
d [h] satisfy (12). Then(

id T ⊗
−→
∆[h]

)←−
∆[h] =

(←−
∆[h]⊗ id T

)−→
∆[h]. (19)

Proof. (19) may be expressed informally as
−→
∆[h]

←−
∆[h] =

←−
∆[h]

−→
∆[h] where

appropriate ampliations are understood, and becomes intuitively clear when the

commutatvity condition (12) is abbreviated similarly as
−→
d [h]
←−
d [h] =

←−
d [h]
−→
d [h]

and regarded as
−→
∆[h] and

←−
∆[h] regarded as sums of powers of

−→
d [h] and

←−
d [h]

respectively. More formally, we may expand the map
(
id T ⊗

−→
∆[h]

)←−
∆[h] from

T to

(T ⊗ T ⊗ T ) [[h]] =

(
∞⊕

m,n=0

((⊗mL)⊗ T ⊗ (⊗nL))

)
[[h]]

13



as (
id T ⊗

−→
∆[h]

)←−
∆[h]

=
∞⊕

m,n=0

{((⊗n (id L))⊗((−→
d [h]⊗

(⊗
m−1 id L

))(−→
d [h]⊗

(⊗
m−2 id L

))
· · ·
−→
d [h]

))
(((⊗

n−1 id L

)
⊗
←−
d [h]

)((⊗
n−2 id L

)
⊗
←−
d [h]

)
· · ·
←−
d [h]

)}
.

By making repeated use of the commutativity condition (??), we have

((⊗n (id L))⊗((−→
d [h]⊗

(⊗
m−1 id L

))(−→
d [h]⊗

(⊗
m−2 id L

))
· · ·
−→
d [h]

))
(((⊗

n−1 id L

)
⊗
←−
d [h]

)((⊗
n−2 id L

)
⊗
←−
d [h]

)
· · ·
←−
d [h]

)
=
((((⊗

n−1 id L

)
⊗
←−
d [h]

)((⊗
n−2 id L

)
⊗
←−
d [h]

)
· · ·
←−
d [h]

)
⊗ (⊗m (id L)))((−→

d [h]⊗
(⊗

m−1 id L

))(−→
d [h]⊗

(⊗
m−2 id L

))
· · ·
−→
d [h]

)
as maps from T to ((⊗mL)⊗ T ⊗ (⊗nL)) [[h]]. Thus(

id L ⊗
←−
∆[h]

)−→
∆[h]

=
∞⊕

m,n=0

{((((⊗
n−1 id L

)
⊗
←−
d [h]

)((⊗
n−2 id L

)
⊗
←−
d [h]

)
· · ·
←−
d [h]

)
⊗ (⊗m (id L)))((−→

d [h]⊗
(⊗

m−1 id L

))(−→
d [h]⊗

(⊗
m−2 id L

))
· · ·
−→
d [h]

)}
=
(←−

∆[h]⊗ id L

)−→
∆[h]. �

Applying the map id T ⊗ ε⊗ id T to both sides of (19) and using (17) we
obtain finally that

−→
∆[h] = (id T ⊗ id T )

−→
∆[h]

= (id T ⊗ ε⊗ id T )
(←−

∆[h]⊗ id T

)−→
∆[h]

= (id T ⊗ ε⊗ id T )
(
id T ⊗

−→
∆[h]

)←−
∆[h]

= (id T ⊗ id T )
←−
∆[h]

=
←−
∆[h].

14



Denoting the common value of
−→
∆[h] and

←−
∆[h] by ∆[h], (19) now shows that ∆[h]

is coassociative. This completes the construction of a deformation coproduct

from the pair of differential maps
−→
d [h] and

←−
d [h].

6 An example.

We consider a deformation coproduct of the quasitriangular type constructed in
[7],

∆[h](T ) = R[h]∆0(T )R[h]−1

where R[h] =
→←∏

(1 + dr[h]) is the double product integral generated by the
element r[h] of h (L ⊗ L) [[h]] satisfying the condition, sufficient for R[h] to satisfy
the quantum Yamg-Baxter equation,

r[h]1,2r[h]1,3 + r[h]1,2r[h]2,3 + r[h]1,3r[h]2,3 + r[h]1,2r[h]1,3r[h]2,3

= r[h]1,3r[h]1,2 + r[h]2,3r[h]1,3 + r[h]2,3r[h]1,2 + r[h]2,3r[h]1,3r[h]1,2,

so that in particular the first order coefficient r1 of r[h] satisfies the classical
Yang-Baxter equation

[r1,2
1 , r1,3

1 ] + [r1,2
1 , r2,3

1 ] + [r1,3
1 , r2,3

1 ] = 0.

The corresponding deformed right differential map acts on L ⊂ T
−→
d [h](L) = (id T ⊗ ε1)

(
R[h](L1 + L2)R[h]−1 − L⊗ 1 T

)
= 1 T ⊗ L + [r1, L

1 + L2]h + o(h2)

where we use the expansions [7]

R[h] = 1 T ⊗T + r[h] + o(h2), R[h]−1 = 1 T ⊗T − r[h] + o(h2)

Similarly ←−
d [h](L) = L⊗ 1 T + [r1, L

1 + L2]h + o(h2).

In particular the Lie bialgebra cobracket δ determined by the quasitriangular
coboundary structure r1 is expressed in terms of the first order coefficients of the
differential maps by

δ(L) = [r1 − τ(2,1)r1, L
1 + L2]

=
(−→

d 1 − τ(2,1)

←−
d 1

)
(L),

thus
δ =

(−→
d 1 − τ(2,1)

←−
d 1

)
�L . (20)

In a subsequent paper we shall show how to quantise more general Lie bialgebras
(L, δ) by constructing corresponding pairs of differential maps satisfying (20).
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