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Abstract

The McKean model of a neuron possesses a one dimensional fast voltage-like variable and a slow

recovery variable. A recent geometric analysis of the singularly perturbed system has allowed an

explicit construction of its phase response curve [S Coombes 2001 Phase-locking in networks of

synaptically coupled McKean relaxation oscillators, Physica D, Vol 160, 173-188]. Here we use

tools from coupled oscillator theory to study weakly coupled networks of McKean neurons. Using

numerical techniques we show that the McKean system has traveling wave phase-locked solutions

consistent with that of a network of more biophysically detailed Hodgkin-Huxley neurons.
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Oscillatory behavior is observed in the normal functioning of various nerve cells. Guided

by the celebrated work of Hodgkin and Huxley, mathematical descriptions based around

systems of first order nonlinear differential equations are now commonly used to model such

cells [1]. The investigation of these physiologically important models is typically hampered

by both high dimensionality and nonlinearity. Apart from numerical analysis, progress in

understanding has come about using geometric techniques [2–5] and tools from coupled

oscillator theory [6–8]. By studying spiking neuron models, reduced by both geometric

analysis and phase descriptions, one can begin to classify collective behavior in terms of

physiologically significant parameters, such as those controlling the distributions of delays

arising from synaptic processing. In this paper we pursue this approach for the McKean

relaxation oscillator. Making extensive use of Fourier representations we show that a network

of McKean neurons has dynamics consistent with that of the more biophysically detailed

Hodgkin-Huxley model.

The equations for a single McKean oscillator take the form

µv̇ = f(v)− w − w0 + I + εX(t)

ẇ = v − γw − v0,

where the nonlinear function f(v) is given by

f(v) =


−v, v < a/2;

v − a, a/2 < v < (1 + a)/2;

1− v, v > (1 + a)/2.

The variable v corresponds to a membrane potential whilst w is associated with the recovery

property of a neuron. The parameters a, µ, w0, v0 and γ may be considered as combinations

of membrane reversal potentials and conductance properties whilst I is a constant input

current. The term εX(t) represents a time varying external input signal of strength ε. In

the absence of an time-varying input (ε = 0) there is a range of I values, determined by the

condition that the (unstable) fixed point lie on the middle branch of f(v), where the neuron

can oscillate. In the singular limit µ → 0 the dynamics evolves on the invariant manifolds

described by the left and right hand branches of the slow manifold w = f(v) − w0 + I. In

this case, the period of oscillation is given by T = TL + TR where TL,R are the times spent
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on the left (right) branches of the slow manifold and are easily calculated as

TL =
1

β
ln

[
(−βw2 + A)

(−βw1 + A)

]
,

TR =
1

β
ln

[
(−βw1 + A + 1)

(−βw2 + A + 1)

]
,

where β = 1+γ, A = I−w0−v0, w1 = I−w0−a/2 and w2 = w1 +1/2. Note that requiring

the fixed point to be on the midle branch of f is a sufficient condition for the existence of

oscillations, but in the limit µ → 0 this condition becomes necessary. For weak coupling

(ε → 0) the dynamics of a single neuron can be reduced to a phase oscillator [6], which

evolves according to
dθ

dt
= Ω + εR(θ)X(t).

Here Ω = 1/T and the phase response curve (PRC) R(θ) is given explicitly in [9] as

R(θ)− R̂(θ) =

R1(θ) = ΩeβθT /(A− βw2), θ ∈ [0, θT ),

R2(θ) = Be−βθT T R1(θ), θ ∈ (θT , 1),

where θT = TL/T , B = (A− βw2)/(A + 1− βw1), and

R̂(θ) = κ(0)δ(θ) + κ(θT )δ(θ − θT ).

The constants κ(0) and κ(θT ) are chosen such that θ(t) evolves smoothly, ie κ(0) = R1(0)−

R2(1) and κ(θT ) = R2(θT )−R1(θT ). The phase plane of the McKean model and a periodic

relaxation orbit are depicted in Fig. 1. Whenever the phase coordinate θ passes smoothly

through θT an instantaneous jump of the system in the (v, w) plane occurs and corresponds

to the jump up between the slow manifolds. This signals the upswing of an action potential in

the McKean model. Similarly, the downswing of an action potential occurs when θ increases

through θ = 1 (with θ = 1 and θ = 0 identified) and there is a corresponding jump down

between the slow manifolds.

To highlight the ability of the McKean model to caricature the behavior of the more

biophysically complicated Hodgkin-Huxley model we consider recent work of Crook et al.

[10–12] concerning the dynamics of a continuum model of weakly interacting phase oscilla-

tors. Interactions in their model are non-local and are represented as a spatial convolution

involving some synaptic footprint kernel. Interestingly, they show that synchrony can be

stable for localized excitatory coupling, but long range excitatory coupling leads to an un-

stable synchronous state. It is not our intention to explore any particular result of Crook et
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FIG. 1: Phase plane of the McKean model showing the type of periodic orbit (solid line) that

occurs in the singular limit µ = 0. Note that the system jumps instantaneously from the left

branch of the v̇ = 0 nullcline (dashed line) to the right. The dotted line shows the linear nullcline

defined by ẇ = 0. In the phase coordinate the system evolves smoothly. The model is said to fire

whenever θ passes through θT .

al., but rather to illustrate that the McKean and Hodgkin-Huxley models have consistent

network dynamics using the work of Crook et al. as a bench-mark. Their work focuses

partly on sinusoidal phase interaction functions thought to provide a first approximation

for more realistic Hodgkin-Huxley models and partly on the effects of synaptic processing

(see [11] in particular). Here we pursue the analysis in [10–12] and pay close attention to

the contributions from distributed synaptic delays along the lines described in [13]. We also

present an explicit form for the phase interaction function that uses both the Fourier coef-

ficients of the PRC and the Fourier coefficients of the synaptic response. This is different

to the approach of Crook et al. who consider a Fourier expansion of the phase-interaction

function from the outset and do not make direct use of the Fourier transform of the synaptic

response function.

Following [11] we consider a continuous network of weakly coupled phase oscillators in

one spatial dimension described by

∂θ(x, t)

∂t
= Ω +

∫ ∞

−∞
W (y)H(θ(x + y, t)− θ(x, t)− |y|/c)dy.

The phase of the oscillator at position x ∈ R at time t ∈ R+ is given by θ(x, t) ∈ [0, 1). The

term |y|/c represents a space dependent delay arising from the finite propagation speed of

signals (action potentials) between neurons. Note that c represents the ratio of the signal

4



velocity to the natural frequency of oscillation Ω. In the weak coupling regime each oscillator

approximately fires at its natural frequency Ω. However, this relatively fast oscillation is

slowly modulated by a drift in the phases induced by the non-local synaptic coupling to other

neurons. The strength of interaction between oscillators a distance y apart is specified by the

synaptic footprint W (y) which we shall take to be of exponential form W (y) = ε exp(−|y|)/2.

In obtaining the equation for the network phase dynamics it is assumed that ε is small and

that the method of averaging applies (see for example [14]). Note that although the dynamics

of the reduced phase model only shadows that of the true unaveraged system for times of

O(ε−1), hyperbolic orbits of the phase model do in fact correspond to hyperbolic orbits of

the full system. We assume throughtout this paper that ε is fixed and small and from now on

choose a synaptic strength scale where ε = 1. When describing a system of neural oscillators,

the biological realism of the model typically resides in the phase interaction function H(θ).

This can be expressed as the convolution of the PRC R(θ) with the synaptic input P (t):

H(θ) =
1

T

∫ T

0

R(t/T )P (t + θT )dt,

where T = Ω−1. We refer the reader to [15] for further discussion about PRCs. The synaptic

input is assumed to be T -periodic and of the form

P (t) =
∑

j

η(t + jT ), t ∈ [0, T ).

Here η(t) describes the effects of synaptic processing and will be assumed to take the form

of an alpha function η(t) = α2t exp(−αt), for t ≥ 0 and η(t) = 0 for t < 0. For ease of

numerical calculation of phase interaction functions and PRCs we introduce a Fourier series

representation for P (t):

P (t) =
1

T

∑
k∈Z

η̃(ωk)e
iωkt, ωk =

2πk

T
.

Here η̃(ω) is the (half) Fourier transform of η(t):

η̃(ω) =

∫ ∞

0

e−iωtη(t)dt =
α2

(α + iω)2
.

Using the PRC of the McKean model we write the phase interaction function in the form

H(θ)− Ĥ(θ) = BF (θ; 0, 1− θT ) + eβ(θT−1)T F (θ; 1− θT , 1),
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where

F (θ; a, b) =
1

T

∫ b

a

R1(t)P (t + θT )dt,

(which is given in closed form in [9]) and

Ĥ(θ) = Ω[κ(0)P ((θ − θT )T ) + κ(θT )P (θT )].

Introducing a Fourier series representation for F (θ; a, b) =
∑

k Fk(a, b) exp(2πikθ):

Fk(a, b) =
Ω3

A− βw2

η̃(ωk)

β + iωk

[
eb(β+iωk) − ea(β+iωk)

]
,

means that we may also write H(θ) =
∑

k Hk exp(2πikθ):

Hk = BFk(0, 1− θT ) + eβ(θT−1)T Fk(1− θT , 1)

+ Ω2η̃(ωk)[κ(0)e−2πikθT + κ(θT )].

When the PRC of an oscillator is not available in closed form it is always possible to obtain

it numerically (see for example [7]). Moreover, the PRC of a real neuron can be found

experimentally. In either case one may use a Fourier representation for the response func-

tion, R(θ) =
∑

k Rke
2πikθ, where the coefficients Rk are determined either from numerics or

experiments. The phase interaction function then has Fourier coefficients given simply by

Hk = Ωη̃(ωk)R−k.

The usefulness of this approach arises from the adoption of a Fourier representation for both

the PRC and the synaptic input current. In particular it allows one to deal with arbitrary

synaptic kernels, for which the integral defining the phase interaction function cannot be

done in closed form. Rather than resort to numerical quadrature the representation we use

is an efficient alternative, especially if the Fourier coefficients of the synaptic response are

known to decay fast (allowing early truncation of the sum over Fourier modes).

The phase oscillator network has a one parameter family of traveling wave solutions

defined by θ(x, t) = Ω̃t + βx, where

Ω̃ = Ω +

∫ ∞

−∞
W (y)H(βy − |y|/c)dy.

A linear stability analysis shows that these solutions are stable if Reλ(p) < 0, where

λ(p) =

∫ ∞

−∞
W (y)H ′(βy − |y|/c)[eipy − 1]dy.
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Although the neutrally stable mode λ(0) = 0 exists, it represents a perturbation by constant

phase-shifts and so is excluded in the definition of linear stability. Using the property

W (y) = W (|y|) it is simple to show that

λ(p) =
∑

k

H ′
k[Ŵ (p + 2πkβ+)− Ŵ (2πkβ+)

+ Ŵ (−p + 2πkβ−)− Ŵ (2πkβ−)],

where β± = ±β − 1/c, H ′
k = 2πikHk and

Ŵ (p) =

∫ ∞

0

W (y)eipydy =
1− ip

2
.

The analysis of phase-locked and traveling wave states in networks of weakly coupled McK-

ean relaxation oscillators can now be performed and compared with those in a corresponding

Hodgkin-Huxley network. To ensure that the two models behave qualitatively the same we

choose v0 = w0 = 0, I = 0.5, γ = 0.5 and a = 0.32 for the McKean model. This ensures that

the duration of the action potential in each model is roughly the same as compared to their

intrinsic period of oscillation. Note that it is the parameter a which strongly influences the

relative spike duration in this model and this is the one we have adjusted (compared to [9])

so as to bring the behavior of the McKean model more in line with that of the Hodgkin-

Huxley model. Parameter values for the Hodgkin-Huxley model are the same as in [15] with

an external drive of I = 20. The PRC of the Hodgkin-Huxley model is obtained using XPP

[16]. We fix an origin for the PRC of the Hodgkin-Huxley model by defining spike times to

occur whenever the voltage variable increases through a threshold of −57.4mv. This is the

point at which the PRC of the Hodgkin-Huxley model has its maximal value.

For fast rise times, in the sense that α/Ω → ∞, we find that for both models the

synchronous state (β = 0) is unstable for small c and stable traveling waves appear. This is

predicted using Fig. 2 where we present the stability regions of the traveling wave solutions

in the (β, c) parameter plane for the Hodgkin-Huxley and McKean models. The small

discrepancy between the value of c for which the synchronous solution changes stability can

be traced back to the fact that the relative duration of action potentials between the two

models is slightly different. Although the duration of the action potential in the McKean

model can be adjusted further by varying a, this is not expected to lead to significant

increased agreement. This is because, unlike the Hodgkin-Huxley model, the McKean model
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FIG. 2: Region of stability (black) for the traveling wave solution in the (β, c) parameter plane

for the continuum Hodgkin-Huxley model with an exponential synaptic footprint and an alpha

function synaptic response with α = 20. c is the velocity of an action potential and β is the phase

gradient of a traveling wave: ∂θ(x, t)/∂x = β. The inset shows the same diagram for the McKean

model. For low c the synchronous solution (β = 0) is unstable and a stable traveling wave (β 6= 0)

can be found. A grid of 250× 250 points is used.

is restricted to some singular limit (µ = 0) where the rise and fall times of the action potential

are instantaneous.

Crook et al. [11] have suggested that the change in stability of the synchronous solu-

tion as the propagation delay grows is consistent with the oscillatory behavior observed in

both visual cortex, showing a tendency towards synchrony, and olfactory cortex, tending to

produce traveling oscillatory waves; the latter has long-range connections and hence longer

axonal delays. The stability diagrams for much slower synapses is produced in Fig. 3. Here,

we see that both models once again give qualitatively similar predictions: namely that for

slow synapses it is even easier to destabilize a synchronous solution in favor of a traveling

wave. We note that the value of c at which the synchronous solution changes from unstable

to stable increases with decreasing α. Also, the small amount of fine structure seen on the

lower border of the McKean stability diagram (Fig. 2 inset) vanishes with increasing α.

This fine structure is related to the non-smooth behavior of the model seen in the singular

limit µ = 0.
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FIG. 3: Region of stability (black) for the traveling wave solution in the (β, c) parameter plane

for the continuum Hodgkin-Huxley model with an exponential synaptic footprint and an alpha

function synaptic response with α = 1. The inset shows the same diagram for the McKean model.

The value of c at which the synchronous solution changes from unstable to stable increases with

decreasing α. A grid of 250× 250 points is used.

In this paper we have shown that the dynamics of weakly interacting McKean relaxation

oscillators captures the type of phase-locked behavior found in a corresponding Hodgkin-

Huxley network. The assumption of weak coupling has allowed us to bring to bear the

powerful machinery of coupled oscillator theory. For both models we have made use of

Fourier techniques for the practical calculation of phase interaction functions. This has

more readily allowed us to establish that phase-locked behavior of weakly coupled McKean

and Hodgkin-Huxley networks is consistent. However, we should emphasize the two major

assumptions of our analysis: strong relaxation and weak coupling. The PRC of the McKean

model that we have used is valid only in the singular limit where the voltage variable operates

on a much faster time scale than the recovery variable. However, by the Fenichel persistence

theorem [17], results obtained in the singular limit (µ = 0) are expected to extend to the

non-singular limit (µ small).
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