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Diffraction of flexural waves by cracks in

orthotropic thin elastic plates.

Part II: far field analysis

By Ian Thompson†and I. David Abrahams‡
†Department of Mathematical Sciences, Loughborough University,

Loughborough, Leicestershire LE11 3TU, UK

‡Department of Mathematics, University of Manchester,

Oxford Road, Manchester M13 9PL, UK

The scattered field arising from diffraction of a plane flexural wave by a semi-infinite
crack in an orthotropic Kirchhoff thin plate is analysed. The crack is aligned with
a principal direction of the material, so that two of the plate’s three planes of
symmetry are preserved. An asymptotic approximation is derived via the method
of steepest descents, and explicit expressions are given for the most significant
contributions. The effects of anisotropy upon the scattered field are made clear,
and numerical results are presented for typical engineering materials.
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1. Introduction

In a recent article (Thompson & Abrahams, 2005) henceforth referred to as I,
the authors investigated the scattering of plane flexural waves by a semi-infinite
crack in an orthotropic Kirchhoff thin plate. The crack is aligned with a principal
direction of the material, and the scattered field is composed of symmetric and
antisymmetric components, each of which is expressed in the form of a diffraction
integral (Crighton et al., 1992). The present work is concerned with analysis of the
aforementioned integrals in the far field, where the observer is located many wave-
lengths from the crack tip. The method of steepest descents (Jeffreys & Jeffreys,
1956) is employed to obtain the leading order approximation. This arises from a sin-
gle saddle point and two poles; novel arguments are used to show that branch point
contributions are exponentially small. Particular attention is paid to the effects of
anisotropy upon the scattered field, several of which are related to the direction
of propagation of incident group velocity, which generally differs from that of the
phase velocity in an orthotropic medium (Lighthill, 2002). A major mathematical
difficulty introduced by anisotropy is that determination of the saddle point’s loca-
tion for a given angle of observation requires the solution of a cubic equation. This
is overcome by the introduction of a new parameter, related to the group velocity
of the incident wave, in terms of which the saddle point contribution is expressed
explicitly. A uniform approximation, which accurately represents the far-field for
all angles of incidence and at all angles of observation except on the crack faces is
derived. Numerical results are presented for several typical fibre reinforced materi-
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Figure 1. The thin elastic plate with flexural waves incident at angle Θ upon a

semi-infinite crack along x > 0, y = 0.

als, with parameters taken from Kollár & Springer (2003). Corresponding results
for the isotropic case have been investigated by Norris & Wang (1994).

The dominant contributions to the scattered response on the crack faces are in-
vestigated separately. These are the reflected field (present on the lit side only), and
a diffracted ‘edge wave’, which propagates along the faces of the crack and is evanes-
cent in perpendicular directions. Norris (1994) first demonstrated the existence of
this type of wave in an orthotropic Kirchhoff plate; the corresponding result for
isotropic media is attributed to Konenkov (1960). Thompson et al. (2002) showed
that one and only one edge wave propagates along crack faces in orthotropic plates
for any angle of inclination between crack and principal axes, and Fu (2003) con-
firmed this result using a Stroh formalism. Zakharov (2002) has also examined the
properties of edge waves on thin anisotropic elastic plates.

2. The boundary value problem and its formal solution

(a) Thin plate equations

Consider an infinite, orthotropic thin plate lying in the (x, y) plane, with a
transverse flexural wave W inc incident at angle Θ ∈ [0, π) upon a semi-infinite, thin
crack along the line y = 0, x > 0; see figure 1. The principal directions of the plate
are parallel to the Cartesian axes, and hence transverse motion is governed by the
fourth order partial differential equation (Timoshenko & Woinowsky-Krieger, 1959)

Dx
∂4W

∂x4
+ 2(D1 + 2Dxy)

∂4W

∂x2∂y2
+Dy

∂4W

∂y4
+ ρh

∂2W

∂t2
= 0. (2.1)

The constants ρ and h represent the plate density and thickness respectively, whilst
Dx, Dy, D1 and Dxy are parameters that describe the particular material. Since
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Diffraction of flexural waves on orthotropic plates 3

Ex Ey Gxy νxy ρ N

(GPa) (GPa) (GPa) - (kgm−3)

Glass/epoxy 38.6 8.27 4.14 0.26 1600 1.579099

Boron/epoxy 204 18.5 5.59 0.23 2000 2.326316

Graphite/epoxy 181 10.3 7.17 0.28 1600 2.387106

Isotropic (epoxy) 3.9 3.9 1.4 (13/9) * 0.35 1270 1.000000

Table 1. Experimentally measured parameters for typical materials, selected from those
given by Kollár & Springer (2003). The first three are composed of an epoxy matrix, with
unidirectional fibres parallel to the x axis. The final column shows the normalising factor
N (equation 2.16). (*) Note that Kollár & Springer give elastic constants to either two
or three significant figures. In order to obtain parameters for a material that is exactly
isotropic, we have re-calculated the shear modulus in the last case using equations (2.3)
and (2.8) to obtain (Gxy = 13/9).

the combination occurs frequently, we write

H = D1 + 2Dxy, (2.2)

as is conventional. A direct physical interpretation of these parameters is difficult,
however they are expressed by Norris (1994) in terms of more familiar engineering
constants, thus

Dx =
h3

12

Ex

1 − νxyνyx
, Dy =

h3

12

Ey

1 − νxyνyx
, D1 =

h3

12

νyxEx

1 − νxyνyx
, Dxy =

h3

12
Gxy,

(2.3)

where Ex and Ey are the Young moduli in the x and y directions respectively, and
Gxy is the shear modulus in the (x, y) plane. The Poisson ratio νxy is the ratio of
extension in the x direction to contraction in the y direction, and vice-versa for νyx.
These are related to the Young moduli via the expression

νyxEx = νxyEy. (2.4)

Some sample material parameters for typical engineering materials are given in
table 1; these will be used throughout this work where numerical examples are re-
quired. Now, shear moduli and Young moduli are always strictly positive; therefore
it follows immediately that

Dx > 0, Dy > 0, Dxy > 0, (2.5)

and in addition, it is possible to establish the inequality

DxDy > D2
1, (2.6)

via arguments involving strain energy density (Kollár & Springer, 2003). To avoid
certain pathological cases, we shall assume that

D1 > −3Dxy/2. (2.7)

The simplifications arising from this assumption greatly outweigh the slight loss
in generality, since materials that violate inequality (2.7) possess negative Poisson
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4 I. Thompson and I. D. Abrahams

ratios and therefore tend to be unimportant for ordinary engineering applications.
Note that (2.7) ensures that H > 0. In the particular case of isotropy, we have

Dx = Dy = D, D1 = νD, Dxy = (1 − ν)D/2, (2.8)

where ν is the Poisson ratio, and D the bending stiffness of the plate.
The incident wave has the form

W inc = ℜ
[

ei(v·x)e−iωt
]

(2.9)

where v is the wavenumber vector, whose elements are

v1 = |v| cos Θ, v2 = |v| sin Θ, (2.10)

ω is the angular frequency of vibrations of the waves, whilst x simply represents
position on the plate, i.e. x = (x, y). The wavenumber modulus is obtained by
substitution of (2.9) into equation (2.1); thus

|v| =
[

ρhω2
/

(Dx cos4 Θ + 2H sin2 Θcos2 Θ +Dy sin4 Θ)
]1/4

. (2.11)

The scattered response W , which contains no waves incoming toward y = 0, is
defined as

W = W t −W inc, (2.12)

where the superscript ‘t’ refers to the total transverse displacement field. All three
terms in equation (2.12) must satisfy (2.1), and the Kirchhoff free edge conditions
require that, for x > 0,

[

D1
∂2

∂x2
+Dy

∂2

∂y2

]

W t(x, 0) = 0, (2.13)

and

∂

∂y

[

(D1 + 4Dxy)
∂2

∂x2
+Dy

∂2

∂y2

]

W t(x, 0) = 0. (2.14)

Close to the crack tip, the integrability of strain energy density requires (see I)

that W ∼ C(θ)rµ as r =
√

x2 + y2 → 0, where C is some regular function of the
variable θ, and µ ≥ 1. In general, we work with dimensionless spatial variables x̂
and ŷ, defined so that

x̂ =
(

ρisohω2/Diso
x

)1/4
x, ŷ =

(

ρisohω2/Diso
x

)1/4
y, (2.15)

where the superscript ‘iso’ refers to the parameters of the isotropic epoxy plate
(table 1). Note that this scaling is conformal; angles in the (x, y) plane are con-
served in the (x̂, ŷ) plane. For equal frequency of excitation, these variables permit
comparison of results between different materials of the same thickness. Previously,
a material dependent scaling was employed for algebraic convenience, thus in terms
of the variables used in paper I, we have (x̂, ŷ) = N(x∗, y∗), where the normalising
factor N is given by

N =
[

(ρisoDx)/(ρDiso
x )

]1/4
. (2.16)

Normalising factors for the materials under consideration in this article are shown
in table 1. Note that N is generally larger for materials reinforced by stiffer fibres.
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Figure 2. Polar plots of the normalised wavenumber |v̂| against the direction of phase
velocity Θ, for several materials (see table 1). These are equivalent to slowness surfaces
with ω = 1.

(b) Group velocity

An important property of waves in anisotropic media is that the group and
phase velocity vectors generally differ in both magnitude and orientation. Here,
the phase velocity of the incident field is inclined at angle Θ to the x axis, whilst
the group velocity vector U is obtained by differentiation of the angular frequency
with respect to the components of the wavenumber vector (Lighthill, 2002). In the
two-dimensional case under consideration here, we have

U = (∂ω/∂v1, ∂ω/∂v2) ,

with

ω =
1√
ρh

√

Dxv4
1 + 2Hv2

1v
2
2 +Dyv4

2 .

Making use of equation (2.10) now yields

U = 2|v|3(ρhω)−1
(

[Dx cos2 Θ +H sin2 Θ] cos Θ, [Dy sin2 Θ +H cos2 Θ] sin Θ
)

.

Thus, the angle of inclination of U to the x axis is Ψ, where

Ψ(Θ) = arctan [Q(Θ) tan Θ] (∈ [0, π]) , (2.17)

and

Q(Θ) = (H cos2 Θ +Dy sin2 Θ)/(H sin2 Θ +Dx cos2 Θ). (2.18)

Note that
Ψ(π − Θ) = −Ψ(Θ). (2.19)
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6 I. Thompson and I. D. Abrahams

In general, Θ 6= Ψ, though they coincide when Θ ∈ {0, π
2 , π}. In an isotropic

material, the two are identical, as we should expect. To illustrate the differing
orientation of phase and group velocity, a polar plot known as a slowness surface is
usually employed. These have argument Θ, and their magnitude is the reciprocal of
the wavespeed, i.e. 1/c = |v|/ω. The outgoing normal to the plot gives the direction
of propagation of group velocity. Since the frequency ω is unspecified, figure 2 shows
‘shortness surfaces’, for the materials given in table 1. The magnitude of these is
the reciprocal of normalised wavelength, i.e.

ω/ĉ = |v̂|;

they are equivalent to slowness surfaces with ω = 1. Note that neither frequency,
nor the choice of conformal scaling affects the shape of the surface, merely its
magnitude. The three composite materials have unidirectional fibres parallel to the
x axis, so Dx ≫ Dy, i.e. their stiffness is much greater in the x direction than in
the y direction. The wavelength increases with the stiffness of the material, hence
under equal frequency of excitation, the plane wave travels with greater phase
velocity in a more rigid medium. Consequently, in the fibre composites, the waves
propagate most rapidly in the x direction. The shape of the polar plots also shows
that the group velocity is orientated towards the direction parallel to the fibres.
As the phase velocity approaches orthogonality to the fibre direction, the direction
of energy propagation changes rapidly, so that the two coincide for Θ = π

2 and
Θ = 3π

2 .

(c) The formal solution

The solution to the diffraction problem outlined in §2a was solved exactly in I

by means of the Wiener-Hopf technique. We have

W (x̂, ŷ) =
1

2πi

∫

C

(

f1(α)e−λ1(α)ŷ/N + f2(α)e−λ2(α)ŷ/N
) e−iαx̂/N dα

(α− α0)φ(α)λ1(α)
,

(2.20)
where the location of the specular singularity, which plays a key role in the solution,
is given by

α0 = −k(Θ) cos Θ, (2.21)

with the function k(Θ) defined as

k(Θ) =
[

Dx

/

(Dx cos4 Θ + 2H cos2 Θsin2 Θ +Dy sin4 Θ)
]1/4

; (2.22)

this is actually the non-dimensional wavenumber of the incident field under the
scaling used in I. The path of integration C traverses the real line for large |α|, and
is indented above any singularities on the real line in α ≤ α0 and below singularities
on the real line for which α > α0; see I for details. The two functions appearing in
the exponents are defined by

λm(α) =
[

Hα2 + (−1)mDxφ
]1/2 /

√

Dy, (2.23)

in which m ∈ {1, 2}, and

φ(α) =
[

(H2 −DxDy)α4 +DxDy

]1/2 /

Dx. (2.24)
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Diffraction of flexural waves on orthotropic plates 7

Note that the surd symbol
√· refers to the positive root of a positive real number;

this is the only context in which it is used herein. The other elementary functions
present in equation (2.20) and are defined via

Lm(α) =
[

2Dxyα
2 + (−1)mDxφ

] /

Dx, (2.25)

and

γ−(α) = −i 4

√

Dx/Dy[(α− 1)(α− i)]1/2. (2.26)

The last function is analytic on and below the contour C, and hence it is given
the subscript ‘−’ to signify analyticity in this region. It is obtained from a product
factorisation of the function γ(α), defined as

γ(α) =
√

Dx/Dy(α4 − 1)1/2. (2.27)

Functions that are analytic both on and above C are denoted by a subscript ‘+’. To
complete these definitions, we must specify values of all multifunctions at a point
in the α plane; it is useful to choose α0, which lies in the interval [−1, 1]. We denote
a function evaluated at this point with a superscript ‘0’. Thus, we have

φ0 = k2(Θ) (H cos2 Θ +Dy sin2 Θ)
/

Dx, (2.28)

which implies that λ1 (λ2) has branch points at α = ±1 (α = ±i). Furthermore,

λ0
1 = −ik(Θ) sin Θ, (2.29)

λ0
2 = k(Θ)

√

2H cos2 Θ +Dy sin2 Θ
/
√

Dy, (2.30)

γ0 = −ik2(Θ) sin Θ
√

2H cos2 Θ +Dy sin2 Θ
/
√

Dy, (2.31)

and

γ0
−

= 4

√

Dx/Dy

√
1 + k cos Θ[−k(Θ) cos Θ − i]1/2, (2.32)

where, in the latter case, the fractional power has its argument in the interval
(−π

2 ,
π
2 ]. Finally, equation (2.30) implies that ℜ[λ2] > 0 for α ∈ R, thus the function

λ1 may be evaluated for α ∈ R by writing λ1 = γ/λ2.
We also require the function K(α), which is defined via

K(α) = 2φ/(L2
1λ2 − L2

2λ1), (2.33)

along with its product factorisation, i.e. K = K
+
K− (where ‘±’ subscripts are

defined as above but with the additional property of no zeros in the indicated
upper/region), subject to the symmetry relationship K

+
(−α) = K−(α). Full details

of the product decomposition are given in I; here we need only note that K
+

has
simple poles at the points α = −αe and α = −iαe, where αe is the positive real
constant

αe =

{

DxDy

/ [

DxDy −
(
√

4D2
xy +D2

1 − 2Dxy

)2
]}1/4

, (2.34)
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8 I. Thompson and I. D. Abrahams

and also branch points at α = −1 and α = −i. The function φ has finite branch
cuts on the line sections [αφ, iαφ] and [−αφ,−iαφ], where

αφ =
[

DxDy/(DxDy −H2)
]1/4

. (2.35)

Branch cuts are also positioned along the line segments α = ±(1 + i)u and α =
±i(1+u), u ≥ 0, so that λ1, λ2, γ− and K

+
are analytic within the cut plane. Note

that these are slightly different from the branch cuts used in I; the reconfiguration
required here changes certain functions in equation (2.20) within regions through
which C does not pass, and so the solution is unaffected. A side effect of this is
that a pole of K+ may appear in the lower half plane on the line ℜ[α] = ℑ[α]. On
deformation of C by the method of steepest descents, the residue from this pole is
found (numerically) to be exponentially small whenever it is present in the solution,
and thus it is omitted from subsequent asymptotic analysis.

The solution may now be completed by defining the functions f1(α) and f2(α)
in the symmetric and anti-symmetric cases. We have

fS
1 = 1

2K
0
−
K+L

0
1L1γ

0
−
γ+ , fS

2 = − 1
2K

0
−
K+(λ1)

2L0
1L2γ

0
−
/γ− , (2.36)

where K0
±

= K±(α0), and

fA
1 = − 1

2K
0
−
K

+
λ0

1λ1L2L
0
2, fA

2 = 1
2K

0
−
K

+
λ0

1λ1L
0
2L1. (2.37)

Here, we have omitted the argument α, as we will henceforth when no ambiguity
can arise. Immediately, we have

fS
1 (α0)/(φ

0λ0
1) = (1 − c)/2, fA

1 (α0)/(φ
0λ0

1) = (1 + c)/2, (2.38)

where c is the reflection coefficient for the free edge, i.e.

c =
L2

2λ1 + L2
1λ2

L2
2λ1 − L2

1λ2

∣

∣

∣

∣

α=α0

. (2.39)

Note that both γ− and λ1 vanish as α → 1, and so therefore does the diffraction
integral (2.20) in the limit Θ → π.

3. Analysis of the solution

(a) The steepest descent paths and the branch cut contribution

We now apply the method of steepest descents to the diffraction integral (2.20).

Thus, introduce polar co-ordinates (r̂, θ); r̂ =
√

x̂2 + ŷ2, with the half-line θ = 0
positioned along the crack. We will consider θ ∈ [0, π], since the solution in the
region where y < 0 can be constructed by symmetry. Now, write

χm(α, θ) = λm sin θ + iα cos θ, m ∈ {1, 2}. (3.1)

Our overall strategy for analysing the behaviour of (2.20) in the far-field r̂ ≫ 0
is as follows. First, note that the integrand is analytic at the points α = ±αφ

and α = ±iαφ, since encircling any one of these points effects the transformations
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Diffraction of flexural waves on orthotropic plates 9

φ→ −φ, λ1 ↔ λ2, and L1 ↔ L2, leaving the overall expression unchanged. Details
can be found in I. We will show that a single simple saddle, at which ∂χ1/∂α = 0,
exists in the interval [−1, 1], and denote this point αs. By considering the behaviour
of both χ1 and χ2 on the associated steepest descent path S, on which

ℑ[χ1(α, θ)] = ℑ[χ1(αs, θ)], ℜ[χ1(α, θ)] ≥ ℜ[χ1(αs, θ)].

it will be established that contributions with exponent χ2 are asymptotically neg-
ligible, except on the crack face θ = 0. This is advantageous, since analyticity at
the branch points of the function φ is maintained. If terms with differing exponents
are separated, the number of branch points in the α plane is increased from four to
eight, and it is difficult to establish which, if any, of these contribute significantly to
the approximation. This approach is always valid for materials with H2 ≤ DxDy,
and fortunately all of the materials given in Kollár & Springer (2003) and also in
Jones (1975) fall into this category. Thompson (2003) briefly discusses the difficul-
ties that can arise in cases where H2 > DxDy, though it is not clear what types of
material satisfy this condition. Moreover, by diverting S in an appropriate manner,
we will show that contributions from the branch points α = ±i are also negligible.

The actual location of the saddle point within the interval [−1, 1] is examined
in §3b. This is of crucial importance, since, if the position of the observer is such
that αs > α0, we need not include a residue contribution from the specular pole,
whereas if αs < α0, the residue eliminates the incident field in the shadow region
above the crack, and activates the reflected field below the crack. The lines on which
αs = α0 are known as the optical boundaries of shadow and reflection, and the their
immediate neighbourhoods are the transition, or Fresnel, regions. The contribution
from the saddle α = αs is then determined. This yields a nonuniform approximation,
which describes the leading order behaviour of the diffracted field, away from the
face of the crack, provided that the observer is not located in either of the Fresnel
regions. A uniform asymptotic result, which provides a valid approximation even
when the observer is positioned inside an overlap of the two Fresnel regions, is
derived in section §3c. The dominant contributions on the crack faces come from
the reflected field and the diffracted edge waves; these are examined in sections §3d
and §3e, respectively.

Now, from equation (3.1), a saddle point of the function χ1 occurs when

iλ′1(α) = cot θ, (3.2)

where the prime symbol refers to differentiation with respect to α, as it does hence-
forth. Note that the right hand side of this equation can take any real value. The
first derivative of λ1 is

λ′1(α) =
α

Dyλ1

[

H +
α2(DxDy −H2)

Dxφ

]

, (3.3)

hence iλ′1 → ∓∞ as α→ ±1, since λ1 is negative imaginary for α ∈ (−1, 1). Thus,
by the intermediate value theorem, there is at least one saddle point in this interval.
To demonstrate that there is precisely one saddle point for each θ, we note that the
second derivative is given by

λ′′1(α) = −
[

3α2(DxDy −H2)(Dxφ−Hα2) +HDxDy

]

/[D2
xDyφ

3λ3
1]. (3.4)

Article submitted to Royal Society



10 I. Thompson and I. D. Abrahams

Equating this to zero, we find that

−3α2(DxDy −H2)(Dxφ−Hα2) = HDxDy

which is impossible, since the left hand side is non-positive. Consequently, iλ′1 is
monotonic on the interval (−1, 1), and the result follows. Additional saddles may oc-
cur elsewhere, though these do not interfere with the approximation. In general, the
steepest descent paths must be mapped numerically, since an explicit parametri-
sation is prohibitively difficult to obtain. Note that (3.4) shows that χ′′

1(α, θ) is
negative imaginary for α ∈ [−1, 1], so that taking α = αs yields the minimum value
for ℑ[χ1] on this interval, and, in particular, the quantity χ1(α0, θ) − χ1(αs, θ) is
always positive imaginary.

There are now two issues to consider, namely the orientation of the path with
respect to the branch points at α = ±i, and the behaviour of the secondary exponent
χ2 on the same descent path as for χ1. We need only consider θ ∈ (0, π

2 ], since the
transformation α → −α gives the steepest descent path for π − θ. In this domain,
the paths lie in the lower half plane for the most part, as we shall see, and we must
determine the nature of the branch cut contribution on the negative imaginary axis.
It is instructive to briefly consider the isotropic case, in which the descent paths
are given by

α2 + 2 cos θ(1 + iu)α− u2 + 2ui + cos2 θ = 0. (3.5)

Here, u ≥ 0 and the different branches refer to the two parts of the steepest descent
contour emanating from the saddle point. Taking real and imaginary parts, it is
easy to show that the imaginary axis is crossed at the point α = −i cot θ. Thus, the
path must be diverted if θ < π

4 , passing up the left side of the cut to the branch
point α = −i, and down the right face. The functions λ1 and λ2 are pure imaginary
on the diverted section of the path, so the dominant contribution comes from the
branch point, where we have

ℜ[χ1] = ℜ[χ2] = cos θ (> 1/
√

2).

In this case, therefore, the branch cut contribution is easily seen to be exponentially
small. Now, the functions λ1 and λ2 generally possess non-zero real parts on the line
segment (−iαφ,−i∞). Thus, in anisotropic cases, the path cannot be diverted along
the faces of the branch cut, since this may cause exponential growth. To overcome
this problem, and establish that the branch cut contribution is exponentially small,
we divert the path of integration in such a way that the functions λm are prevented
from entering the left half plane. The diversion takes place in the lower half plane
and so we have ℜ[χm] > |ℑ[α]| cos θ. Thus, we seek the lines on which ℜ[λm] = 0,
to obtain

α2 = −Hu2/
√

DxDy −H2 ± (1 − u4)1/2, (3.6)

where u ≥ 0. By taking into account the various roots, u ≤ 1 gives possible values
for α on the line intervals [−1, 1] and [−iαφ, iαφ], whilst u ≥ 1 represents two curves
that are symmetric about the imaginary axis. That which lies in the lower half plane
crosses the imaginary axis at the point −iαd, where

αd = 4

√

H2/(DxDy −H2);
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Figure 3. Steepest descent paths in the isotropic case. For θ ≥ π/4 the contour has the
correct orientation with respect to all of the branch points, whereas if θ < π/4, it must
be diverted as shown. The contribution from the branch point is exponentially small.

note that |αd| < |αφ|. We construct a contour which consists of this curve, and in
cases where |αd| > 1, the two faces of the branch cut on the line section [−iαd,−i].
If the steepest descent path passes below the branch point, then it must strike
this contour, and at this point, we leave the former and follow the diversion in
the appropriate direction. Subsequently, we have ℜ[λ1] = 0, and ℜ[λ2] ≥ 0, this
inequality being strict on the curved section, since ℜ[λ1] = ℜ[λ2] = 0 implies that
ℑ[γ] = 0 which can occur only on the axes. The largest contribution from this
diversion comes from the point at which the imaginary axis is crossed, where

ℜ[χ2] ≥ ℜ[χ1] = min{|αd|, 1} cos θ.

Figure 3 shows steepest descent paths for the isotropic case at angles of incidence
θ = π/2, π/4 and π/10. In the latter case, a diversion around the branch point at
α = −i is required.

Having dealt with the branch point, we now examine the behaviour of the sec-
ondary exponent on the deformed integration path. Note that at the saddle point,
we have ℜ[χ2] > ℜ[χ1], and at any point where equality should occur

λ1 − λ2 =
√

2iu,

for some u ∈ R. Solving this equation for α2, we find that

α2 =
{

−HDyu
2 ±

[

DxDy(D2
yu

4 +DxDy −H2)
]1/2

}

/

(H2 −DxDy),

which can occur only on the real and imaginary axes. On the imaginary axis,
ℜ[χ2] > ℜ[χ1] for |α| < 1, the only region in which this line may be crossed.
Similarly, on the real axis, we can only have ℜ[χ1] = ℜ[χ2] if φ is pure imaginary,
i.e. |α| > αφ. Thus, consider the path to the left of the saddle. On the section in the
upper half plane, χ1 is on its steepest descent path, and ℜ[χ2] > ℜ[χ1]. If the line
section (−∞,−αφ) is crossed, then we subsequently have ℜ[χ1] > ℜ[χ2], however
following this λ1, λ2, and iα all lie in the right half plane, and there is no possibility
of exponential growth. Note that it may be necessary to follow the curve on which
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Figure 4. Left: the deformed integration paths for a boron/epoxy composite plate with
observation angles θ = π

2
, θ = π

4
and θ = π

100
. In the case θ = π

100
, the saddle is very

close to the branch point α = −1. Right: the smaller real part ℜmin of the two exponent
functions χ1, χ2 evaluated on the deformed integration path. Positive (negative) arc length
refers to the branch of the path to the right (left) of the saddle. Note that discontinuities
in the gradient of ℜmin can occur at points where the integration path is diverted, and
also where ℜ[χ1] = ℜ[χ2].

ℜ[λ1] = 0 into the lower left quadrant if an intersection with the steepest descent
path should occur in the region ℜ[α] < −1, see for example θ = π

100 in figure 4.
A similar argument applies to the right of the saddle, however if the line section
(αφ,∞) is crossed, then iα moves into the left half plane, and we shall subsequently
have ℜ[χ1] > ℜ[χ2]. To ensure that this does not cause exponential growth, we
divert the path to run to the right along the real axis, rather than allow it to cross
into the upper half plane.

Figure 4 shows the deformed integration contours for the boron/epoxy composite
(table 1) at observation angles θ = π

2 , θ = π
4 and θ = π

100 . Also shown are the values
of ℜmin = min{ℜ[χ1],ℜ[χ2]} on the integration path. The real parts of the exponent
functions decline as the diversion path climbs toward the imaginary axis crossing
point, however they remain much greater than ℜ[χ1(αs, θ)], which is always zero.
Overall, therefore, the dominant contribution comes from the saddle point, α = αs.
The terms with exponent function χ2 are, in general, exponentially small here,
except on the crack faces. The evanescent wave pole, α = −iαe always remains in
the region of the plane beneath the integration path, and is therefore unimportant.
Note that in the isotropic case, the branch points of the function φ disappear to
infinity, so in this limit the diversion procedure reduces to following the faces of the
branch cut, as above.

(b) The saddle point and the diffraction coefficient

The actual location of the saddle point αs is difficult to express in terms of θ,
generally requiring the solution of a cubic equation. To overcome this problem, we
introduce a new parameter β, defined so that

αs = −k(β) cos β, (3.7)
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Diffraction of flexural waves on orthotropic plates 13

where k(β) is obtained from equation (2.22). Now β and θ both equal zero if αs = −1
and π when αs = 1. The two also coincide at π

2 when αs = 0, and they are
identical in the special case of isotropy. By varying β from 0 to π, we will span the
entire range of possible values for αs; in fact there is a one-to-one correspondence
between these variables, as proven by differentiating (3.7) with respect to β—the
result is non-zero for β ∈ (0, π). In terms of β, we can obtain useful, closed form
expressions for quantities that would otherwise be implicit. Indeed, evaluations of
several important functions at the saddle point can be obtained immediately from
(2.28–2.32) by replacing Θ with β. If the value of β is required for a specific θ, then
the cubic equation

Dy tan3 β −H tan θ tan2 β +H tanβ −Dx tan θ = 0

must be solved, however θ is easily expressed in terms of β, since we have

χ′
1[−k(β) cos β, θ] = 0.

Making use of (3.3), we find that

θ = arctan [Q(β) tanβ] , (3.8)

wherein Q(β) is defined by equation (2.18). This also leads directly to the relations

cos θ =
cosβ

√

cos2 β +Q2(β) sin2 β
, sin θ =

Q(β) sinβ
√

cos2 β +Q2(β) sin2 β
; (3.9)

note in the former case that sgn(cos θ) = sgn(cosβ).
Equation (3.8) brings to light a key effect of anisotropy: the saddle point and

specular pole coalesce when β = Θ, and not in general at θ = Θ, so that the region
where β < Θ is in shadow. In terms of the actual angle of observation, θ = Ψ
gives the location of the shadow boundary, where Ψ is the angle of inclination
of the incident wave group velocity to the x-axis (see equation 2.17). Thus, the
shadow boundary represents the distinction between the presence and absence of
energy from the incident field. The precise effect of this varies, depending upon the
material parameters, and angle of incidence. For the fibre reinforced composites
examined here (see table 1), we have Dx ≫ Dy ≈ H, therefore for small incidence
angles, we have Q(Θ) < 1, and hence Ψ < Θ, i.e. the anisotropy causes the shadow
region to contract in this case. The opposite is true if Θ > π

2 when the shadow
region is expanded; both of these effects are due to the tendency of the group
velocity to propagate in the fibre direction. If Θ ≈ π

2 , then we have Q(Θ) ≈ 1,
and consequently Ψ ≈ Θ. This behaviour is evident from figure 5, which shows
Ψ as a function of incidence angle, with Θ ∈ [0, π

2 ]. Values of Ψ for Θ > π
2 may

be inferred from equation (2.19). Obviously, for the isotropic material, the plot is
simply the straight line Θ = Ψ. Figure 5 also shows the location of the saddle point
as a function of observation angle. As above, we need only consider θ ∈ [0, π

2 ], since
αs(π − θ) = −αs(θ). The differing gradients can affect the width of the Fresnel
regions; this is particularly noticeable for θ ≈ π

2 in the case of the boron/epoxy
composite, where the variation of αs with θ is very rapid.
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Figure 5. Left: Direction of propagation of group velocity, Ψ as a function of incidence
angle Θ. Right: Location of the saddle point αs as a function of observation angle θ.

A crude, but nevertheless useful approximation to the saddle point contribution
can now be obtained by assuming that αs is not close to α0 and using the standard
steepest descent formula (Jeffreys & Jeffreys, 1956); thus

W sad(r̂, θ) ∼ −ei
π
4D(θ)

√

r̂/N
e−r̂χ1(αs,θ)/N (3.10)

where the diffraction coefficient D(θ) is given by

D(θ) =
f1(αs)√

2π

[

(αs − α0)φ(αs)λ1(αs)
√

|χ′′
1(αs, θ)|

]−1

. (3.11)

Evaluating the exponent function χ1 at the saddle point in terms of β, we obtain

χ1(αs, θ) = −ik(β) cos(β − θ)

= − iDx

k3(β)

[

(Dx cos2 β +H sin2 β)2 cos2 β + (Dy sin2 β +H cos2 β)2 sin2 β
]−1/2

.

(3.12)

Thus in anisotropic cases, the diffracted field possesses a θ (or β) dependent ex-
ponent, whereas for an isotropic material, this expression simplifies to −i, for all
θ. Hence, the exponential factor in the diffracted field in an orthotropic material
oscillates as θ is varied, in contrast to the special case of isotropy. The frequency
of these oscillations increases with r̂. Figure 6 shows plots of ℑ[χs

1]/N , against θ,
where N is given by equation (2.16). Here, steep gradients represent rapid oscilla-
tion. Each curve is symmetric about π

2 ; this is easily seen from equations (3.8) and
(3.12), or alternatively by noting that replacing θ with π − θ changes αs to −αs.
The most rapid oscillations occur in the graphite/epoxy composite, at observation
angles in the intervals [0, π

4 ] and [3π
4 , π]. Note that the oscillations almost cease in

the vicinity of θ = π
2 .
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Figure 6. Variation of the exponential term in the saddle contribution with observation
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Some simplifications in the expression for D(θ) are available. In particular, we
have

1

φ(αs)λ1(αs)
√

|χ′′
1(αs, θ)|

=

i





Dx

k(β)Q(β)

(H cos2 β +Dy sin2 β)
√

cos2 β +Q2(β) sin2 β

(3DxDy −H2) cos2 β sin2 β +H(Dx cos4 β +Dy sin4 β)





1/2

; (3.13)

note that the quantity in square brackets is positive real and bounded for all β ∈
[0, π].

In general, the oscillatory behaviour of the diffracted field, and the build-up
of its strength close to the optical boundaries are the dominant effects present,
though there are others. To distinguish these, we define a non-specular diffraction
coefficient, which is given by

D̂(θ) =
√
N(αs − α0)D(θ). (3.14)

Here, the factor
√
N is included so that results for different materials are com-

parable. Figure 7 shows polar plots, with radius |D̂| and argument θ, for various
values of the incidence angle Θ. The process of taking moduli in obtaining |D̂| leads
to plots which are largely, though not entirely, symmetric. The isotropic material,
which has the lowest stiffnesses has the weakest diffracted field. This is to be ex-
pected, since the smaller values of N imply that decaying modes travel further in
stiffer materials. In general, D̂ increases with Θ, though for large incidence angles
it decays, finally disappearing as Θ → π. In terms of the observation angle, θ, the
field is strongest near to the crack, and weakest for θ = π. For the orthotropic ma-
terials, the tendency of the energy to propagate in the principal directions causes
the maximum to be particularly strong.

(c) The uniform approximation

Now, the approximation given by (3.10) is nonuniform in the sense that it is
singular on the optical boundary where β = Θ. A uniform asymptotic representation

Article submitted to Royal Society



16 I. Thompson and I. D. Abrahams

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

replacemen

Θ = π/8

Θ = π/4

Θ = π/2

Θ = 3π/4

Θ = 7π/8

GlassGlassGlassGlassGlassGlass

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

Θ = π/8

Θ = π/4

Θ = π/2

Θ = 3π/4

Θ = 7π/8

BoronBoronBoronBoronBoronBoron

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

Θ = π/8

Θ = π/4

Θ = π/2

Θ = 3π/4

Θ = 7π/8

GraphiteGraphiteGraphiteGraphiteGraphiteGraphite

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

 1.5

 1

 0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

Θ = π/8

Θ = π/4

Θ = π/2

Θ = 3π/4

Θ = 7π/8

IsotropicIsotropicIsotropicIsotropicIsotropicIsotropic

Figure 7. Polar plots of the modulus of D̂(θ), the non-specular diffraction coefficient.

for W can be obtained, which takes into account the effect of the specular pole
α = α0, by including a correction term which rapidly but continuously activates
the residue from the pole as the optical boundary is crossed. Since the steepest
descent path always has the correct orientation with respect to the branch points
α = ±1, these do not contribute directly, however they do have a more subtle effect.
The uniform approximation is obtained by applying a mapping

t2 = χ1(α, θ) − χ(αs, θ),

and approximating the integral in the t plane. Details can be found in Thomp-
son (2003) and (2006). In particular, there are two singularities in the t plane
corresponding to α = α0. This is because χ1(α, θ) is a multi-valued function,
and the specular pole exists on all sheets, including those where χ1(α0; θ) =
−ik(Θ) cos(Θ + θ). If we introduce

ψm = i
[

k(β) cos(β − θ) − k(Θ) cos(Θ + (−1)mθ)
]

, m ∈ {1, 2}, (3.15)
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then the correction term, which is added to (3.10) to yield the uniform approxima-
tion may be expressed as

W cor = − f(α0)

2φ0λ0
1

ei
r̂
N k(β) cos(β−θ)

{

w

[

eiπ/4
√

r̂
N |ψ1| sgn(β − Θ)

]

− eiπ/4 sgn(β − Θ)
√

πr̂
N |ψ1|

± w

[

eiπ/4
√

r̂
N |ψ2| sgn(2π − β − Θ)

]

∓ eiπ/4 sgn(2π − β − Θ)
√

πr̂
N |ψ2|

}

, (3.16)

where the upper and lower signs are to be taken in the symmetric and antisymmet-
ric cases, respectively, and w(z) is the scaled complex error function (Abramowitz

and Stegun, 1965), i.e. w(z) = e−z2

erfc(−iz). The function sgn(2π − β − Θ) has
been included so as to show that this has the correct symmetry properties (note
that 2π − θ(β) = θ(2π − β)); it is only actually necessary to consider β ∈ [0, π]
in order to construct the solution. The process of obtaining this result is fairly in-
volved but is similar to the derivation given by Bleistein & Handelsmann (1986),
taking into account the fact that the exponent function is multivalued (Thompson,
2006). It is straightforward to demonstrate that (3.16) is correct. Two properties of

the scaled complex error function are required: the identity w(z) = 2e−z2 −w(−z),
and the asymptotic approximation w(z) ∼ i/(z

√
π), which is valid for large |z|

and −π/4 < arg(z) < 5π/4. Together these show that outside the Fresnel regions
the correction term makes no contribution to the leading order behaviour of the
diffracted field except for a plane wave in the region where β < Θ. When the sym-
metric and antisymmetric components are combined we find that this contribution
eliminates the incident field in the shadow region, whereas for ŷ < 0 it represents
the plane wave component of the reflected field (§3d). Furthermore, the uniform
approximation

W uni = W sad +W cor (3.17)

is regular in θ. The simplest way to demonstrate this is to use the fact that ψ1 =
χ1(αs, θ) − χ1(α0, θ), and then Taylor expand χ1(α, θ) about α = αs. This yields

√

|ψ1| = |αs − α0|
√

|χ′′
1(αs, θ)|( 1

2 +O(αs − α0)),

and the result then follows immediately since sgn(β − Θ) = sgn(αs − α0).
The uniform approximation (3.17) has the special property that it remains valid

when θ = π, and Θ ≈ π, so that the two Fresnel regions overlap, and the observer
is positioned inside this region. To demonstrate this, take ŷ = 0 and x < 0 in
equation (2.20), and deform the contour of integration into the upper half plane.
Obviously, the antisymmetric component gives no contribution. Also, the dominant
contribution comes from the branch point α = 1, which the ratio fS

2 /(φλ1) does
not possess. Taking the uniform (in Θ) approximation to the resulting branch line
integral yields

W (x < 0, 0) ∼ D1
√

HDy

e3iπ/8ei|x̂|/N

23/4
√

π|x|ψ1

(−k(Θ) cos Θ − i)1/2K0
−K+(1)L0

1

− K0λ0
2(L

0
1)

2

2φ0
ei|x|

[

w
(

eiπ/4
√

|x|ψ1

)

− eiπ/4

√

π|x|ψ1

]

,
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Figure 8. Real part of the diffracted field, using the uniform approximation, for the mate-
rials in table 1, with non-dimensional radial distance r̂ = 100. The shadow and reflection
boundaries are denoted by circular marks on the horizontal axes. Plane wave terms are
not included.

where ψ1 can be evaluated to yield ψ1 = 1 + k(Θ) cos(Θ), and the argument of the
fractional power lies in the interval (−π/2, π/2]. See Thompson (2003) for details.
Exactly the same result can be obtained by evaluating the uniform approximation
with θ = π; the first term comes from W sad, and the second from W cor.
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Figure 8 shows the real part of the diffracted field, with plane wave terms omitted
and r̂ = 100, for various materials (table 1) and angles of incidence. The imaginary
part exhibits a qualitatively similar behaviour, and is not shown. The oscillation as
θ is varied, and the expansion (or contraction) of the shadow and reflection regions
due to orthotropy are clearly visible. Also, note the cessation of oscillations in re-
gions where cos θ ≈ 0. The discontinuities due to omission of specular contributions
are most clearly distinguishable when the frequency of oscillation is low. The field
is stronger inside the shadow and reflection regions than in the lit region; this is
particularly visible when θ = π

2 . For the smaller values of θ, the field is near zero
in a large portion of the lit region. In all cases, the antisymmetric contribution is
dominant; this is particularly noticeable outside the Fresnel regions. Finally, note
that taking Θ = 3π

4 for graphite/epoxy causes the Fresnel regions to overlap, how-
ever the uniform approximation remains accurate here, and in particular, the plot
is continuous at θ = π.

(d) The reflected field

For y < 0, the residue from the specular pole gives the reflected field, which
takes the form

W ref = c exp

{

i
k(Θ)

N
[x̂ cos Θ − ŷ sinΘ]

}

− L0
1

L0
2

(1 + c) exp

{

k(Θ)

N

[

ix̂ cos Θ + ŷ
√

2 H
Dy

cos2 Θ + sin2 Θ
]

}

, (3.18)

wherein c is the reflection coefficient defined above (2.39). Here, the first term
represents a plane wave whose phase velocity travels at angle of inclination −Θ to
the y axis. This is the principal part of the reflected field. Note that |c| = 1, since
all of the terms in (2.39) are real, except λ1, which is pure imaginary. The second
term is an evanescent mode, which propagates along the lower face of the crack, and
decays exponentially as |y| increases. It is absent from the far field approximation
discussed in §3c due to the omission of terms with exponent χ2, however it is a
significant component of the field on the lower face of the crack, and plays a role
in the satisfaction of the boundary conditions. The argument of c for the materials
given in table 1 is shown in figure 9. In each case, we have arg[c] ∈ [0, π] for all Θ.
This is evident from equation (2.39), since the numerator and denominator reside
in the lower right and lower left quadrants of the complex plane respectively. As
sin Θ → 0, the incident field approaches symmetry about the crack, and arg[c] → π.
Again this can be deduced from equation (2.39). In this limit, c → −1, hence the
evanescent wave disappears, and the contribution from the specular pole becomes
symmetric about y = 0. For Θ = π

2 , in which case α0 = 0, it is easy to show from
equations (2.29), (2.30) and (2.25) that c = i, regardless of material parameters.
The modulus of the evanescent wave is also shown in figure 9. From equation (2.39),
it is not difficult to show that

∣

∣

∣

∣

L0
1

L0
2

(1 + c)

∣

∣

∣

∣

= 2

[

(L2
1λ2 − L2

2|λ1|)2
L2

1L
2
2|λ1|2

+ 2
λ2

|λ1|

]−1/2

α=α0

.

For α ∈ [−1, 1], we have |λ2| ≥ |λ1|, and |L2| ≥ |L1|, with equality holding in both
cases when α = 0. Thus, for any material, the magnitude of this component is at a
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Figure 9. Left: The argument of the reflection coefficient c. Right: The amplitude of the
evanescent wave.

maximum (
√

2) when Θ = π
2 , which is to be expected, since it is an effect due to

asymmetry.

(e) The diffracted edge waves

Close to the crack faces, the residue contribution from the pole α = −αe (2.34)
becomes significant; this is a diffracted edge wave, with the form

W edge = e1(Θ)e−rχ1(−αe,θ) + e2(Θ)e−rχ2(−αe,θ). (3.19)

This propagates along both faces of the crack, and decays exponentially as |y|
increases. The edge wave generates zero bending moment and Kirchhoff shear on
the edge; from these conditions it can be determined up to a single constant, see
Norris (1994). Analogously, from equations (2.36–2.37), we observe that

eS
2 = −eS

1 (λe
1L

e
2)/(λ

e
2L

e
1), eA

2 = −eA
1 (Le

1/L
e
2), (3.20)

where we have introduced the superscript ‘e’ to refer to evaluation at the point
α = αe (λm and Lm are even functions of α). These relationships are, in fact,
identical in view of the fact that α = −αe is a pole of the function K, and therefore

λ2(αe)L
2
1(αe) = λ1(αe)L

2
2(αe).

Thus, in Cartesian co-ordinates, the edge wave is given by

W edge = [eS
1 + sgn(ŷ)eA

1 ]
[

e−λe
1|ŷ|/N − (Le

1/L
e
2)e

−λe
2|ŷ|/N

]

eiαex̂/N . (3.21)

Now, αe > 1, and the restriction (2.7) ensures that αe < αφ in cases where DxDy >
H2. Hence, both λe

1 and λe
2 are pure real and positive, the latter being greater than

the former. Thus, although the edge wave propagates without loss along the faces
of the crack, it decays exponentially as |ŷ| increases, the second term decreasing
more rapidly than the first. Values of the various Θ invariant coefficients are given
to six decimal places in table 2. Note that we have Le

2 > Le
1 for all materials, since

Le
2−Le

1 = 2φe > 0, therefore the second term in (3.21) possesses a smaller amplitude
coefficient than the first. The non-dimensional wavelength N/αe is also shown; note
that this is greater in the more rigid materials. Hence, as in the case of plane waves,
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αe λe

1 λe

2 −Le

1/Le

2 N/αe

Glass/epoxy 1.000061 0.021333 1.579008 0.116233 1.579003

Boron/epoxy 1.000041 0.032954 1.289147 0.159883 2.236221

Graphite/epoxy 1.000011 0.015340 1.825344 0.091672 2.387079

Isotropic 1.001956 0.062579 1.415597 0.210254 0.998048

Table 2. Values of the Θ independent edge wave coefficients.
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Figure 10. Left: Relative strengths of the edge wave’s symmetric and antisymmetric com-
ponents. Both vanish as Θ → π, hence the horizontal axis is restricted to Θ ∈ [0, 9π

10
].

Right: Overall strength of the edge wave on the crack faces. The difference in magnitude
between the waves on the upper and lower faces is visible only for the isotropic material.

the phase velocity of edge waves under an equal frequency of excitation increases
with the rigidity of the conducting medium. The final coefficient e1 is determined
by the incident wave; from equation (2.20), we find that

eS
1 =

K0
−
γ0

−
L0

1λ
e
2L

e
1

Ke
+
(αe + α0)

L, eA
1 = −

K0
−
λ0

1L
0
2γ

e
+
Le

2

Ke
+
(αe + α0)

L, (3.22)

where the limit L is given by

L = lim
α→αe

(αe − α)K(α)/(2φγ+).

Note that we have exploited the fact that K
+
(α) = K−(−α) (and similarly for γ)

so as to express e1 in terms of functions evaluated at α = αe and not α = −αe.
Making use of equation (2.33), and expanding the denominator, this reduces to

L =
D2

x

(λe
1 − λe

2)γ
e
+

lim
α→αe

αe − α

(DxDy −D2
1)α

4 + 4DyDxyα2γ −DxDy
,

which is determined via L’Hopital’s rule. We find that

L =
D2

x

λe
2 − λe

1

γe
−

4αe

[

(DxDy −D2
1)α

2
eγ

e + 4DxDxy(α4
e − 1

2 )
]−1

.

Figure 10 shows plots of
∣

∣eA
1 /e

S
1

∣

∣ against Θ, thus illustrating the relative strength
of the symmetric and antisymmetric components of the edge wave. In each case, the

Article submitted to Royal Society



22 I. Thompson and I. D. Abrahams

antisymmetric contribution is generally much larger. As Θ → 0, the wave becomes
symmetric, as we should expect, and as Θ → π, both contributions disappear,
therefore the domain of the incidence angle is restricted to [0, 9π

10 ] here. Note that
eA
1 is symmetric about Θ = π

2 ; this is evident from equation (3.22). Figure 10 also
shows plots of |e1 + e2| against Θ, thereby illustrating the overall strength of the
edge wave on the crack faces. In each case, the wave gains strength as Θ is decreased,
due to the factor αe + α0 in the denominator of e1 (3.22). Typically, the wave is
marginally stronger on the upper side of the crack, however this is visible only in the
isotropic case, which has a greater edge wave amplitude than the other materials.
Note that the difference in amplitude on the upper and lower faces remains small,
even as Θ → 0, when |e1| ≈ |e2|. In this limit, we have α0 = −1, and, since αe ≈ 1
it is not difficult to show from equation (3.22) that arg[eS

1 /e
A
1 ] → π

2 , which explains
the effect.

4. Conclusions

Despite the complexity of the diffraction integrals involved, the scattered field can
be approximated by a relatively straightforward asymptotic analysis. Many of the
effects observed by Norris & Wang (1994) in the isotropic case persist under or-
thotropy; in particular the diffracted field is strongly, though not entirely, antisym-
metric. In addition, a number of characteristics exhibited by the scattered field are
unique to anisotropic cases. Central to these are the wavelength and group velocity
of the incident field. The former tends to increase with the rigidity of the material,
leading to stronger decaying modes and higher wavespeeds under equal frequency
of excitation. The orientation of group velocity, that is the direction of energy prop-
agation, determines the size of the shadow and reflection regions. In general, there
is no reciprocity in the scattered field. The diffracted edge wave, which propagates
along the crack faces, and is strongest for small angles of incidence, also possesses
greater wavelength in more rigid media.
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Figure captions

Figure 1: The thin elastic plate with flexural waves incident at angle Θ upon
a semi-infinite crack along x > 0, y = 0.

Figure 2: Polar plots of the normalised wavenumber |v̂| against the direc-
tion of phase velocity Θ, for several materials (see table 1). These are
equivalent to slowness surfaces with ω = 1.

Figure 3: Steepest descent paths in the isotropic case. For θ ≥ π/4 the con-
tour has the correct orientation with respect to all of the branch points,
whereas if θ < π/4, it must be diverted as shown. The contribution from
the branch point is exponentially small.

Figure 4: Left: the deformed integration paths for a boron/epoxy composite
plate with observation angles θ = π

2 , θ = π
4 and θ = π

100 . In the case
θ = π

100 , the saddle is very close to the branch point α = −1. Right: the
smaller real part ℜmin of the two exponent functions χ1, χ2 evaluated
on the deformed integration path. Positive (negative) arc length refers
to the branch of the path to the right (left) of the saddle. Note that
discontinuities in the gradient of ℜmin can occur at points where the
integration path is diverted, and also where ℜ[χ1] = ℜ[χ2].

Figure 5: Left: Direction of propagation of group velocity, Ψ as a function of
incidence angle Θ. Right: Location of the saddle point αs as a function
of observation angle θ.

Figure 6: Variation of the exponential term in the saddle contribution with
observation angle θ.

Figure 7: Polar plots of the modulus of D̂(θ), the non-specular diffraction
coefficient.

Figure 8: Real part of the diffracted field, using the uniform approxima-
tion, for the materials in table 1, with non-dimensional radial distance
r̂ = 100. The shadow and reflection boundaries are denoted by circular
marks on the horizontal axes. Plane wave terms are not included.
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