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Abstract

In this paper we describe integrable generalizations of the classical Steklov–
Lyapunov systems, which are defined on a certain product so(m) × so(m), as
well as the structure of rank r coadjoint orbits in so(m)×so(m). We show that
the restriction of these systems onto some subvarieties of the orbits written
in new matrix variables admits a new r × r matrix Lax representation in a
generalized Gaudin form with a rational spectral parameter.

In the case of rank 2 orbits a corresponding 2× 2 La x pair for the reduced
systems enables us to perform a separation of variables.

1 Introduction. Gaudin magnets and the hierarchy of
the Steklov–Lyapunov systems.

Many finite-dimensional integrable systems, as well as finite-gap reductions of some
integrable PDE’s, can be regarded as Hamiltonian flows on finite-dimensional coad-
joint orbits of the loop algebra g̃l(r) described by r×r Lax equations with a spectral
parameter λ ∈ C,

L̇(λ) = [ L(λ),M(λ) ] , L = Y +
n∑

i=1

Ni

λ− ai
, L,M ∈ gl(r), (1.1)

where Ni are r × r matrix variables, Y ∈ gl(r) is a constant matrix and a1, . . . , an

are arbitrary distinct constants (see [1, 2]). In particular, L(λ) can be taken in form

L(λ) = Y + GT (λIn −A)−1F (1.2)

where In is the n× n unit matrix and G, F are n× r matrices of rank r. Integrable
systems described by the corresponding Lax equations are usually referred to as
Gaudin magnets ( [8]) .

∗AMS Subject Classification 58F07, 70H99, 76B15
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As shown in [1], such systems naturally arise in connection with so called rank
r perturbations of the constant matrix A = diag(a1, . . . , an), namely

A → L(ν) = A + F (Y − νIr)−1GT , ν ∈ C,

where now Ir is the r×r unit matrix. The matrices L(λ),L(ν) are dual in the sense
that their spectral curves are birationally equivalent and the parameter ν plays the
role of the eigenvalue parameter for L(λ) . The characteristic polynomials of the
dual Lax matrices are related by the Weinstein–Aronzjan formula (see [1, 11])

det(λIn −A) det(Y + GT (λIn −A)−1F − νIr)

= det(νIr − Y ) det(A + F (Y − νIr)−1GT − λIn) (1.3)

On the other hand, there exists a series of integrable systems which are known
to admit a Lax pair with an elliptic spectral parameter only. The examples that
we consider here are integrable cases of the classical Kirchhoff equations found by
Steklov and Lyapunov ([15, 13]).

Recall that the Kirchhoff equations on the Lie coalgebra e∗(3) = (K, p), K =
(K1,K2,K3)T , p = (p1, p2, p3)T are Hamiltonian with respect to the standard Lie–
Poisson bracket

{Kα,Kβ} = εαβγKγ , {Kα, pβ} = εαβγpγ , {pα, pβ} = 0,

(α, β, γ) = (1, 2, 3),

Here (K, p), (p, p) are Casimir functions of the bracket. The Steklov and Lyapunov
systems are described respectively by the Hamiltonians

HS =
1
2

3∑

α=1

(
bαK2

α + 2νbβbγKαpα + ν2bα(bβ − bγ)2p2
α

)
,

HL =
1
2

3∑

α=1

(
K2

α − 2νbαKαpα + ν2(bβ − bγ)2p2
α

)
,

b1, b2, b3, ν = const, (α, β, γ) = (1, 2, 3) ,

(1.4)

where ν is an arbitrary parameter.
It can be checked that {HS ,HL} = 0 with respect to the above Poisson bracket

on e∗(3), which implies the integrability of the Steklov and Lyapunov systems.
These systems were explicitly integrated by Kötter [12], who used the change of

variables (K, p) → (z, p):

zα = Kα −
ν

2
(bβ + bγ)pα , α = 1, 2, 3 , (α, β, γ) = (1, 2, 3) (1.5)

and actually represented the equations of motion in a Lax form

L̇(s) = [ L(s), A(s) ] , L(s), A(s) ∈ so(3), s ∈ C ,

Lαβ(s) = εαβγ

√
s− bγ (zγ + spγ) ,

(1.6)
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where εαβγ is the Levi-Civita tensor and the matrix A(s) depends on the Hamilto-
nian of the problem.

The roots in (1.6) are single-valued functions on the elliptic curve Σ̂, the 4-
sheeted unramified covering of the plane curve Σ = {w2 = (s− b1)(s− b2)(s− b3)},
which is obtained by doubling of both periods of Σ. This implies that the Lax pair is
elliptic. Equivalent su(2) matrix Lax pairs, where the roots are replaced by elliptic
functions on Σ are indicated in [3].

According to [5, 9], the Steklov–Lyapunov systems admit multidimensional inte-
grable generalizations defined not on the coalgebra e∗(n), as one might expect, but
on a product so(m)× so(m) with matrix variables Z,P ∈ so∗(m). The generalized
systems admit a Lax pair with a hyperelliptic spectral parameter.

Contents of the paper. In Section 2 we briefly describe m-dimensional Hamil-
tonian Steklov–Lyapunov systems, the Poisson structure on so(m)×so(m), and the
structure of generic and rank r coadjoint orbits Sr

c,d in so(m) × so(m), which are
characterized by values c, d of the corresponding Casimir functions.

Section 3 shows that the restriction of m-dimensional Steklov–Lyapunov systems
onto certain invariant subvarieties Fr

c,d of Sr
c,d admits r×r matrix Lax representation

in a generalized Gaudin form. Namely, the r × m matrices F,G in (1.2) became
linear functions of the spectral parameter λ:

G = (X , −Y − λV), F = (Y + λV , X ),

where X ,Y,V are (r/2)×m matrices related to the variables (Z,P ) ∈ so(m)×so(m)
as follows

∀s ∈ R, Z + sP = X T (Y + sV)− (Y + sV)TX ,

so that the corresponding r×r Lax matrix L(λ) obtains a linear part in the spectral
parameter:

L(λ) =
(

X (λI−B)−1[Y + λV]T X (λI−B)−1X T

−(Y + λV)(λI−B)−1[Y + λV]T −[Y + λV](λI−B)−1X T

)

= L1λ + L0 + (X − Z)T (λIn −B)−1(Z X ) , (1.7)

where B = diag(b1, . . . , bm), Z = Y + BV, and L1, L0 are certain off-diagonal
matrices. This Lax matrix leads to a new rational Lax pair for Steklov–Lyapunov
systems on Fr

c,d. Note that, apparently, in this case the Weinstein–Aronzjan formula
(1.3) is not applicable and the dual Lax matrix of L(λ) may not exist.

In Section 4 we consider in detail the motion on rank 2 orbits S2
c,d and show

that it allows a special vestion of the Marsden–Weinstein reduction onto certain
symplectic 2(m−1)-dimensional manifolds O2

c,d. The latter are foliated with (m−1)-
dimensional Jacobians of hyperelliptic curves, and the reduced systems are just
standard algebraic completely integrable Jacobi–Mumford systems (see, e.g., [2, 16]).

Finally, we perform a separation of variables for these systems by indicating the
Abel–Jacobi quadratures in terms of ce rtain coordinates onO2

c,d, which are Darboux
coordinates with respect to the original Lie–Poisson structure on so(m)× so(m).
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In the classical case m = 3, the orbits S2
c,d are just coverings of O2

c,d, and the
above coordinates, as separating variables, were first introduced by F. Kötter in his
short paper [12] without discussing their symplectic nature.

2 Steklov–Lyapunov system on generic and special rank
r coadjoint orbits in so(m)× so(m)

Following [5, 9], multidimensional Steklov–Lyapunov systems are defined on a prod-
uct so(m)× so(m) with matrix variables Z,P ∈ so∗(m), which is endowed with the
following Poisson bracket

{f, h}1 = 〈Z, [ dZf, dZh ]〉+ 〈P, [ dZf, dP h ] + [ dP f, dZh ]〉
− 〈P, (dZf B dZh− dZh B dZf)〉 , (2.1)

〈X, Y 〉 = −1
2
tr(XY ) , B = diag(b1, . . . , bm),

(dZf)ij = ∂f/∂Zij , (dP f)ij = ∂f/∂Pij ,

where b1, . . . , bm are arbitrary distinct constants. This implies that equations of
motion can be written in the Hamiltonian form

Ż =
[
Z,

∂H
∂Z

]
+ B

∂H
∂Z

P − P
∂H
∂Z

B +
[
P,

∂H
∂P

]
,

Ṗ =
[
P,

∂H
∂Z

]
.

(2.2)

The bracket {f, h}1 has exactly 2[m/2] independent Casimir functions

Pk = −tr(P k) ,

Qk = tr(ZP k−1 + P kB) ,
k = 2, 4, . . . , 2[m/2] (2.3)

( here and below, in indices, the symbol [ ] denotes the integer part of the number).

The multidimensional integrable analogs of the Lyapunov and Steklov systems
are described by the following quadratic Hamiltonians that generalize (1.4),

HL = 〈Z,Z〉+ 2〈Z, (BP + PB)〉+ 〈P, (B2P + BPB + PB2)〉 ,
HS = 〈Z,BZ + ZB〉+ 2〈Z, {P,B2}〉+ 〈P, {P,B3}〉 − trBHL. (2.4)

Here and below the bracket {X l, Y r} (without an index) denotes a homogeneous
symmetric matrix polynomial in X and Y of degrees s and r respectively, for ex-
ample: {X, Y 0} = X, {X, Y } = XY + Y X, {X, Y 2} = XY 2 + Y XY + Y 2X,
etc.

The corresponding flows admit the following Lax pairs, which generalize (1.6),

L̇(s) = [ L(s), A(s) ] , L(s) , A(s) ∈ so(m) , s ∈ C , (2.5)

L(s)ij =
√

Φ(s)√
(s− bi)(s− bj)

(Z + sP )ij , i, j = 1, . . . ,m , (2.6)

Φ(s) = (s− b1) · · · (s− bm) , b1, . . . , bm = const,
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where the roots wij =
√

(s− bi)(s− bj) are assumed to satisfy the relations wikwkj =
(s−bk)wij . Under this condition, the roots, as well as

√
Φ(s), are single-valued func-

tions on an unramified covering of the hyperelliptic curve Σ = {w2 = Φ(s)}. In this
connection the Lax pair (2.5) is referred to as hyperelliptic.

To obtain the generalized Lyapunov and Steklov systems, in (2.5) we put

A(s)ij = −1
s

√
(s− bi)(s− bj) Pij , and, respectively,

A(s)ij =
√

(s− bi)(s− bj) (sPij + Zij + (trB − bi − bj)Pij) .

Moreover, as shown in [5, 9], there exists a hierarchy of “higher” Steklov–
Lyapunov systems. In particular, putting in (2.5)

A = A1,ρ(s) = −SÃ1,ρ(s)S, S = diag(
√

s− b1, . . . ,
√

s− bm), ρ = 0, 1, 2, . . . ,

Ã1,ρ(s) = sρP + sρ−1{B,P}+ · · ·+ {Bρ, P}+ sρ−1Z + · · ·+ {Bρ−1, Z},

we obtain the following subhierarchy of systems with quadratic right hand sides

Ż = [Z, {Z,Bρ}] + Z{P,Bρ}B −B{P,Bρ}Z ,

Ṗ = [P, {P,Bρ+1}] + [P, {Z,Bρ}], ρ ∈ {0, N}.
(2.7)

The matrix A1,0 coincides with the above operator defining the multidimensional
generalization of the Lyapunov system.

Following [5], apart from the bracket { , }1, on so(m) × so(m) there is another
Poisson bracket { , }0, such that { , }1, { , }0 form a pencil of consistent (or compat-
ible) Poisson brackets. The coefficients of the spectral curve provide a complete set
of first integrals in involution with respect to all the brackets of the pencil, which
proves the Liouville integrability of all the systems of the hierarchy.

Remark 1. Under the change of matrix variables

(Z,P ) → (M,P ) : M = Z +
1
2
(BP + PB), (2.8)

which is actually a generalization of Kötter’s substitution (1.5), the bracket {f, h}1

becomes precisely the Lie–Poisson bracket of the semi-direct product so(m)×sso(m)
specified by the commutator

for (X, Y ) ∈ so(m)×s so(m) ,

[(X1, Y1), (X2, Y2)] = ([X1, X2], [X1, Y2]− [X2, Y1]). (2.9)

Indeed, for (M,P ) in the dual space to so(m) ×s so(m), we introduce the natural
pairing

〈(M,P ), (X, Y )〉 = 〈M,X〉+ 〈P, Y 〉.

Then, by the definition of a Lie–Poisson bracket and in view of (2.9),

{f(M,P ), h(M,P )}1 = 〈M, [ dMf, dMh ]〉+ 〈P, [ dMf, dP h ] + [ dP f, dMh ]〉 ,
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which transforms to (2.1) under the substitution (2.8).
In the classical case m = 3, in the vector variables z, p such that

Zij = εijkzk, Pij = εijkpk, (2.10)

the bracket {f, h}1 is just the Lie–Poisson bracket on e∗(3).
According to (2.9), for any x, y ∈ SO(m), the adjoint action of the semi-direct

product SO(m)×Ad so(m) on the algebra so(m)×s so(m) has the form

Ad(x,y)(X, Y ) = (x−1Xx, y−1Xy + x−1Y x).

Then, from the definition 〈(M,P ), Ad(x,y)(X, Y )〉 = 〈Ad∗(x,y)(M,P ), (X, Y )〉, the
coadjoint action on the dual space is found to be

Ad∗(x,y)(M,P ) = (xMx−1 + yPy−1, xPx−1). (2.11)

Alexey, please check the above Remark 1. – Yuri
Although the matrix variables M,P are more convenient than Z,P from the

point of view of the Hamiltonian description, for our future purposes we shall con-
tinue using both sets of variables.

First integrals and generic coadjoint orbits. The characteristic polynomial
of the Lax matrix (2.6) has the form

|L(s)− wI| = wm +
∑

k

wm−k Φk/2−1(s) Ĩk(s, Z, P ), (2.12)

k = 2, . . . , 2[m/2] (k is even),

Ĩk(s, Z, P ) =
∑

I

Φ(s)
(s− bi1) . . . (s− bik)

|Z + sP |II =
m∑

µ=0

sµHkµ(Z,P ), (2.13)

where |Z + sP |II denotes the k-order diagonal minor corresponding to the multi-
index I = {i1 . . . ik}, i1 < · · · < ik, which ranges over the set of all such indices. In
particular, the two major coefficients

Hkm =
∑

I

|P |II ,

Hk,m−1 =
∑

I

(bi1 + · · ·+ bik)|P |II − (trB) Hkm(P ) + Res
κ=0

∑

I

∣∣κ−1Z + P
∣∣I
I

(2.14)

≡ Res
κ=0

∑

I

∣∣κ−1M + P
∣∣I
I
− (trB) Hkm(P )

are annihilators of the bracket (2.1), and they are linear combinations of the Casimir
functions (2.3).
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The family of quadratic integrals has the form

Ĩ2(λ, Z, P ) =
m∑

i<j

Φ(λ)
(λ− bi)(λ− bj)

(Zij + λPij)2 = λm〈P, P 〉+ H2,m−1(Z,P )λm−1

+ H2,m−2(Z,P )λm−2 + H2,m−3(Z,P )λm−3 + · · ·+ H2,0(Z,P ),
(2.15)

where

H2,m−1 = hm−1 −∆1hm,

H2,m−2 = hm−2 −∆1hm−1 + ∆2hm,

H2,m−3 = hm−3 −∆1hm−2 + ∆2hm−1 −∆3hm, (2.16)
· · · · · · · · · · · ·

H2,0 =
m∑

s=0

(−1)s∆shs = detB〈Z,B−1ZB−1〉.

and where hs(Z,P ) are integrals in a “canonical” form,

hm = 〈P, P 〉, hm−1 = 2〈Z,P 〉+ 〈P,BP + PB〉,
hm−2−ρ = 〈Z, {Z,Bρ}〉+ 2〈Z, {P,Bρ+1}〉+ 〈P, {P,Bρ+2}〉 ,

ρ = 0, 1, . . . ,m− 2,

∆s being elementary symmetric functions of b1, . . . , bm of degree s, e.g., ∆0 = 1,
∆1 = b1 + · · ·+ bm, ∆2 = b1b2 + · · ·+ bm−1bm, etc.

Notice that 〈P, P 〉 and H2,m−1 are quadr atic Casimir functions, whereas (up to
adding such functions) H2,m−2 and H2,m−3 coincide with the Lyapunov and Steklov
Hamiltonians in (2.4) respectively.

As shown in [5, 9], for odd dimension m, the polynomials

Hkν(Z,P ), k = 2, 4, . . . ≤ m, ν = 0, 1, . . . ,m

form a complete involutive set of (m + 1)[m/2] independent first integrals of the
systems. The same holds for even dimension m with the only exception: the poly-
nomial Ĩm(s) is the full square of a polynomial I ′m(s) of degree m/2 in Z,P , which
is the Pfaffian of L(s). The coefficients of I ′m(s) are independent of each other and
of the integrals Hkν with k = 2, . . . ,m − 2. The two major coefficients of I ′m(s)
are again annulators of the bracket (2.1). Thus we again have a complete set of
(m + 1)[m/2] independent first integrals in involution (see [5, 9]).

A generic symplectic leave of the Poisson bracket (2.1),

Sc,d =
{

Z,P | Hkm(P ) = ck, Hk,m−1(Z,P ) = dk, k = 2, 4, . . . , 2[m/2]
}

can be regarded as orbits of the coadjoint action (2.11) and has dimension m(m−1)−
2[m/2]. As follows from (2.13), this is twice the number of the rest of the involutive
integrals Hk,m−2(P,Z), . . . ,Hk,0(Z). As a result, the dimension of generic invariant
tori of the Steklov–Lyapunov systems equals m(m− 1)/2− [m/2].
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Special rank r orbits. Apart from generic coadjoint orbits there exists a hier-
archy of lower-dimensional orbits. As follows from the Hamilton equations (2.2),
on each coadjoint orbit the rank of P is constant. We consider coadjoint orbits in
so(m)× so(m) passing through the matrices (Z∗, P ∗) of the form

P ∗ = e1 ∧ e2 + · · ·+ er−1 ∧ er, Z∗ =
r∑

l=1

el ∧ ul, (2.17)

where e1, . . . , er are any mutually orthogonal vectors and u1, . . . , ur are arbitrary
generic vectors in Rm. Such orbits will be called special rank r orbits Sr

c,d. As follows
from expressions (2.14), all the higher Casimir functions

Hr+2,m(P ), Hr+2,m−1(Z,P ), . . . , H2[m/2],m(P ), H2[m/2],m−1(Z,P )

equal zero for (Z,P ) = (Z∗, P ∗) and, therefore, on the whole orbits. Hence, spe-
cial rank r orbits are parameterized by values of the rest of the Casimir functions
Hk,m(P ),Hk,m−1(Z,P ) of order ≤ r.

Remark 2. If all the Casimir functions H2,m(P ), . . . ,H2[m/2],m(P ) equal zero, one
has P = 0. As follows from (2.11), in this special case the orbits Sr

c,d reduce to rank
r orbits Or

so(m) of coadjoint action of SO(m) on so∗(m) = {Z}, and equations (2.2)
reduce to the Hamilton equations Ż = [Z, ∂H/∂Z]. In the sequel we exclude this
case from consideration.

Proposition 2.1 1). Generic ???? orbits Sr
c,d has dimension 2r(m − 1 − r/2),

which is twice the dimension of rank r orbits Or
so(m).

2). On them the invariant polynomials Ĩ2r+2(s), . . . , Ĩ2[m/2](s) vanish identically.

3). A complete set of independent nonzero first integrals and Casimir functions
are given by the coefficients of the polynomials

Ĩk(s) =






∑

I

Φ(s)
(s− bi1) . . . (s− bik)

|Z + sP |II , k = 2, . . . , r,

∑

I

Φ(s)
(s− bi1) . . . (s− bik)

g−k∑

j=0

|sjP j , Zk−j |II k = r + 2, . . . , g,

(2.18)

g = min {2r, 2[m/2]}, Φ(λ) = (λ− b1) · · · (λ− bm),

where k is even, |sjP j , Zk−j |II denotes the diagonal minor of order k with I =
{i1 . . . ik} that contains products of j components of P and k − j components
of Z.

4). These polynomials provide r(m − 1 − r/2) independent and involutive first
integrals, hence Sr

c,d are foliated with r(m − 1 − r/2)-dimensional invariant
tori.
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Sketch of the proof. 1). According to Remark 1, in the matrix variables (M,P ) the
orbits Sr

c,d are coadjoint orbits in the dual to the semi-direct product so(m)×sso(m).
The latter orbits thus pass through the matrices (M∗ = Z∗ − 1

2(BP ∗ + P ∗B), P ∗),
which have the same structure as (Z∗, P ∗) above. Due to the form of the coadjoint
action (2.11), under the projection (M,P ) → P the orbit Sr

c,d is mapped onto the
coadjoint orbit Or

so(m) ⊂ so∗(m), which is the factor variety SO(m)/(SO(m− r)×
Tr/2) of dimension r(m − 1 − r/2). Next, let St(P ∗) ∈ so(m) be the stabilizer of
P ∗ ∈ so(m) and M̂∗ be the projection of M∗ onto St(P ∗). In the orthogonal basis
{e1, . . . , er, . . . , en} these sets have the following block matrix structure

St(P ∗) =
(

T 0
0T so(m− r)

)
, M̂∗ =

(
T 0
0T O

)
,

where T ranges over Tr/2 and O denotes a zero (m−r)× (m−r) matrix. According
to the Ráıs formula (see, e.g., [10]),

dim Sr
c,d = dim Or

so(m) + dim SO(m)− dim AnnSt(P ∗)M̂
∗,

the last term being the dimension of the annihilator of M̂∗ in St(P ∗), which equals
dim so(m− r) + r/2. T his gives the dimension of Sr

c,d stated by the proposition.
2). Next, we note that the variety U r ⊂ so(m)×so(m) of the matrices Z,P that

can be represented in the form (2.17) in an appropriate basis {e1, . . . , er, . . . , en} has
dimension 2r(m− 1− r/2) + r, and therefore the subvariety of U r consisting of the
pairs Z,P with the same Casimir functions is 2r(m − 1 − r/2)-dimensional. This
shows that actually all the points of Sr

c,d admit representation in the form (2.17).
3). Now we evaluate the first integrals given by (2.13) on the matrices Z∗, P ∗.

First, note that for any s, rank |Z∗ + sP ∗| ≤ 2r, hence

Ĩ2r+2(s, Z∗, P ∗) = 0, . . . , Ĩ2[m/2](s, Z∗, P ∗) = 0.

Further, one can show that for r < k ≤ g, the minors |Z∗ + sP ∗|II must contain at
least 2(k−r) nonzero components of Z∗, hence the minors have at most degree 2r−k
in s and in the components of P ∗. Finally, for 2 ≤ k ≤ r, there are no restrictions
on the degree of the polynomials |Z∗ + sP ∗|II , and all their coefficients are generally
nonzero. As a result, the integrals given by (2.13) take the form (2.18) on the entire
orbit Sr

c,d. The latter formula provides r(m− 1− r/2) nonzero nontrivial integrals,
which is the maximal number of independent integrals in involution on the orbit.
The proposition is proved.

Remark 3. The orbits Sr
c,d contain invariant subvarieties

Fr
c,d = {(Z,P ) ∈ Sr

c,d | ∀s ∈ R , rank |Z + sP | = r}.

On Fr
c,d the higher order invariant polynomials Ĩr+2(s, Z, P ), . . . , Ĩg(s, Z, P ) are

identically zero. Then

dim Fr
c,d = dim Sr

c,d − number of the coef ficients of Ĩr+2(s), . . . , Ĩg(s) in (2.18) ,
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which equals r(3m/2−3/2−r/2). Let ω̄s be the 2-form on Rm with the components
(Z + sP )ij . Then, for r < m and a fixed s, the components of the r-form ω̄r/2

s can
be regarded as Plücker coordinates of an r-plane passing through the origin in Rm,
whereas the family of such linear spaces parameterized by s is a pencil of r-planes
L having a common r/2-plane P, the focus of L.

3 Flows on the matrix triplet variety

Let Wr be a union of the subvarieties Fr
c,d corresponding to all nonzero Casimir

functions given by (2.18). As follows from above,

dim Wr = dim Fr
c,d + r =

3
2
mr − r

2
− r2

2
.

There exist r/2 triples of vectors x(l), y(l), v(l) ∈ Rn, l = 1, . . . , r/2 such that any
point of Wr can be represented in form

∀s ∈ C, Z + sP =
r/2∑

l=1

x(l) ∧ (y(l) + sv(l)) ≡ X T (Y + sV)− (Y + sV)TX , (3.1)

where X ,Y,V are r/2×m matrices,

X T = (x(1) · · · x(r/2)) , YT = (y(1) · · · y(r/2)) , VT = (v(1) · · · v(r/2)) .

(Notice that the linear span of x(1), . . . , x(r/2) gives the above r/2-dimensional focus
P of L.) It is seen that for a generic pair Z,P , such vectors are not unique. In
particular, under the transformations

y(l) → y(l) + τlx
(l), v(l) → v(l) + δlx

(l), for any τl, δl ∈ R

Z,P remain unchanged. To get rid of the ambiguity, we introduce constraint sub-
manifold

T r = {X ,Y,V |XX T = I, VX T = 0, X [Y + BV]T + [Y + BV]X T = 0}, (3.2)

which is defined by r
2 + r2

2 scalar constraint equations in R3mr/2 and therefore has
the same dimension as Wr. (We shall refer to it as the matrix triplet variety .) Then
a complete preimage of a generic point of Wr in T r is a discrete orbit of the group
R generated by reflections

(x(l), y(l), v(l)) → (−x(l),−y(l),−v(l)), l = 1, . . . , r/2.

The main observation of this section is that the restriction of the Steklov–
Lyapunov systems on Wr can be described as dynamical systems on T r, which admit
r × r matrix Lax pairs with a rational parameter.
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As model systems, we take equations (2.7), which are described by the quadratic
Hamiltonians

1
2
hm−2−ρ =

1
2
〈Z, {Z,Bρ}〉+ 〈Z, {P,Bρ+1}〉+

1
2
〈P, {P,Bρ+2}〉, ρ = 0, 1, . . . ,

and can be represented in form

Ż = [Z,Ωρ ] + PBρ+1Z − ZBρ+1P ,

Ṗ = [P,Ωρ] ,
(3.3)

Ωρ =
1
2

∂hm−2−ρ

∂Z
= {Z,Bρ}+ {P,Bρ+1} ∈ so(m).

On the other hand, consider the following dynamical system on the variety T r

Ẋ T = −ΩρX T + PX T XBρ+1X T ≡ −ΩρX T − VTXBρ+1 mathcalXT ,

V̇T = −ΩρVT + PVT XBρ+1X T ≡ −ΩρVT + X T VVTXBρ+1X T , (3.4)

ẎT = −ΩρYT + YTXBρ+1VT + PBρ+1YT + X T Ξρ

≡ −ΩρYT + YTXBρ+1VT − VTXBρ+1YT + X TVBρ+1YT + X T Ξρ,

where Ξρ is the r/2× r/2 symmetric matrix

Ξρ = VBρ+1YT + YBρ+1VT − VBρ+2VT +
1
2
(Λ + ΛT ),

Λ = XBρ+1X T [VYT + YVT + VBVT ] + XBρ+2X TVVT − XBX TVVTXBρ+1X T ,

and where one must substitute the above expression for Ωρ and then the expressions
(3.1).

The matrices Ξρ are chosen in such a way that equations (3.4) preserve the
constraints (4.4) and therefore indeed describe a flow on T r.

Theorem 3.1 1). Under the substitution (3.1) solutions of the system (3.4) pass
to rank r solutions of the multidimensional Steklov system (3.3).

2). Up to the action of the discrete group generated by reflections (X ,Y,V) →
(−X ,−Y,−V) th e system (3.4) is described by the following Lax pair with
r × r matrices and rational parameter λ

L̇(λ) = [L(λ), Aρ(λ)], (3.5)

L(λ) =
(

X (λI−B)−1[Y + λV]T X (λI−B)−1X T

−(Y + λV)(λI−B)−1[Y + λV]T −[Y + λV](λI−B)−1X T

)

= L1λ + L0 +
(
X (λI−B)−1ZT X (λI−B)−1X T

−Z(λI−B)−1ZT −Z(λI−B)−1X T

)
, (3.6)

where Z = Y + BV,

L1 =
(

0 0
−VVT 0

)
, L0 =

(
XVT 0

−VBVT − VYT − YVT −VX T

)
,
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and

A(λ)ρ =
(

X B(λ) [Y + VB]T X B(λ)X T

−[Y + λV]B(λ) [Y + λV]T +??? −[Y + VB]B(λ)X T

)
,

B(λ) = λρI + λρ−1B + · · ·+ Bρ.

3). The coefficients of the characteristic polynomial |Φ(λ) L(λ)−wI| are functions
of the right hand sides of (3.1), and they can be expressed only in terms of
Zij , Pij as follows

|wI− Φ(λ) L(λ)| = wr +
∑

l

wr−lΦl−1(λ) Ĩl(λ, Z, P ), l = 2, 4, . . . , r,

Φ(λ) = (λ− b1) · · · (λ− bm) ,

thus giving all nonzero invariant polynomials Ĩ2(λ), . . . , Ĩr(λ) on Wr.

In view of Theorem 3.1 one can say that (3.5) is a Lax representation with a
rational parameter for multidimensional Steklov–Lyapunov systems restricted onto
Wr ⊂ so(m)× so(m). Notice that, according to item 3, for Z,P ∈Wr, the spectral
curve of the hyperelliptic Lax pair (2.5) is birationally equivalent to that of the
rational Lax pair (3.5).

Proof of Theorem 3.1. 1). Differentiating left and right hand sides of (3.1) by virtue
of equations (3.3) and (3.4) respectively, we find that both derivatives coincide under
the substitution (3.1).

2). We differentiate L(λ) along the flow of the system (3.4). In view of matrix
relations in (3.2) and the identity (λI−B)−1B = λ(λI−B)−1−I, the result coincides
with the commutator in (3.5).

3). First, notice that L(λ) ∈ sp (r/2), hence all the odd-order diagonal minors
of L(λ) equal zero. The sum of all the diagonal minors of even order k of Φ(λ)L(λ)
can be represented in the form

Φk(λ)
∑

I

1
(λ− bi1) . . . (λ− bik)

(∑
Mi1i2 · · ·Mik−1ik

)2
,

where

Mij =
r/2∑

s=1

(
x(s)

i (y(s)
j + λv(s)

j )− x(s)
j (y(s)

i + λv(s)
i )

)
,

{i1 < · · · < ik} ⊂ {1, . . . ,m},

which, in view of (3.1) and (2.13), coincides with the polynomial Φk−1(λ) Ĩk(λ).
This establishes item 3 of Theorem 3.1. !
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4 Reductions in the rank 2 case

Now we consider in detail the simplest case of the motion on rank 2 coadjoint orbits
S2

c,d ⊂ so(m)× s(m), which nevertheless are generic in the classical problem m = 3.
As follows from Proposition 2.1, these orbits are 4(m− 2)-dimensional and on them
all the invariant polynomials Ĩ6(s, Z, P ), . . . , Ĩg(s, Z, P ) and two leading coefficients
of Ĩ4(s, Z, P ) (Casimir functions) are identically zero. According to (2.18), the set
of 2(m − 2) nonzero independent integrals and two quadratic Casimir functions is
given by the coefficients of the polynomials

Ĩ2(s, Z, P ) =
∑

1≤i<j≤m

Φ(s)
(s− bi)(s− bj)

(Z + sP )2 =
m∑

µ=0

sµH2µ(Z,P ),

Ĩ4(s, Z) =
∑

I

Φ(s)
(s− bi1) . . . (s− bi4)

|Z|II =
m−4∑

µ=0

sµH4µ(Z),

(4.1)

where now I = {i1 · · · i4}, i1 < · · · < i4. The subvariety

F2
c,d = {(Z,P ) ∈ S2

c,d | ∀s ∈ R, rank|Z + sP | = 2}

is obtained by fixing to zero m − 3 quartic Hamiltonians H4,0, . . . ,H4,m−4. Thus
F2

c,d has dimension 3m− 5. Equivalently, F2
c,d can be defined as the intersection of

the orbit S2
c,d with the quadrics

{
Pf(|Z|II) ≡ Zi1i2Zi3i4 − Zi1i3Zi4i2 + Zi2i3Zi1i4 = 0

}
,

Pf(|Z|II) being the Pfaffian of the 4× 4 determinant |Z|II .
On F2

c,d and on W2 the flows generated by the quartic Hamiltonians H4,0, . . . ,
H4,m−4 are zero. Instead, we consider the flows of the quadratic Hamiltonians
HI = Pf(|Z|II), which, in view of equations (2.2), have the simple matrix form

Z ′ = BẐIP − PẐIB, P ′ = PẐI − ẐIP, (ẐI)ij =
∂Pf (|Z|II)

∂Zij
. (4.2)

One can show by hand that for any 4-indices I, J , the Poisson bracket {HI ,HJ}1

is a linear combination of the functions HI , hence on W2 they commute with each
other. As we shall see later (item 3 of Theorem 4.6), all HI also commute with the
coefficients of Ĩ2(s, Z, P ).

Notice that the corresponding flows (4.2) do not commute even on W2 ! In the
sequel we denote these flows by PI .

Special Poisson Reduction. Below we are going to make a kind of reduction
with respect to the flows PI , which is similar to the classical Marsden–Weinstein
reduction by an action of a finite-dimensional Lie group. However, in our case there
is no action and, moreover, the integrals of the system into consideration (HI) are
not general, but partial. That is why we want now to describe briefly our reduction
procedure from a more abstract point of view.
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Theorem 4.1 Suppose we have a Hamiltonian system ẋ = XH(x) on a symplectic
manifold (M,ω) and there are k functions satisfying the following properties:

1) the common level L = {f1 = 0, . . . , fk = 0} i s a smooth submanifold of codi-
mension k; in particular, the differentials of these functions are linearly inde-
pendent on L,

2) the Hamiltonian vector fields Xf1 , . . . , Xfk
are all tangent to L or, which is the

same, {fi, fj} = 0 on L,

3) {fi,H} = 0 on L for every i = 1, . . . , k.

Then

1) The distribution on L generated by Xf1 , . . . , Xfk
is integrable and, therefore, it

generates a foliation ρ on L of dimension k.

2) For the case of compact leaves of the foliation, the quotient space L/ρ obtained
by identifying each leaf into a point has a natural symplectic structure and the
initial Hamiltonian system ẋ = XH(x) can naturally be reduced onto L/ρ.

The precise description of the symplectic structure on L/ρ is given in terms of
a reduced Poisson bracket as follows. Let g, h be two arbitrary smooth functions
on L/ρ. These functions are naturally identified with functions g̃, h̃ on L which are
constant on the leaves of ρ. To define the bracket {g, h} we simply want to take the
bracket of g̃ and h̃. But to do so we need to extend g̃ and h̃ from L to the whole M
because on L there is no natural Poisson structure. Let ĝ, ĥ be any smooth functions
on M such that g̃ = ĝ|L, h̃ = ĥ|L.

Proposition 4.2 1) The restriction of {ĝ, ĥ} onto L does not depend on the choice
of ĝ and ĥ;

2) {ĝ, ĥ}|L is a first integral of the Hamiltonian flows Xf1 , . . . , Xfk
, i.e., it is con-

stant on the leaves of the foliation ρ and, therefore, can be considered as a function
on the reduced space L/ρ.

The function so obtained is, by definition, the (reduced) Poisson bracket {g, h}red

on L/ρ. It is easy to see that this structure is non-degenerate, so L/ρ obtains a
natural symplectic structure. Since the original Hamiltonian H is invariant with
respect to Xfi , the reduced Hamiltonian on L/ρ and the corresponding reduced
Hamiltonian system are correctly defined.

Proof of Theorem 4.1. Since {fi, fj} ≡ 0 on L, the differential of the bracket {fi, fj}
considered as a function on M is a linear combination of df1(x), . . . , dfk(x) at each
point x ∈ L. Hence, for x ∈ L we have

[Xfi , Xfj ](x) = −X{fi,fj}(x) = −ω−1(d{fi, fj}(x))

= −ω−1(
∑

cl(x)dfl(x)) =
∑

cl(x)Xfl
(x) .
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Notice that this relation takes place only on L and nowhere else in general. Thus the
Frobenius integrability condition holds, which establishes item 1). Item 2) follows
from Proposition 4.2.

Proof of Proposition 4.2. 1) Let ĝ, ĝ′ be two different functions both satisfying
ĝ|L = g̃, ĝ′|L = g̃. To show that {ĝ, ĥ}|L = {ĝ′, ĥ}|L it suffices to verify that
{ĝ − ĝ′, ĥ}|L = 0. We now use the fact that the function ĝ − ĝ′ is identically zero
on L. This implies that at each point x ∈ L, d(ĝ − ĝ′) is a linear combination of
d f1, . . . , d fk

. Hence,

{ĝ − ĝ′, ĥ}(x) = −〈d(ĝ − ĝ′)(x), Xĥ(x)〉 = −
〈

k∑

l=1

cl(x)dfl(x), Xĥ(x)

〉
=

= −
k∑

l=1

cl(x)〈dfl(x), Xĥ(x)〉 = −
∑

cl(x){fl, ĥ}(x),

cl(x) being certain functions. Now, since {fl, ĥ}|L = 0 for any 1 ≤ l ≤ k, we obtain
the required result.

2) It remains to show that the function {ĝ, ĥ}|L is invariant under the flows
Xf1 , . . . , Xfk

. This is equivalent to conditions {fi, {ĝ, ĥ}}|L ≡ 0. We have

{fi, {ĝ, ĥ}} = −{ĝ, {ĥ, fi}}+ {ĥ, {ĝ, fi}}.

Since {ĥ, fi}|L ≡ 0 and {ĝ, fi}|L ≡ 0, we arrive at item 2).

In the above construction we assumed the functions f1, . . . , fk to be independent
on L. However, everything can be repeated under the weaker assumption that the
submanifold L is coisotropic or, which is the same, codim L = corank(ω|TL).

Below we apply this construction in our case. As the symplectic manifold M
and its submanifold L we shall consider the rank 2 orbit S2

c,d and the common level
surface of the Pfaffians Pf(|Z|)I

I respectively.

Steklov–Lyapunov flows and the flows PI on T 2. In the rank 2 case, the ma-
trices X T ,YT ,VT in relations (3.1) become just vectors x, y, v, whereas the relations
themselves take the form

Z = x ∧ y, P = x ∧ v, x, y, v ∈ Rm . (4.3)

The constraint submanifold T 2 ∈ R3m is defined by three conditions

(x, x) = 1, (x, v) = 0, (x, y + Bv) = 0. (4.4)

Notice that in view of (4.3), x1, . . . , xm become homogeneous coordinates of the
focus of pencil of lines L = {Z + sP} in Pn (n = m− 1).

The formulas (4.3) can be inverted to give a pair of points on T 2 in view of the
following proposition.
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Proposition 4.3 Let w123 ⊂ W2 be a domain defined by the conditions Zαβ =
Pαβ = 0, α, β = 1, 2, 3. Then the redundant coordinates x, y, v can be expressed in
terms of Z,P on the open subset W2 \w123 as follows

x = ±x̄(123)/
∣∣∣a¯ rx(123)

∣∣∣ , v = −Px, y = (−Z + (x,BPx))x, (4.5)

where
x̄(123)

1 = Z12P13 − Z13P12 ,

x̄(123)
2 = Z23P21 − Z21P23 ,

x̄(123)
3 = Z31P32 − Z32P31 ,

x̄(123)
j = −(Z12P3j − Z13P2j + Z23P1j) , j = 4, . . . ,m .

(4.6)

Expressions on other open subsets W2 \wαβγ are obtained from (4.6) by the corre-
sponding permutation of indices.

Note that in the classical case m = 3, in the vector variables (2.10) the above
expressions take the form

x =
1
γ

z × p, v = x× p =
1
γ

[(p, z)p− (p, p)z],

y = x× z − (Bx, x× p)x =
1
γ

[(z, z)p− (z, p)z] (4.7)

− 1
γ3

(
B(z × p), (p, z)p− (p, p)z

)
z × p, γ = |z × p|.

Relations (4.3) and (4.5), (4.6) establish a two-to-one correspondence betweenT 2

and W2: the triples x, y, v and −x,−y,−v are mapped to the same pair Z,P .

Proof of Proposition 4.3. The formulas (4.6) can be checked by direct calculations.
Their geometric proof is the following. Let (X1 : · · · : Xm) be homogeneous coordi-
nates in the projective space Pm−1 and Y2 = X2/X1, . . . , Ym = Xm/X1 be Cartesian
coordinates in Cm−1 = Pm−1\{X1 = 0}. Now let ,1, ,2 ⊂ Pm−1 be lines with Plücker
coordinates Zij , Pij respectively. Then their affine parts in Cm−1 can be described
in parametric form

{
Yi(τ) = Zi1τ +

m∑

k=2

ZikZk1 |τ ∈ C
}

, mboxrespectively

{
Yi(τ ′) = Pi1τ

′ +
m∑

k=2

PikPk1 |τ ′ ∈ C
}

, i = 2, . . . ,m. (4.8)

Without loss of generality, here we assume that
∑m

i=2 Z2
1i =

∑m
i=2 P 2

1i = 1. According
to the condition rank |Z+sP | = 2, the two lines intersect at a point (the focus of the
pencil L) , whose homogeneous coordinates in Pm−1 give the components of x up
to a common factor. Matching the right hand sides of the expressions in (4.8) and
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using the above normalization conditions, we find the values of τ , τ ′ corresponding
to the intersection point, and, after some calculations, the expressions (4.6).

The formulas (4.5) are then obtained by applying the second and third conditions
in (4.4). The proposition is proved. !

It appears that the flows PI on W2 generated by the quadratic Hamiltonians
HI = Pf(|Z|II) do not change the focus of the pencil of lines L.

Proposition 4.4 In vector variables x, y, v on T 2 the flows (4.2) have the form

x′ = 0, v′ = −ẐIv, y′ = BẐIv, (ẐI)ij =
∂Pf(|Z|II)

∂Zij
, (4.9)

where one must substitute Z = x ∧ y.

One can check that these flows preserve the constraints (4.4) and therefore are
indeed flows on T 2.

Sketch of a proof of Proposition 4.4. First, note that the condition rank |Z+sP | = 2
for any s ∈ R implies

Res
κ=0

Pf(|Z + κ−1P |II) ≡ Zi1i2Pi3i4 − Zi1i3Pi4i2 + Zi2i3Pi1i4

+ Pi1i2Zi3i4 − Pi1i3Zi4i2 + Pi2i3Zi1i4 = 0 (4.10)

for i1 < i2 < i3 < i4. Calculating the derivatives of the homogeneous coordinates
x̄i in (4.6) with respect to any of the flows given by (4.2) and using the conditions
HI = 0 and (4.10), we find that the vector x̄′ is a linear combination of alternative
expressions for x̄ obtained from the right hand sides of (4.6) by various permutations
of indices. In particular,
{

x̄(123)
i ,H1234

}

1
= (Z12 + b3P12)x̄

(124)
i + (Z13 + b2P13)x̄

(134)
i + (Z23 + b1P23)x̄

(234)
i ,

i = 1, . . . ,m.

This implies that x̄′ is collinear to x̄, hence the normalized vector x is constant.
Next, we substitute expressions (4.3) into the Hamilton equations (4.2) and take

into account x′ = 0. As a result, comparing coefficients at different components of
xi, we arrive at two last equations in (4.9), which proves the proposition. !

Theorem 4.5 The variables xi commute with respect to the Poisson bracket (2.1),
i.e., {xi, xj}1 = 0.

Proof. Since {xi,HI}1 for any i, from the Jacobi identity we have

{{xi, xj}1,HI}1 = −{{xj ,HI}1, xi}− {{HI , xi}1, xj}j = 0.

For m = 3, when the flows PI do not exist, the proof is direct. Namely, from
the vector expressions (4.7) we have

∂xi

∂zα
= −xα

γ
[p× x]i,

∂xi

∂pα
=

xα

γ
[z × x]i, α = 1, 2, 3. (4.11)
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Substituting this into the vector analog of Hamiltonian equations (2.2) with H = xi,
we obtain

z′ = − [p× x]i
γ

(z −Bp)× x +
[z × x]i

γ
p× x, p′ = − [p× x]i

γ
p× x,

where now prime denotes the derivative with respect to the flow with the Hamilto-
nian xi. Hence, in view of (4.11),

{xi, xj}1 =
(

∂xj

∂z
, z′

)
+

(
∂xj

∂p
, p′

)
= 0.

The theorem is proved.

The systems (3.4) on T 2 take the form

ẋ = −Ωρx + (x,Bρ+1x) Px,

v̇ = −Ωρv + (x, Bρ+1x) Pv,

ẏ = −Ωρy + (x,Bρ+1v)y − (x,Bρ+1y)v + (y, Bρ+1v)x + χρx,

(4.12)

where

Ωρ = {Z,Bρ}+ {P,Bρ+1}, P = x ∧ v, Z = x ∧ y , ρ ∈ {0 ∪ N},
χρ = 2(y, v)(x, Bρ+1x)− 2(y, Bρ+1v)(x, x)− (x, x)(v,Bρ+2v)

+(v, v)(x,Bρ+2x)− (x, Bρ+1x)[(v, v)(x,Bx)− (x, x)(v,Bv)] ,

and they admit 2× 2 matrix Lax representation, which comes from (3.5),

L̇(λ) = [L(λ), Aρ(λ)], λ ∈ C, (4.13)

L(λ) =
m∑

i=1

1
λ− bi

(
xi(yi + λvi) x2

i
−(yi + λvi)2 −xi(yi + λvi)

)

=
(

0 0
−(v, v) 0

)
λ +

(
0 0

−(v,Bv)− 2(v, y) 0

)

+
m∑

i=1

1
λ− bi

(
xi(yi + bivi) x2

i
−(yi + bivi)2 −xi(yi + bivi)

)
, (4.14)

Aρ(λ) =
(

(x,B(λ)(y + Bv)) (x,B(λ)x)
−Qρ(λ) −(x,B(λ)(y + Bv))

)
, (4.15)

where, as above, B(λ) = λρ bfI + λρ−1B + · · · + Bρ and Qρ(λ) is a polynomial of
degree ρ+2, whose coefficients are chosen uniquely from the condition d

dt(x, y+Bv) =
0.

In particular, in view of the constraints (4.4),

A0(λ) =
(

0 1
−Q0(λ) 0

)
A1(λ) =

(
(Bx, (y + Bv)) λ + (x,Bx)

−Q1(λ) −(Bx, (y + Bv))

)
,

Q0 = (v, v)λ2 + [2(v, y) + (v,Bv)− (v, v)(x,Bx)]λ + (y, y)
+ ∆(v,Bv)− (x,Bx)[2(v, y) + (v,Bv)− (v, v)(x,Bx)]

− (v, v)[∆2 + (x,B2x)],

Q1 = (v, v)λ3 + [2(v, y) + (v,Bv)]λ2 + [(y, y)− 2∆(v, y) + 2(y, Bv)− (v, v)]λ
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The spectral curve C = {|Φ(λ) L(λ)−wI| = 0} is now an even order hyperelliptic
curve of genus g = m− 1, and under the substitution (4.3) it reads

w2 = −
m∑

i<j

Φ2(λ)
(λ− bi)(λ− bj)

[xi(yj + λvj)− xj(yi + λvi)]2

= −Φ(λ) Ĩ2(λ, Z, P ), (4.16)

thus giving all the quadratic first integrals (2.16) of the Steklov–Lyapunov systems
on S2

c,d and on W2.
In view of the constraints (4.4), the polynomial Lax matrix L̂(λ) = Φ(λ)L(λ)

has the following structure

L̂(λ) =
(

V (λ) U(λ)
W (λ) −V (λ)

)
, (4.17)

U(λ) = λg + U1λ
g−1 + · · ·+ Ug, V (λ) = V1λ

g−1 + · · ·+ Vg+1,

W (λ) = −(v, v)λg+2 −W−1λ
g+1 −W0λ

g − · · ·−Wg, g = m− 1.

The set of all such complex matrices forms a 3m-dimensional li near space Eg spanned
by the coefficients of the polynomials U, V, W . Following [14] ( see also [2, 16]), Eg can
be completed to the fiber bundle Ēg over the (2g+2)-dimensional base space spanned
by the coefficients of the characteristic polynomial R(λ) = −det L̂(λ) ≡ U(λ)W (λ)+
V 2(λ) and parameterizing the corresponding genus g hyperelliptic curves C, with
fibers being the Jacobian varieties of the curves.

As follows from (4.14), the Lax matrices constructed of the vectors x, y, v form a
2m-dimensional subvariety Nm ⊂ Eg specified by conditions R(bi) = 0, i = 1, . . . ,m.
In this case the two leading coefficients of R(λ) are linear combinations of the
quadratic Casimir functions H2m,H2,m−1 of the bracket (2.1).

It is seen that for m > 3, the dimension of W2 is bigger than that of Nm, hence,
in this case, the Lax pair (4.13) is not equivalent to equations (4.12).

Proposition 4.6 1). The components of the Lax matrix L(λ|x, y, v) in (4.14) are
invariant with respect to the flows (4.9). Generic orbits of these flows in T 2

are (m− 3)-dimensional compact real algebraic varieties.

2). Nm is the factor variety of T 2 by the action of the group generated by the flows
and by the action of the discrete group R generated by reflections (xi, yi, vi) →
(−xi,−yi,−vi), i = 1, . . . ,m.

3). On F2
c,d and W2 the Pfafians Pf(|Z|)I

I commute with the quadratic first inte-
grals in (4.1).

4). Generic orbits of the flows PI in F2
c,d are (m − 3)-dimensional real compact

algebraic varieties.
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Proof. First, notice that the flows (4.9) do not change the vectors y + Bv, which
form the Laurent part of L(λ) in (4.14). Next, we have (v, v)′ = 0 and

(v,Bv)′ + 2(v, y)′ = −2(Bv, ẐIv)− 2(y, ẐIv) + 2(v,BẐIv) ≡ 2〈y ∧ v, (̂x ∧ y)I〉,

which is zero due to the definition of ẐI in (4.2).
Hence, the components of L(λ) provide 2m independent algebraic first integrals

of the flows, and, therefore, their orbits are algebraic varieties of dimension dimT 2−
2m = m− 3.

Further, from equations (4.9) and the constraints (??) we find that for each
fixed orbit, the vector v lies on the sphere Sm−2 in Rm−1 = {v | (v, x) = 0}. On the
other hand, since on each orbit y + Bv = d, d =const and (v,Bv) + 2(v, y) =const,
the same vector belongs to the quadric 2(d, v) + (v,Bv) =const. As a result, each
orbit is diffeomorphic to a connected component of the intersection of two (m− 2)-
dimensional quadrics in Rm−1, which is a compact variety. This implies items 1.

Next, the components of L(λ) are invariant with respect to reflections of R,
which yields item 2.

Since the above flows preserve L(λ), the corresponding flows PI on W2 preserve
the quadratic integrals (4.1). Thus, these integrals and Pf(|Z|)I

I commute on W2.
Item 4 is a reformulation of item 1 in terms of the coordinates Z,P on W2. !

Now let O2
c,d be a 2(m− 1)-dimensional subvariety of Nm obtained by fixing the

two leading coefficients in the polynomial (4.16), i.e., by fixing the two quadratic
Casimir functions on W2. In view of item 3 of the above proposition, O2

c,d can
also be regarded as the factor variety of F2

c,d by the action of the Ab elian group
generated by the flows PI and by the action of the discrete group R′ induced by R
on F2

c,d.
Combining Propositions 4.4, 4.6, as well as Theorem 4.1, we arrive at the fol-

lowing theorem.

Theorem 4.7 The manifold O2
c,d is symplectic and can be regarded as a special

Poisson (Marsden–Weinstein) reduction of rank 2 coadjoint orbits S2
c,d obtained by

fixing the Hamiltonians HI = Pf(|Z|II) to zero and factorizing by the action of the
Hamiltonian flows (4.2) and by the group R′ action.

To get a global view on the above manifolds, we represent them in the following
commutative diagram where arrows denote the corresponding maps (embeddings or
factorizations), and the map Λ : W2 → Nm is given by the composition of the
formulas of Proposition 4.3 and (4.14).

so(m)× so(m)
Ĩ4(s)=···=Ĩg(s)=0←−−−−−−−−−−− W2 Λ−−−−→ Nm

∪
8 ∪

8 ∪
8

S2
c,d

H4,µ(Z)=0←−−−−−−− F2
c,d

/PI /R′
−−−−−→ O2

c,d.
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In the classical case m = 3 the above diagram simplifies: the 6-dimensional
variety W2 coincides with the product so(3) × so(3) itself, and 4-dimensional or-
bits S2

c,d are coverings of O2
c,d. They are foliated with 2-dimensional tori, whose

complexifications are coverings of the Jacobians of genus 2 hyperelliptic curves C.

Note that another 2× 2 matrix Lax pair for the classical Steklov system written
in different coordinates related to an integrable geodesic flow on SO(4) was found
in [6].

5 Linearization of flows and separation of variables in
the rank 2 case

Let P1 = (λ1, w1), . . . , Pg = (λg, wg) be a divisor of g = m−1 points on the spectral
curve C, whose coordinates satisfy equations

U(λk) = 0, wk = V (λk).

Since U(λ) and V (λ) are polynomial of degree g and g − 1 respectively, then

U = (λ− λ1) · · · (λ− λg), V =
g∑

k=1

wk

∏
l &=k(λ− λl)∏
l &=k(λk − λl)

. (5.1)

Now, taking residue of the Lax matrix (4.13 ) at λ = bi, we obtain

x2
i =

(bi − λ1) · · · (bi − λm−1)∏
j &=i(bi − bj)

,

yi + bivi = xi

g∑

k=1

wk

(bi − λk)
∏

s &=k (λk − λs)
,

(5.2)

i = 1, . . . ,m,

The first set of these expressions implies that λ1, . . . ,λg are spheroconic coordinates
on the unit sphere {(x, x) = 1},

Now let us fix constants of motion by setting

Ĩ2(λ, Z, P ) = ψ(λ), ψ(λ) = hmλm + · · ·+ h1λ + h0, h0, h1, . . . , hm = const,

so that, due to (4.16), wk =
√
−Φ(λk)ψ(λk).

Theorem 5.1 Let Z(t), P (t) be a solution of the Steklov–Lyapunov system on W2

with the quadratic Hamiltonian

Hf =
1
2

(fmH2,m(P ) + fm−1H2,m−1(P,Z) + · · ·+ f0H20(Z,P )) , (5.3)

f0, . . . , fm−2 = const
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and constants of motion H2,m(P ) = hm, . . . ,H20(Z,P ) = h0. Then the evolution of
the points (λk, wk) is given by the following standard Abel–Jacobi equations involving
g holomorphic differentials on the curve C,

m−1∑

k=1

λr
k dλk

2
√
−Φ(λk)ψ(λk)

= dφr , r = 0, 1, . . . ,m− 2, (5.4)

where dφr = fr dt.

Recall that H2,m(P ), H2,m−1(P,Z) are Casimir functions of the bracket { , }1

and notice the corresponding constants fm−1, fm do not appear in the right hand
sides of (5.4).

In particular, for the generalized Steklov and Lyapunov systems described by
the Hamiltonians (2.4) the above equations take the form respectively






g∑

k=1

dλk

2
√
−Φ(λk)ψ(λk)

= 0,

· · · · · · · · ·
g∑

k=1

λg−2
k dλk

2
√
−Φ(λk)ψ(λk)

= dt,

g∑

k=1

λg−1
k dλk

2
√
−Φ(λk)ψ(λk)

= 0,






g∑

k=1

dλk

2
√
−Φ(λk)ψ(λk)

= 0,

· · · · · · · · ·
g∑

k=1

λg−2
k dλk

2
√
−Φ(λk)ψ(λk)

= 0,

g∑

k=1

λg−1
k dλk

2
√
−Φ(λk)ψ(λk)

= dt.

Note that, for the classical case m = 3, the variables λ1,λ2 were first introduced
and the quadratures (5) were obtained by F. Kötter in [12].

Proof of Theorem 5.1. As follows from the Lax equations (4.13) and expressions for
L̂(λ) in (4.17), for the system with the Hamiltonian hm−2−ρ,

U̇(λ) = 2V (λ)[λρ + λρ−1(x,Bx) + · · ·+ (x,Bρx)]− 2U(λ)(x,B(λ)(y + Bv)),

Setting here λ = λk and taking into account (5.1), we obtain

λ̇k

∏

s &=k

(λk − λs) = 2wk[λ
ρ
k + λρ−1

k (x,Bx) + · · ·+ (x,Bρx)].

Then, according to relations (2.16), for the motion with the quadratic Hamiltonian

H2,m−2−ρ(Z,P ) =
ρ∑

s=0

(−1)s∆shm−2−ρ+s,

we have

λ̇k

2wk

∏

s &=k

(λk − λs) = λρ
k + λρ−1

k [(x,Bx)−∆1] + λρ−2
k [(x,B2x)−∆1(x,Bx) + ∆2]

+ · · ·+ λ0
k[(x,Bρx)−∆1(x,Bρ−1x) + · · ·+ (−1)ρ∆ρ]. (5.5)
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Now applying relations (5.2) and the known Jacobi identities, we represent the right
hand side in form

λρ
k − σ1λ

ρ−1
k + · · ·+ (−1)ρσρλ

0
k,

where σs = (−1)sUs is the elementary symmetric polynomial of λ1, . . . ,λg of degree
s and, as above, Us is the coefficients of U(λ). Again, in view of the Jacobi identities,
for 0 ≤ r ≤ g − 1 = m− 2 we have

g∑

k=1

λr
k
λρ

k − σ1λ
ρ−1
k + · · ·+ (−1)ρσρλ0

k∏
s &=k(λk − λs)

= δm−2−ρ,r.

This, together with (5.5), implies that for the system with the Hamiltonian
H2,m−2−ρ(Z,P ) the evolution of λ-coordinates is given by equations

g∑

k=1

λr
k dλk

2wk
= δm−2−ρ,r dt, r = 0, . . . , g − 1.

By linearity, we conclude that for the motion with the generic Hamiltonian (5.3)
this evolution is described by the system (5.4). !

Now introduce variables

µk =
wk

Φ(λk)
=

√
λm〈P, P 〉+ H2,m−1λm−1 + · · ·+ H2,0√

(λ− λ1) · · · (λ− λg)
. (5.6)

Theorem 5.2 On the 2g-dimensional manifold O2
c,d the variables (λ1, µ1), . . . , (λg, µg)

form a complete set Darboux coordinates with respect to the Lie–Poisson bracket
(2.1) on so(m)× so(m), i.e.,

{λk,λs}1 = {µk, µs}1 = 0, {λk, µs}1 = δks, k, s = 1, . . . , g.

As a corollary, we find that for m = 3, the Kötter variables λ1, µ1,λ2, µ2 are
Darboux coordinates on the orbits S2

c,d = O2
c,d with respect to the standard Lie–

Poisson bracket on e∗(3).

Proof of Theorem 5.2. As follows from Theorem 5.1,

{φρ,H2,r}1 = δρr, ρ, r = 0, 1, . . . ,m− 2,

where φρ are angle type variables defined in a neighborhood of a generic invariant
torus. Also, {H2,ρ,H2,r}1 = 0. Hence, the reduction of the corresponding symplectic
structure on the orbit S2

c,d onto O2
c,d can locally be represented as

ω =
m−2∑

r=0

dφr ∧ dhr +
∑

0≤ρ<r≤m−2

Cρr dφρ ∧ dφr

with some coefficients Cρr. Next, due to (5.4) and (5.6),

dφr =
g∑

k=1

∂µk(λk, h)
∂hr

dλk,
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which implies

ω =
g∑

k=1

dλk ∧
[

m−2∑

r=0

∂µk(λk, h)
∂hr

dhr

]
+

∑

0≤ρ<r≤m−2

Cρr dφρ ∧ dφr

≡
g∑

k=1

dλk ∧ dµk +
∑

1≤k<s≤g

C̃ks dλk ∧ dλs

with some coefficients C̃ks. On the o ther hand, Theorem 4.5 says that {xi, xj}1 = 0,
which, together with the first relations in (5.2), implies {λk,λs}1 = 0. As a result,
in the expression for ω we have C̃ks = 0, which proves the theorem.

6 Conclusion

In this paper we considered integrable Steklov–Lyapunov systems on rank r coad-
joint orbits Sr

c,d in so(m) × so(m) and on their invariant subvarieties Fr
c,d. We

showed that the latter systems, written in terms of matrix triplets X ,V,Y, admit
r × r matrix Lax representation in a generalized Gaudin form.

It would be interesting to find an appropriate generalization of the Weinstein–
Aronzjan formula (1.3) to the case of Lax matrices (1.7) .

In the rank 2 case we described a Marsden–Weinstein reduction of S2
c,d onto

symplectic 2(m − 1)-dimensional manifolds O2
c,d, which is foliated with (m − 1)-

dimensional Jacobians of hyperelliptic spectral curves, and indicated Darboux co-
ordinates with respect to the original Lie–Poisson structure on so(m)× so(m). For
m = 3, these coordinates coincide with the mysterious separating variables used by
Kötter in order to reduce the systems on e∗(3) to Abel–Jacobi quadratures. They
can be used to construct action-angle variables for the classical systems.

The properties of analogous reduction for arbitrary rank r are still not under-
stood completely.

On the other hand, it appears that adding to the Lax matrix L(λ) in (3.5) a
constant r × r matrix Y allows a similar description of other generalizations of the
Steklov–Lyapunov systems. For example, consider the following matrix “hybrid”
system on the phase space (Z,P, e(1), . . . , e(k)), Z,P ∈ so∗(m), e(1), . . . , e(k) ∈ Rm,
k ≤ m (see also [9])

Ż = ZPB −BPZ + [Γ, B ] ,

Ṗ = [P, PB + BP ] + [P,Z ] , (6.1)

Γ̇ = [ Γ, Z ] + ΓPB −BPΓ ,

Γ = ε(e(1) ⊗ e(1) + · · ·+ e(k) ⊗ e(k)) , B = diag(b1, . . . , bm) ,

which for ε → 0 is reduced to the generalized Lyapunov system (2.7) with ρ = 0,
whereas for P → 0 it becomes the simplest system of the Clebsch–Perelomov-
Bogoyavlensky hierarchy on the dual to the semi-direct product Lie algebra so(m)×s
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(Rm × · · ·× Rm)︸ ︷︷ ︸
k times

([4]), i.e.,

Ż = [Γ, B ] , Γ̇ = [ Γ, Z ] .

This describes the motion of a spherically symmetrical top with the angular velocity
Z in the field of the quadratic potential 1

2

(
e(1), Be(1)

)
+ · · ·+ 1

2

(
e(k), Be(k)

)
.

We mention without a proof that, for an even number r, 2k ≤ r ≤ m, the system
(6.1) has invariant manifolds W̃r given by the conditions

∀s ∈ R , rank |Z + sP | = r, rank





Z e(1) · · · e(r)

−(e(1))T 0 · · · 0
...

...
...

−(e(r))T 0 · · · 0




= r.

Then, similarly to (3.1), on W̃r the variables Z,P, e(1), . . . , e(k) can be represented
in terms of r/2×m matrices X ,Y,V as follows

Z = X TY − YTX , P = X TV − VTX , e(1) = x(1), . . . , e(r) = x(k),

and the restriction of equations (6.1) onto W̃r admits r×r matrix La x representation

L̇(λ) = [L(λ), A(λ)],

L(λ) = Y +
(

X (λI−B)−1[Y + λV]T X (λI−B)−1X T

−(Y + λV)(λI−B)−1[Y + λV]T −[Y + λV](λI−B)−1X T

)
, (6.2)

with certain polynomial matrix A(λ) and the constant matrix Y of the following
structure

Y =
(

0 0
Ik 0

)
, Ik = diag(1, . . . , 1︸ ︷︷ ︸

k units

, 0, . . . , 0).

A detailed description of a natural Poisson structure on the space of Lax matrices
(6.2) and its relation to symplectic properties of various Steklov–Lyapunov type
systems, as well as their integrable discretizations, are left for a future publication.
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