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Abstract

A key problem in developmental biology is how pattern and planar polarity are
transmitted in epithelial structures. Examples include Drosophila neuronal differ-
entiation, ommatidia formation in the compound eye, and wing hair polarisation.
A key component for the generation of such patterns is direct cell-cell signalling by
transmembrane ligands, called juxtacrine signalling. Previous models for this mode
of communication have considered homogeneous distributions in the cell membrane,
and the role of polarity has been largely ignored. In this paper we determine the
role of inhomogeneous protein and receptor distributions in juxtacrine signalling.
We explicitly include individual membrane segments, diffusive transport of proteins
and receptors between these segments, and production terms with a combination of
local and global responses to ligand binding.

Our analysis shows that intra-membrane ligand transport is vital for the gen-
eration of long wavelength patterns. Moreover, with no ligand transport, there
is no pattern formation for lateral induction, a process in which receptor activa-
tion up-regulates ligand production. Biased production of ligand also modulates
patterning bifurcations and predicted wavelengths. In addition, biased ligand and
receptor trafficking can lead to regular polarity across a lattice, in which each cell
has the same orientation — directly analogous to patterns of hairs in the Drosophila
wing. We confirm the trends in pattern wavelengths previously observed for patterns
with cellular homogeneity — lateral inhibition tends to give short range patterns,
while lateral induction can give patterns with much longer wavelengths. Moreover,
the original model can be recovered if intra-membrane bound receptor diffusion is
included and rapid equilibriation between the sides is considered. Finally, we con-
sider the role of irregular cell shapes and waves in such networks, including wave
propagation past clones of non-signalling cells.
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1 Introduction

Communication between cells is an essential process during development. Although many

intercellular signals function as soluble proteins, certain signals exist as membrane-bound

forms and can bind and activate membrane receptors on adjacent cells. This process,

called juxtacrine signalling, is vital in various aspects of development and tissue mainte-

nance, being able to deliver intercellular signals while also supporting adhesive interac-

tions between cells (Bosenberg and Massagué, 1993). Some juxtacrine signals exist only in

membrane bound forms, e.g. the Drosophila fruit fly proteins Boss and Delta, or are sim-

ply precursors of soluble forms, e.g. Transforming growth factor alpha, TGF-α (see Refs

(Massagué, 1990; Fagotto and Gumbiner, 1996) for more examples). Both anchored and

soluble forms are able to bind and trigger responses in receiving cells, although the relative

importance of the paracrine (soluble) and juxtacrine modes in the latter case depends on

the cleavage rate of the membrane bound form to the soluble phase. A consequence of

these binding interactions is that cells adopt particular programs of gene activation to

give spatial patterns of cell fate in the developing embryo.

There have been a number of mathematical models proposed for juxtacrine signalling

(Collier et al., 1996; Owen and Sherratt, 1998; Owen et al., 2000). The first was formu-

lated for signalling via the transmembrane ligand Delta binding to its receptor Notch on

adjacent cells (Collier et al., 1996). Notch is crucial for developing cells — if this pathway

is perturbed, cells fail to differentiate correctly, usually adopting the default neural fate

(Bray, 2000a; Lewis, 1996; Lewis, 1998; Whitfield et al., 1997). Delta-Notch is best known

for the process called lateral inhibition, whereby high Delta in a cell down-regulates Delta

in its neighbours via binding with Notch on their surfaces (Lewis, 1996; Kimble and Simp-

son, 1997; Haddon et al., 1998). Given sufficiently strong inhibition, this mechanism is

capable of generating patterns of Delta/Notch expression with characteristic length scales

of two or three cells (Collier et al., 1996). More recent work (Owen and Sherratt, 1998;

Owen et al., 2000; Wearing et al., 2000) has shown that patterns with length scales of

many cell diameters are generated by the opposite phenomenon of lateral induction, with

ligand binding up-regulating production of new ligand and receptor. Such induction is

well established for many juxtacrine signals (Reilly and Melton, 1996) including TGF-α

and EGF binding to EGF-R (Clark et al., 1985; Coffey et al., 1987) and also the Delta-

Notch system in some contexts (De Celis and Bray, 1997; Huppert et al., 1997; Lewis,

1998; Panin et al., 1997). In both these modelling approaches, individual cells are treated

as single entities, and it is assumed that all molecules are equally distributed on each
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cell, and that production of new proteins is similarly homogeneous. It is the aim of this

paper to describe an extended model that includes inhomogeneous distributions on the

cell membrane, and explores the roles of intra-membrane diffusion, biased insertion of new

protein, and irregular cell shapes.

The generation of cellular polarity is currently the subject of much experimental research

(Bray, 2000b). For example, the eye of the fruit fly, Drosophila, is composed of 800

photoreceptor clusters called ommatidia, each displaying a precise polarity, the ommatidia

in the dorsal half pointing in the opposite direction to those in the ventral half (Bray,

2000b; Wehrli and Tomlinson, 1995; Strutt and Mlodzik, 1995; Tomlinson and Struhl,

1999). In the Drosophila wing, each cell orients itself along the proximo-distal axis,

generating a hair at the distal vertex (Eaton, 1997). In both cases, this planar polarity

requires the transmembrane receptor Frizzled (Weber et al., 2000; Bray, 2000b; Tomlinson

and Struhl, 1999), and an as yet unidentified Factor X (Bray, 2000b), that carries the

polarizing signal between cells. The secreted protein Four-jointed may be part of the

Factor X signal (Bray, 2000b; Zeidler et al., 1999), and the protein Flamingo may also

play an important role (Tomlinson and Struhl, 1999; Usui et al., 1999), but it is not

clear whether polarity is transmitted via gradients of these proteins across each cell or

between cells. Models must allow for inhomogeneous distributions of ligand and receptor

on the surface of individual cells to distinguish between these two possibilities. Before we

describe the development and analysis of a segmental model, we will present a summary

of the previous results.

1.1 Previous work

The model of Collier et al (Collier et al., 1996) was formulated in terms of activity of

a protein and its receptor, incorporating a negative feedback loop in which receptor ac-

tivation down-regulates ligand production. More detailed models reflect the elementary

binding events of signalling molecules binding to free receptors (Owen and Sherratt, 1998;

Owen et al., 2000). This Ligand-Receptor model, henceforth referred to as the L-R model,

consists of ODEs for the numbers of ligand molecules, unoccupied receptors and occupied

receptors, on the surface of each cell in a regular two dimensional epithelial sheet. The

kinetics are based on a generic scheme similar to that of Waters et al (Waters et al., 1990)

for EGF-EGF-R interactions: ligand on the surface of one cell binds reversibly to free

receptors on the surface of immediately neighbouring cells. The resulting bound recep-

tors stimulate activation or inhibition of ligand and receptor production, characterised
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by the slopes, A and F , of the two production functions. In this way, activation (inhibi-

tion) of ligand production corresponds to A > 0 (A < 0), and activation (inhibition) of

receptor production corresponds to F > 0 (F < 0). Surprisingly, lateral induction of lig-

and production (A > 0) has been shown to generate long wavelength patterns (Owen and

Sherratt, 1998; Owen et al., 2000; Wearing et al., 2000), contrary to the prevailing wisdom

that induction should lead to homogeneity (Lewis, 1998). Note that wavelength refers to

the number of cells between peaks in a regular pattern of bound receptor expression.

More recent work on a variety of geometries (strings, squares and hexagons) shows that

longer wavelengths are still predicted even with lateral inhibition of ligand production

(A > 0), provided that there is sufficient receptor upregulation (Webb and Owen, 2003).

This runs counter to current thinking in developmental biology, and contrasts with pre-

vious predictions that only very short wavelength patterns are possible (Collier et al.,

1996). In fact, a connection can be made with the activity-based models of Collier et al

(Collier et al., 1996) when there is a constant level of receptor expression and slow bind-

ing and dissociation — this limit allows for an equivalence of the patterned steady states,

and bifurcations, of both models. When ligand interactions are not slow, the reduction

cannot be made, and the role of the cellular geometry is crucial. In particular, patterns in

hexagonal arrays with lateral inhibition of ligand requires significant activation of receptor

production, or unrealistically strong ligand inhibition.

Figure 1 illustrates the region of parameter space that gives a patterning instability in

square and hexagonal arrays. By patterning instability we mean that a homogeneous

steady state is both stable to homogeneous perturbations and unstable to inhomogeneous

perturbations. This instability leads to pattern formation in the shaded regions: black

indicates instability to wavelength 2 cell patterns (3 in hexagons), lighter shading is for

longer wavelengths. For all geometries, wavelengths increase from left to right, and the

longest wavelengths are predicted for strongest activation of ligand production and the

weakest for receptor production in the A,F > 0 pattern region. Other novel behaviours

include a Hopf bifurcation to temporally oscillating patterns, taking the form of either

standing or travelling waves (Webb and Owen, 2003). This observation is particularly

relevant given the recent interest in the cellular mechanisms involved in somitogenesis.

The pattern region is delimited by four straight lines (T1, H1, Tκ and Hκ, where κ = −1

for strings or squares, and κ = −1/2 for hexagons) and an ellipse (Td) that intersects two

of those lines tangentially (as seen in Boxes 1 and 2). It appears in Figure 1(b) that the

pattern region for hexagons is bounded by a horizontal line T−1/2, but in fact the line has
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a very shallow positive slope in comparison to the line T−1 for squares. This means that

it is harder to get patterns in hexagons with lateral inhibition when receptor activation is

weak or production is inhibited. These lines and curves are derived in (Webb and Owen,

2003), and will be referred to later. Figure 2 shows the results of simulations for different

strengths of ligand and receptor production, corresponding to different locations in this

(A,F) pattern region. The first two columns are for lateral inhibition (A < 0, strongest

inhibition on the left), and the third column is for lateral induction (A > 0). In each

case receptor production is up-regulated (F > 0). As we see, decreasing lateral inhibition

gives longer wavelengths, and for lateral induction the wavelengths are longer still, for all

geometries.

Building on this previous work, in the following we extend the L-R model for juxtacrine

signalling to include inhomogeneous distributions on the cell membrane by modelling

individual membrane segments, rather than whole cells. In section 2 we develop the

model. Section 3 describes a detailed analysis of patterning in strings of cells, and outlines

the features seen for arrays of square and hexagonal cells. Section 4 elucidates the effect

of intra-membrane ligand and receptor diffusion, and the role of polarised trafficking of

new ligand and/or receptors. In section 5 we descibe a number of simulations, including

the role of irregular cellular polarity, clones of defective cells, and irregular geometries.

We conclude with a discussion in section 6.

2 Model development

The development of a segmental model rests upon two key extensions of the L-R model.

The first is to relax the assumption of equal distributions on the cell surface, and allow

different sides of a cell to have different numbers of ligand and receptor molecules. This

requires a model which keeps track of each membrane surface separately. The second

extension is that production may also be localised to a particular side of a cell. Potential

mechanisms for such localisation include local protein synthesis, active transport from

intracellular stores, and selective degradation (Strutt, 2002). Thus production of new

ligand or receptor may be regarded as central, in response to the total number of bound

receptors on all sides, and with distribution to each side according to its proportion of

the total cell surface; or as local, with production in response to the number of receptors

at a particular side directed only to that side. We restrict attention to the formation

of patterns in strings of cells, and square and hexagonal arrays. The labelling schemes

5



for these geometries are illustrated in Figure 3. Note that for simplicity we neglect any

variation in the depth of the string or array of cells.

To extend the original model for juxtacrine signalling to include inhomogeneous distri-

butions on the cell membrane, we divide the membrane of each cell into a finite number

of segments, and interactions between cells only occur on adjacent sides of neighbouring

cells. Our model variables are concentrations of ligand, a(x, t), receptors, f(x, t), and

bound receptors, b(x, t), at spatial position x and time t, with units number of molecules

per cell segment. This is equivalent to number per unit area of cell membrane where each

cell consists of identical sides. The model equations are

da

dt
= −kaaf̂︸ ︷︷ ︸ + kdb̂︸︷︷︸ − daa︸︷︷︸ + Pa(b, 〈b〉)︸ ︷︷ ︸ + Da∆(a)︸ ︷︷ ︸ (1a)

df

dt
=

binding︷ ︸︸ ︷
−kaâf +

dissociation︷︸︸︷
kdb −

decay︷︸︸︷
dff +

feedback︷ ︸︸ ︷
Pf (b, 〈b〉) +

transport︷ ︸︸ ︷
Df∆(f) (1b)

db

dt
=

binding︷︸︸︷
kaâf −

dissociation︷︸︸︷
kdb −

internalisation︷︸︸︷
kib, (1c)

where

A = P̌ ′
a(Nbe), F = P̌ ′

f (Nbe), and P̌u(Nbe) = N(duue + kibe) for u = a, f, (2)

and the parameters ka, kd, ki, da, df , Da and Df are all real scalars. Hats indicate the

number on the adjacent membrane segment of a neighbouring cell. The first three terms

of each equation represent ligand-receptor binding between adjacent segments, linear de-

cay, and bound receptor internalisation. For example, the term −kaaf̂ represents the

juxtacrine binding of free ligands to neighbouring free receptors, according to the law of

mass action with rate constant ka. Diffusive transport of proteins between segments of the

same cell is included, ∆(u) where u is either a or f . Since we will consider a finite number

of segments, ∆(u) will be a discretised approximation. Thus, ∆(ui) = ui+1 − 2ui + ui−1,

where ui is the quantity of u on side i and i± 1 is calculated modulo the number of sides

on that cell.

We consider production terms, Pu(b, 〈b〉), u = a, f , with a combination of local and global

responses to the numbers of bound receptors on the segment, b, and the total number of

bound receptors on the whole cell, 〈b〉 =
∑N

i=1 bi:

Pu(b, 〈b〉) =
P̌u(〈b〉)

N

(
1− γu

(〈b〉 −Nb)

〈b〉

)
, (3)
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where P̌u(〈b〉) is the total production for the cell, γu is a parameter used to vary the

relative contribution of the local and global responses and N is the number of sides. For

γu = 0, production is purely global, but when γu 6= 0, each side receives a weighted

proportion of the total production for the cell. When γu > 0, the bias is toward the sides

with the most bound receptors. If γu < 0, the opposite is true, and the side with the least

bound receptors receives the largest proportion of the total production. The particular

forms we take for Pa and Pf are described in Appendix D.

We use linear analysis similar to that by Turing (Turing, 1952) to investigate patterning

instabilities in this system. This analysis is similar to that used previously (Webb and

Owen, 2003), but for completeness we include the details in Appendices A and B.

3 Analysis of Pattern Formation

Linearisation and substitution of perturbations of the form u = ū exp(αt + iλ · x) gives

a characteristic equation, P (α, λ), whose roots determine the growth rate α for the

wavenumber λ. Here, u = a, f, b, and for a string of cells λ = 2π/ω; for squares and

hexagons λ = (λ1, λ2), where λ1 = 2π/ω1 and λ2 = 2π/ω2 are the wave lengths for the

two directions j and l. In Appendix A we consider patterning bifurcations in detail for a

string of cells, and demonstrate similar features for square and hexagonal arrays.

3.1 String of cells

We first consider where the homogeneous equilibrium is stable in the absence of any spatial

effects. In Appendix A.1 we show that two lines in the (A,F) parameter space, labelled

T1 and H1, delimit the region of stability — see equation (13). Both T1 and H1 have

negative slope and intersect the axis at a positive value of F . The homogeneous steady

state is stable if F lies below both of these lines. We remark that these lines are exactly

the same as those found for homogeneous stability in the original L-R model (Webb and

Owen, 2003).
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Instability to inhomogeneous perturbations

We now consider where the steady state is unstable to patterned perturbations. First,

we consider the case when the bifurcation arises for a period two pattern of alternating

high and low cell fates. Conveniently, the patterning bifurcations occur on the lines T−1

and H−1 (equation (15)) and the equilibrium is unstable to inhomogeneous perturbations

when F > min{T−1, H−1}. Note that the same lines appear in the original model, and

that these lines are precisely the reflection in the F axis of the lines T1 and H1 that govern

homogeneous stability.

Other bifurcations are possible (i.e. for wavelengths other than two). We show in Ap-

pendix A.1 that a patterning bifurcation occurs along an ellipse Td in A-F space that

intersects the two lines T±1 tangentially. It turns out that this bifurcation, together with

the lines H±1, appears to give all the biologically relevant conditions for pattern formation

in the A-F plane. The points at which the two lines T±1 touch the curve Td are, respec-

tively (Ap, T1(Ap)) and (−Ap, T−1(−Ap)). See Figure 4 for a qualitative illustration of

these curves in the (A,F) plane.

So far, we have seen that the pattern region in A− F space is bounded by four straight

lines (T1, H1 for stability to homogeneous perturbations and T−1, H−1 for instability to

inhomogeneous perturbations) and an ellipse Td — which is the same configuration of lines

and curves as in the original model, except that the ellipse has a slightly different form

(Webb and Owen, 2003). Crossing the line H−1 corresponds to a Hopf bifurcation, but we

have been unable analytically to identify other possible Hopf bifurcations. However, we

expect similar behaviour as in the original model in which the other bifurcations are only

possible for very strong (positive and negative) receptor feedback — stronger than can be

expected biologically for our parameter set. We therefore expect that these bifurcations

are not significant in the sides model, and that, for realistic parameter values, patterns

are only predicted in the region defined by the lines T±1, H±1 and curve Td. This is

supported by numerical calculations of the unstable modes — the results are illustrated

in Figure 5(a): patterns are predicted in the shaded region, areas that are not shaded are

either unstable to homogeneous perturbations or stable to inhomogeneous perturbations.

In summary, the homogeneous steady state is stable to homogeneous perturbations when

F < T1 and F < H1. Within this region, pattern formation is predicted for F >

min{T−1, H−1, Td}. There are four possible geometries for this region, according to the

relative slopes of the lines T−1 and H−1, and the location of their point of intersection.
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For df > da, the line T−1 is steeper than H−1, and they intersect for F > 0, with A taking

either sign. For df < da, the line H−1 is steeper than T−1, and these two lines intersect

for F < Tκ and A < 0. Thus, as in the original model, there is a region of A and F space

in which the steady state is unstable to patterns via a Hopf bifurcation, and limit cycle

oscillations are predicted; this is when F < T−1 and F > H−1. Numerical investigation

shows that these oscillations take the form of either a standing wave, in which each cell

oscillates out of phase with its neighbours in a period 2 pattern, or a travelling wave

(illustrated in Figure 6 for a string of cells). Note that as the wave propagates it causes

an alternating polarisation of activation between the two sides of a cell. We remark that it

is also possible to cross directly through a Hopf for F > 0 via the line H−1 (see Figure 4).

3.2 Square and Hexagonal arrays

The labelling schemes for square and hexagonal arrays are illustrated in Figure 3(b) and

(c), respectively. It is straightforward to calculate the stability matrix for these systems.

However, due to the scale of this problem — a 12×12 matrix for squares and 18×18 for

hexagons — we are restricted to the numerical calculation of the eigenvalues to determine

the stability of the homogeneous steady state in the (A,F) plane. Figure 5(b) and (c)

shows the results of these calculations for the two geometries — pattern formation is

predicted in the shaded regions. In general, the pattern region for squares/hexagons is

qualitatively similar to that for strings — being bounded by four straight lines and a curve

that sits tangentially between two these lines — except that the corresponding curve Td

for squares sits just below that for strings in A − F space, and the line delimiting the

lower part of the pattern region for hexagons has a much shallower slope. It appears in

Figure 5(b) that the pattern region for squares is bounded by the same four straight lines,

T±1 and H±1, as strings. In Appendix A.2, we show that this is indeed the case.

As in the original model, the pattern region for hexagons is smaller than that for strings/squares

(see Figure 5(c)). This arises because the line delimiting the lower part of the pattern

region for hexagons has a much shallower slope compared to that for strings/squares.

Obtaining an expression for this line for hexagons is difficult. However, it appears that

the upper boundaries are the same for all geometries — given by T1 and H1.

As in strings, spatiotemporal oscillations are predicted for squares in the region bounded

by the lines T−1 and H−1 when df < da. Characterising these behaviours analytically for

hexagons is difficult because we cannot solve explicitly for the corresponding lines. How-
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ever, numerical investigation of the (A,F) parameter space shows that such an oscillatory

regime does indeed exist for hexagons when there is weak or negative receptor feedback

and very strong negative ligand feedback.

4 Intra-membrane protein diffusion and polarity

With no intra-membrane ligand diffusion, Da = 0, the ellipse Td is not defined. In this

case, the pattern region is smaller, being the region in (A,F) space bounded by the four

straight lines T±1, H±1. In particular there is no pattern formation for activation of ligand

production (A > 0). Figure 7 shows how increasing Da increases the size of the pattern

region and makes pattern formation with lateral induction possible. As Da increases, the

ellipse Td becomes flatter, and the tangential intersections with the lines T±1 occur for

smaller F , making the patterning region larger. In addition, as Df increases, the centre

and bottom of the ellipse are shifted slightly in the positive F direction. For further

details see Appendix B.

We remark that the original model may be recovered if intra-membrane bound receptor

diffusion is also included with the coefficient Db, and the limit Da, Df , Db →∞ is consid-

ered. It is important to identify this requirement, even though it seems highly unlikely

given that bound receptors are connected to two cells via ligand. However, even for rapid

equilibriation of ligand and free receptor between the sides (Da, Df →∞) we still obtain

very similar expressions to the original model (see Table 1). These show that the top

of the ellipse is basically the same, but the centre and bottom are raised slightly up the

F -axis in the sides model.

Our calculations show that the same trends are observed for patterns in squares and

hexagons when intra-membrane ligand diffusion, Da, is varied: when Da = 0, there is

no pattern formation for A > 0; increasing Da enlarges the pattern region about A = 0

and makes patterns with A > 0 possible. In addition, decreasing Da makes it easier to

get patterns for hexagons via lateral inhibition (A < 0), with negative receptor feedback

(F < 0), by making the lower part of the pattern region steeper — see Figure 8. The

thin diagonal lines indicate the bifurcations; the solid line is when Da = 0, and the arrows

indicate the diection of increasing Da. In the limit Da, Df , Db →∞, this lower boundary

coincides exactly to that derived for hexagons in the original L-R model (Webb and Owen,

2003) (line T−1/2 in Figure 1(b)).
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We now consider how altering the bias in ligand and receptor production, γa, γf 6= 0,

affects patterning. For the case of biased receptor production, γf 6= 0, we only observe

that the centre and bottom of the ellipse are shifted slightly along the F -axis. However,

when biased ligand production is included, γa 6= 0, the ellipse loses its symmetry about

the F -axis. Figure 9 shows that biased ligand production modulates the patterning region

by tilting the ellipse. Consequently, the pattern region for A > 0 becomes smaller when

the bias is towards the side with the most bound receptors (γa > 0), and larger for an

opposite bias in ligand production (γa < 0) (compare dashed and solid ellipse in Figure 9

— dashed ellipses show how the patterning bifurcations move when γa = ±1).

4.1 Pattern wavelengths

Intra-membrane transport and biased ligand production also modulate the patterning

wavelengths. The effects are illustrated in Figure 9 for a string of cells. The fastest growing

modes are found via numerical calculation of the wavelengths, ω, which give the largest

real parts for the roots of the dispersion relation P (α). They are illustrated on a grey scale,

in which black indicates wavelength 2 cell patterns and lighter shading indicates longer

wavelengths. The solid diagonal lines and ellipses are the analytically derived bifurcations,

and the rays emanating from the ellipses indicate the transitions of the fastest growing

mode when γa = 0. The dashed ellipses show the bifurcations when γa = ±1, and the

shadings indicate the transitions between fastest growing modes. In parts (a) and (b)

γa = −1, in (c) and (d) γa = 1. As the figure demonstrates, increasing Da enlarges the

patterning region but it also makes longer wavelengths more likely (compare left and right

columns). With no intra-membrane ligand diffusion, Da = 0, only short wavelengths are

predicted. Altering the bias in ligand production also modulates patterning wavelength

(compare upper and lower rows). We see that enhancing ligand production on the side

with the most bound receptors (γa > 0) shortens predicted wavelengths, whereas an

opposite bias for ligand increases patterning wavelengths. The pictures for squares and

hexagons are similar — Figure 5(b) and (c) shows the variations of fastest growing modes

in (A,F) space for these geometries in the case of unbiased global feedback and when

intra-membrane ligand diffusion is Da = 0.1.

Figure 10(a)–(c) illustrates the effects of different combinations of these biased produc-

tions in strings of cells. Each simulation is for the same strengths of lateral inhibition

and positive receptor production. In each case the boundary conditions are periodic, and

the initial conditions are a small perturbation to the left-hand side of the first cell. We
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see that even with unbiased global production there are still differences between sides

due to ligand-receptor binding (part (a)). Enhancing ligand production on the side with

the most bound receptors (γa > 0) increases differences between sides and shortens pre-

dicted wavelengths (part (b)). In addition, opposite biases (part (c)) increase pattern

wavelengths, as predicted.

We can also generate a regular pattern of polarity across the lattice, in which each cell has

the same orientation. To generate these patterns in a string (Figure 10(d)), we simply need

γa < 0 and γf > 0 and parameters within the region of stability in the (A,F) plane. This

leads to greater receptor production on the side with the most bound receptors, allowing

still greater increases in bound receptor numbers, and stimulates ligand production on the

adjacent side of the neighbouring cell. Simulations indicate that opposite biases, as defined

in terms of (3), do not have the same effect in two-dimensions. A simple mechanism that

can establish regular two-dimensional polarity is to compare opposite sides of a single cell,

rather than compare each side to the average across the whole cell:

P i
u(b, 〈b〉) =

P̌u(〈b〉)
N

(
1 + γu

bi − bj

bi + bj

)
, where j =

(
i +

N

2

)
mod N. (4)

Here, P i
u indicates the part of production that is directed to the ith side. With this form,

choosing γa = −1 and γf = 1 achieves the desired effect. In Figure 11, we have explored

how defects in signalling in a small group of cells can propagate into the surrounding

region of square cells that have regular polarity. Such defects have a direct experimen-

tal analogue, where they result in a small number of characteristic behaviours, such as

cruciform or spiral arrangements.

5 Simulations in regular and irregular 2-dimensional

arrays

In two dimensions, the predicted feature of increasing wavelengths with A is observed,

and we can also examine the effect of irregular arrays. In Figure 12, we simulate (1) on

hexagonal arrays with varying random perturbations of a regular structure — Appendix E

includes details of the extension of (1) to cater for such geometries. Relatively small struc-

tural perturbations allow the maintenance of regular patterns, but larger perturbations

lead to some irregularities.

As illustrated in (Owen, 2002), the L-R model with homogeneous cells supports travelling
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waves connecting inactive and active homogeneous steady states. When the inactive state

is unstable to inhomogeneous perturbations, wave speeds are governed by linearisation

ahead of the wave, and small perturbations ahead of the wave (such as would be caused

by stochastic effects) become amplified so that the wave is lost. When the inactive state

is stable, the wave speed is governed by nonlinearities, as in the bistable reaction diffusion

equation. Importantly, small perturbations ahead of the wave decay. When the active

state is unstable to spatial perturbations, this provides a robust mechanism for laying

down a regular pattern, since random pertubations of the active state tend to lead to

irregular states, even though there is a characteristic length scale. Figure 13 shows three

simulations illustrating these features of patterning and wave propagation in the extended

L-R model with inhomogeneous protein distributions and irregular geometries. The first

row shows the evolution from a random perturbation of the active homogeneous steady

state. An irregular pattern develops, but it has a characteristic length scale. The second

row illustrates the propagation of a wave connecting stable homogeneous steady states

— behind the wave front a regular two dimensional pattern evolves. The third row

illustrates how juxtacrine waves can propagate around clones of non-signalling cells. This

is in contrast to suggestions that juxtacrine relay mechanisms may be ruled out by such

experiments (Strutt, 2002).

6 Discussion

Many patterns in early development have a very small spatial scale, and there is much

evidence that a crucial role is played by juxtacrine signalling, whereby cells signal directly

to their neighbours via membrane-bound proteins (Fagotto and Gumbiner, 1996). Previ-

ous models for juxtacrine signalling have considered cells as single entities, and assumed

homogeneous distributions of proteins and receptors on the cell membrane. However, in-

homogeneous distributions are common, and epithelial structures are often oriented with

a certain polarity: for example, cuticular structures in insect epithelia such as hairs, bris-

tles or ridges all orient in the same direction (usually posteriorly or distally) (Wehrli and

Tomlinson, 1995; Eaton, 1997). In addition, production of new transmembrane proteins

may also be inhomogeneous. Building on previous work (Owen and Sherratt, 1998; Wear-

ing et al., 2000; Webb and Owen, 2003), in this paper we have determined the role of

inhomogeneous ligand and receptor distributions in juxtacrine signalling.

The specific mathematical model that we consider was originally developed in (Owen
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and Sherratt, 1998), and provides a generic representation for juxtacrine signalling in an

epithelial sheet. This model assumes cellular homogeneity, with model variables being the

numbers of ligand molecules, free receptors, and bound receptor-ligand complexes on the

surfaces of cells in fixed cellular arrays. To include inhomogeneous distributions on the cell

surface, we divided the membrane into a finite number of segments, and tracked protein

numbers on each segment. We have considered production terms with a combination

of responses to local and global measures of bound receptors, and we also allow linear

diffusive transport between segments of the same cell. We find that intra-membrane

ligand diffusion is critical for the generation of long wavelength patterns. Moreover, with

no ligand transport, there is no pattern formation for lateral induction. Increasing intra-

membrane ligand diffusion enlarges the patterning region and makes longer wavelengths

more likely. It is important to verify that this occurs for relevant parameter ranges. For

example, significant enlargement of the pattern region due to transmembrane diffusion is

seen for Da = 0.01 (see Figure 8), which is well within the range for biologically relevant

parameter values (see Appendix D). The original model (Owen and Sherratt, 1998) may

be recovered if intra-membrane bound receptor diffusion is also included, and the limit

of instantaneous equilibriation of ligand, free and bound receptors between the sides is

considered. However, this kind of limiting behaviour seems highly unlikely given that

bound receptors are connected to two cell membranes via ligand binding.

When ligand transport is included, our analysis confirms the trends in pattern wavelength

previously observed for patterns when protein distributions are homogeneous on a single

cell — lateral inhibition with weak receptor upregulation gives short range patterns, these

give way to longer patterns as receptor production is increased, and lateral induction

can give patterns with much longer wavelengths. We have also explored the effects of

different combinations of biased ligand and receptor production. Biased production of

ligand modulates the patterning region, although this has less effect than varying intra-

membrane ligand diffusion. Enhancing ligand production on the side with the most bound

receptors enhances differences between sides and shortens predicted wavelengths, whereas

an opposite bias in ligand production has a homogenising effect and increases pattern

wavelengths. We find that even unbiased global production still gives differences between

sides due to ligand-receptor binding. In addition, opposite bias for ligand and receptor

can lead to the more recognised type of polarity, in which a field of cells have the same

orientation. Such patterns have a direct analogue to the coherent arrays of defined polarity

in bristles and hairs in Drosophila (Eaton, 1997). However, simple opposite biases in two

dimensional arrays of cells do not lead to regular polarity. Rather, we must compare pairs
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of opposite sides, instead of comparing a side with the average binding on a whole cell.

More complex mechanisms that may lead to such behaviour include diffusible intracellular

modulators that activate or inhibit protein insertion at distant membrane locations. It

is also possible that a Turing instability can lead to a polarized pattern on a single cell,

and this behaviour has indeed been observed in a continuous activator-inhibitor model for

Min proteins in E.Coli (Meinhardt and de Boer, 2001). However, it is important to note

that, without such a diffusion driven instability, regular polarity requires biased protein

trafficking (see Appendix C).

We have also investigated the role of waves in the initiation of regular patterns. Random

perturbations of the active homogeneous steady state lead to an irregular pattern with

a characteristic length scale. In contrast, pattern initiation by a wave of activation can

lead to more regular structures — in particular, bistability makes this process robust to

perturbations ahead of the wave front. An important prediction is that juxtacrine waves

can propagate around clones of non-signalling cells, contrary to suggestions that such

clones should lead to long range disruption of relay induced patterning (Strutt, 2002).

We found in (Webb and Owen, 2003) that cellular geometry is crucial for patterning, and

similar trends are also observed here. In particular, pattern formation via lateral inhibition

in hexagonal arrays requires significant activation of receptor production, or unrealistically

strong lateral inhibition — however, these patterns are made more likely when there is very

little or no intra-membrane ligand diffusion (see Figure 8). Patterning for irregular cell

shapes with varying numbers of sides may be constrained by similar restrictions. Appendix

E extends the segmental model (1) to a general framework for irregular geometries. In this

paper we have explored the effect of perturbing regular cell shapes, but retaining a fixed

number of sides. Future work will relax this assumption, and will determine the effect of

cell side number and irregularity on patterning bifurcations. Further natural extensions

are the inclusion of cell division, death and cell movement. Important mathematical

questions also arise when temporal delays due to gene transcription are included, and a

combination of paracrine and juxtacrine signalling will lead to a detailed understanding

of cellular signalling and applications to specific developmental situations.
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A Analysis of patterning bifurcations

Linearizing (1) about the homogeneous steady state by setting a = ae + ã, f = fe + f̃ ,

and b = be + b̃, gives (dropping tildes for notational simplicity)

∂a

∂t
= −kaafe − kaaef̂ + kdb̂− daa

+
1

N
A〈b〉+

γaP̌a(Nbe)

N2be

(Nb− 〈b〉) + Da∆(a) (5)

∂f

∂t
= −kaâfe − kaaef + kdb− dff

+
1

N
F〈b〉+

γf P̌f (Nbe)

N2be

(Nb− 〈b〉) + Df∆(f) (6)

∂b

∂t
= kaâfe + kaaef − kdb− kib, (7)

where

A = P̌ ′
a(Nbe), F = P̌ ′

f (Nbe), and P̌u(Nbe) = N(duue + kibe) for u = a, f. (8)

We will show that the key regulators of model behaviour are the parameters A and F ,

which represent the slopes of the feedback functions at the homogeneous steady state.

We look for patterned solutions of the form a = ā exp(αt+iλ·x) etc, where α is the growth

rate of perturbations with wave number λ. For a string of cells λ = 2π/ω; for squares and

hexagons λ = (λ1, λ2), where λ1 = 2π/ω1 and λ2 = 2π/ω2 are the wave lengths for the

horizontal and vertical directions, respectively. Substitution into the linearized equations

and collecting terms in matrix form gives

M(α; λ)(ā1, .., āN , f̄1, ..., f̄N , b̄1, ..., b̄N)T = 0. (9)

The eigenvalues α(λ) of M(α; λ) determine the stability of the homogeneous steady state.

The steady state (ae, fe, be) must be stable to spatially uniform perturbations, that is all

α(λ) in (9) have Re α(0) < 0. For patterning, this state must become unstable to spatial

disturbances, that is Re α(λ) > 0 for some λ 6= 0.
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A.1 String of cells

For a one dimensional string, in which each cell has left and right sides represented by

subscripts l and r respectively, we have ∆(ul) = ur − ul = −∆(ur) and

M(α; λ) =


−kafe − da −Da − α Da 0 · · ·

Da −kafe − da −Da − α −kaaee
iλ · · ·

0 −kafee
−iλ −kaae − df −Df − α · · ·

−kafee
iλ 0 Df − α · · ·

0 kafee
−iλ kaae · · ·

kafee
iλ 0 0 · · ·

−kaaee
−iλ A

2
+ γaPa(2be)

4be

A
2
− γaPa(2be)

4be
+ kde

−iλ

0 kde
iλ + A

2
− γaPa(2be)

4be

A
2

+ γaPa(2be)
4be

Df kd + F
2

+
γf Pf (2be)

4be

F
2
− γf Pf (2be)

4be

−kaae − df −Df − α F
2
− γf Pf (2be)

4be

F
2

+ kd +
γf Pf (2be)

4be

0 −kd − ki − α 0
kaae 0 −kd − ki − α


.

Expanding the determinant gives a sixth order characteristic equation, P (α, λ). All the

coefficients of P (α, λ) are real, and the wave number λ is mapped to K = cos(λ) ∈ [−1, 1]

— note that the same mapping is observed for strings in the original model.

Stability to homogeneous perturbations

We first consider where the homogeneous equilibrium is stable in the absence of any spatial

effects. This is equivalent to imposing λ = 0, which gives K = 1. P (α, K = 1) can be

written as a product of two cubic polynomials in α, which we denote q(α) and r(α;A,F),

given by

r(α;A,F) = α3 + a1α
2 + a2(A,F)α1 + a3(A,F), (10)

where

a1 =kafe + kaae + da + df + ki + kd > 0

a2(A,F) =kafe(df + ki −A) + kaae(da + ki −F) + (da + df )(kd + ki) + dadf (11)

a3(A,F) =dakaae(ki −F) + dfkafe(ki −A) + dfdf (ki + kd),
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and q(α) = α3 + b1α
2 + b2α

1 + b3, where

b1 = a1 + 2(Df + Da) (12a)

b2 = a2(A = 0,F = 0) + 4DaDf

+2Df (kafe + da + kd + ki) + 2Da(kaae + df + kd + ki) (12b)

b3 = a3(A = 0,F = 0) + 4DaDf (ki + kd)

+2Df (kafeki + da(kd + ki)) + 2Da(kaaeki + df (kd + ki)). (12c)

All the coefficients of q(α) are positive, so that all roots of this cubic have negative real

part. It remains to investigate conditions on r(α;A,F) for stability of the homogeneous

steady state. All the roots of r(α;A,F) have negative real part if a1 > 0, a3(A,F) > 0

and a1a2(A,F) − a3(A,F) > 0. The first of these always holds, and the remaining two

conditions define lines in the (A,F) parameter space which delimit the region of stability.

Setting a3(A,F) = 0 and a1a2(A,F)− a3(A,F) = 0, gives respectively

T1 : F =ki +
df (ki + kd)

kaae

+
kifedf

daae

− dffeA
daae

H1 : F =ki + da +
dffe

ae

+
dadf + (da + df )(kd + ki)

kaae

(13)

+
d2

a(df + kd + ki) + daka(dffe + daae) + kakife(a1 − df )

kaae(a1 − da)

− fe(a1 − df )A
ae(a1 − da)

.

T1 and H1 have negative slope and intersect the axis at a positive value of F . The steady

state (ae, fe, be) is stable if F lies below both of these lines. These lines are exactly the

same as those found for homogeneous stability in the original L-R model (Owen and

Sherratt, 1998; Webb and Owen, 2003).

Instability to inhomogeneous perturbations

We now consider where the steady state is unstable for some λ 6= 0. Recall that K ∈
[−1, 1] is the cosine of the wavenumber λ. Thus, for instability to spatial disturbances,

we require at least one root of P (α) to have positive real part for some K in this interval.
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First, we consider the case when the bifurcation arises at K = −1. This value of K

corresponds to imposing λ = π, which gives a period 2 pattern of alternating high and

low cell fates. On making this substitution for K in P (α), it can be shown that this

equation again decomposes into a product of two cubic equations. It turns out that the

same q(α) and r(α) appear, but with −A substituted in r(α) instead of A. That is, we

get

P (α, K = −1) = q(α)r(α;−A,F). (14)

Since all the roots of q(α) have negative real part, then the conditions for instability are

either a3(−A,F) < 0 or a1a2(−A,F) − a3(−A,F) < 0. The patterning bifurcations

therefore occur on the following lines

T−1 : F =T1(−A) = ki +
df (ki + kd)

kaae

+
kifedf

daae

+
dffeA
daae

H−1 : F =H1(−A) = ki + da +
dffe

ae

+
dadf + (da + df )(kd + ki)

kaae

(15)

+
d2

a(df + kd + ki) + daka(dffe + daae) + kakife(a1 − df )

kaae(a1 − da)

+
fe(a1 − df )A
ae(a1 − da)

,

and the equilibrium is unstable to inhomogeneous perturbations when F > min{T−1, H−1}.
Note that the same lines appear in the original model when K = −1.

P (α) does not decompose like this for general K, so it is difficult to determine all bifurca-

tions analytically for general parameter values. However, there is a special case which is

more amenable to analysis, namely for bifurcations when P (0, λ) = 0, which corresponds

to a real eigenvalue crossing the imaginary axis. This bifurcation and the lines H±1 appear

to give all the biologically relevant conditions for pattern formation in the A-F plane.

Regions and Bifurcations for P(0) = 0

Q(K) = P (0) is a quadratic function in K. For notational simplicity, we have set the

local feedback parameters to zero, γa, γf = 0. However, similar results follow when these
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are non-zero. Q(K) = ρ1K
2 + ρ2K + ρ3, where

ρ1 = 2k2
afeDakiae(dfF + 2DfF − 2Dfki),

ρ2 = −kafedfA((df + 2Df )(da + 2Da)(ki + kd) (16)

− kika(ae(da + 2Da) + fe(df + 2Df ))),

ρ3 = −((df + 2Df )(da(ki + kd) + kikafe) + kadaaeki)

((da + 2Da)(Fkaae − df (ki + kd)− kakiae)− kikadffe).

The condition for homogeneous stability ensures that Q(1) > 0, which means that the

only possible patterning bifurcations from Q(K) are

• Q(K) has a double root from a minimum at some Kc ∈ [−1, 1]: Q(Kc) = Q′(Kc) =

0,

• Q(K) has a maximum, or a minimum for Kc 6∈ [−1, 1], and there is a single root at

K = −1, given by Q(−1) = 0.

The calculation for the second case has already been done above when analysing P (−1) =

0 — that is, the bifurcation Q(−1) = 0 occurs on the line T−1. We now find conditions

on A and F for a double root in [−1, 1]. The critical point of Q(K) is at:

Kc =
dfA

4Daae(F(df + 2Df )− 2Dfki)

(
(ki + kd)(2Da + da)(df + 2Df )

kaki

+fe(df + 2Df ) + ae(da + 2Da)

)
. (17)

When F > Tκ = 2Dfki/(df + 2Df ), the coefficient of K2 is positive, and Kc corresponds

to a minimum. This minimum value is in [−1, 1] when A and F lie in the region bounded

by the lines K±1:

K±1 : F =
2Dfki

df + 2Df

∓ Adf

4Da

(
(da + 2Da)(ki + kd)

kaaeki

+
fe

ae

+
da + 2Da

df + 2Df

)
. (18)

Setting the discriminant of the quadratic Q(K) to be equal to zero gives an ellipse in

A−F space that corresponds to the locus of points where the quadratic has double roots.
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The expression for Td is rather lengthy, and we omit it for brevity. In the case γa = γf = 0,

Td is symmetric about the F -axis. It has a center at:

Ac = 0, Fc =
ki

2
+

df (ki + kd)

2aeka

+
kiDf

df + 2Df

+
kidffe

2ae(da + 2Da)
. (19)

Moreover, straightforward examination shows that Td sits wholly within the upper-half

plane, and intersects the F -axis at

Fu = ki +
df (ki + kd)

aeka

+
dffeki

ae(da + 2Da)
, and Fl = Tκ < Fu. (20)

The ellipse Td intersects the two lines T±1 tangentially — see Figure 4. In fact, for

any fixed K, Q(K) gives a straight line in A − F space, and each of these straight line

contours are tangent to Td. The points at which the two lines T±1 touch the curve Td are,

respectively

(Ap, T1(Ap)) and (−Ap, T−1(−Ap)) where (21)

Ap = {4Daki((da(ki + kd) + fekaki)(df + 2Df ) + kakiaeda)}

/{2kafeki(Df (da + 2Da) + Da(df + 2Df ))

+(daae + fedf )(da + 2Da)kika

+da(ki + kd)(da + 2Da)(df + 2Df )}. (22a)

The minimum point of Q(K) is in [−1, 1] when F > max{Km, Kp}, and the corresponding

minimum values Q(Kc) are less than zero when F lies above the upper part of the ellipse

Td. See Figure 4(a)-(c) for a qualitative illustration of these curves in the (A,F) plane.

So far, we have shown that the pattern region in A−F space is bounded by four straight

lines (T1, H1 for stability to homogeneous perturbations and T−1, H−1 for instability to

inhomogeneous perturbations) and an ellipse Td — which is the same configuration of

lines and curves as in the original model. For df > da, the line T−1 is steeper than H−1,

and they intersect for F > 0, with A taking either sign. For df < da, the line H−1 is

steeper than T−1, and these two lines intersect for F < Tκ and A < 0. Thus, there is

a region of A and F space in which the steady state is unstable to patterns via a Hopf

bifurcation, and limit cycle oscillations are predicted; this is when F < T−1 and F > H−1.
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A.2 Square and Hexagonal arrays

It appears in Figure 5(b) that the pattern region for squares is bounded by the same

four straight lines, T±1 and H±1, as strings. In fact, on substituting λ = 0 and λ = π

into M(α, λ) for squares, det(M) simplifies so that the 12th order polynomial again de-

composes, this time into a 9th order part not involving A and F , and the same cu-

bics r(α;±A,F) defined by (10,11). Thus, we do indeed get the same bifurcation lines

T±1, H±1.

B The role of intra-membrane protein diffusion and

polarity

B.1 Pattern region

We can see by looking at (16) that with no intra-membrane ligand diffusion, Da = 0,

Q(K) becomes simply linear, and the ellipse Td is not defined. In this case, the pattern

region is smaller, being just the region in (A,F) space bounded by the four straight

lines T±1, H±1, and in particular there is no pattern formation for activation of ligand

production (A > 0). Figure 7 shows how increasing intra-membrane ligand diffusion,

Da, increases the size of the pattern region and makes pattern formation with lateral

induction possible. In addition, intra-membrane receptor diffusion, Df , also modulates

the patterning region by shifting the ellipse Td along the F -axis.

We now look in detail at how varying these parameters affects the possible the size of

the patterning region, namely the possible arrangements of the lines K±1 and the points

Fu,Fl,Fc and Ap, and the corresponding wavelengths. Recall that the expressions for the

lines T±1, H±1 do not involve Da or Df . We consider this case by case below:

• Fu = Fu(Da): Fu is a decreasing, saturating function of Da. Fu(0) is equal to

T±1(A = 0) = ki + df (ki + kd)/aeka + dffeki/aeda and Fu → ki + df (ki + kd)/aeka

as Da →∞.

• Fl = Fl(Df ): Fl is an increasing, saturating function of Df ; Fl(0) = 0 and Fl → ki

as Df →∞.
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• Fc = Fc(Da, Df ): is an increasing (decreasing), saturating function of Df (Da);

Fc → ki + df (ki + kd)/2aeka as Da, Df →∞.

• K±1 = K±1(Da, Df ): both of these lines intersect the F -axis at Fl. When Da = 0,

they both coincide with the vertical line A = 0, and their slopes become more

shallow as Da and Df increase.

• Ap = Ap(Da, Df ): Ap is an increasing (decreasing), saturating function of Da (Df );

Ap(Da = 0) = 0 and Ap → (2k2
i (kafe + da) + 2dakd)/(ki(2kafe + da) + dakd) as

Da, Df →∞.

These results are summarised in Table 1, and illustrated in Figure 7 — part (a) shows

the pattern region when Da = 0; parts (b) and (c) show the effect of increasing Da, with

Df fixed; and, parts (d)-(f) show the effect of increasing Df . In each case, the pattern

region is shaded.

We now consider how altering the bias in ligand and receptor production, γa, γf 6= 0,

affects patterning. For biased receptor production, the centre and bottom of the ellipse

are shifted along the F -axis. In particular, for a string of cells, the expressions for its

centre and intersections with the F -axis are now, respectively,

Ac = 0, Fc = Fc +
dfγfPf (2be)

4be(df + 2Df )
, (23)

and

Fu = Fu, and Fl = Tκ +
dfγfPf (2be)

2be(df + 2Df )
. (24)

However, when biased ligand production is included, γa 6= 0, the ellipse loses its symmetry

about the F -axis and these expressions do not simplify so easily. Instead, we see by looking

at Figure 9 that biased ligand production modulates the patterning region by tilting the

ellipse. The pattern region for A > 0 becomes smaller when γa > 0, and larger for

γa < 0 (compare the dashed and solid ellipses in Figure 9 — dashed ellipses show how

the patterning bifurcations move when γa = ±1).

C Regular polarity requires biased production

Consider opposite sides of a single N sided cell, labelled by subscripts l and r for left

and right, with periodic boundary conditions, and without biased production or intra-
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membrane diffusion. The steady state equations yield

fj =
(kd + ki)bj

kaai

, i, j ∈ {r, l}. (25)

Substituting these expressions into the equations for ligand and free receptor on these

sides, gives four equations for ar, al and br, bl. When the single cell system is at equilib-

rium, these are given by

0 = −kibj − daai +
Pa(br + bl)

2
, (26)

0 = −kibi − df
(kd + ki)bi

kaaj

+
Pf (br + bl)

2
. (27)

Rearranging the equation (26) for i, j = r, l, and vice-versa, we obtain the expression:

ki(br − bl) = da(ar − al). (28)

We are interested in solutions with ur 6= ul, for u = a, f or b, and without loss of generality

we can assume that br > bl. We therefore require that ar > al. To find another relation,

we now rearrange equation (27) for i, j ∈ {r, l}, to give:

kibl + df
(kd + ki)bl

kaar

= kibr + df
(kd + ki)br

kaal

(29)

Since br > bl and ar > al, then br/al > bl/ar, so that the right-hand side of this expression

is always larger than the left-hand side, and therefore stationary solutions with ur 6= ul do

not exist. The same result follows in a string of cells even when intra-membrane diffusion

is included, but the effect of diffusion on cells with more than 2 sides is unclear. It is

possible that for N large, rapid diffusion in one protein, ligand say, and slow diffusion in

receptor, can lead to a Turing instability to a polarized pattern on a single cell, and this

behaviour has indeed been observed in a continuous activator-inhibitor model for Min

proteins in E.Coli (Meinhardt and de Boer, 2001). However, without such diffusion or

biased production, regular polarity on a length scale of a single cell is not possible with

this ligand-receptor mechanism.

D Parameter values

In our numerical simulations, we use parameter values based on experimental data for

binding of epidermal growth factor to its receptors. Unless otherwise stated, the rate

constants are taken as: ka = 1.8 × 108M−1min−1, kd = 0.12min−1, ki = 0.019min−1,
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da = 0.03min−1, and df = 0.01min−1. An explanation of the choice of each individual

value can be found in the work of Owen & Sherratt (Owen and Sherratt, 1998).

A typical cell diameter is around 10µm, giving a volume of 103(µm)3 = 10−12 litre for

a cubic cell, and thus 1012 cells per litre. Molarity, M, can be written as moles/litre,

or 6× 1023 molecules/litre, or alternatively M= 6× 1023(molecules/cell)(cell/litre)= 6×
1011molecules/cell, with which ka becomes 0.0003 molecules−1cell min−1. For the sides

model, we write ka = 0.0003 (molecules−1side min−1)(cell/side), the last term being simply

1/N , where N is the number of sides per cell, and thus ka = 0.0003×Nmolecules−1side

min−1.

The production terms include a combination of local and global responses to binding:

Pu(b, 〈b〉) =
P̌u(〈b〉)

N

(
1− γu

〈b〉 −Nb

〈b〉

)
, (30)

where P̌u(〈b〉) is the total production for the cell, γu is a homotopy parameter used to

vary the relative contribution of the local and global responses. We require the production

terms in (30) to be non-negative, that is

1− γu
〈b〉 −Nb

〈b〉
≥ 0, (31)

where b is the number of bound receptors on a particular membrane segment, 〈b〉 is the

total number of bound receptors on the whole cell and N is the number of sides. If

b ≶ 〈b〉/N , then this inequality requires that γu satisfies

γu Q
〈b〉

〈b〉 −Nb
. (32)

The limiting cases for these are when b = 0 and b = 〈b〉, respectively, which upon substi-

tution into (32) implies that

γu ∈
[
−1

N − 1
, 1

]
, (33)

putting γu in [-1,1], [-1/3,1], and [-1/5,1] for strings, squares and hexagons. Recall that

γu = 0 gives unbiased global production; γu > 0 enhances production on the side with

the most bound receptors; and γu < 0 gives an opposite bias.

The production functions P̌u(〈b〉) are of Hill form such that

P̌a(〈b〉) =
C1〈b〉m

Cm
2 + 〈b〉m

, and P̌f (〈b〉) = C3 +
C4〈b〉n

Cn
5 + 〈b〉n

. (34)
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Note that inhibition is given by choosing negative exponents — this is equivalent to the

more usual decreasing Hill function form P̌a(〈b〉) = C1C
h
2 /(Ch

2 + 〈b〉h) where h = −m, and

similarly for P̌f (〈b〉).

Some of the parameters C1–C5 can be specified since the functions P̌a and P̌f must

satisfy at least two experimentally testable conditions. For example, in the absence of

ligand there will be some background level of receptor expression. This is one of the

homogeneous steady states of the model (1), giving

P̌f (0) = C3 = Ndfr0, (35)

where r0 is the unstimulated receptor number. Normal equilibrium levels of free and

bound receptors, say fe and be, are often known in particular systems. With these values,

the steady state equation of (1c) yields the normal steady state level of free ligand, ae,

and (1a,b) give the values of the feedback functions at this steady state, that is

ae =
(kd + ki)be

kafe

, P̌a(Nbe) = N(kibe + daae) and P̌f (Nbe) = N(kibe + dffe). (36)

The latter two conditions fix the parameters C1 and C4, to give

C1 = N(kibe + daae)(β
m
a + 1), and C4 = N(kibe + df (fe − r0))(β

m
f + 1), (37)

where we have used C2 = Nβabe and C5 = Nβfbe. Substituting these expressions into

(34) and differentiating, gives

A ≡ P ′
a(Nbe) =

m(kibe + daae)β
m
a

be(βm
a + 1)

, F ≡ P ′
f (Nbe) =

n(kibe + df (fe − r0))β
n
f

be(βn
f + 1)

. (38)

A and F are the key parameters in the control of pattern formation. By fixing βa and

βf , m can be used to vary A and n to vary F . If βa = βf = 1, A and F are linear

functions of m and n. βa, βf < 1, A and F are strictly increasing for m < 0, they each

have a maximum for some m > 0, and then tend to zero as m gets large. For βa, βf > 1,

A and F are strictly increasing for m > 0, and have a turning point for some m < 0.

Unless otherwise stated, we take βa = βf = 1. We assume that the unstimulated receptor

number, r0, and equilibrium levels of free and bound receptors, fe and be, are all 3000 per

cell, or equivalently 3000/N per side.

We vary the intra-membrane diffusion coefficients Da and Df in our analysis and calcula-

tions. If a cell has N sides of length l then the total length of membrane is L = Nl, and

rescaling space by L we have

Duuxx ≈
Du

L2

ui+1 − 2ui + ui−1

l∗2
= D∗

u(ui+1 − 2ui + ui−1),
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where we use the fact that l∗ = 1/N and define

D∗
u =

N2Du

L2
=

Du

l2
.

Thus, transport between sides is given by

D∗
u∆

∗(ui) = D∗
u(ui+1 − 2ui + ui−1),

and dropping the ∗’s gives the form in the main text.

Lauffenberger and Linderman give a range of diffusion coefficients for transmembrane

receptors of 10−11–10−9cm2s−1 = 0.06−6µm2min−1 (Lauffenburger and Linderman, 1996).

If we assume that transmembrane ligand has a similar range of diffusivity, and consider

sides of length 5µm, this gives ranges for the dimensionless parameters D∗
u of 0.0024 –

0.24.

E Irregular arrays

For irregular arrays it is no longer convenient to consider numbers of molecules per side,

but rather molecules per unit length on a given side. The form of the model equations

is precisely (1), but the functional forms and transport terms are slightly modified as

follows. First, we define 〈b〉 to be the average bound receptor density, given by the total

number of bound receptors on a cell divided by the total length of membrane:

〈b〉 =

∑N
i=1 libi∑N
i=1 li

. (39)

Since we are now dealing with concentrations, we need not distribute production terms

by dividing by the number of sides, and the redistribution term alters in the light of the

above definition of average density:

Pu(b, 〈b〉) = P̌u(〈b〉)
(

1− γu
〈b〉 − b

〈b〉

)
. (40)

Thus, if a side of a cell is at the average bound receptor density for that cell, it receives

no bias in production.

Finally, the transport terms are altered to take account of the lengths of the sides:

Du∆(ui) = D+
i (ui+1 − ui) + D−

i (ui−1 − ui), (41)
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with

D+
i =

8Du

(li + li+1)(li−1 + 2li + li+1)
and D−

i =
8Du

(li−1 + li)(li−1 + 2li + li+1)
. (42)

When li ≡ l = L/N , D±
i = Du/l

2 and 〈b〉 = (
∑N

i=1 bi)/N , so rescaling a, f and b by N

leads to the system for regular sides.
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Tables

Table 1: Bifurcation lines and curve for strings of cells in the limit Da, Df → ∞ (right
column), and the corresponding expressions derived in (Webb and Owen, 2003) for ho-
mogeneous cells (left column). We remark that a formal reduction may be made if intra-
membrane bound receptor diffusion, Db, is also included and the limit Da, Df , Db →∞ is
considered. However, this seems highly unlikely given that bound receptors are connected
to two cells via ligand.

Homogeneous cell (Webb
and Owen, 2003)

Sides model (Da, Df →∞)

Fu F = ki +
df (ki+kd)

aeka
F = ki +

df (ki+kd)

aeka

Fc F = ki +
df (2kd+ki)

2aeka
F = ki +

df (ki+kd)

2aeka

Fl F = ki +
df kd

aeka
F = ki

Ap A = 2ki(kafe+da)
2kafe+da

A =
2k2

i (kafe+da)+2dakd

ki(2kafe+da)+dakd

K1,−1 F = ki +
df kd

aeka
± dfA

2kaae
F = ki ± dfA(ki+kd)

2kikaae

Td

F = ki +
df (2kd+ki)

2kaae

± df

2kaae

√
k2

i −
kafeA2

da+kafe

F = ki +
df (kd+ki)

2kaae

±
df (ki+kd)

2kaaeki

√
k2

i −
kafekiA2

(da+kafe)ki+dakd
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Figure 1: Patterning bifurcations and fastest growing modes for the L-R model of (Webb
and Owen, 2003), in which protein distributions are homogeneous on each cell. Part
(a) and box 1 are for arrays of square cells; part (b) and box 2 are for hexagons —
the picture for strings is similar to that for squares. This classification is determined
by linear stability analysis of the homogeneous equilibrium, with parameters A and F
representing the slopes of the ligand and receptor production terms (P ′

a and P ′
f ) at this

steady state. The pattern region is bounded by four straight lines T1, H1, Tκ, Hκ and an
ellipse, Td, that intersects the lines T1 and Tκ tangentially (see zoom boxes) — κ = −1
for strings/squares and κ = −1/2 for hexagons. Wavelengths increase from left to right
(black is for wavelength 2 in strings/squares and 3 in hexagons; light grey indicates
longer wavelengths). Lateral inhibition on ligand can support wavelengths longer than
two provided receptor up-regulation is included. Parameter values and expressions for
T1, H1, Tκ, Hκ and Td are given in (Webb and Owen, 2003).
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Figure 2: Numerical simulations of the juxtacrine model (Webb and Owen, 2003), solved
on a string of 24 cells (a-c), and 24×24 arrays of square cells (d-f) and hexagonal cells
(g-i). For clarity, in (d-i) we show a subset of the full array. We plot the densities of bound
receptors arising from small random perturbations of the homogeneous steady state. The
boundary conditions are periodic. Strong lateral inhibition (first column) tends to give
short range patterns, weaker inhibition (second column) gives longer wavelengths, while
lateral induction (third column) can give patterns with much longer wavelengths. The
parameters are the same as in (Webb and Owen, 2003), except that in (c) m = 1.1, n =
2.5, C2 = 3900, (f) m = 1.8, n = 3, C2 = 2500, (i) m = 1.8, n = 3, C2 = 2500.
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Figure 3: We consider protein and receptor distributions on each side of a cell in one-
dimensional linear arrays and two dimensional arrays of squares and hexagons. Interac-
tions between cells occur on adjacent sides of neighbouring cells. Here we indicate the
spatial labelling schemes, with bold numerals corresponding to the index of each side.
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Figure 4: Lines and curves in (A,F) space that delimit the region for pattern formation in
strings of cells for the model (1). Below the lines T1 and H1, the homogeneous equilibrium
is stable to homogeneous perturbations. (a) With no intra-membrane ligand diffusion,
Da = 0, the patterning bifurcation can only occur with wavelength two, along the lines
T−1 and H−1. (b) With Da 6= 0, patterning can also arise via the ellipse Td, which touches
the lines T±1 tangentially at (±Ap, T1(Ap)), respectively. Pattern formation is possible in
the shaded areas in (c), and for unshaded regions there is no patterning instability. Note
that when Da = 0 (part (a)), it is possible to cross directly to patterns through a Hopf
bifurcation for F > 0 via the line H−1. Expressions for the indicated lines and curves are
derived in Appendix A.
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Figure 5: Examples of patterning bifurcations and fastest growing modes found via nu-
merical calculations of stability for steady states of (1). These bifurcations have been
fully characterised analytically for strings of cells (a) where K = cos(2π/ω), for integer
wavelengths ω, and similar trends are observed for squares (b) and hexagons (c). We use
the functions K from the homogeneous cell case (Webb and Owen, 2003) as convenient
mappings for squares and hexagons: K = (cos(2π/ω1) + cos(2π/ω2))/2 for squares, and
K = (cos(2π/ω1) + cos(2π/ω2) + cos(2π/ω1 + 2π/ω2))/3 for hexagons, where ω1 and ω2

are the integer wavelengths for the horizontal and vertical directions, respectively. Similar
trends in pattern wavelengths and bifurcations are predicted for this model and the case
of cellular homogeneity (see Figure 1 for a comparison). Wavelengths (and K) increase
from left (black) to right, and longer wavelengths are more likely for weak lateral inhi-
bition or lateral induction. The pattern regions for squares/hexagons are qualitatively
similar to strings, except that the equivalent curve to Td cannot be easily characterised
(e.g. see zoom box in (b)). The pattern region is smaller for hexagons, so that weak or
negative receptor upregulation cannot support patterns (for more detail see Figure 8).
The parameter values are as in Appendix D, except that Da = 0.1, Df = 0, and there is
unbiased global production (γa, γf = 0).
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Figure 6: Standing and travelling waves in the juxtacrine model (1) with unbiased global
production (γu = 0) on a string of 30 cells with periodic boundary conditions — for
clarity, we show a subset of 10 cells. We plot the densities of bound receptors at successive
times — ligand/free receptor profiles are similar. The initial conditions are small random
perturbations about the homogeneous equilibrium. The ligand and receptor production
parameters are m = −4.3 and n = −0.5, giving A = −0.431,F = −0.048. The other
parameters are the same as in Appendix D, except that ki = 0.19min−1, Da, Df = 0 and
γa, γf = 0.
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Figure 7: Qualitative illustration of the modulation of patterning by intra-membrane
diffusion, Da and Df . Patterning instabilities are predicted in the shaded regions. The
upper (lower) row shows the effect of increasing Da (Df ), with Df (Da) fixed — the arrows
indicate the direction of increasing Da, Df . With no intra-membrane ligand diffusion,
Da = 0 (part (a)), the ellipse Td is not defined, the pattern region is smaller, and in
particular there is no pattern formation for lateral induction (A > 0). Increasing Da,
makes the ellipse Td more horizontal, and increases the size of the patterning region
(parts (b) and (c)). Increasing Df has less effect (parts (d)-(f)).
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derived bifurcations for strings, and the thin lines indicate the bifurcations for hexagons
(solid line is when Da = 0, dotted lines are for Da = 0.01, 0.05 and 100). Increasing Da

enlarges the size of the pattern region for lateral induction (A > 0), but makes patterns
less likely for lateral inhibition when F < 0. The parameter values are as in Appendix D,
except Df = γa = γf = 0.
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Figure 9: Intra-membrane ligand diffusion, Da, and biased ligand production, γa, modu-
lates patterning in strings of cells. Wavelengths increase from left to right (black is for
wavelength two, light grey is for longer wavelengths). In unshaded regions there is no
patterning instability. The solid diagonal lines and ellipses are analytically derived bifur-
cations (T±1, H±1 and Td), and the solid lines emanating from the ellipses are transitions
of the fastest growing mode when γa = 0. The dashed ellipses show the bifurcations when
γa = ±1, and the shadings indicate the transitions between fastest growing modes. In (a)
γa = −1, Da = 0.01; (b) γa = −1, Da = 0.1; (c) γa = 1, Da = 0.1; (d) γa = 1, Da = 0.1.
The other parameters are given in Appendix D. Increasing Da enlarges the patterning
region and makes longer wavelengths more likely (compare left and right column). Al-
tering the bias in ligand production has less effect on the size of the pattern region but
modulates the length of the predicted wavelengths (compare upper and lower rows).
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Figure 10: Numerical simulations of the juxtacrine model (1), solved on a string of 36
cells with different combinations of biased ligand and receptor production. In (a–c) the
strengths of production are m = −0.1, n = 7 (giving A = −0.0012,F = 0.0665) while
γa, γf are allowed to vary. We show the numbers of bound receptors on both sides of each
cell — profiles for ligand and free receptor are similar. From top to bottom: (a) unbiased
global production (γa = γf = 0) still gives differences between sides due to ligand-receptor
binding; (b) γa = γf = 1 enhances differences and the wavelength shortens; (c) γa = γf =
−1 gives a homogenising effect and increases the predicted wavelength. (d) Shows a
regular pattern of polarity across the array: γa = −1, γf = 1, and m = −0.6, n = 2.5
(giving A = −0.0071,F = 0.0238, within the region of stability in (A,F) space). The
other parameters are the same as in Appendix D, with Da = 0.01, Df = 0.01 in (a–c) and
Da = 0, Df = 0 in (d). The initial conditions are given by the homogeneous equilibrium,
except for a small perturbation of the left-hand side of the first cell.
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Figure 11: Numerical simulations of the juxtacrine model (1), solved on a 10×20 array of
square cells. We explore how defects in signalling in a small group of cells can propagate
into the surrounding region of regularly polarised cells. In the upper row we show the
number of bound receptors — ligand and free receptor profiles are similar. The arrows
in the bottom row point in the direction of the side with the highest bound receptor
number. The parameters are given in Appendix D, except that m = 1, n = 4 (giving A =
0.012,F = 0.038), and Da, Df , γa, γf are all taken to be zero. The boundary conditions
are zero flux.
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Figure 12: Numerical simulations of the juxtacrine model (1) on hexagonal arrays with
varying random perturbations of a regular structure (first column). Small perturbations
(second column) still support regular patterns, but larger perturbations (third column)
lead to some irregularities. Similar results are seen with both lateral inhibition and
lateral induction (upper and lower rows respectively). Regular hexagons of side 1 unit
are generated and the co-ordinates of their vertices are perturbed by a random number
drawn from a uniform distribution on [0, 0.7] (second column), or [0, 1] (third column).
The parameter values are as in Appendix D except: (upper row) m = −4, n = 2 and
Da = 0.0014; (lower row) m = 2, n = 3, da = 0.01, df = 0.03, r0 = 900, βa = 0.2, βf = 1.5
and Da = 0.1. The diffusive terms are as defined in Appendix E.
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Figure 13: Travelling waves in the extended L-R model (1) with inhomogeneous protein
distributions, and irregular geometries as outlined in Appendix E. The upper row shows
the evolution of an irregular pattern generated from random initial conditions of the
active homogeneous steady state. Pattern initiation by wave activation can generate
more regular patterns behind the advancing wave front (second row). The third row
illustrates how relay induced patterning is undisturbed by clones of non-signalling cells
— contrary to current biological thinking (Strutt, 2002). The parameter values are the
same as for the lower row of Figure 12.
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