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Abstract
We present a computational modelling framework to support the design and optimization of
membrane-based water purification systems. Two modelling approaches are defined which dif-
fer in the way they describe the flow in the interfacial region between the feed domain and the
membrane surface. Extensive comparison of the results obtained by the two methods highlights
non-negligible differences in the predicted flow pattern, especially in the neighbourhood of the
membrane. Numerical modelling and computer simulations permit to gain a deeper understand-
ing of the flow behaviour than the sole experimental work, e.g., by identifying Dean vortices inside
the feed domain and by relating them to geometrical and flow characteristics.

Keywords: Hybrid membrane filtration; Navier-Stokes equations; Porous-media flows; Dean vor-
tices; Finite elements.

1 Introduction

The availability of clean drinking water is key for all human settlements. When natural disasters
(e.g., extreme floods or earthquakes) occur, sources of drinking water may get polluted by harmful
components and cannot be relied on. In such events, water purification for immediate human
consumption becomes a major priority which, in many cases, must be achieved using simple ‘first-
aid’ technology quickly put in place. Membrane filtration can offer a cost-effective way to treat
polluted water which can be operated in simple conditions and with low energy consumption.
Membranes are essentially thin sheets of porous material used to remove suspended particles from
a particle-laden fluid. In [36], a novel membrane-based water purification system was proposed to
address the challenges arising in a natural disaster scenario. The system exploits both a hybrid
filtration technology combining standard dead-end and cross-flow filtration (see, e.g., [28]) and
flow instabilities in the form of Dean vortices [12, 27] to maximize the separation rate and to
minimize the fouling of the membrane [35]. Experimental work [36, 35] carried out under selected
operating conditions for a specific design of this system proved its effectiveness to remove organic
compounds from water. However, an in-depth understanding of both fluid-mechanical and physico-
chemical aspects of the filtration process is needed to be able to optimize separation at low-
power consumption as required for our target application. While the design and optimization of
membrane filtration has usually heavily relied on experimental work, the development of numerical
simulation techniques and computer power have made computational modelling an extremely
valuable tool to complement and assist laboratory work, and dramatically reduce the amount and
cost of experimental testing. The work presented in this paper constitutes a first step towards
the optimization of this hybrid water purification system. Our focus here is on the fluid-dynamics
aspects only and we aim to develop a reliable quantitative model that correctly describes the
behaviour of the fluid both inside the feed domain and near the membrane surface. We want to
identify which characteristics of the system and which operating conditions favour the development
of Dean vortices and which strategies may be put in place to increase the efficiency of the filtration.
A correct physical modelling of the water purification device requires introducing different systems
of partial differential equations in the region occupied by the feed (free-fluid region) and in the
one formed by the membrane that we model as a uniform isotropic porous medium. This leads
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to a heterogeneous problem governed by partial differential equations of different order. While
the (second order) Navier-Stokes equations are certainly suitable to describe the motion of in-
compressible flows in the free-fluid region, the choice of an appropriate model for flows through
a saturated membrane depends both on the characteristics of the latter and on the fluid regime.
In fact, the classical (first order) Darcy’s law [10] may not accurately represents flows at large
Reynolds numbers and other models such as (the second order) Brinkman’s equation [8] should be
considered. Suitable conditions for coupling free and porous flow must complete the definition of
these heterogeneous models to correctly describe filtration. A precise representation of the fluid on
the membrane surface is indeed crucial to identify and prevent situations that may lead to fouling.
Several modelling approaches have been proposed where free and porous-medium flow regimes are
either separated by an ideal interface (see, e.g., [5, 39, 24, 32]) or by a suitable boundary-layer
transition region (see, e.g., [26, 19]). To avoid the difficulties associated with analysing and im-
plementing heterogeneous models, a different approach similar to the so-called fictitious domain
method (see, e.g., [2, 25]) and especially popular in CFD software uses a modified form of the
Navier-Stokes equations in the whole computational domain and the porous medium is described
by ad-hoc resistance terms.
In this paper, we formulate the Navier-Stokes-Darcy, the Navier-Stokes-Brinkman and the one-
domain methods for the application of our interest, and we introduce their finite element ap-
proximations. We discuss how to implement them in a widely used commercial software and we
simulate numerically different configurations of the hybrid filtration system. We compare the two
modelling approaches especially in the region neighbouring the membrane surface where filtration
takes place. The configuration of the water purification system introduces additional computa-
tional challenges due both to the presence of different geometrical scales between the fluid and
the porous-medium regions and to centripetal forces in the feed domain that give rise to Dean
vortices. We characterize the latter in terms of the dimensionless Dean number and of the aspect
ratio of the fluid domain and we propose an alternative configuration to the original design of
the system that better favour the onset and persistence of these secondary flows at lower energy
consumption.
The paper is organized as follows. Section 2 describes the water purification system and introduces
our modelling assumptions. The mathematical models together with their coupling and boundary
conditions are presented in section 3. Finally, section 4 discusses the finite element approximation,
presents simulation results and provides some indications towards the optimization of the system.

2 The water purification system: description and modelling
assumptions

We consider a water purification system made by a sample cylindrical reservoir of radius 0.045 m
filled with unfiltered water (feed) up to height H = 0.1 m and by a membrane-based filter fitted
at the bottom of the reservoir that removes impurities and lets purified water (permeate) through.
The membrane has porosity (i.e., the fraction of volume of the voids to the total volume of the
membrane) εp = 0.54, radius 0.045 m and thickness (after wetting) 2.73e−4 m, approximately
one third of the depth of the spiral channels which is 7.6e−4 m [36]. The feed enters the filter
through an inlet nozzle, and a peristaltic pump recirculates the retentate back into the reservoir as
schematically illustrated in Fig. 1. A pressure gradient to enhance filtration is created by injecting
pressurized gas into the reservoir in a uniform controlled way.
The filter has been designed to force the feed to move along a spiral-shaped channel with imper-
meable upper and lateral walls placed on a thin permeable membrane which is kept in place by a
bottom plate where the permeate is collected. The spiral channels are clearly visible in Fig. 1 (a)
and a schematic representation of the system in the neighbourhood of the inlet nozzle is shown in
Fig. 2.
The filter exploits a hybrid filtration concept that combines the advantages of both dead-end
and crossflow filtration methods. The former enables rapid separation because the feed is forced
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Figure 1: (a) 3D representation of the sample reservoir and spiral channel filter. (b) 2D schematic
representation of the filtration system.

Figure 2: 3D representation of the system close to the inlet nozzle (left) and 2D cross section
(right).

perpendicularly against the surface of the membrane, while the latter induces a slower separation
but the retentate keeps moving along the flow direction tangentially to the membrane thus reducing
the blocking of the pores due to impurities. In reference to the system, dead-end filtration mainly
occurs close to the inlet nozzle while crossflow filtration takes place all along the spiral channel
where the flow is mostly tangential to the membrane surface (see Fig. 2). Moreover, at sufficiently
high Reynolds number, the centrifugal and centripetal forces exerted on the fluid due to the
curved shape of the channels are expected to give rise to Dean vortices (see, e.g., [12, 6]) that,
by creating a secondary flow from the convex towards the concave wall of the channel, may aid
filtration by mixing the feed and by disrupting solute build-up on the membrane surface (see, e.g.,
[17]). Experimental evidence that this hybrid filtration technique maximizes the permeate flux,
has higher rejection rates and is more cost effective than alternative stirred dead-end filtration
methods was provided in [35, 36].
In this work, we model the feed as a single-phase incompressible viscous flow neglecting the
presence of impurities with the aim of identifying suitable numerical models for the steady-state
hydrodynamic behaviour of the system and to replicate experiments where clean water was used.
We observe that the fluid completely fills the spiral channels so that no free surface has to be
considered therein. Finally, we use suitable boundary conditions both to model the hydrostatic
pressure due to the feed in the reservoir and to describe the peristaltic pump and the outflow
bottom plate.

3 Mathematical modelling

In this section, we present two possible modelling approaches for the water filtration process in the
system introduced in section 2. The models are based on systems of partial differential equations
to describe the flow inside the spiral channel and through the membrane, and they include suitable
boundary conditions to represent the remaining components of the system. As shown in Fig. 3, we
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denote by Ωf the domain formed by the spiral channel where the fluid flows above the membrane,
say Ωp. These two regions are non-intersecting and separated by a common surface (interface) ΓI :
Ωf ∩Ωp = ∅, ΓI = Ωf ∩Ωp. The fluid in Ωf is water characterized by density ρ = 1e3 kg/m3 and
dynamic viscosity µ = 1e−3 Pa s. We denote by u and p the velocity and pressure of the fluid,
respectively, and by the subscripts either f or p we indicate if a variable is defined either in Ωf or
in Ωp. Variables without any subscript are understood to be defined for both the domains.

Figure 3: Representation of the computational domain formed by the fluid channel Ωf and by the
membrane Ωp.

3.1 Coupled heterogeneous models

A possible way to describe the filtration system consists of adopting different sets of equations
in Ωf and Ωp to account for the different flow physics in these two regions: free flow in Ωf and
porous-medium flow in Ωp. These equations must be coupled through suitable sets of conditions
across the interface ΓI to represent filtration. More precisely, in Ωf , we consider the incompressible
Navier-Stokes equations: find uf and pf such that

ρ(uf · ∇)uf = ∇ ·T(µ;uf , pf ) + ρg in Ωf ,
∇ · uf = 0 in Ωf ,

(1)

where g is the gravity acceleration, while T(µ;uf , pf ) = −pfI + µ(∇uf + (∇uf )T ) is the Cauchy
stress tensor.
In the porous medium Ωp, one could consider either Darcy’s law or Brinkman’s equation. Darcy’s
law provides the simplest linear relation between velocity and pressure drop for an incompressible
fluid in a saturated porous medium [10]:

up = −K

µ
(∇pp − ρg) in Ωp ,

∇ · up = 0 in Ωp ,
(2)

with K the permeability tensor. If the porous medium is homogeneous and isotropic as in our case,
we can replace K by a constant K that, for our applications is 4.99e−15 ≤ K ≤ 2.83e−14 m2.
Darcy’s law is generally considered valid if the Reynolds number Rep inside the porous medium
(computed considering as characteristic length the average pore radius) is below 10. Since the
average pore diameter of the membrane we consider is approximately 1e−7 m [36], Rep ≈ 0.11Up,
with Up the characteristic velocity in the porous domain. Thus, we can use Darcy’s law (2) up to
average velocities of about 9 m/s, a value well above our measured experimental values. However,
the porosity of the membrane is close to the threshold value 0.6 above which shear stresses inside
the porous medium are generally considered to become non-negligible (see, e.g., [9, 29]). In such
cases, Darcy’s law is normally replaced by Brinkman’s equation [8].
This equation introduces a correction to the Navier-Stokes momentum equation through the Dar-
cian term µK−1up to mimic the presence of a porous medium. The resulting momentum equation
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has the same order than Navier-Stokes’ and, together with the continuity equation, reads: find up

and pp such that

ρ(up · ∇)up = ∇ ·T(µb;up, pp)− µK−1up + ρg in Ωp ,

∇ · up = 0 in Ωp .
(3)

Equation (3)1 involves the so-called effective (or Brinkman) viscosity µb instead of µ, which should
be estimated experimentally [16] but is commonly approximated as µb ≈ µ [40].
If we consider the Navier-Stokes equations (1) in Ωf and either Darcy’s law (2) or Brinkman’s
equation (3) in Ωp, we must introduce suitable coupling conditions between these models in order
to correctly represent flow behaviour across the interface ΓI .
To couple Navier-Stokes and Darcy equations, a classical set of conditions (see, e.g., [5, 34, 24, 15])
prescribes the continuity of the normal velocity (as a consequence of the incompressibility of the
fluid):

uf · n = up · n on ΓI ; (4)

the balance of the normal stresses:

pp + ρgz = −n ·T(µ;uf , pf ) · n on ΓI , (5)

where z is the elevation with respect to a reference level, g = |g|, and the so-called Beavers-Joseph-
Saffman (BJS) condition for the Navier-Stokes tangential velocity:

t ·T(µ;uf , pf ) · n = −t ·
(
αµ√
K

uf

)
on ΓI . (6)

Here, n and t are the normal and tangential unit vectors on ΓI with n pointing outwards of Ωf ,
and α is the non-dimensional BJS slip coefficient that depends on the characteristics of the porous
medium [5]. Notice that the tangential velocity may be discontinuous across ΓI .
To couple Navier-Stokes and Brinkman’s equations, some authors impose the continuity of both
velocity and normal stress (see, e.g., [30, 21]):

up = uf on ΓI

T(µb;up, pp) · n = T(µ;uf , pf ) · n on ΓI ,
(7)

while others replace (7)2 by a jump condition for the tangential component of the stress (see, e.g.,
[39]):

(εp
−1∇up −∇uf ) · n =

β√
K

up on ΓI ,

where εp is the porosity of the porous medium and β is a dimensionless coefficient to be determined
experimentally.

3.2 One-domain approach

The difficulty of identifying proper coupling conditions on ΓI and of solving different type of
equations in Ωf and Ωp is avoided by the so-called one-domain approach [26]. This technique,
commonly implemented in commercial finite element software (such as, e.g., COMSOL Multi-
physics [22]), uses a unified momentum equation in Ω = Ωf ∪Ωp with a space-dependent porosity
and a characteristic function that multiplies the Darcian term introduced in (3) so that the latter
vanishes in Ωf . More precisely, the momentum equation proposed in [26] reads: find u and p in
Ω such that

ρ

(
u

εp
· ∇
)

u

εp
= ∇ ·T(µbε

−1
p ;u, p)− µK̃u + ρg in Ω ,

∇ · u = 0 in Ω ,

(8)
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where the porosity εp is set equal to 1 in Ωf , K̃ is zero in Ωf and K̃ = K−1 in Ωp. This model
ensures the continuity of u and p across the interface ΓI but it induces an interfacial stress jump
due both to the discontinuous porosity and to the Darcian term that gives an additional stress
inside the porous medium domain. (Model (8) is often referred to as ‘Brinkman model’ due to its
formal similarity with Brinkman’s equation (3).)
A theoretical comparison between the Navier-Stokes/Darcy (NSD) model and the one-domain
approach is carried out in [26] considering a 2D Poiseuille flow over a porous layer similarly to
Beaver and Joseph’s experiment [5]. In particular, we point out that the continuity of u across
ΓI results in a smaller velocity in Ωf than the one estimated by the NSD model, as we will also
observe numerically for our problem (see section 4.2).

3.3 Boundary conditions and well-posedness

The models introduced in sections 3.1 and 3.2 must be supplemented with suitable boundary
conditions to represent the feed reservoir, the outflow of the permeate and the presence of the
peristaltic pump. To describe the fluid inflow into the nozzle Γin from the reservoir subject to a
prescribed pressure, we impose

n ·T(µ;uf , pf ) · n = −(patm + pin + ρg(H + zin)) on Γin ,

uf · t = 0 on Γin .
(9)

Here patm is the atmospheric pressure, pin is the pressure due to injected pressurized gas through
the gas inlet (see Fig. 1), and the last term in (9)1 represents the hydrostatic pressure induced
by the constant water level H in the reservoir, with zin the elevation of Γin with respect to the
reference level z = 0 located at Γout1.
The peristaltic pump is described through the outflow boundary conditions

n ·T(µ;uf , pf ) · n = −(patm + ρgz) on Γout2 ,

uf · t = 0 on Γout2 .
(10)

On the remaining boundary Γf = ∂Ωf \ (Γin ∪ Γout2 ∪ ΓI), we impose the no-slip condition

uf = 0 on Γf . (11)

Boundary conditions (9)-(11) apply both to the Navier-Stokes equations (1) and to the one-domain
model (8), that indeed coincide in Ωf .
As concerns the boundary conditions for the porous medium domain, we distinguish two cases.
On the one hand, if Darcy’s law (2) is used in Ωp, we impose

pp = patm on Γout1 , (12)

while on the remaining boundary Γp = ∂Ωp \ (Γout1 ∪ ΓI), we set

up · n = 0 on Γp . (13)

On the other hand, if either Brinkman equations (3) or the one-domain model (8) are considered
in Ωp, we impose:

n ·T(µ∗;u∗, p∗) · n = −patm on Γout1 ,

u · t = 0 on Γout1 ,

u = 0 on Γp ,

(14)

with T(µ∗;u∗, p∗) = T(µb;up, pp) for (3) and T(µ∗;u∗, p∗) = T(µbε
−1
p ;u, p) for (8).

The well-posedness of the NSD and of the one-domain models have been studied in [4, 18] and
[23], respectively, under suitable hypotheses on the data of the problem. For the coupled model
formed by the Brinkman and Stokes equations (instead of Navier-Stokes) with suitable coupling
conditions, we refer to [3].
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Summarizing, we have formulated three possible mathematical models to describe the water purifi-
cation system of section 2: the NSD model (1)-(2) with coupling conditions (4)-(6) and boundary
conditions (9)-(13); the Navier-Stokes-Brinkman model (1), (3) with coupling conditions (7) and
boundary conditions (9)-(11) and (14); and the one-domain model (8) with boundary conditions
(9)-(11) and (14).
We want to compare numerically the two modelling approaches (heterogeneous versus one-domain)
for the simulation of our filtration system. To this aim, we focus on the NSD and the one-domain
models to investigate the impact of using either Darcy or Brinkman equations in Ωp and of adopting
either the coupling conditions (4)-(6) or the discontinuous coefficients as in (8) to represent the
flow in the neighbourhood of the interface ΓI .

4 Numerical results

In this section, we study numerically the behaviour of the filtration system of section 2 by approx-
imating the solutions of the NSD and of the one-domain models by the finite element method.
The simulations were obtained using COMSOL Multiphysics 5.3a [22] on a PC with Intel i7-6700K
CPU and 64 GB RAM.

4.1 Discretization and test configurations

As the computational domain is characterized by different characteristic lengths, we consider an
anisotropic mesh made of tetrahedra and prisms refined both inside the spiral channel and in the
membrane domain directly below the channel, where we expect the most significant features of
the flow to occur. In the rest of the porous-medium domain, the fluid velocity is expected to be
very small and with little variations also in the pressure field, so that a coarser mesh is adopted
as shown in Fig. 4(a), (b).

(a)

(b) (c)

Figure 4: (a) Computational mesh with local refinement inside Ωf and in the adjacent region to
Ωp. The colourbar indicates the skewness of the elements. (b) Zoom in the left box in (a) showing
the refinement and the anisotropic elements in the membrane away from the spiral channel. (c)
Zoom in the right box in (a) showing the boundary layers on Γf and across the interface ΓI .

The anisotropy of the mesh is quantified through the skewness S of each element

S = 1− max
i=1,...,Na

(
θi − θe
π − θe

,
θe − θi
θe

)
,
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where θi (i = 1, . . . , Na) are the angles of each element and θe is the angle of the corresponding
edge or vertex in an ideal element. Values of S close to 1 indicate (almost) uniform elements while
low values of S denote distorted elements. The lowest value supported by COMSOL Multiphysics
is S = 0.01 and, in our mesh, the minimum S is 0.05.
We generate two computational meshes including the features discussed above with increasing
number of elements as indicated in table 2 and we compare the solutions obtained on the two
meshes.
For the finite element approximation of both the NS and the one-domain equations we considered
P1 − P1 elements with streamline stabilization [7, 20, 37]. As concerns Darcy’s problem (2),
COMSOL automatically solves it as the elliptic equation for the pressure: find pp such that

∇ ·
(
−K
µ
∇pp

)
= 0 in Ωp , (15)

and then it uses Darcy’s law (2)1 to post-process the velocity. The pressure pp is discretized using
P1 Lagrangian elements. Notice that, since COMSOL uses (15) instead of the mixed formulation
(2), the system arising from the discretization of the NSD model has less unknowns (degrees of
freedom) than the one associated with the one-domain model (see table 2).
Concerning the coupling conditions for the NSD model, we remark that the BJS condition (6) and
the continuity of normal stresses (5) should be implemented as boundary stresses for (1). More
precisely, in our setting and letting uf = (uf , vf , wf )T , this corresponds to

T(µ;uf , pf ) · n =

(
−uf

αµ√
K
,−vf

αµ√
K
, pp + ρgz

)T

on ΓI . (16)

Then, for (15) we impose the continuity of normal velocities (4) as a Neumann boundary condition
for the pressure. (Alternatively, one could impose (4) and (6) for (1), and (5) for (2). However,
this approach may give non-physical results especially in the neighbourhood of the interface. This
might be due to the fact that Darcy’s velocity is only computed as a post-processed variable leading
to incorrectly impose the continuity of normal velocities across ΓI , while the previous strategy
uses only variables actually computed at each iteration.)
To solve the non-linear systems arising from the finite element discretization, we used two solvers
available in COMSOL Multiphysics 5.3a: either the Double Dogleg iterative method (a trust-
region algorithm that combines Newton’s method and steepest descent [13]) or the highly-non-
linear (HNL) Newton method [14]. Finally, the linearized systems obtained at each iteration are
solved by the direct multifrontal method MUMPS [1].
We focus on three experimental configurations characterized by different inflow pressure pin and
membrane permeability K as indicated in table 1.

Table 1: Configurations of interest.
Configuration C1 C2 C3
pin (Pa) 1e3 1e4 1e5
Permeability K (m2) 2.83e−14 8.84e−15 4.99e−15

Notice that the inflow pressures considered here are significantly lower than those normally em-
ployed, e.g., in industrial settings. This is due to the application we target, i.e., water treatment
in emergency situations such as natural disasters where high pressures cannot be achieved due to
lack of equipment [36]. The values of K have been obtained experimentally and they decrease
for increasing pin due to membrane compaction (see, e.g., [33]), i.e., they tend to a limiting value
corresponding to the situation of maximum compaction of the membrane pores due to the applied
pressure.
Table 2 reports the number of iterations to achieve the tolerance tol =1e−3 for the residual and
the computational time. (Here, the BJS coefficient for the NSD model is set to α = 1.) We
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can see that the Dogleg method is robust with respect both to the number of degrees of freedom
(dofs) and to increasing inflow pressure for the first two configurations but it does not converge for
configuration C3. HNL Newton converges in all cases but with a much higher computational cost.
The behaviour of the two methods suggests that more advanced solution techniques should be
employed, e.g., ad-hoc preconditioning. We also observe that NSD requires lower computational
time with respect to the one-domain model due to fewer dofs involved at each iteration.

Table 2: Iterations and computational time for the two meshes and models. (‘–’ indicates that
the method did not converge to the required tolerance.)

Mesh 1 Mesh 2
No. elements: 659,139 1,223,529

Model: NSD One-domain NSD One-domain
No. dofs: 829,852 1,080,036 1,531,330 1,973,072

Double Dogleg C1 9 8 10 11
iterations C2 12 13 23 17
for configuration C3 – – – –
Double Dogleg C1 11 14 18 47
computational time (min) C2 15 24 43 72
for configuration C3 – – – –
HNL Newton C1 39 38 37 38
iterations C2 83 85 105 146
for configuration C3 75 98 103 98
HNL Newton C1 57 99 70 190
computational time (min) C2 121 222 199 730
for configuration C3 136 420 351 709

Let now ui
∗, pi∗ be the vectors of the computed nodal values of velocity and pressure using mesh

i = 1, 2 for Navier-Stokes (∗ = f), Darcy (∗ = p) or the one-domain model (no subscript). We
compute the relative errors:

eu∗ =
‖u1

∗ − u2
∗‖

‖u2
∗‖

and ep∗ =
‖p1

∗ − p2
∗‖

‖p2
∗‖

,

where ‖ · ‖ is the Euclidean norm of the computed/interpolated values of velocity and pressure at
the nodes of the union of the two meshes. The relative errors reported in table 3 show that the
pressure is computed accurately by Mesh 1 and the relative errors for the velocity euf and eu do
not exceed 6.38%. We also observe that the highest relative error is for Darcy’s velocity, which
is expected since this is a post-processed quantity and, due to the post-processing procedure,
additional errors are generated. Considering the errors of table 3 and the computational times
of table 2, we choose Mesh 1 as a convenient discretization for the numerical simulation of the
filtration system.

Table 3: Relative errors for configurations C1–C3.
Relative errors euf epf eup epp eu ep

C1 6.37e−2 2.28e−5 1.36e−1 2.92e−4 6.38e−2 3.16e−4
Configuration C2 4.55e−2 6.41e−4 1.37e−1 1.58e−3 4.55e−2 1.74e−3

C3 3.87e−2 6.94e−3 1.49e−1 1.22e−2 3.97e−2 1.30e−2

Finally, we observe that the numerical scheme guarantees a good conservation of mass. Indeed, let
Γ be one of the inflow/outflow boundaries Γin, Γout1 or Γout2 and u∗ the fluid velocity computed
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using one of the models. The flux (m3s−1) through Γ is defined as

F (Γ) =

∫
Γ

u∗ · n dΓ .

Then, taking, e.g., configuration C2, for the NSD model (α = 1) we have F (Γin) = −6.68e−6
m3s−1, F (Γout1) = 6.30e−7 m3s−1 and F (Γout2) = 6.05e−6 m3s−1, while for the one-domain
model F (Γin) = −6.71e−6 m3s−1, F (Γout1) = 6.87e−7 m3s−1 and F (Γout2) = 6.02e−6 m3s−1, so
that, in both cases, |F (Γin∪Γout1∪Γout2)| ≤ 3.83e−9 m3s−1. The numerical fluxes through Γout1

are in good agreement with the experimental data obtained in laboratory as shown in table 4.

Table 4: Experimental and numerical flux F (Γout1) (m3s−1).
Configuration C1 C2 C3
Experimental 2.19e−7 6.84e−7 3.87e−6
NSD 3.81e−7 6.30e−7 2.76e−6
One-domain 4.13e−7 6.87e−7 3.03e−6

4.2 Comparison between the NSD and the one-domain models

In this section, we compare the velocity and pressure fields computed using the one-domain and
the NSD models with different values of the BJS coefficient α. We plot the results on three
horizontal planes parallel to z = 0 (see Fig. 5): z = 6.53e−4 m in the middle of the spiral channel,
z = 2.73e−4 m on the interface ΓI , and z = 1.365e−4 m in the middle of the porous medium
domain, and also on the cross sections S1–S3 to highlight some features of the flow.

Figure 5: Reference system and cross sections S1–S3. The plane z = 0 coincides with the bottom
face of the membrane (outflow boundary Γout1).

Concerning the role of α, we expect lower values of this parameter to correspond to higher in-
terfacial tangential (slip) velocity since, according to (6), the interfacial tangential stress should
decrease. Thus, reducing α, the outward flux through Γout2 should increase while the one through
ΓI should decrease. Numerical results for configuration C2 reported in table 5 confirm the expected
trend although the variation in the normal flux F (ΓI) is in fact very small. We choose α = 0.1
and α = 1 to study the impact of the BJS slip coefficient on numerical simulations. These values
provide physically significant bounds for the value of α that one could estimate for our membrane
using Saffman’s experimental relationship [34, 11]: α = (5

√
εp)−1 = (5

√
0.54)−1 ≈ 0.27.

While the computed absolute pressure and normal velocity at the interface ΓI do not present
significant variations between NSD (either with α = 0.1 or α = 1) and the one-domain model,
remarkable differences can be noticed for the tangential velocity, as shown in Fig. 6. In fact, the
average magnitude of the computed tangential velocity component at the interface is approximately
9.8e−5 for the one-domain model, 8.6e−4 for NSD with α = 1 and 8.6e−3 for NSD with α = 0.1.
As anticipated in section 3, this is due to the fact that, while the NSD tangential velocity may be
discontinuous across the interface, the continuity imposed by the one-domain model implies that
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Table 5: Flux through Γout1, Γout2 and ΓI for different values of α.
α F (Γout1) F (Γout2) F (ΓI)
0.001 5.97e−7 7.67e−6 6.17e−7
0.1 6.26e−7 6.08e−6 6.47e−7
1 6.30e−7 6.05e−6 6.50e−7
3 6.30e−7 6.04e−6 6.51e−7

velocity on ΓI must match the corresponding low value characterizing the porous medium. (For
configurations C1 and C3 a similar behaviour is observed.)
On the one hand, our results highlight the importance of correctly estimating the BJS parameter
α to guarantee the reliability of the results provided by the NSD model. On the other hand, they
suggest that membranes manufactured to have low values of α may feature lower build-up on their
filtration surface than generic membranes due to increased interfacial tangential stress resulting
from higher tangential velocity.
In the middle of the membrane and of the spiral fluid channel, no significant differences can be
noticed between the modelling approaches neither for the absolute pressure nor for the velocity
field as shown in Figs. 7–9.
In Fig. 8, we notice that higher values of the velocity field inside the spiral channel can be found
near the concave wall. This is especially evident for the case of configuration C3 characterized by
the highest value of the inflow pressure.
Moreover, plotting the absolute pressure at the cross section S1 (see Fig. 10 where, for visualization
purposes, the horizontal axis has been scaled by a factor 0.15), we can see that, analogously to
the tangential velocity, continuity of pressure across the interface is guaranteed only by the one-
domain model while NSD results in a discontinuous pressure field across ΓI . We also remark that
a pressure gradient clearly exists between the concave and the convex walls of the channel.
Higher velocity and pressure in the neighbourhood of the concave wall indicate the presence of
the expected centrifugal force due to the curved shape of the fluid channel and of the associated
Dean vortices as we discuss in section 4.3. In the rest of the paper, we consider only the NSD
model with α = 1 because it provides physically significant results comparable to those obtained
either setting α = 0.1 in NSD or using the one-domain model but with lower computational cost
than the latter approach.

4.3 Dean vortices

As anticipated in section 2, at sufficiently high Reynolds number, the pressure gradient created by
centrifugal forces in a curved channel gives rise to a secondary flow in the form of Dean vortices.
These can be characterized by the dimensionless Dean number (see, e.g., [12]) which quantifies
the ratio of the centrifugal force to the viscous force and can be defined as

De = Re

√
Dh

2R
, (17)

where Re is the Reynolds number, Dh is the hydraulic diameter, and is R the radius of curvature
of the convex wall. The radius of curvature R at cross sections S1–S3 is equal to 0.02 m, 0.031
m and 0.044 m, approximately, while the channel has a rectangular cross section with base 0.01
m, height 7.6e−4 m and aspect ratio between the height and the width of the channel of 0.076.
For configurations C1–C3, we estimated the Reynolds number using the average magnitude of the
velocity in Ωf computed by the NSD model with α = 1. Table 6 reports the computed Reynolds
and Dean numbers.
For all configurations C1–C3, the values of the Dean number are high enough according to [27] to
indicate that vortices may have measurable effects on filtration. In Fig. 11, we clearly notice that
vortices form both in the upper and in the lower part of the channel but in a non-symmetric way
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Magnitude of the normal velocity component:

Magnitude of the tangential velocity component:

Absolute pressure:

NSD (α = 0.1) NSD (α = 1) One-domain

Figure 6: Quantities of interest on the interface ΓI (z = 2.73e−4 m) for configuration C2 and NSD
with α = 0.1 (left), α = 1 (centre), and the one-domain model (right): normal velocity component
(top), tangential velocity component (middle), absolute pressure (bottom).

due to the different imposed boundary conditions. Indeed, while on the top boundary a no-slip
condition is prescribed for the velocity, the BJS condition on ΓI (6) and the continuity of the
normal velocity (4) result in a non-zero velocity in the neighbourhood of the membrane. Thus,
the vortices near the interface tend to occupy a larger area than those at the top of the channel
and they start forming at lower inflow pressure as it can be seen in configuration C1. The two
types of vortices are expected to play a different role in the filtration process. While those in the
upper part of the channel may favour the mixing of suspended particles, those that are closer to
the fluid/porous-medium interface may contribute to disrupt solute build-up on the membrane
surface, thus possibly increasing permeation rates. We remark that, as the magnitude of the
velocity increases due to higher inflow pressure, the centre of maximum velocity shifts towards
the concave wall as observed also, e.g., in [31]. The computational results and, in particular,
the evidence of Dean vortices forming in the neighbourhood of the fluid/porous-medium interface
support the experimental findings of [35] where a reduction in the concentration polarization effect
was observed for our filtration system.
It is well-known that in rectangular cross-sectional curved channels with impermeable walls, the
behaviour of Dean vortices depends on the aspect ratio of the channel [31, 38], with larger aspect
ratios usually associated to the development of vortices at lower values of the Dean number than
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Magnitude of the velocity:

Absolute pressure:

NSD (α = 0.1) NSD (α = 1) One-domain

Figure 7: Quantities of interest in the middle of the membrane (z = 1.365e−4 m) for configuration
C2 and NSD with α = 0.1 (left), α = 1 (centre), and the one-domain model (right): velocity (top),
absolute pressure (bottom).

Table 6: Estimated Reynolds and Dean numbers for configurations C1–C3 at cross sections S1–S3.
(Geometrical setting with aspect ratio 0.076.)

Configuration C1 C2 C3
Reynolds Re 382.81 1474.53 5642.92

S1 71.68 276.09 1056.57
Dean De at S2 57.30 220.70 844.58

S3 48.32 186.14 712.34

in the case of smaller aspect ratios. We confirm a similar behaviour for the coupled fluid/porous-
medium system that we are studying by considering a modified geometrical setting with cross-
sectional aspect ratio 0.253 instead of the original one of 0.076. This is achieved by scaling the
dimension of the filtration system in the radial direction by a factor 0.3 while keeping the vertical
dimension unchanged. In this scaled setting, the inflow pressures of configurations C1–C3 result
in larger Reynolds numbers than those observed in the original case as reported in table 7. Larger
Re and reduced radius of curvature of the convex wall give larger Dean numbers at cross sections
S1–S3, leading to the development of vortices already for configuration C1. This is clearly visible
in Fig. 12 where we can see that vortices are present at the top of the channel and close to the
membrane surface for all the inflow pressures considered here. These results suggest that adopting
a system with a larger aspect ratio may provide better mixing of the feed and improved permeation
rates already for low inflow pressures, with a clear advantage in terms of energy consumption.
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Configuration C1:

Configuration C2:

Configuration C3:

NSD (α = 0.1) NSD (α = 1) One-domain

Figure 8: Magnitude of the velocity using the NSD and the one-domain models in the middle of
the spiral channel (z = 6.53e−4 m) for configurations C1–C3.

5 Conclusion

We presented a mathematical and numerical framework to study the hydrodynamic behaviour of
a novel membrane-based hybrid filtration system and to support experimental evidence. After
numerically studying the impact of the modelling approach on the results of simulations, we
identified Dean vortices and characterized them in terms of inflow pressure and aspect ratio of the
channel. We discussed how the formation of these vortices could be favoured in order to enhance
the filtration performance of the system without increasing the energy consumption. This study
constitutes a first step towards the optimization of the water purification system and future work
will look into incorporating models for suspended particles in the fluid.
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NSD (α = 0.1) NSD (α = 1) One-domain

Figure 9: Absolute pressure computed using the NSD and the one-domain models in the middle
of the spiral channel (z = 6.53e−4 m) for configuration C2.

NSD (α = 0.1) NSD (α = 1) One-domain

Figure 10: Absolute pressure for NSD and one-domain models at cross section S1 both in the fluid
channel and inside the membrane for configuration C2. (For visualization, the horizontal axis has
been scaled by a factor 0.15.)
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