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Abstract

The minimal integrate-and-fire-or-burst (IFB) neuron model reproduces the salient features of

experimentally observed thalamocortical (TC) relay neuron response properties, including the tem-

poral tuning of both tonic spiking (i.e., conventional action potentials) and post-inhibitory rebound

bursting mediated by a low-threshold calcium current. In this paper we consider networks of IFB

neurons with slow synaptic interactions and show how the dynamics may be described with a

smooth firing rate model. When the firing rate of the IFB model is dominated by a refractory

process the equations of motion simplify and may be solved exactly. Numerical simulations are

used to show that a pair of reciprocally interacting inhibitory spiking IFB TC neurons supports

an alternating rhythm of the type predicted from the firing rate theory. A change in a single

parameter of the IFB neuron allows it to fire a burst of spikes in response to a depolarizing signal,

so that it mimics the behavior of a reticular (RE) cell. Within a continuum model we show that

a network of RE cells with on-center excitation can support a fast traveling pulse. In contrast a

network of inhibitory TC cells is found to support a slowly propagating lurching pulse.
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I. INTRODUCTION

Rhythmic bursting is a hallmark feature of mammalian thalamocortical networks during

slow wave sleep, attentiveness, and generalized seizures. One of the most studied collective

oscillations is that of spindling which occurs spontaneously at the onset of sleep or drowsi-

ness (see e.g., [1]). Spindle waves propagate to the cerebral cortex from the thalamus where

they are recorded in the electroencephalogram as a 7-14 Hz oscillation. They are currently

believed to be generated through a cyclical interaction between populations of thalamocor-

tical and thalamic reticular or perigeniculate neurons involving both the intrinsic membrane

properties of these neurons and their anatomical interconnections. For example, spindle

like waves have been observed in ferret brain splice preparations which preserve anatomical

interactions between perigeniculate (PGN) and dorsal lateral geniculate nucleus (LGNd)

thalamocortical neurons and travel with a speed of around 1mm/s [2, 3, 4, 5]. These waves

are produced as a sequence of inhibition in thalamocortical cells followed by rebound bursts

of action potentials. Burst firing in relay neurons then excites PGN neurons, thereby com-

pleting the loop and starting the next cycle of oscillation. Simultaneously, PGN neurons

regulate each others firing through lateral inhibitory interactions. Reticular (RE) thalamic

and thalamocortical (TC) neurons both possess a so-called slow T-type calcium current

that allows them to generate either rhythmic burst or tonic firing patterns. This current

is associated with an influx of calcium ions and leads to a large membrane depolarization

on which more conventional spikes generated by other fast currents may ride, resulting in a

burst response. Typically RE cells respond with a burst of action potentials in response to

a brief depolarization, whilst TC cells respond via post-inhibitory rebound. In this mode

the cell must be hyperpolarized and then released from inhibition before it can fire a burst.

A number of computational models have been developed that incorporate both the intrinsic

membrane properties of RE and TC cells and their anatomical interconnections. The work

of Destexhe et al. (see e.g., [6]) was developed based on electrophysiological measurements

in ferret thalamic slices and reproduces successfully the characteristics of spindle oscillations

observed in vitro. Importantly, local axonal arborization of the TC to RE and RE to TC

projections allows oscillations to propagate through a network. The model of Golomb et al.

[7] also uses single compartment models with detailed models of relevant ionic currents to

reproduce many of the experimental results from in vitro ferret thalamic slice preparations.
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Moreover, this work highlights the possibility of waves which may advance in a lurching

manner. Simplifications of such circuits by Rinzel et al. [8] in which RE cells are endowed

with the rebound property has allowed a reduction to a single layered network that still

supports propagating waves. They make the observation that if the synaptic connectivity is

on-centered then lurching propagation occurs, but that smoothly propagating waves can be

found when the connectivity is off-centered. Although biophysically realistic such models

are typically hard to analyze. The difference between smooth and lurching waves has been

explored analytically within a simpler integrate-and-fire network with conduction delays by

Golomb and Ermentrout [9, 10]. They show that as a discrete communication delay between

neurons increases a smoothly propagating pulse can lose stability in favor of a lurching wave.

Short conductance delays are considered to mimic the off-centered networks considered by

Rinzel et al. which essentially allow the cells to escape from inhibition sufficiently quickly

so as to favor smooth propagation. The full network equations of Rinzel et al. have recently

been studied by Terman et al. [11] using techniques from geometric singular perturbation

theory. They derive explicit formulas for when smooth and lurching waves exist and also

determine the effect of network parameters on wave speed. This work relies partly on nu-

merically determined properties of the single cell model. In this paper we return to some

of the issues raised by these computational and analytical studies of thalamic networks. By

working with a recently introduced minimal model of a spiking cell possessing a slow T-type

calcium current we show that it is possible to analyze rhythmic bursting and the smooth and

lurching propagation of waves exactly. Our results are entirely consistent with earlier work,

and open up the way for further studies of thalamocortical networks from a mathematical

perspective. In section II we describe the basic neuron model that we work with. This is

the integrate-and-fire-or-burst (IFB) model recently shown by Smith et al. [12] to be able

to reproduce many of the salient features of experimentally observed thalamocortical relay

neuron response. This includes the temporal tuning of both tonic spiking (conventional ac-

tion potentials) and post-inhibitory rebound bursting mediated by a low threshold calcium

current. As it stands this model can fire arbitrarily fast, which is somewhat at odds with

the well known refractory property of real neurons. To remedy this we adopt an approach

often used with the simpler integrate-and-fire neuron model and introduce an appropriate

time-dependent threshold. For slowly varying time dependent input signals we derive a fir-

ing rate approximation of this IFB model. Moreover, when the firing rate is dominated by a
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refractory process (such as the one introduced) we show how to exactly construct solutions

which are frequency locked to that of a periodic stimulus. This approach is extended in

section III to cover synaptically interacting networks of IFB neurons. As an example of

the power of the firing rate formalism we exactly solve the dynamics for a simple central

pattern generating circuit of half-center type. A comparison with numerical simulations of

the spiking model shows a good quantitative agreement for slow synapses. In section IV

we consider a two-layer network of interacting TC and RE cells in two different extremes.

In the first case we consider a one-dimensional network of RE cells interacting through an

indirect excitatory path. In the second case we consider the opposite scenario in which

TC cells interact indirectly via an inhibitory path. For the excitatory RE network we are

able to construct a smooth traveling pulse, with speeds in agreement with direct numerical

simulations. These same simulations show that of the two possible branches of traveling

pulse solutions it is the faster that is stable. The inhibitory TC network on the other hand

naturally supports lurching pulses. Again we show excellent agreement between theory and

numerical experiment, but this time it is the slower of the two possible lurching waves that

is stable. Finally in section V we discuss extensions of our work to more realistic networks

and consider how the framework we have presented is useful for addressing issues relating

to sensory processing in thalamic networks.

II. THE MODEL AND ITS REDUCTION

All thalamic relay cells respond to excitatory inputs in one of two different modes, which

are known as burst and tonic. The response mode depends on the state of a voltage- (and

time-) dependent inward Ca2+ current that is known as IT , because it involves T-type Ca2+

channels located in the membranes of the soma and dendrite. In burst mode, IT is activated

and an inflow of Ca2+ produces a depolarizing waveform, known as the low threshold spike

(LTS) that, in turn, usually activates a burst of conventional action potentials. When a

relay cell has been relatively depolarized for ∼ 100 ms or more, IT becomes inactivated and

the cell fires in tonic mode. However, after ∼ 100ms or more of relative hyperpolarization,

inactivation of IT is alleviated and the cell fires in burst mode. A minimal model of this

process has been developed by Smith et al. and is described in [12]. In essence this model

may be regarded as an integrate-and-fire (IF) model with the addition of a slow variable.
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The dynamics of this slow variable underlies the generation of bursts and motivates the

name integrate-and-fire-or-burst (IFB). In more detail the current balance equation for the

IFB model is

C
dv

dt
= −IL − IT − I, (1)

where C is a membrane capacitance, v the membrane voltage, I represents a synaptic current

and IL = gL(v − vL) is a leakage current with constant conductance gL and leakage reversal

potential vL. The low-threshold Ca2+ current is given by IT (t) = gT h(t)(v − vT )Θ(v − vh)

where Θ(·) is a Heaviside step function and the slow variable h has dynamics:

τh(v)
dh

dt
= −h + h∞(v), (2)

and h∞(v) = Θ(vh−v) with τh(v) = τ−
h Θ(v−vh)+τ+

h Θ(vh−v). Equation (2) incorporates the

de-inactivation of the low-threshold Ca2+ conductance, which involves T-type Ca2+ channels

and produces the transmembrane current, IT . The de-inactivation level of IT relaxes to zero

with time constant τ−
h when v ≥ vh and relaxes to unity with time constant τ+

h when

v < vh. Hence, sufficient hyperpolarization leads to increasing values of h, representing

de-inactivation of IT . An action potential is said to occur whenever the membrane potential

v reaches some threshold vθ. The set of action potential firing times are defined by

σn = inf{t | v(t) ≥ γ ; t ≥ σn−1}, (3)

for some voltage threshold γ. Immediately after a firing event the system undergoes a

discontinuous reset such that v(σ+
n ) = vreset. Hence, the flow generated by the IF process is

discontinuous at the firing times t = σn. As it stands the standard IF mechanism does not

allow for the possibility of a refractory process. One way to incorporate this within the IF

framework is to allow the threshold function to be time dependent. Large threshold increases

just after a firing event, and subsequent decay back towards a constant threshold value at a

rate τR, can ensure that spikes times are more consistent with those of real neurons. Here

τR is identified as the refractory time scale of the model neuron. We write this refractory

process in the form

τR
dγ

dt
= −γ + vθ, γ(σ+

n ) = γ(σn) + γ0, (4)

for some large positive constant γ0. Throughout this paper we shall take τR = 5ms and

γ0 = 100mV. The remaining standard parameters of the IFB model (obtained from fits with

experimental data) are given in Table 1.
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Parameter Value Unit

vθ -35 mV

vL -65 mV

C 2 µF/cm2

gL 0.035 mS/cm2

vreset -50 mV

vh (TC) -70 mv

vh (RE) -60 mv

vT 120 mv

τ−
h 20 ms

τ+
h 100 ms

gT 0.07 mS/cm2

TABLE I: Standard cellular parameters for the IFB model, obtained from fits with experimental

data [12].

One of the striking abilities of the IFB neuron model is its ability to mimic the behavior

of both thalamocortical (TC) and reticular (RE) cells. For TC cells we take vL > vh, and for

RE cells it is more appropriate to choose vL < vh [13]. With these choices an IFB RE cell

can fire a burst in response to a depolarizing signal, whilst an IFB TC cell can operate in

rebound mode (as described in section I). The IFB dynamics depends strongly on the two

thresholds vh and vθ, responsible for the activation of burst and tonic spiking, respectively.

Indeed, by exploiting the linearity of the model between these thresholds it has been possible

to give a complete account of mode-locked solutions that arise in response to periodic forcing

[14]. This exact approach requires the simultaneous solution of a set of nonlinear algebraic

equations to keep track of firing times (one for each spike). Hence, it is cumbersome when

dealing with rhythms in which one wishes to keep track of a large numbers of spikes riding

an LTS. This encourages the search for reduced descriptions which require less attention to

the precise timing of spikes. If the dynamics for h(t) and the synaptic drive I(t) is slow

compared to that of v(t), then it is natural to look for a firing rate model that can capture

the full spiking dynamics in a semi-quantitative manner [15]. For later convenience we write

the synaptic input in the form I(t) = u(t)(v − vu). The sign of vu relative to the resting

6



potential determines whether a synapse is excitatory or inhibitory. To derive a firing rate

model we imagine that a steady state value of v exists that may be parameterized by h and

u as the solution to

v(h, u) =
gLvL + gT vT hΘ(v(h, u) − vh) + vuu

gL + gThΘ(v(h, u) − vh) + u
. (5)

Note that there are two possible solutions of (5). We take the instantaneous firing rate of

the IFB neuron to be f(v(h, u)), where

f(v) =

{
τR + τ ln

[
v − vreset

v − vθ

]}−1

Θ(v − vθ), τ =
C

gL
. (6)

This is recognised as the standard firing rate response of a refractory IF neuron to constant

forcing (see for example [16]). Here we assume that the refractory mechanism limits the

rate to at most τ−1
R , and that to a first approximation the IF neuron fires when v = vθ.

In the original IFB model, a burst of action potentials is expected whenever the membrane

potential, v, crosses the burst threshold vh from below. From a dynamical systems viewpoint

it is natural to adopt a description of the firing rate model where

v(h, u) =
gLvL + gT vT hs + vuu

gL + gThs + u
, (7)

and s ∈ {0, 1} is set to 1 if v(h, u) crosses vh from below and s is set to 0 if v crosses vh

from above. This provides a consistent mechanism for choosing between possible coexisting

solutions of (5). The full spiking model is expected to be well approximated by the rate

model in the formal limit C → 0.

To illustrate the usefulness of such a reduction we compare the behavior of the original

and reduced model to an oscillatory stimulus of the form u(t) = I(1+cos(ωt)). An example

of a spiking IFB waveform that results from such a drive is shown in Fig. 1. The signal u(t)

has a phase shift φ, with respect to some resultant ∆-periodic orbit v(t) = v(t + ∆). This

means that we may write v(t) = v(h(t), u(t − φ∆)) for t ∈ [0, ∆). For simplicity we shall

focus on the case that ∆ = 2π/ω (i.e., a 1:1 frequency locked state). It is a simple matter

to exploit the piecewise linear nature of the rebound dynamics to calculate that

h(t) =





he−t/τ−

h 0 ≤ t ≤ ∆+

he−∆+/τ−

h e−(t−∆+)/τ+

h + 1 − e−(t−∆+)/τ+

h ∆+ < t < ∆
, (8)
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FIG. 1: An illustration of IFB output under periodic sinusoidal inhibitory stimulation. I = 0.01,

ω = 2π, vh = −70 and vu = −100.

for some ∆+ < ∆. The function h(t) is periodically extended outside its principal domain.

The value of h ≡ h(0) is given by

h(∆+, ∆) =
1 − e−(∆−∆+)/τ+

h

1 − e−∆+/τ−

h e−(∆−∆+)/τ+

h

. (9)

The two unknowns ∆+ and φ may be found by the simultaneous solution of the two equations

v(∆+) = vh and v(∆) = vh. The numerical solution of this system of equations may be used

to calculate regions in parameter space where periodic solutions exist. In Fig. 2 we show

the phase space trajectory of a periodic orbit for both the IFB spiking and rate models.

The spiking orbit is calculated numerically, whilst the orbit in the rate model is obtained

in closed form. The orbit of the rate model provides an envelope for the spiking dynamics.

Although it cannot track voltage spikes, it does accurately capture the duration of bursting

(by causing a high firing rate) as well as tracking the non-spiking part of the orbit very

well. With more work it is also possible to obtain the spiking orbit in closed form, but we

shall not pursue this here. A detailed study of the full spiking model for such a periodic

drive can be found in [14]. Importantly it is very easy to obtain quantities such as ∆+,

within the firing rate framework, as a function of system parameters without recourse to

direct numerical simulations. For example using this approach ∆+ is predicted to be a

monotonically decreasing function of the stimulus frequency. An examination of ∆+ for the

spiking model shows that this trend is respected with increasing agreement between rate and

spike models as C is decreased (not shown). The usefulness of the firing rate reduction at

the single neuron level encourages the extension of this approach to networks of synaptically

interacting IFB neurons. This is the subject of the next section.
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FIG. 2: Phase space trajectories of periodic solutions in the spiking and rate IFB model. Param-

eters as in Fig. 1.

III. DISCRETE NETWORKS

Consider a network of IFB neurons with state variables (vi, hi), i = 1, . . . , N and synaptic

conductances of the form

ui(t) = g
∑

j

wij

∑

m

η(t − σj
m). (10)

Here ui(t) represents the shape of the train of postsynaptic conductance changes induced

at neuron i, by the arrival of action potentials from other neurons. The mth firing time

of the jth neuron is given by σj
m. The parameters wij may be used to specify appropriate

neuronal architectures, whilst g > 0 is some overall scale parameter for synaptic interaction

strength. For clarity we shall focus on the case that the function η(t) describes a so-called

alpha function with η(t) = α2t exp(−αt) and η(t) = 0 for t ≤ 0. Particularly for simulation

purposes it is convenient to write ui as the solution to

1

α
u̇i = yi − ui

1

α
ẏi = −yi, (11)

with yi discontinuously updated according to yi → yi+gwijα at times σj
m. To obtain a firing-

rate model we consider the limit of slow synapses, where α−1 is large compared to other

natural time scales of the network, so that the input to each neuron, Ii(t) = ui(t)(vi − vu),
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varies slowly compared to all the vi. A reduction of (10) is naturally obtained after writing

it in the form

ui(t) = g
∑

j

wij

∫ ∞

0

η(s)
∑

m

δ(s − t + σj
m)ds. (12)

We then replace the spike train in (12) with some smooth function of the steady state voltage

value of neuron j. The natural choice for this function is the firing rate function given by

(6). The firing rate model is then completely specified by the dynamics for hi, given by (2),

the steady state voltage v(hi, ui) given by (5) for each neuron, and the synaptic input with

ui(t) = g
∑

j

wij

∫ ∞

0

η(s)f(vj(t − s))ds, (13)

or equivalently

1

α
u̇i = yi − ui

1

α
ẏi = g

∑

j

wijf(vj) − yi. (14)

Although it is possible to analyze the dynamics of the full spiking model explicitly using the

techniques in [14], the firing rate model is much preferred. It is continuous in time and does

not require precise knowledge about spike timing.

To illustrate the usefulness of the firing rate reduction for synaptic interactions we con-

sider a concrete problem in rhythmogenesis, namely the generation of an alternating rhythm

in a network with reciprocal inhibitory synaptic coupling. We shall take as our model a

half-center oscillator two neuron TC IFB network, where each of the identical neurons in

isolation is non-oscillatory. The neuronal architecture is specified by wij = 1 − δij. For an

appropriate choice of g and vu the rebound current can be activated leading to a burst of

activity. This burst causes a sequence of inhibitory post synaptic potentials (IPSPs) in the

partner neuron driving it below vh and leading to an increase in the value of its associated

rebound variable, h. Upon release from inhibition, when the total IPSP has decayed, the

partner neuron crosses the bursting threshold vh from below and will generate a burst of its

own if its rebound variable is sufficiently large. The process may then repeat ad infinitum.

An example of such a rhythm is shown in Fig. 3. In Fig. 4 we show a plot of the rhythm

in the (v, h) plane. The corresponding simulations of the firing rate model show similar

patterns of activity, especially for small C.
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FIG. 3: A half-center oscillation in a network of two reciprocal inhibitory TC IFB cells. Parameters

are α = 0.1, g = 5, vu = −100 and C = 0.2.
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FIG. 4: Periodic orbit in (v, h) phase plane for the IFB spike and rate half-center oscillator.

Parameters as in Fig. 3.

In the firing rate framework the form of the half center solution is given by v1(t) =

v(t) = v2(t − ∆/2), where v(t) is defined on [0, ∆) and is periodically extended outside this

domain. The period ∆ can be determined from the time spent above and below vh, which

we denote as ∆± respectively. The simultaneous solution of v(∆) = vh and v(∆+) = vh then

determines ∆ = ∆+ +∆−. For convenience we choose an origin of time such that at t = 0 v1

crosses vh from below. For a general firing rate function it is hard problem to calculate ∆±.

However, we note that the model is relatively insensitive to the detailed shape of f (since

interspike intervals are largely governed by the refractory process) and rather the time that
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FIG. 5: Contour plot of solutions with fixed ∆+ in the (g, vu) parameter plane for the firing rate

half-center oscillator. Parameters as in Fig. 3.

v spends above or below vθ, which we denote ∆θ. To make analytic progress we consider

the replacement f(v) → τ−1
R Θ(v − vθ), expected to hold in the limit C → 0. Assuming that

∆/2 > ∆θ and that only the most recent burst is influential the variable u1 ≡ u may be

written

u(t) =
g

τR
Q(t − ∆/2, min(∆θ, t − ∆/2)), t ∈ [∆/2, 3∆/2) (15)

where

Q(t, a) =

∫ a

0

η(t − s)ds. (16)

Note that outside its natural domain we periodically extend u(t). For an α function we have

that

Q(t, a) = e−α(t−a)[1 + α(t − a)] − e−αt[1 + αt]. (17)

The three unknowns ∆, ∆+, ∆θ may then be found by the simultaneous solution of the three

equations v(∆θ) = vθ, v(∆+) = vh and v(∆) = vh (∆ > ∆+). Here, v(t) = v(h(t), u(t))

from (7), with u given by (15), h by (8) and s = 1 for t ∈ [0, ∆+] and is zero otherwise. The

numerical solution of this system of equations may be used to calculate the parameter sets

for half-center oscillations of a given period or given burst duration. In Fig. 5 we present the

results of such a calculation giving the locus of points in the (g, vu) parameter plane where

half-center oscillations have a fixed ∆+. This figure shows that the time spent above vh can

be increased by either decreasing vu or increasing g, both of which describe an increased level

of mutual inhibition. The techniques that we have described above are also ideally suited
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FIG. 6: Dynamics of an RE-TC pair within the firing rate formalism. Parameter values are g = 2,

α = 0.01, vGABA = −100 and vAMPA = 0. For simplicity we have assumed that the time course

and strength of AMPA and GABAA synapses is the same.

to studying mixed networks of both RE and TC IFB neurons. In particular it allows us to

examine one of the basic circuits found in thalamus, namely an RE-TC pair. For a recent

overview of the behavior of this and more extensive thalamocortical circuits we refer the

reader to the book by Destexhe and Sejnowski [6]. It is worth briefly considering a reciprocal

RE-TC circuit where the inhibitory synapse onto the TC cell is GABAA mediated and the

excitatory one onto the RE cell AMPA mediated. This sets the scene for the discussion of

large networks that will be presented in the next section. Rather than use labels i = 1, 2

we shall simply use subscript (RE) and (TC) to distinguish between the two cell types and

denote the corresponding synaptic reversal potentials as vAMPA and vGABA respectively. An

example of the type of rhythm that can be generated by this RE-TC network is shown in Fig.

6. We summarize the behavior of the oscillating system as follows. The TC cell fires upon

release from inhibition. There is then a sudden build up of activity in the RE cell, which

fires a burst of spikes. Eventually the spike packet generated by the RE cell terminates as

hRE decays back to zero. During this period the TC cell is inhibited. The intrinsic dynamics

of the RE cell is such that vh is crossed from above and hRE increases towards one ready

to release another barrage of spikes upon receiving excitatory input, caused by release of

inhibition of the TC cell. This process is free to repeat over, leading to the generation of a

periodic oscillation. A basic observation that we wish to make is that the natural rhythm

of the circuit involves the firing of the RE cell just after the onset of firing in the TC cell.
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FIG. 7: A two layered network of TC and RE cells with reciprocal interactions. The TC cells

excite the RE cells with AMPA mediated synapses. The RE cells inhibit the TC cells with GABAA

mediated synapses.

Hence, in some sense the circuit can generate a nearly synchronous activity between an RE

and TC cell. We shall use this observation in the next section to consider the reduction

of two-layer reciprocally interacting networks of RE and TC cells to single layers of either

purely RE cells or purely TC cells.

IV. CONTINUOUS NETWORKS

A number of continuum neural field models have been developed with the aim of under-

standing the mechanisms of pattern formation and wave propagation in spatially extended

neural sheets. They are often motivated by statistical averaging over ensembles of neurons

with similar functional properties, as well as temporal averaging over spike trains from indi-

vidual neurons. Most of these models can trace their roots back to the work of Wilson and

Cowan [17] and Amari [18] and are often written as integro-differential equations. In this

section we shall consider a two-layer model of interacting RE-TC IFB cells using a neural

field description. The particular network we are interested in has the same characteristics

as that considered by Golomb et al. [7] and is depicted in Fig. 7. A continuous layer of RE

cells inhibits a continuous layer of TC cells with some spreading synaptic footprint. This

TC layer in turn acts back on the RE layer with a spread of excitatory connections. For

14



simplicity we ignore interactions within a layer. Motivated by previous work [7, 8, 11] we ex-

pect that a mathematical analysis of a two-layered IFB neural field model to yield solutions

that describe both smooth and lurching waves. To gain insight into the dynamics of such

waves, but avoiding a full mathematical treatment of a two-layered system, we focus here on

a reduction to a single-layered network. Guided by the behavior of the simple RE-TC pair

described in section III we consider a scenario in which the RE and TC layers are slaved

together. Then on one hand we may imagine RE cells to feel an indirect spread of excitation

(via the inhibitory interaction with TC cells) and on the other hand for TC cells to feel an

indirect spread of inhibition (via the excitatory interaction with RE cells). In either case we

have only to consider an effective single layer network that can be described with an integral

equation of the form:

u(x, t) = g

∫ ∞

−∞

w(y)

∫ ∞

0

η(s)f(v(x − y, t − s))dyds. (18)

The above equation may be regarded as the continuous space counterpart of equation (13).

The effective spread of connections within the network is described with the synaptic foot-

print function w(y). This neural field model is supplemented with the dynamics for the

rebound variable h(x, t) and the formula for the steady state voltage (7). For a recent dis-

cussion of the link between spiking and firing rate neural field models we refer the reader to

[19]. We shall now present an analysis of waves in this model for the two cases described

above; i) an excitatory RE network and ii) an inhibitory TC network.

A. Smooth waves in RE networks

The existence and construction of smoothly propagating waves in neural field theories

has been considered by several authors. In particular we refer the reader to work in [19, 20,

21, 22, 23, 24, 25]. Following the approach in these papers we consider the construction of

waves in an excitatory layer of RE IFB cells. Within the firing rate framework we consider

solutions of the form f ◦ v(x, t) = f ◦ v(t− x/c)Θ(t− x/c), where we identify c with a wave

speed. If we adopt a traveling wave frame where ξ = ct− x then u(x, t) = u(ξ) and we may

write

u(ξ) = g

∫ ∞

0

w(ξ′ − ξ)E(ξ′/c)dξ′, (19)
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FIG. 8: An example of a solitary wave in an RE network with excitatory synaptic feedback,

obtained as an exact solution to the Heaviside firing rate equations. Here, vh = −55, α = 1.0,

g = 0.1, vu = 0 and σ = 1.

where

E(ξ) =

∫ ξ

0

η(ξ − s)f ◦ v(s)ds. (20)

We shall now consider the construction of a solitary pulse solution for the case that the

firing rate function is a Heaviside. We denote the duration of firing by ∆θ, the time that h

is deinactivated by ∆ and choose an origin in the traveling wave frame at the point where

the system first starts firing. An illustration of such a solution is given in Fig. 8. In this

case we have simply that E(ξ) = Q(ξ, min(∆θ, ξ))/τR, with Q given by (16). For the choice

w(x) =
1

2σ
exp(−|x|/σ), (21)

the solution (19) may be expressed in closed form, by evaluating some appropriate integrals.

The details of this calculation are presented in the appendix. Exploiting the piecewise linear
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nature of the rebound dynamics shows that the dynamics for h has a simple form given by

h(ξ) =





1 ξ ≤ 0

e−ξ/cτ−

h 0 < ξ < ∆

1 − (1 − h)e−(ξ−∆)/cτ+

h ξ ≥ ∆

, (22)

where h = exp(−∆/cτ−
h ). The speed of the traveling pulse is defined by the three conditions

v(0) = vh, v(∆θ) = vθ and v(∆) = vh. Numerical solution of these three equations shows

that the speed of a solitary wave in an excitatory RE network is relatively insensitive to the

choice of g or σ. However, as expected, there is a strong dependence on vh. In Fig. 9 we

plot c = c(vh), showing the wave speed c as a function of vh. With increasing vh a fast and

slow branch are seen to annihilate leading to propagation failure of the solitary pulse. As vh

approaches vL from above one sees waves of increasing speed. Direct numerical simulations

of a network in MATLAB show excellent agreement with the theoretical predictions and are

plotted as crosses in Fig. 9. Moreover, these simulations show that it is the faster of the

two branches that is stable.

We note that under the replacement f ◦ v(ξ) = δ(ξ), valid in the extreme limit ∆θ →

τR → 0, then equation (19) becomes equivalent to the input considered by many other

authors within the context of spiking IF [9, 10, 26, 27, 28, 29] and theta neuron networks

[30, 31, 32]. The speed of the wave is then simply determined by u(0) = vh, which is the type

of condition that occurs in the theory of traveling pulses (single spike) for IF networks. In

this case Bressloff [28, 29] and Golomb and Ermentrout [9, 10] have already shown that it is

the fast wave that is stable. However, with the inclusion of discrete delays, η(t) → η(t− τd),

a fast pulse can destabilize in favor of a lurching pulse. In the next section we show how

lurching waves may originate in an inhibitory TC network without discrete delays.

B. Lurching waves in TC networks

When neurons can fire via post inhibitory rebound it is well known that this can lead to

lurching waves of activity propagating through an inhibitory network [8]. A lurching wave

does not travel with a constant profile, (i.e., there is no traveling wave frame) although

it is possible to identify a lurching speed. Rather, the propagating wave recruits groups

of cells in discrete steps. The leading edge of active cells inhibits some cluster of cells

17
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FIG. 9: Speed of a solitary pulse in an excitatory RE network. Parameters as in Fig. 8. Crosses

denote the results of numerical simulations in MATLAB done on a network of size 50σ using a

mesh of 28 grid points. In all simulations the synaptic inputs are computed using the MATLAB

conv function and all equations are evolved forward in time using ODE45. The steady state value

of voltage v = v(h, u) is obtained by numerically evolving (1) with very small C, so that compared

to the dynamics for u, v is a fast variable.

ahead of it (depending on the size of the synaptic footprint). Inhibited cells (ahead of the

wave) must wait until they are released from inhibition before they can, in turn, fire. The

mathematical analysis of such non-smooth waves has been undertaken by Terman et al.

using the techniques of geometric singular perturbation theory [11]. For models that arise

as reduced models for thalamic neurons these authors have been able to construct very good

estimates for various properties of lurching pulses, such as the time between successive release

events. In this section we show how an exact analysis of lurching waves can be performed

for a minimal thalamic network built out of inhibitory IFB TC cells. In common with other

more complicated models of thalamic neurons, IFB TC neurons have the ability to fire via

post inhibitory rebound. For mathematical convenience we work with the Heaviside firing
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FIG. 10: A diagram of an idealized solitary lurching pulse showing the four unknowns that pa-

rameterize the solution. Here L represents the size of a cluster, TL the period of the lurch, ∆θ

the time spent firing and ∆ the duration of inhibition where the rebound variable h is increasing.

Grey regions indicate where the system is firing.

rate function and consider

w(x) =
1

2σ
Θ(σ − |x|). (23)

We denote the size of a cluster involved in a lurch by L. For simplicity we shall only consider

lurching pulses where consecutive active clusters are adjacent to each other. We suppose that

to a first approximation neurons for x ∈ (0, L) are simultaneously released from inhibition

and start firing at time t = TL. The next group with x ∈ (L, 2L) fires when t = 2TL. We

define the firing duration of a cluster as ∆θ (i.e., the time spent above vθ) and the duration of

inhibition (time spent below vh before release) as ∆. An illustration of this type of lurching

pulse is shown in Fig. 10. Assuming that the system starts at rest with h(x, 0) = 0, then

h(x, TL) = 1 − exp(−∆/τ+
h ) ≡ h for x ∈ (0, L). Hence, for t > TL,

h(x, t) = he−(t−TL)/τ−

h , x ∈ (0, L). (24)
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To calculate the synaptic conductance (18) we assume that for x ∈ (0, L) and t > 0 the

dominant contribution arises from the activity on x ∈ (−L, 0) for t ∈ (0, ∆θ). The expression

for (18) then takes the simple (separable) form

u(x, t) =
g

τR
Q(t, min(t, ∆θ))W (x), x ∈ (0, L), t > 0, (25)

where

W (x) =

∫ x+L

x

w(y)dy =





L/2σ x + L < σ

(σ − x)/2σ x + L > σ
. (26)

Hence, using (7), we have a closed form expression for v(x, t) in terms of the four unknowns

L, TL, ∆ and ∆θ. Note that if 2L < σ then W (x) = L/2σ and u(x, t) given by (25) is

independent of x. Assume to a first approximation that v(x, t) = v(0, t) for x ∈ (0, L),

then three of the unknowns are determined by the simultaneous solution of v(0, TL) = vh,

v(0, TL + ∆θ) = vθ and v(0, TL − ∆) = vh. The first condition determines the time of

release from inhibition, the second determines the firing duration and the third determines

the time of onset of inhibition. To obtain a final constraint we note that the assumption of

simultaneous firing within a cluster is not strictly true (unless L < σ/2) and that v(x, t) 6=

v(0, t) for L > σ/2 (which can be seen from (25) and (26)). We define the size of a cluster

using the constraint v(L, TL) = vh. Since W (L) takes its maximal value for L = σ/2 we

see that there is a solution with L = σ/2. A numerical solution of these four simultaneous

equations is presented in Fig. 11. Lurching waves are found for vh < vL, with TL → ∞ as

vh → vL. Moreover, TL decreases with decreasing vh and a solution is lost in a saddle-node

bifurcation. Direct numerical simulations performed in MATLAB show excellent agreement

with the theory. Note that as in the work of Terman et al. we set self-inhibition to be zero

in simulations to better see the emergence of lurching waves from initial data (which we take

to be in the form of a localized depolarization of the system at one end). Note that in their

analysis Terman et al. partly rely on data from numerical solutions to construct lurching

speed estimates and hence can not obtain unstable solution branches like we have managed

here. If we introduce a lurch velocity v = L/TL we see from Fig. 11 that in contrast to

waves in RE systems it is the slow wave which is stable. In Fig. 12 we illustrate that TL

increases with g, which is also consistent with the results of Terman et al.
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FIG. 11: Period of a solitary lurching pulse in an inhibitory TC network as a function of vh.

Parameters as in Fig. 8, but with α = 0.1, g = 1.0 and vu = −100. Crosses denote the results of

numerical simulations done on a network of size Nσ/2 using a mesh of N = 28 grid points.

V. DISCUSSION

In this paper we have presented a firing rate reduction of the IFB neuron model. When

the firing rate output of the neuron is dominated by a refractory process we have shown

that the model can be exactly solved for a number of important cases. We have illustrated

this by considering simple central pattern generating networks of synaptically interacting

IFB neurons. Direct numerical simulations have shown that, for slow synapses, there is

good agreement between spiking and firing rate IFB networks. In light of the ability of

IFB neurons to replicate the dynamics of both TC and RE cells this opens up the way for

a mathematical study of thalamic circuits. One step in this direction has been presented

here, with a study of traveling waves in continuous firing rate networks of IFB neurons. We

have been able to construct a smooth fast traveling pulse in a network of excitatory RE cells

and a slow lurching pulse in a network of inhibitory TC cells. Our results are consistent

with previous studies of more detailed models of neural networks with slow T-type calcium
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FIG. 12: Period of a solitary lurching pulse in an inhibitory TC network as a function of the

strength of conductance. Parameters as in Fig. 11 with vh = −70.

currents. Importantly, the mathematical tractability of our model network will allow a

number of further studies.

Although, for clarity of exposition, we have focused on single layer networks, the tech-

niques we have described generalize naturally to multi-layer structures. Indeed a more

complete study of a truly two-layered RE-TC network may shed light on the properties of

mixed-wave solutions where, for example, a lurching front may leave behind a periodic wave

in its wake. The study of two-layered networks is also of interest from a sensory processing

point of view. It is well known that sensory thalamic nuclei can act as a state-dependent

gateway between the sensory periphery and higher cortical centers [33]. A two-layered RE-

TC IFB firing rate network can be used as testing ground for the effects of synaptic footprint

shapes on network filtering properties. In particular the simplicity of the model should allow

for the calculation of network response to a spatio-temporal pattern. For example, within

the context of the visual system one could consider retiongeniculate input to TC cells by

convolving an experimentally relevant illumination profile (such as a drifting grating) with

the spatio-temporal receptive field of a retinal ganglion cell. This may allow one to go be-
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yond the traditional linear response analysis of geniculate circuits [34]. The work in this

paper also raises the interesting mathematical question of wave stability. There has been

some recent progress on the asymptotic stability of traveling waves in integro-differential

equations that, when generalized to include rebound currents, may answer the question for

the smooth waves seen in excitatory RE networks [23, 35]. However, the stability of lurching

waves is likely to require the development of new analytical techniques to handle the fact

that it is not possible to move to a co-moving frame. These and related issues are all topics

of current investigation.
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Appendix

The traveling pulse in an excitatory RE network may be constructed from (19) using the

result that E(ξ) = Q(ξ, min(∆θ, ξ))/τR (valid when the firing rate function is a Heaviside,

i.e., f ◦ v(ξ) = Θ(ξ)Θ(∆θ − ξ)/τR). Consider first the case that ξ < 0. Using (21) we have

that

u(ξ) =
g

2στR

∫ ∞

0

e−(ξ′−ξ)/σQ(ξ′/c, min(ξ′, ∆θ)/c)dξ′

=
geξ/σ

2στR

{∫ ∆θ

0

e−ξ′/σQ(ξ′/c, ξ′/c)dξ′ +

∫ ∞

∆θ

e−ξ′/σQ(ξ′/c, ∆θ/c)dξ′
}

. (27)

By writing equation (17) in the form

Q(t, a) = Q̃(t − a) − Q̃(t), (28)

where

Q̃(t) =

[
1 − α

d

dα

]
e−αt, (29)

it is then relatively straightforworward to evaluate the integrals in (27). These may be

expressed in terms of the function W (a, b) and G±(a, b, d) where

W (a, b) =

∫ b

a

e−ξ′/σdξ′ = σ[e−a/σ − e−b/σ ], (30)
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and

G±(a, b, d) =

∫ b

a

e−ξ′/σQ̃((±ξ′ − d)/c)dξ′

= γ±

{
e−a/σeα(d∓a)/c[1 − α(d ∓ a)/c ± γ±/c]

− e−b/σeα(d∓b)/c[1 − α(d ∓ b)/c ± γ±/c]
}

. (31)

Here
1

γ±

=
1

σ
±

α

c
. (32)

Equation (27) then takes the form u(ξ) = geξ/σφ1/2στR with φ1 given by

φ1 = W (0, ∆θ) − G+(0, ∆θ, 0) + G+(∆θ,∞, ∆θ) − G+(∆θ,∞, 0). (33)

In a similar fashion it may be shown that u(ξ) = gφ2(ξ)/2στR for 0 ≤ ξ ≤ ∆θ with

φ2(ξ) = W (0, ξ)− G−(0, ξ,−ξ) + W (0, ∆θ − ξ) − G+(0, ∆θ − ξ,−ξ)

+ G+(∆θ − ξ,∞, ∆θ − ξ) − G+(∆θ − ξ,∞,−ξ), (34)

and u(ξ) = gφ3(ξ)/2στR for ξ > ∆θ, where

φ3(ξ) = G−(0, ξ − ∆θ, ∆θ − ξ) − G−(0, ξ − ∆θ,−ξ) + W (ξ − ∆θ, ξ) − G−(ξ − ∆θ, ξ,−ξ)

+ G+(0,∞, ∆θ − ξ) − G+(0,∞,−ξ). (35)
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