
Vanishing Twist in the Hamiltonian Hopf Bifurcation

H. R. Dullin1,2, A. V. Ivanov1 ∗

1 Department of Mathematical Sciences,
Loughborough University, LE11 3TU, UK

2 Fachbereich 1, Physik, Universität Bremen
28334 Bremen, Germany

H.R.Dullin@lboro.ac.uk, A.V.Ivanov@lboro.ac.uk

May 20, 2003

Abstract

The Hamiltonian Hopf bifurcation has an integrable normal form that describes
the passage of the eigenvalues of an equilibrium through the 1 : −1 resonance. At
the bifurcation the pure imaginary eigenvalues of the elliptic equilibrium turn into a
complex quadruplet of eigenvalues and the equilibrium becomes a linearly unstable
focus-focus point. We explicitly calculate the frequency map of the integrable normal
form, in particular we obtain the rotation number as a function on the image of the
energy-momentum map in the case where the fibres are compact. We prove that
the isoenergetic non-degeneracy condition of the KAM theorem is violated on a curve
passing through the focus-focus point in the image of the energy-momentum map. This
is equivalent to the vanishing of twist in a Poincaré map for each energy near that of
the focus-focus point. In addition we show that in a family of periodic orbits (the non-
linear normal modes) the twist also vanishes. These results imply the existence of all
the unusual dynamical phenomena associated to non-twist maps near the Hamiltonian
Hopf bifurcation.

Keywords: Hamiltonian Hopf Bifurcation; KAM; isoenergetic non-degeneracy; Van-
ishing Twist; Elliptic Integrals

1 Introduction

Understanding the dynamics of a Hamiltonian system near equilibrium points is of fun-
damental importance. In the elliptic case the eigenvalues of the linearization are pure
imaginary, λj = ±iωj , j = 1, . . . , n, where n is the number of degrees of freedom, which
will be 2 in the following. By the Lyapunov Centre theorem the n normal modes of
the linear approximation persist in the non-linear system when the eigenvalues are non-
resonant. The resonant cases were much more recently treated by [20, 15, 6, 14]. In
some sense the most exceptional resonance is the so called 1 : −1 resonance, in which the
quadratic part H2 of the Hamiltonian H has degenerate eigenvalues and is not definite,
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2H2 = ω(p2
x+x2)−ω(p2

y+y2). The unfolding of the normal form gives a family of Hamilto-
nian systems with an equilibrium point that looses stability by passing through the 1 : −1
resonance. This is called the Hamiltonian Hopf bifurcation, and was studied in detail by
[18, 19], also see [2, 7]. The corresponding family of Hamiltonians is Liouville integrable.
In this paper we show that near this bifurcation the twist vanishes. This means that the
rotation number (i.e. the ratio of frequencies of the Hamiltonian flow on invariant tori) of
the one parameter family of invariant tori with fixed energy has a critical point.

The dynamical consequences of vanishing twist are well known. They were first de-
scribed by [12], and later studied by [11, 4, 17]. In [10] we have shown that the vanishing
of twist in one parameter families of maps occurs near the 1 : 3 resonance, also see [13].
In [9] we have shown that also in 4 dimensional symplectic maps the vanishing of twist
appears near resonance. More recently in [8] we have shown that the twist also vanishes
near the saddle-centre bifurcation, in which one multiplier passes through zero. In this
paper we show that the principle that the twist vanishes near resonance also applies in
the Hamiltonian Hopf bifurcation. For flows the condition of vanishing twist is one of the
conditions for the standard form of the KAM theorem to hold. In this setting it is usually
called the isoenergetic non-degeneracy condition. There exist KAM theorems with weaker
conditions [5, 16], so that vanishing twist does not necessarily imply that the torus will
be destroyed. It does mean, however, that a resonant twistless torus will create all the
unexpected dynamics described by the twistless standard map.

In the following two section we present well known material about the Hamiltonian
Hopf bifurcation, in order to introduce the Hamiltonian and its Energy-Momentum map
and to fix our notation. Then our own contribution starts with the derivation of the
actions and the rotation number. The rotation number and its derivative are analysed
near critical values of the energy-momentum map, namely near the isolated focus-focus
point in the compact case and on the family of relative equilibria. The details of the
expansion of the elliptic integrals are given in the appendix.

2 Hopf Normal Form

Consider coordinates q = (q1, q2) and conjugate momenta p = (p1, p2) so that the sym-
plectic form on R4 is Ω = dp1 ∧ dq1 + dp2 ∧ dq2. The normal form for the Hamiltonian
Hopf bifurcation is

H(q1, q2, p1, p2) = βΓ1 +Γ2 +δ(γΓ1 +Γ3)+CΓ2
1 +2BΓ1Γ3 +2DΓ2

3 +O3(Γ1,Γ2,Γ3), (1)

where Γ1 = p2q1−p1q2, Γ2 = 1
2(p2

1 +p2
2), Γ3 = 1

2(q2
1 +q2

2), and δ is a bifurcation parameter,
β, γ, B, C, D are real constants such that β 6= 0 and D 6= 0. The expression O3 denotes
terms of order no less than 3 with respect to Γi, i = 1, 2, 3. For simplicity we will use the
notation ω = β + δγ. The system has an equilibrium point at the origin pi = qi = 0 with
eigenvalues

√
−δ ± iω. For ease of notation we write α =

√
−δ when δ < 0, so that the

eigenvalues of the equilibrium are ±α± iω. The dependence of ω on δ is not essential for
our purposes, because β 6= 0. By a symplectic scaling with multiplier the parameter ω can
be scaled to 1, and D can be scaled to ±1 at the same time. We find it useful, however,
to keep unscaled variables and parameters until the very last section.

The Hamiltonian system (1) is Liouville integrable. A second independent constant of
motion is Γ1. It generates the S1 symmetry

Φ : S1 × R4 → R4, Φ(ϑ, q, p) = (Sϑq, Sϑp), Sϑ =
(

cos ϑ sinϑ
− sinϑ cos ϑ

)
(2)
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Figure 1: A typical intersection Mh,j of the surfaces Pj and H−1
j (h).

The corresponding momentum map J : R4 → R is given by J(q, p) = p2q1− p1q2, which is
Γ1. Since J generates the periodic flow Φ with period 2π it is an action of the integrable
system. We denote the (constant) value of J by j. To perform the reduction with respect
to this symmetry we use invariant theory, see e.g. [3]. Singular reduction occurs in this
example because the action Φ is not free: the equilibrium (= the origin) is a fixed point
of this action. The algebra of polynomials in R4 that are invariant under Φ is generated
by Γ1, Γ2, Γ3 and Γ4 = p1q1 + p2q2. This means that any polynomial of q1, q2, p1, p2 that
is invariant under Φ can be written as a polynomial of Γi, i = 1, . . . , 4. The generators
satisfy the relations

G(Γ) = Γ2
1/2 + Γ2

4/2− 2Γ2Γ3 = 0, Γ2 ≥ 0, Γ3 ≥ 0. (3)

The reduced phase space Pj = J−1(j)/S1 is defined by (3) with Γ1 = j as a semialgebraic
variety in R3 with coordinates (Γ2,Γ3,Γ4). If j 6= 0 the reduced phase space Pj is one
sheet of a two-sheeted hyperboloid given by (3), so it is a smooth manifold. But for j = 0
it is half of an elliptic cone and hence is not smooth because of the singular point of the
cone at the origin (Γ2,Γ3,Γ4) = (0, 0, 0).

The reduced Hamiltonian is

Hj(Γ2,Γ3,Γ4) = ωj + Γ2 + δΓ3 + Cj2 + 2BjΓ3 + 2DΓ2
3 . (4)

The surface H−1
j (h) is a parabolic cylinder in (Γ2,Γ3,Γ4) that is independent of Γ4. The

integral curves of the reduced system are given by the intersection of the surface Pj with
the surface H−1

j (h), as illustrated in Fig. 1. We denote the intersection by Mh,j .
The Poisson bracket {·, ·} associated with the standard symplectic structure Ω on R4

defines a Poisson structure on the algebra of invariant polynomials with brackets

{Γ1,Γ2} = {Γ1,Γ3} = {Γ1,Γ4} = 0, (5)
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{Γ2,Γ3} = Γ4, {Γ3,Γ4} = −2Γ3, {Γ4,Γ2} = −2Γ2 . (6)

The momentum map of the S1 action used for the reduction induces the Casimir Γ1 in
this Poisson bracket. In addition also the relation between the generators (3) given by
G is a Casimir. Accordingly the nonzero brackets give a Poisson structure on R3 with
coordinates (Γ2,Γ3,Γ4), that has the reduced spaces Pj as its symplectic leaves. It can be
written as

{Γ2,Γ3} = ∂G/∂Γ4, {Γ3,Γ4} = ∂G/∂Γ2, {Γ4,Γ2} = ∂G/∂Γ3 . (7)

The reduced equations of motion are

Γ̇2 = {Γ2,Hj} = Γ4
∂Hj

∂Γ3
,

Γ̇3 = {Γ3,Hj} = −Γ4,

Γ̇4 = {Γ4,Hj} = −2Γ2 + 2Γ3
∂Hj

∂Γ3
.

(8)

The integral curves of this flow are given by Mh,j , the intersection of Pj and H−1
j (h).

In general the intersection of these two manifolds is either empty or diffeomorphic to a
circle. The preimage of any point in reduced phase space is the set of points in original
phase space that are mapped to this point by the momentum map J . If one point in the
preimage is known the others can be obtained by letting the flow of J (i.e. the map Φ) act
on this point to get the complete fibre. This gives a circle unless starting in the origin.
Therefore the preimage of a circle Mh,j is a two dimensional torus T2 in the phase space
of the original system.

Exceptions occur for equilibrium points of the reduced system. They occur either when
the surface H−1

j (h) is tangent to Pj or when j = 0 and H−1
0 (h) contains the singular point

at the origin (which implies h = 0). The preimage of the singular point is not a circle,
because Γ2 = Γ3 = 0 implies q1 = q2 = p1 = p2 = 0 and this is a fixed point of the flow
Φ. This is the equilibrium point in the full system that undergoes the Hopf bifurcation.
All other equilibrium points of the recuded system are reconstructed to periodic orbits of
the full system; they are relative equilibria of J . The S1 action generated by J is not free.
The origin is a fixed point, and this is the reason why singular reduction is needed in this
example.

3 Energy-Momentum Map

Using the reduced system we can find the critical values of the energy momentum map

F : R4 → R2, (p, q) 7→ F (p, q) = (H(p, q), J(p, q)) . (9)

The values of the energy-momentum map are denoted by (h, j). For every regular value
of F the preimage in phase space is a two dimensional torus. The critical values are
determined from equilibrium points of the reduced system because their preimages are
not T2. Since we are interested in a neighbourhood of the origin in phase space for small δ
we will only consider a small neighbourhood of the origin in the image of the momentum
map.

Consider the reduced equilibrium points caused by the singularity in the reduced space
first. This singularity occurs for j = 0. The singular point (Γ2,Γ3,Γ4) = (0, 0, 0) has
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energy h = 0. The equilibrium at the origin in phase space is therefore mapped to the
origin in the image of the momentum map.

When δ > 0 the intersection M0,0 restricted to a neighborhood of the origin in reduced
phase space consists only of the origin. It reconstructs to an elliptic equilibrium. However,
if δ < 0 then M0,0 is a non-smooth circle with a corner, if it is compact. The preimage of
M0,0 is diffeomorphic to a pinched torus in this case.

Consider next the equilibrium points caused by a tangency of Pj and H−1
j (h). At

these critical values of Hj the gradient of Hj and the gradient of G are parallel. Since
∂G/∂Γ4 = Γ4 the tangency may occur only on the hyperplane Γ4 = 0. The intersections
of Pj and H−1

j (h) with this hyperplane are one branch of a hyperbola and a parabola,
respectively. They are described by the equations

j2 = 4Γ2Γ3, (10)

h = ωj + Cj2 + Γ2 −
(δ + 2Bj)2

8D
+ 2D

(
Γ3 +

δ + 2Bj

4D

)2

. (11)

At the extremal values of h the two curves are tangent. Eliminating Γ2 in (10) using (11)
gives a polynomial of degree 3 in Γ3 depending on j and h

Q3(Γ3) := −8DΓ3
3 − 4(δ + 2Bj)Γ2

3 + 4(h− ωj − Cj2)Γ3 − j2 = 0 . (12)

This polynomial Q3(Γ3) gives the value of Γ2
4 obtained from G = 0 and expressed in terms

of Γ3. The tangency between the hyperbola (10) and the parabola (11) occurs when Q3

has a double root. We will first discuss all values of (h, j) for which a tangency occurs,
irrespective of them satisfying the constraints Γ2 ≥ 0 and Γ3 ≥ 0. In a second step the
critical values of the energy momentum will be found by consideration of these constraints.

To parametrize all tangencies we make the ansatz Q3(z) = −8D(z−d/2)2(z+s2/D/2)
with parameters d and s parametrising the double and single root of Q3, respectively. This
leads to the parametrisation of the tangencies by s ∈ R

jcrit(s) = sd(s), d(s) =
δ − s2

2(Bs−D)
,

hcrit(s) = ωjcrit(s) + Cjcrit(s)2 − 2d(s)2D + 2sjcrit(s) .

(13)

The root Γ3 = −s2/D/2 always has the opposite sign than D. The curve (hcrit(s), jcrit(s))
has singular points when s has one of the singular values satisfying 2Bs3−3s2D+δD = 0.
The number of singular points changes when the discriminant 108δD2(D2−δB2) vanishes.
For small |δ| the only change occurs at δ = 0, see Fig. 2, for two slices of the “swallowtail”.

For δ > 0 the curve has two singular points near the origin for some s ∈ (−
√

δ,
√

δ).
The two singular points are located at

h∗ = ± ω√
27D

δ3/2 +
2Bω − 3D

18D2
δ2 ±O(δ5/2)

j∗ = ± 1√
27D

δ3/2 +
B

9D2
δ2 ±O(δ5/2)

(14)

for small δ ≥ 0. The curve of critical values has a self-intersection at s2 = δ. The
intersection point at the origin marks the elliptic equilibrium with eigenvalues i(ω ±

√
δ).

The slopes of the intersecting curves are given by the imaginary parts of the eigenvalues.
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For δ < 0 the equilibrium point at the origin is unstable with eigenvalues
√
−δ + iω.

The curve (hcrit(s), jcrit(s)) does not intersect the origin, instead the origin is now an
isolated critical point. The curve is above the origin for D > 0 and below for D < 0, e.g.
the point with s = 0 is at (h, j) = (−δ2/8/D, 0).

Only tangencies that occur with the part of the hyperbola in the positive quadrant
give critical values of the energy-momentum map since Γ2 and Γ3 are both non-negative.
The double roots d(s) near s = 0 occurs at

d(s) = − δ

2D
−O(s) . (15)

Near the intersection at the origin around s = ±δ the double root is

d(s) =

√
δ

D
(±s−

√
δ) + O((±s−

√
δ)2) (16)

If D > 0 this implies that the smooth curve for δ < 0 is in the (boundary of the) image of
the energy-momentum map, while the part of the curve with s ∈ (−

√
δ,
√

δ) is not in the
image for δ > 0. Conversely for D < 0 the smooth curve for δ < 0 is not in the image,
while for δ > 0 only the triangular part with s ∈ [−

√
δ,
√

δ] is in the image. Therefore the
union of the bifurcation diagram (i.e. the set of critical values of the energy-momentum
map) for +D and −D gives the discrimiant of the polynomial Q3.

The type of the preimage of the critical values is determined by the character of the
intersection Mh,j . The positive half of the hyperboloid G projects onto the area above the
hyperbola given by j2 ≤ 4Γ2Γ3. If the parabola (11) touches the boundary of the area
from the outside, the preimage in the full phase space is a circle, hence a stable periodic
orbit. If the parabola touches from the inside, the preimage is a circle with a separatrix,
hence an unstable periodic orbit. This can only occur when D < 0, because then the
parabola is open upwards. It only occurs when δ > 0 for s between the two singular values
enclosing zero. In all other cases the parabola touches from the outside. The complete
bifurcation scenario in the two cases therefore is as follows, see Figure 2 for illustration.

The case D > 0: For δ < 0 there is an isolated focus-focus point at the origin and a
smooth curve of elliptic periodic orbits nearby. For δ > 0 there is an elliptic equilibirum
point and there are two families of elliptic periodic orbits (non-linear normal modes)
emanating from the equilibrium.

The case D < 0: For δ < 0 there is nothing but an isolated focus-focus point. For δ > 0
there is an elliptic equilibirum point and there are two families of elliptic periodic orbits
(non-linear normal modes) emanating from the equilibrium. Both families terminate in a
cusp formed with the same family of hyperbolic periodic orbits. The set of critical values
therefore forms a triangle with two cuspoidal corners and one regular corner at the origin.

4 Actions

From now on we shall assume the parameter D to be a positive number. In this case each
constant energy level is compact and by the Liouville-Arnold theorem it is possible to
define action-angle coordinates near regular points of F . To construct the second action
we need to integrate a 1-form Θ over MJ,h, where the differential dΘ coincide with a
symplectic structure induced by the quotient map πh,j : R4 → F−1(h, j)/S1 from the
original phase space, i.e. dΘ = (π−1

h,j)Ω|TMh,j
. To find the form Θ we chose Γ3 as one
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variable and find its conjugate variable by solving the equation

{f(Γ2,Γ3,Γ4),Γ3} = 1. (17)

A solution of (17) is the function

f(Γ2,Γ3,Γ4) =
Γ4

2Γ3
. (18)

Then the canonical one form is Θ = Γ4
2Γ3

dΓ3 and we obtain

J2(h, j) =
1
2π

∮
Mh,j

Γ4dΓ3

2Γ3
=

1
2π

∮
Mh,j

√
4Γ2Γ3 − j2

2Γ3
dΓ3 (19)

for the second action. Here Γ4 is considered as a function of Γ3 by first expressing Γ4 in
terms of Γ2 and Γ3 on the reduced phase space Pj and then by expressing Γ2 in terms of
Γ3 using Hj = h. As a result the polynomial Q3 is found as already given by (12). The
action integral hence is defined on the elliptic curve

E = {(w, z) : w2 = Q3(z)} . (20)

Recall that w = Γ4 on Pj . Now the action integral can be written as

J2 =
1
4π

∮
w

z
dz . (21)

It is an integral of the third kind with a pole at z = 0 and residue ±ij/4π.
The formula for the action can also be obtained in a classical way, using polar coordi-

nates as in [18]. A slightly different coordinate transformation illucidates the connection
between the two approaches. The new symplectic structure is Ω = dPg ∧ dg + dJ ∧ dφ
and “symplectic polar coordinates” valid for q2

1 + q2
2 > 0 are introduced by

q1 =
√

2g cos ϕ, p1 = Pg

√
2g cos ϕ− J

sin ϕ√
2g

, (22)

q2 =
√

2g sinϕ, p2 = Pg

√
2g sinϕ + J

cos ϕ√
2g

. (23)

The invariant polynomials are related to these coordinates by

Γ1 = J, Γ2 = gP 2
g +

J2

4g
, Γ3 = g, Γ4 = 2gPg . (24)

In these variables the Hamiltonian takes the form

H = gP 2
g +

J2

4g
+ ωJ + (δ + 2BJ)g + CJ2 + 2Dg2 , (25)

and the equations of motion are

ϕ̇ =
J

2g
+ ω + 2Bg + 2CJ ,

ġ = 2gPg ,

Ṗg = P 2
g −

J2

4g2
+ (δ + 2BJ) + 4Dg .

(26)
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Solving the Hamiltonian (25) for P 2
g gives

P 2
g =

Q3(g)
4g2

(27)

so that the action integral (19) is obtained from integrating the canonical form Pgdg over
a path with constant φ.

5 Rotation Number

We want to check the isoenergetic non-degeneracy condition of the KAM theorem. A
torus is non-degenerate in this sense if the map from the actions restricted to a constant
energy surface H = h to the frequency ratios ω1 : ω2 is non-degenerate. This means that
the frequency ratio (or rotation number) W = ω1/ω2 changes when the torus is changed
at constant energy. On a local transversal Poincaré section this condition is called twist
condition.

In our case this is equivalent to the non-vanishing of the partial derivative of the
rotation number W with respect to the action J1. By definition the winding number is
the ratio of frequences ω1, ω2, corresponding to the actions J1 and J2. If the Hamiltonian
is expressed in terms of J = J1 and J2 then ∂1H(J1, J2) = ω1 and ∂2H(J1, J2) = ω2.
Therefore we find by implicit differentiation of J2(h, j) = j2 that

W =
ω1

ω2
= −∂J2

∂j
. (28)

However, the simplest way to obtain W is to observe that it is the advance of the angle
φ conjugate to J during the time of a full period of the motion of g = Γ3. The period of
the motion is obtained from the reduced equation of motion Γ̇3 = −Γ4. On Pj this gives

Γ̇2
3 = 4Γ2Γ3 − j2 (29)

and eliminating Γ2 by using Hj = h gives(
dΓ3

dt

)2

= 4Γ3Γ2(Γ3;h, j)− j2 . (30)

By separation of variables we obtain the period of the reduced motion as

T (h, j) =
∮

dΓ3√
4Γ3Γ2 − j2

=
∮

dz

w
. (31)

To obtain the advance of φ in time T we change the time t in (26) to “time” Γ3 and find

dφ

dΓ3
=

j + 2Γ3(ω + 2Cj) + B(2Γ3)2

2Γ3Γ4
(32)

Expressing Γ4 in terms of Γ3 on the reduced phase space Pj as before the period of the
solution of this equation gives the rotation number 2πW . The rotation number W can
therefore be written as a linear combination of integrals of the first, second and third kind,

2πW (h, j) = (ω + 2Cj)
∮

dz

w
+ 2B

∮
z dz

w
+

j

2

∮
dz

zw
. (33)
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The first integral is of the first kind and proportional to the period T . The last integral is
of the third kind and propotional to the action J2. When D > 0 the polynomial Q3 has
three real roots, which we denote by zneg, zmin, zmax, such that zneg ≤ 0 ≤ zmin ≤ zmax.
The closed loop integrals encircle the finite range of positive Q3, and therefore can be
rewritten by the rule∮

= 2

zmax∫
zmin

. (34)

The elliptic integrals can be transformed to Legendre standard integrals K(k), E(k), and
Π(k) of the first, second, and third kind, respectively, with modulus k and characteristic
(or parameter) n given by

k2 =
zmax − zmin

zmax − zneg
, n =

zmax − zmin

zmax
. (35)

The result is

W (j, h) =
(2Bzneg + ω + 2Cj)K(k) + 2B(zmax − zneg)E(k) + jΠ(n, k)/(2zmax)

π
√

2D
√

zmax − zneg

. (36)

Explicit formulas for the vanishing of the twist ∂W/∂j can be derived from this.
The rotation number is a complicated function of the constants of motion (h, j). The

level lines of this function are shown in Fig. 3 and 4. Near the cases where the discriminant
of the elliptic curve E defined by Q3 in (20) vanishes, simpler formulas can be derived.
This occurs either at the boundary of the image of the energy-momentum map described
by (13), or at the isolated focus-focus point (h, j) = (0, 0) inside the image. In the next
section we will treat the latter case.

6 Rotation Number near the Focus-Focus Point

We introduce a small parameter by scaling h and j by epsilon, hence replace h → hε,
j → jε. This means that we obtain an expansion that approaches the origin on a ray.
Alternatively one can view ε as a formal expansion parameter that keeps track of the fact
that both, h and j are small and of the same order. The focus point only exists for δ < 0,
which we henceforth assume. At the origin Q3 reduces to

Q3(z;h = 0, j = 0) = −4z2(2Dz + δ) , (37)

so that zmin and zneg collide at 0 and zmax = −δ/2/D. The roots can be expanded in
power series in ε, and the result is

2zneg = − l + ρ

α
ε + O(ε2),

2zmin = − l − ρ

α
ε + O(ε2),

2zmax =
α2

D
+ 2

Dl − jBα

Dα
ε + O(ε2) .

(38)

Here and in the following we use the abbreviations

l =
h− ωj

α
, ρ2 = l2 + j2, f =

D

α3
, α =

√
−δ . (39)
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Figure 3: The level lines of the rotation number on the (j, h) plane. The bifurcation
parameter δ is decreasing from top to bottom, δ = −0.2,−0.15,−0.02 (ω = B = C =
−D = 1). The level lines are spirals. The boundary of the image of the energy momentum
map given by a family of relative equilibria is also shown.

11



Figure 4: The level lines of the rotation number on the (j, h) plane. Here the imaginary
part of the eigenvalue ω is changed, from top to bottom ω = 1/2, 1, 2 (δ = −0.15, B =
C = −D = 1).
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The expressions are only real in the case δ < 0, otherwise the focus-focus point does not
exist. Inserting this into (35) gives

k2 = 1− 2fρε + O(ε2),

n = 1 + f(l − ρ)ε + O(ε2).
(40)

For small ε both, k and n are close to 1 and they satisfy the inequality

k2 ≤ n ≤ 1 . (41)

In the limit k → 1 the elliptic integrals are singular, but there are expansions that include
the logarithmically diverging terms. The details of this expansion can be found in the
appendix. The result for the rotation number is

2πW (h, j) = −ω

α
ln ρ− tan−1 j

l
+ O(1) . (42)

Keeping terms only up to order 1 is enough because when the twist condition ∂W/∂j is
calculated the present terms both give singular contributions, the constant term disappears
and the first order term in ε is very small compared to the singular terms. Note that W is
not a single valued function. The fact that tan−1(j/l)/2π changes by one when the origin
is encircled is an expression of the monodromy of this focus-focus point, see [7]. The
expression given by the elliptic integrals, see the appendix, gives a continuous function
which is, however, not differentiable when j = 0.

The level lines of W are spirals, which are easily parametrized in polar coordinates
with the radius ρ as parameter. Instead of viewing these spirals as the level lines of W
where W is a many-valued function, it might be easier to see them as the integral curves of
a flow in the plane that has an equilibrium point at h = j = 0. The linear approximation
to this flow is best written in complex notation z = l+ij so that ż = λz where λ = α+iω.
Therefore we may formulate the result like this: The level lines of W are the integral
curves of a planar node with the same eigenvalue as the focus-focus point.

Calculating the leading order condition for the vanishing of twist is easily done by
differentiating the first two terms of the expansion with respect to j. The result is that

∂W

∂j
= 0 ⇒ h(ω2 − α2) = jω(ω2 + α2) . (43)

This means that the twist vanishes on a line that has a tangent whose slope at the focus
point can be read of from the above expression as

h

j
= ω

ω2 + α2

ω2 − α2
. (44)

In particular this slope only depends on the eigenvalue of the focus-focus point. Ap-
proaching the bifurcation point α → 0, and hence the slope approaches ω, see Fig. 3 and
4.

7 Vanishing Twist of Periodic Orbits

Now we consider the vanishing of the twist for the relative equilibria (hcrit(s), jcrit(s)) in
the boundary of the image of the energy-momentum map. First we rescale the parameters,
in order to keep the formulas manageable:

B =
Db

ω
, C =

Dc

ω2
, µ =

δ

ω2
, j =

ĵω3

D
, h =

ĥω4

D
, z =

ζω2

D
. (45)
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Note that when δ < 0, which is the case we are interested here, we have µ = −α2/ω2. In
terms of the new parameters the polynomial Q(z) becomes

Q(z) =
ω6

D3
Q̂(ζ), Q̂(ζ) = −(ζ3 + (µ + 2bĵ)ζ2 + 2(ĵ + cĵ2 − ĥ)ζ + ĵ2), (46)

and the derivative ∂W/∂j is

∂W

∂j
(j, h) =

D

4πω3

(∮
(1 + 2cζ)dζ

ζQ̂1/2(ζ)
+
∮

(bζ2 + (1 + 2cĵ)ζ + ĵ)2dζ

ζQ̂3/2(ζ)

)
. (47)

The parametrisation of the critical values has already been obtained in (13). After the
scaling it reads

d̂(s) =
µ− s2

2(bs + 1)
, ĵcrit(s) = sd̂(s), ĥcrit = ωĵcrit(s)+cĵ2

crit(s)+2d̂(s)2+2sĵcrit(s) . (48)

On the curve (ĵcrit(s), ĥcrit(s)) the integrals on the right hand side of (47) can be computed
by the method of residues. Replacing ĵ and ĥ wherever they appear by their critical values
parametrised by s gives a condition for the vanishing of the twist on the curve of critical
values. It implies the following polynomial equation

R9(s) =
9∑

k=0

aks
k = 0, (49)

where

a0 =− 12µ− 4(4 + b)µ2 − (3b2 − 16c)µ3,

a1 =− 24(5 + b)µ− 4(b + b2 − 6c)µ2 + 4bcµ3,

a2 =− 84− 12(1 + 14b + b2)µ + 3(15b2 − 8c + 8bc)µ2 − 12c2µ2,

a3 =4(30− 66b) + 16(b + b2 + 9c)µ + (24b3 − 52bc)µ2,

a4 =12(5 + 25b− 23b2) + (64b3 − 29b2 + 192c + 336bc)µ− 4c(16b2 + 15c)µ2,

a5 =− 12(8b3 − 31b2 − 7b + 14c)− 12b(12b2 − 29c− 16bc)µ− 96bc2µ2,

a6 =320b3 + 83b2 − 312c− 360bc− (96b4 − 64b2c− 156c2)µ,

a7 =4b(32b3 + 38b2 − 171c− 48bc)− 64bc(2b2 − 3c)µ,

a8 =12(8b4 − 32b2c− 7c2),

a9 =− 96bc2.

(50)

The first two coefficients a0 and a1 are of the first order in µ, while a2 is non-zero for small
µ. Therefore the roots of R9 can be expanded in powers of |µ|1/2 = α/ω, and for small |µ|
there are only two roots in a |µ|1/2 neighborhood of the origin. The result is

s± = ±
√
−µ

7
+

4
7
(10− b)µ + O(|µ|3/2). (51)

The critical values of the twistless periodic orbit are then given by

ĵ± = ±4
7

√
−µ3

7
+

8
73

(25− 6b)µ2 + O(|δ|5/2), (52)

ĥ± = ±4
7

√
−µ3

7
+

8
73

(43/2− 6b)µ2 + O(|δ|5/2) . (53)
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This gives two points in each of the Figures 3 and 4, at which the curve of vanishing twist
emanating from the origin crosses the boundary of the image of the energy-momentum
map. The value of the rotation number at these points is

√
5W± =

1
2

√
7
−µ

± 1
7
(5− 2b) + O(|µ|1/2) . (54)

We have now treated both limiting cases, that near the focus-focus point, and that
near the elliptic relative equilibria. The curve of vanishing twist for all values in between
can in principle be computed from the derivative of (36), and will connect the results from
the two limiting cases for small values of δ.

A Expansion of W

We need to expand the Legendre standard integrals K, E, and Π in the limit k → 1.
For the expansion of the integral of the third kind it is important to take the inequality
k2 ≤ n ≤ 1 (41) into account. In this limit the following formulas can e.g. be found in [1]:

Π(n, k) = K(k) +
1
2
πR(1− Λ0(θ, k)), (55)

R =
(

n

(1− n)(n− k2)

)1/2

=
(

(zneg − zmax)zmax

znegzmin

)1/2

. (56)

Here Λ0 is Heumann’s Lambda function, which can be expressed in terms of incomplete
elliptic integrals F (θ, k) and E(θ, k) of the first and the second kind, respectively, as

Λ0(θ, k) =
2
π

(
K(k)E(θ, k′)− (K(k)− E(k))F (θ, k′)

)
, (57)

θ = arcsin

√
1− n

1− k2
= arcsin

√
zmin(zmax − zneg)
zmax(zmin − zneg)

. (58)

Note that the complementary modulus k′ =
√

1− k2 and the parameter satisfy

k′2 = 1− k2 = O(ε), 1− n = O(ε) ,

see (40). Accordingly k′2 and 1 − n are of order ε, while θ is not small but of order 1.
The prefactor R in (55) cancels with the prefactor of Π in (36), up to a factor of 1/2.
Therefore we find the (still exact) formula

W = c1K + c2E +
1
2
(1− Λ0(θ, k)) (59)

where with
√

zmax − zneg = α/
√

2D + O(ε) it follows

πc1 =
ω + 2Bzneg + 2Cj + j/(2zmax)√

2D
√

zmax − zneg

=
ω

α
+ O(ε), (60)

πc2 =
2B
√

zmax − zneg√
2D

=
Bα

D
+ O(ε) . (61)
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The elliptic integrals in the limit k′ → 0 have a logarithmic divergence of leading order

Λ = log
4
k′

. (62)

The convergent expansions in this limit are

K(k) = Λ +
Λ− 1

4
k′2 + O(Λk′4), (63)

E(k) = 1 +
1
2

(
Λ− 1

2

)
k′2 + O(Λk′4), (64)

The incomplete elliptic integrals of modulus k′ have regular expansions since k′ → 0, so
that

F (θ, k′)− E(θ, k′) =

θ∫
0

k′2 sin2 ϕdϕ√
1− k′2 sin2 ϕ

=
(

θ

2
− sin 2θ

4

)
k′2 + O(k′4), (65)

F (θ, k′) =

θ∫
0

dϕ√
1− k′2 sin2 ϕ

= θ +
1
2

(
θ

2
− sin 2θ

4

)
k′2 + O(k′4) . (66)

For the Heumann Lambda function this gives

Λ0(θ, k) =
2
π

(
θ +

1
4

(
Λ− 1

2

)
sin(2θ)k′2 + O(Λk′4)

)
. (67)

The leading order terms in the expansion of (36) come from the diverging K. Since E → 1
for k → 1 there is only a constant contribution from c2. From Λ0 the leading term is
merely θ, so that all together

πW =
ω

α
Λ +

π

2
− θ +

Bα

D
+ O(ε) (68)

It remains to understand the parameter dependence of θ. Expanding θ gives

2θ ≈ 2 arcsin

√
ρ− l

2ρ
+ O(ε). (69)

This can be simplified using the relation

2 arcsinβ = arctan γ ⇒ γ = 2

√
1− β2β

1− 2β2
. (70)

Inserting β2 = (ρ − l)/(2ρ) and using ρ2 = l2 + j2 gives γ = j/l, so that (42) is proved.
Note that when j = 0 we have ρ = l and the root zmin collides with the pole at z = 0
in the third kind integral. This is the place where the dependence on the parameters of
Π(n, k) is continuous, but not smooth.
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