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The distribution of totatives

R. R. Hall and P. Shiu

Abstract

D. H. Lehmer initiated the study of the distribution of totatives, which are numbers coprime with a given integer.

This led to various problems considered by P. Erdős, who made a conjecture on such distributions. We clarify results

due to Erdős and prove his conjecture by establishing a theorem on the ordering of residues.

1. Introduction

J. J. Sylvester called the numbers a ≤ n which are coprime with n the totatives of n. In order to study the

distribution of these totatives, D. H. Lehmer [3] introduced the counting functions

φ(n; k, �) =
∑

n�/k<a≤n(�+1)/k
(a,n)=1

1, 0 ≤ � < k. (1.1)

In particular, φ(n; 1, 0) = φ(n) is Euler’s totient function. Define

Ak = {n : k2|n or there exists a prime p|n with p ≡ 1 (mod k)},

Bk = {n : φ(n; k, �) =
φ(n)

k
for 0 ≤ � < k},

Ck = {n : k|φ(n)}.

(1.2)

It is clear that Ak and Bk are subsets of Ck, and in fact Lehmer [3] proved that Ak ⊂ Bk ⊂ Ck. It is not

difficult to show that Cp ⊂ Ap for a prime p, so that Ap = Bp = Cp. P. J. McCarthy [5] proved that Ak �= Bk

when k is not squarefree, and he asked if the result could be extended to all composite numbers k. This was

done by P. Erdős [2], who proved that the set Bk \ Ak is infinite for every composite k. Erdős also showed

that B2p = C2p for an odd prime p, and then proved that Bk �= Ck if k �= p and k �= 2p, with p odd.

The notation (1.2) was introduced by N. G. de Bruijn [1] in the review of [2]. The introduction of these

sets Ak, Bk, Ck helps to clarify and summarise the above results. De Bruijn also pointed out that parts

of the proof in [2] required rectifications which Erdős was to have supplied, and we give these necessary

amendments in Section 2. In [2] Erdős also made the following

Conjecture. Let p, q be distinct odd primes such that pq �∈ Ak and pq �≡ −1 (mod k). Then pq �∈ Bk.

The study of the distribution of totatives often involves the analysis of the condition under which the sum

of two fractional parts of real numbers should exceed 1. In particular we found that the conjecture depends

on an interesting inequality associated with residue classes. For a fixed modulus k, we write x < y (mod k)

to mean that the least non-negative residue congruent to x is less than that congruent to y.

Theorem. Let a, b, c be integers which are distinct (mod k) and satisfying

(ab, k) = 1, c �≡ 0 (mod k), a + b �≡ c (mod k). (1.3)

Then there exists x such that ax < cx < bx (mod k).

In Section 3 we show that the conjecture of Erdős follows from the theorem, the proof of which is given in

the last section. We thank the diligent referee for his careful reading of the paper.
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2. Amendments to [2]

We first give the amendments to Erdős’ proof of Bk �= Ck when k is neither a prime nor twice an odd prime.

The more general argument given in the next section involves φ(n; k, �), and can be used for the proof, while

the argument by Erdős makes use of φ(n; k, 0) only. We shall write {θ} for the fractional part of the real

number θ. First, Lehmer [3] already found that 21 ∈ C4 \ B4, and it is easy to check that 35 ∈ C8 \ B8.

We now set k = ab where a, b > 2. Erdős wrote “It is not difficult to see that for such k there exist infinitely

many primes p, q satisfying

p ≡ 1 (mod a), p ≡ 1 (mod b), pq ≡ −1 (mod k),
{p

k

}
>

1
2
,

{ q

k

}
>

1
2
. ” (2.1)

From what will be required in the following, it is clear that p ≡ 1 (mod b) here should be q ≡ 1 (mod b).

More confusing is that the condition pq ≡ −1 (mod k) should be pq �≡ −1 (mod k) instead. We therefore

replace (2.1) by

p ≡ 1 (mod a), q ≡ 1 (mod b), pq �≡ −1 (mod k),
{p

k

}
>

1
2
,

{ q

k

}
>

1
2
. (2.2)

Actually (2.2) does not always hold when a = 3. For if q ≡ bt + 1 (mod 3b), then the condition {q/3b} > 1/2

requires t ≡ 2 (mod 3), and hence 3|q when b ≡ 1 (mod 3). In fact, the proof of B3b �= C3b, where b > 2, has

to involves φ(n; k, �), and will be given in the next section.

Now let a, b be numbers not taking the values 1, 2, 3, 6. We show that it is possible to choose � so that
b
2 ≤ � < b and (�a + 1, b) = 1, noting that a sufficient condition for the latter is that �a is divisible by each

prime factor of b. If d = (a, b) ≥ 2 then we choose � =
(
d − 1

)
b/d. Suppose now that (a, b) = 1. If b has

a divisor s2 ≥ 4, then we choose � = [ 12 (s + 1)]b/s. If b has a prime divisor ρ ≥ 5 such that ρ2� |b then we

set � = (ρ + j)b/2ρ choosing j = 1 or 3. Observe that ρ cannot divide �a + 1 for both choices of j since

otherwise it would divide their difference, namely b/ρ, which is not the case. Thus, for at least one of the

choices, we have (�a + 1, b) = 1. Similarly, there are integers m such that a
2 ≤ m < a and (mb + 1, a) = 1.

We may assume that �a+mb+2 �≡ 0 (mod ab), since in general there are more than one choice for � and m;

if there are exceptional cases we can still deal with them using the general method in the next section. From

Dirichlet’s theorem for primes in arithmetic progressions there are infinitely many primes p and q such that

p ≡ �a + 1 (mod ab) and q ≡ mb + 1 (mod ab), and such primes will now satisfy the conditions in (2.2). We

also remark that in their study of sparsely totient numbers D. W. Masser and P. Shiu (Lemma 6 in [4]) gave

a proof for the existence of primes p satisfying the more demanding condition of {k/p} > 1− k/p2. Anyway,

we now set n = pq and it is easy to check that n ∈ Ck \ Ak. A simple counting argument shows that

φ(n; k, 0) =
∑

a≤n/k
(a,n)=1

1 =
[pq

k

]
−

[p

k

]
−

[ q

k

]
+

[1
k

]
=

φ(n)
k

+ E, (2.3)

where

E = −
{pq

k

}
+

{p

k

}
+

{ q

k

}
−

{1
k

}
. (2.4)
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We already remarked that n ∈ Ck, so that E is an integer according to (2.3). Moreover, since 1 <
{

p
k

}
+

{
q
k

}
< 2 by (2.2), it follows from (2.4) that E = 1, provided that

{
pq
k

}
+

{
1
k

}
< 1, which is the case since

pq �≡ −1 (mod k). Therefore E = 1, so that n �∈ Bk by (2.3) and (1.2).

The proof, apart from the case k = 3b where b > 2, has been rectified.

3. Proof of the conjecture

Let p, q be distinct odd primes such that pq �≡ −1 (mod k). The condition that pq �∈ Ak amounts to

p, q �≡ 1 (mod k). (3.1)

We need to show that pq �∈ Bk. Since Bk ⊂ Ck, we may assume that pq ∈ Ck, which then amounts to

pq + 1 ≡ p + q (mod k). (3.2)

By (1.1) and the counting argument for (2.3) and (2.4), in order to show that pq �∈ Bk it suffices to find an

integer � such that {�pq

k

}
+

{ �

k

}
�=

{�p

k

}
+

{�q

k

}
. (3.3)

If pq|k then we may simply set � = k/pq. We may therefore assume that p� |k. We begin by letting c = (p+q, k).

Note that the condition c �≡ 0 (mod k) in (1.3) follows from c < k, which holds because of (3.2) and the

hypothesis pq �≡ −1 (mod k). Write p + q = cm where (m, k/c) = 1 and define a by am ≡ 1 (mod k/c), so

that (a, k/c) = 1 and

a(p + q) ≡ acm ≡ c (mod k). (3.4)

Now set b = ap. If (a, c) = d > 1 then the four numbers a, b, c, k are divisible by d, and we replace them

by a/d, b/d, c/d, k/d, respectively in the following. We may now suppose that (a, c) = 1. Then (ab, k) = 1

and the remaining conditions in (1.3) for the theorem follows from (3.1) and (3.4). By the theorem, there

exists x such that

ax < cx < bx (mod k). (3.5)

At this point we recover the general case on multiplying through by d. We also have, by (3.2) and (3.4),

axpq + ax ≡ axp + axq ≡ cx (mod k). Letting r(x) denote the least non-negative residue of x (mod k) it

now follows from (3.5) that

r(axpq) + r(ax) = r(cx), r(axp) + r(axq) = k + r(cx).

Writing � = r(ax) we find that r(�pq) + � < k ≤ r(�p) + r(�q), which is the same as

{�pq

k

}
+

{ �

k

}
< 1 ≤

{�p

k

}
+

{�q

k

}
,

so that (3.3) is proved.
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In particular, we take k = 3b, with b > 2. Let p = 7 and q ≡ 1 (mod b), so that φ(pq) = 6(q−1) is a multiple

of k = 3b, and hence pq ∈ C3b. As before, we find that

∑
a≤�pq/k
(a,pq)=1

1 =
[�pq

k

]
−

[�p

k

]
−

[�q

k

]
+

[ �

k

]
=

�φ(pq)
k

+ E,

where

E =
{�p

k

}
+

{�q

k

}
−

{�pq

k

}
−

{ �

k

}
.

By (3.3) there exists � < k such that E �= 0, so that pq �∈ B3b, and hence B3b �= C3b.

4. Proof of the theorem

Suppose first that k = p is an odd prime, and that c = 1. For 2 ≤ a ≤ p − 1 we set

A(a) = {r : 1 ≤ r < p, ra < r (mod p)}. (4.1)

Since ra < r (mod p) is equivalent to (p−r)a > p−r (mod p) we find that r ∈ A(a) if and only if p−r �∈ A(a),

so that |A(a)| = 1
2 (p− 1) and hence |A(a) \ A(b)| = |A(b) \ A(a)|. It is also easy to check that A(a) = A(b)

when a + b ≡ 1 (mod p), since if for some j with 1 ≤ j < r we have ra ≡ j then rb ≡ r − j. We proceed to

show that if

2 ≤ a < b ≤ p + 1
2

, (4.2)

then A(a) �= A(b), and the required result follows from the definition of A(a). The proof makes use of

characters χ (mod p), Gauss sums and the fact that L(1, χ) �= 0.

Write

F (a, χ) =
∑

r∈A(a)

χ(r) (4.3)

and we proceed to prove that F (a, χ) �= F (b, χ) for some character χ, which then implies A(a) �= A(b). We

first establish the formula

F (a, χ) = W (χ)
{
1 + χ̄(a − 1) − χ̄(a)

}
, (4.4)

where

W (χ) =
1
p

∑
1≤r<p

rχ(r). (4.5)

The usual procedure of using an exponential sum to identify those r ∈ A(a) leads to the following

F (a, χ) =
∑

1≤r<p

χ(r)
∑

0≤s<r

1
p

∑
0≤h<p

e
(−h(s − ra)

p

)

=
1
p

∑
1≤r<p

rχ(r) +
1
p

∑
1≤h<p

∑
1≤r<p

χ(r)e
(hra

p

) ∑
0≤s<r

e
(−hs

p

)

= W (χ) +
1
p

∑
1≤h<p

1
e(−h/p) − 1

∑
1≤r<p

χ(r)e
(hra

p

){
e
(−hr

p

)
− 1

}
.
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Let

G(χ, x) =
∑

1≤r<p

χ(r)e
(rx

p

)
,

so that G(χ, x) = χ̄(x)G(χ), where G(χ) = G(χ, 1), and hence

F (a, χ) = W (χ) +
1
p
G(χ)

∑
1≤h<p

χ̄(ha − h) − χ̄(ha)
e(−h/p) − 1

.

The sum here can be evaluated from
∑

1≤h<p

χ̄(h)
e(−h/p) − 1

= − lim
λ→1

∑
1≤h<p

χ̄(h)
1 − λe(−h/p)

= − lim
λ→1

∑
1≤h<p

χ̄(h)
∞∑

m=0

λme
(−mh

p

)

= − lim
λ→1

∑
1≤h<p

χ̄(h)
∑

0≤m<p

λme(−mh/p)
1 − λp

= lim
λ→1

∑
1≤h<p

χ̄(h)
∑

1≤m<p

mλm−1e(−mh/p)
pλp−1

(l’Hôpital)

=
1
p

∑
1≤m<p

m
∑

1≤h<p

χ̄(h)e(−mh/p)

=
1
p

∑
1≤m<p

mχ(m)G(χ) = W (χ)G(χ),

and (4.4) now follows from |G(χ)| =
√

p.

When χ is an odd character, that is χ(−1) = −1, the sum (4.5) can be evaluated. Thus, from

W (χ) =
∑

1≤r<p

(r

p
− 1

2

)
χ(r)

= −
∑

1≤r<p

∑
m∈N

χ(r)
sin(2πmr/p)

πm

=
1
2π

∑
m∈N

χ̄(m)
m

∑
1≤r<p

χ(mr)
(
e
(mr

p

)
− e

(−mr

p

))
,

and the fact that χ is odd, so that the terms −e(−mr/p) just double up, we find that

W (χ) =
i

π

∑
m∈N

χ̄(m)
m

G(χ) =
i

π
G(χ)L(1, χ̄). (4.6)

In particular, W (χ) �= 0 for an odd character, and we may now consider the sum

∆(a, b) =
∑

χ

� |F (a, χ) − F (b, χ)|2
|W (χ)|2 , (4.7)

where ( indicates that the sum is restricted to odd characters χ. From (4.4) we have

∆(a, b) =
∑

χ

�|χ̄(a−1) − χ̄(a) − χ̄(b−1) + χ̄(b)|2

= 2(p − 1) − S(a−1, a) − S(b−1, b) − S(a−1, b−1) − S(a, b) + S(a, b−1) + S(a−1, b),
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where

S(x, y) = 2Re
∑

χ

�
χ̄(x)χ(y) =

{±(p − 1) if x ≡ ±y (mod p),
0 otherwise.

When a, b satisfy (4.2) we find that S(a−1, a) = S(b−1, b) = S(a−1, b−1) = S(a−1, b) = 0. Moreover, if

a ≡ ±b (mod p) then a = 1
2 (p− 1), b = 1

2 (p + 1), with S(a, b) = −(p− 1). Finally S(a, b− 1) �= 0 if and only

if a = b − 1, when its value is p − 1. Therefore, for a, b satisfying (4.2),

∆(a, b) =




2(p − 1) if a < b − 1,
3(p − 1) if a = b − 1 < 1

2 (p − 1),
4(p − 1) if a = b − 1 = 1

2 (p − 1).

In particular ∆(a, b) > 0, so that, by (4.7), there exists a character χ such that F (a, χ) �= F (b, χ). Indeed,

since |L(1, χ)| �ε 1/pε for every ε > 0, it now follows from (4.6), (4.7) and ∆(a, b) ≥ 2(p − 1) that

∑
χ

�|F (a, χ) − F (b, χ)|2 �ε p2−ε.

This implies
1

p − 1

∑
χ

|F (a, χ) − F (b, χ)|2 �ε p1−ε,

that is |A(a) \ A(b)| �ε p1−ε as p → ∞.

For the general case, when k is composite and c �≡ 0 (mod k), we need to replace the definition of A(a)

in (4.1) by A(a) = {r : 1 ≤ r < k, (r, k) = 1, ra < rc (mod k)}. Then A(a) = A(b) when a + b ≡ c (mod k),

so that (4.2) has to be adjusted accordingly. The argument then proceeds in the same way except that the

occurrence of p − 1 should be replaced by φ(k).
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