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Abstract

A (2+1)-dimensional quasilinear system is said to be ‘integrable’ if it can be
decoupled in infinitely many ways into a pair of compatible n-component one-
dimensional systems in Riemann invariants. Exact solutions described by these
reductions, known as nonlinear interactions of planar simple waves, can be viewed
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1 Introduction

In this paper we address the problem of integrability of (2 + 1)-dimensional quasilinear
systems

ut + A(u)ux + B(u)uy = 0 (1)

where t, x, y are independent variables, u is an m-component column vector and A(u), B(u)
are m×m matrices. Systems of this type describe many physical phenomena. In particu-
lar, important examples occur in gas dynamics, shallow water theory, combustion theory,
nonlinear elasticity, magneto-fluid dynamics, etc. [28]. Although many interesting sys-
tems of the form (1) arise as dispersionless limits of multidimensional soliton equations
[39] or within the R-matrix approach [3] and, therefore, should be regarded as integrable,
no intrinsic definition of the integrability for multidimensional quasilinear systems has
been proposed until recently. In particular, the standard symmetry approach [32, 33],
which proves to be extremely effective in the case of higher order evolution equations and
systems, does not seem to work in this context.

The key element of our construction are exact solutions of the system (1) of the form
u = u(R1, ..., Rn) where the Riemann invariants R1, ..., Rn solve a pair of commuting
diagonal systems

Ri
t = λi(R) Ri

x, Ri
y = µi(R) Ri

x; (2)

notice that the number of Riemann invariants is allowed to be arbitrary! Thus, the
original 2+1-dimensional system (1) is decoupled into a pair of diagonal 1+1-dimensional
systems. Solutions of this type, known as nonlinear interactions of n planar simple waves,
were extensively investigated in gas dynamics and magnetohydrodynamics in a series of
publications [5, 6, 7, 36, 37, 9, 20]. Later, they appeared in the context of the dispersionless
KP hierarchy [15, 16, 17, 18, 21, 31, 29, 30] and the theory of integrable hydrodynamic-
type chains [34, 35]. We will call a multidimensional system integrable if it possesses
‘sufficiently many’ n-component reductions of the form (2) for arbitrary n (the precise
definition follows). The corresponding nonlinear n-wave interactions can be viewed as
dispersionless analogs of ‘n-gap’ solutions.

We recall, see [38], that the requirement of the commutativity of the flows (2) is
equivalent to the following restrictions on their characteristic speeds:

∂jλ
i

λj − λi
=

∂jµ
i

µj − µi
, i 6= j, ∂j = ∂/∂Rj ; (3)

(no summation!). Once these conditions are met, the general solution of (2) is given by
the implicit ‘generalized hodograph’ formula [38]

vi(R) = x + λi(R) t + µi(R) y, i = 1, ..., n, (4)

where vi(R) are characteristic speeds of the general flow commuting with (2), that is, the
general solution of the linear system

∂jv
i

vj − vi
=

∂jλ
i

λj − λi
=

∂jµ
i

µj − µi
, i 6= j. (5)
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Substituting u(R1, ..., Rn) into (1) and using (2), one readily arrives at the equations

(A + µiB + λiIm) ∂iu = 0, i = 1, ..., n, (6)

implying that both λi and µi satisfy the dispersion relation

det(A + µB + λIm) = 0. (7)

Thus, the construction of nonlinear interactions of n planar simple waves consists of two
steps:
(1) Reduce the initial system (1) to a pair of commuting flows (2) by solving the equations
(3), (6) for u(R), λi(R), µi(R) as functions of the Riemann invariants R1, ..., Rn. For
n ≥ 3 these equations are highly overdetermined and do not possess solutions in general.
However, once a particular reduction of the form (2) is constructed, the second step is
fairly straightforward:
(2) Solve the linear system (5) for vi(R) and determine R1, ..., Rn as functions of t, x, y
from the implicit hodograph formula (4).

Remark 1. For n = 1 we have u = u(R), where the scalar variable R = R1 solves a
pair of first order PDEs

Rt = λ(R) Rx, Ry = µ(R) Rx

which, in one-component situation, are automatically commuting. We recall that in the
scalar case the hodograph formula (4) takes the form

f(R) = x + λ(R)t + µ(R)y (8)

where f(R) is arbitrary. This formula shows that, in coordinates t, x, y, the surfaces
R = const are planes. Hence, u = u(R) is constant along a one-parameter family of
planes. Solutions of this type, known as planar simple waves, exist for all multidimensional
quasilinear systems and, therefore, cannot detect the integrability.

Similarly, for n = 2, we have u = u(R1, R2) where R1, R2 satisfy the system (2) whose
general solution is given by the generalized hodograph formula

v1(R) = x + λ1(R)t + µ1(R)y, v2(R) = x + λ2(R)t + µ2(R)y, R = (R1, R2). (9)

Setting R1 = const, R2 = const, one obtains a two-parameter family of lines (or, in
the geometric language, a line congruence) in the 3-space of independent variables t, x, y.
Therefore, the solution u = u(R1, R2) is constant along the lines of a two-parameter
family. The requirement of the existence of solutions of this type, known as nonlinear
interactions of two planar simple waves, is also not very restrictive. For instance, for
m = 2, any system (1) possesses infinitely many 2-component reductions of the form (2)
parametrized by two arbitrary functions of a single argument (see examples below).

On the contrary, the requirement of the existence of nontrivial 3-component reductions
is already sufficiently restrictive and, in particular, implies the existence of n-component
reductions for arbitrary n. This phenomenon is similar to the well-known three-soliton
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condition in the Hirota bilinear approach [23, 24, 25] (recall that two-soliton solutions exist
for arbitrary PDEs transformable to Hirota’s bilinear form and, therefore, cannot detect
the integrability), and the condition of three-dimensional consistency in the classification
of discrete integrable systems on quad-graphs [1]. One can show, by analyzing equations
(3), (6), that the maximum number of n-component reductions the system (1) may possess
is parametrized, modulo changes of variables Ri → f i(Ri), by n arbitrary functions of a
single argument (notice that this number does not depend on m). Therefore, we propose
the following

Definition. A (2 + 1)-dimensional quasilinear system is said to be integrable if it
possesses n-component reductions of the form (2) parametrized by n arbitrary functions
of a single argument.

Remark 2. This definition of integrability implies that the matrices A and B in (1)
are not commuting (if we want the system (1) to be nonlinear and coupled). Therefore, our
definition is by no means exhaustive: there exist examples of multidimensional quasilinear
systems which are integrable (in the inverse scattering sense) although do not possess
n-component reductions. In all these examples the corresponding matrices A and B
commute: [A, B] = 0.

Remark 3. The anzatz somewhat similar to the key element of our construction
was used for finding formal solutions of nonlinear evolution equations in the form of
exponential series, see [22] and references therein, where solutions were sought as functions
of real exponentials solving the linearized equation. The possibility to distinguish between
integrable and nonintegrable equations in the framework of this approach was pointed out
in [27].

In section 2 we discuss explicit examples which demonstrate that the above definition
is indeed very effective for detecting the integrability.

In section 3 we classify integrable systems of conservation laws in Godunov’s form [19],

vt + (fv)x + (gv)y = 0, wt + (fw)x + (gw)y = 0;

notice that systems of this type automatically possess one extra convex quadratic entropy

1

2
(v2 + w2)t + (vfv + wfw − f)x + (vgv + wgw − g)y = 0.

The integrability conditions constitute a complicated overdetermined system (41) of fourth
order PDEs for the potentials f and g. The analysis of this system leads to two possibil-
ities.
Quadratic case. There exists a linear combination of f and g which is quadratic in v, w.
Without any loss of generality one can assume that g is quadratic, say, g = (v2 − w2)/2
(one has a freedom of Euclidean isometries of the (v, w)-plane to bring g to the canonical
form). In this case our equations take the form

vt + (fv)x + vy = 0, wt + (fw)x − wy = 0; (10)

the corresponding integrability conditions reduce to the system (44) of fourth order PDEs
for the potential f which can be solved explicitly (see Sect. 3). Notice that in the new
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independent variables ξ = −(t + y)/2, η = −(t− y)/2 the system (10) takes the form

(fv)x = vξ, (fw)x = wη,

which is manifestly Hamiltonian in the new variables V = fv, W = fw:

Vx = (FV )ξ, Wx = (FW )η.

Here F is the Legendre transform of f , F = vfv + wfw − f . Thus, we obtain a complete
description of the class of integrable two-component (2+1)-dimensional Hamiltonian sys-
tems of hydrodynamic type. An independent treatment of the Hamiltonian case is given
in Sect. 4 where, in particular, the integrability conditions in terms of the Hamiltonian
density F are derived (formulae (56)).
Harmonic case. Here both f and g are harmonic functions. Further analysis shows that
there exists a unique system of this type, with f = Re(z ln z−z), g = Im(z ln z−z), z =
v + iw. The corresponding equations are

vt +
vvx + wwx

v2 + w2
+

vwy − wvy

v2 + w2
= 0, wt +

wvx − vwx

v2 + w2
+

vvy + wwy

v2 + w2
= 0,

or, in conservative form,

vt + (ln
√

v2 + w2)x + (arctg
w

v
)y = 0, wt − (arctg

w

v
)x + (ln

√
v2 + w2)y = 0.

Remarkably, this two-component system is a disguised form of the nonlinear wave equa-
tion. To see this we change to polar coordinates v = r cos θ, w = r sin θ:

θy = −rx

r
+ r sin θ θt − cos θ rt, θx =

ry

r
+ r cos θ θt + sin θ rt; (11)

these equations lead, upon cross-differentiation, to the nonlinear wave equation (r2)tt =
4 ln(r2), known also as the Boyer-Finley equation [4]. Solving equations (11) for rx and ry

and cross-differentiating, one obtains another second order equation (r2θt)t = 4θ which
can be viewed as a linear wave equation for θ. It is not clear whether the wave equation
with a general nonlinearity can be written as a two-component first order system; however,
as demonstrated in [26], it always possesses a simple three-component representation.
Hydrodynamic reductions of the Boyer-Finley equation were recently studied in [13], see
also Sect. 3.

2 Examples

In this section we list some of the known examples of (2 + 1)-dimensional systems of
hydrodynamic type which are integrable in the above sense. All these examples turn out
to be conservative and, moreover, possess exactly one ‘extra’ conservation law which is
the necessary ingredient of the theory of weak solutions. This makes the systems below
a possible venue for developing and testing mathematical theory (existence, uniqueness,
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weak solutions, etc.) of multidimensional conservation laws which, currently, remain terra
incognita [8].

Example 1. The dispersionless KP equation,

(ut − uux)x = uyy,

plays an important role in nonlinear acoustics and differential geometry. Introducing the
potential u = ϕx we obtain the equation ϕxt − ϕxϕxx = ϕyy which takes the quasilinear
form

vy = wx, wy = vt − vvx (12)

in the variables v = ϕx, w = ϕy. Looking for reductions v = v(R1, ..., Rn), w =
w(R1, ..., Rn), where the Riemann invariants Ri satisfy (2), one readily obtains

∂iw = µi∂iv, λi = v + (µi)2. (13)

The compatibility condition ∂i∂jw = ∂j∂iw implies

∂i∂jv =
∂jµ

i

µj − µi
∂iv +

∂iµ
j

µi − µj
∂jv, (14)

while the commutativity condition (3) results in

∂jµ
i =

∂jv

µj − µi
. (15)

The substitution of (15) into (14) implies the Gibbons-Tsarev system for v(R) and µi(R),

∂jµ
i =

∂jv

µj − µi
, ∂i∂jv = 2

∂iv∂jv

(µj − µi)2
, (16)

i 6= j, which was first derived in [17, 18] in the theory of hydrodynamic reductions of
Benney’s moment equations, see also [21, 29, 30] for further discussion. For any solution
µi, v of the system (16) one can reconstruct λi and w by virtue of (13). In the two-
component case this system takes the form

∂2µ
1 =

∂2v

µ2 − µ1
, ∂1µ

2 =
∂1v

µ1 − µ2
, ∂1∂2v = 2

∂1v∂2v

(µ2 − µ1)2
. (17)

The general solution of this system is parametrized by four arbitrary functions of a single
argument, indeed, one can arbitrarily prescribe the Goursat data v(R1), µ1(R1) and
v(R2), µ2(R2) on the characteristics R2 = 0 and R1 = 0, respectively. Moreover, the
system (17) is invariant under the reparametrizations R1 → f 1(R1), R2 → f 2(R2) where
f 1, f2 are arbitrary functions of their arguments. Since reparametrizations of this type
do not effect the corresponding solutions, one concludes that two-component reductions
are parametrized by two arbitrary functions of a single argument. A remarkable feature
of the system (17) is its multidimensional compatibility, that is, the compatibility of the
system (16) which is obtained by ‘gluing together’ several identical copies of the system
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(17) for each pair of Riemann invariants Ri, Rj. Indeed, calculating ∂k(∂jµ
i) by virtue of

(16) one obtains

∂k(∂jµ
i) =

∂jv∂kv(µj + µk − 2µi)

(µj − µk)2(µj − µi)(µk − µi)
,

which is manifestly symmetric in j, k. Therefore, the first compatibility condition ∂k(∂jµ
i) =

∂j(∂kµ
i) is satisfied. Similarly, the computation of ∂k(∂i∂jv) results in

∂k(∂i∂jv) = 4
∂iv∂jv∂kv((µi)2 + (µj)2 + (µk)2 − µiµj − µiµk − µjµk)

(µi − µj)2(µi − µk)2(µj − µk)2
,

which is totally symmetric in i, j, k. Therefore, the second compatibility condition ∂k(∂i∂jv) =
∂j(∂i∂kv) is also satisfied. The general solution of the system (16) depends, modulo trivial
symmetries Ri → f i(Ri), on n arbitrary functions of a single argument.

We just mention that the system (12) possesses exactly three conservation laws of
hydrodynamic type:

vy = wx,

wy = vt − (v2/2)x,

(vw)y = (v2/2)t + (w2/2− v3/3)x.

Example 2. The Boyer-Finley equation,

uxy = (eu)tt,

(notice that the signature here is different from the one discussed in the introduction,
which makes the analysis much easier) is descriptive of self-dual Einstein spaces with a
Killing vector [4]. Introducing the potential u = ϕt, one obtains the equation ϕxy = (eϕt)t

which takes the form
vt = wx/w, wt = vy (18)

in the new variables v = ϕx, w = eϕt . Looking for reductions in the form v = v(R1, ..., Rn),
w = w(R1, ..., Rn), where the Riemann invariants Ri satisfy (2), one readily obtains

∂iw = wλi∂iv, µi = w(λi)2. (19)

The compatibility condition ∂i∂jw = ∂j∂iw implies

∂i∂jv =
∂jλ

i

λj − λi
∂iv +

∂iλ
j

λi − λj
∂jv, (20)

while the commutativity condition (3) results in

∂jλ
i =

(λi)2λj

λj − λi
∂jv. (21)

The substitution of (21) into (20) implies the system for v(R) and λi(R),

∂jλ
i =

(λi)2λj

λj − λi
∂jv, ∂i∂jv =

λiλj(λi + λj)

(λj − λi)2
∂iv∂jv, (22)
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which, in a somewhat different form, was first discussed in [13]. For any solution λi, v of
the system (22) one can reconstruct µi, w by virtue of (19). The system (22) is compatible,
with the general solution depending on n arbitrary functions of a single argument (modulo
trivial symmetries Ri → f i(Ri)).

The system (18) possesses three conservation laws of hydrodynamic type:

wt = vy,

vt = (ln w)x,

(vw)t = wx + (v2/2)y.

Example 3. An interesting integrable modification of the Boyer-Finley equation is
the PDE

uxy = (∂2
t − c∂2

x)(e
u),

c = const (see [34, 35] for further examples of this type). Introducing the potential
eu = ϕx, one obtains the equation ϕtt − cϕxx = (ln ϕx)y which takes the form

vt = cwx + wy/w, wt = vx (23)

in the new variables v = ϕt, w = ϕx. Looking for reductions in the form v = v(R1, ..., Rn),
w = w(R1, ..., Rn), where the Riemann invariants Ri satisfy (2), one obtains

∂iv = λi∂iw, µi = w((λi)2 − c). (24)

The compatibility condition ∂i∂jv = ∂j∂iv implies

∂i∂jw =
∂jλ

i

λj − λi
∂iw +

∂iλ
j

λi − λj
∂jw, (25)

while the commutativity condition (3) results in

∂jλ
i =

(λi)2 − c

λj − λi

∂jw

w
. (26)

The substitution of (26) into (25) implies the following system for w(R) and λi(R),

∂jλ
i =

(λi)2 − c

λj − λi

∂jw

w
, ∂i∂jw =

(λi)2 + (λj)2 − 2c

w(λj − λi)2
∂iw∂jw. (27)

For any solution λi, w of the system (27) one can reconstruct µi, v by virtue of (24). The
system (27) is compatible, with the general solution depending on n arbitrary functions
of a single argument (modulo symmetries Ri → f i(Ri)).

The system (23) possesses three conservation laws of hydrodynamic type:

vt = cwx + (ln w)y,

wt = vx,

(vw)t = (v2/2 + w2/(2c))x + wy.
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Notice that when c > 0 the x-flux of the third conservation law is a convex function of
the previous two x-fluxes (convex entropy). This example can be of particular interest for
the general theory of multidimensional strictly hyperbolic conservation laws.

Example 4. We are going to demonstrate that the method of hydrodynamic reduc-
tions is in fact the effective classification criterion. As an illustration of our approach we
will classify integrable nonlinear wave equations of the form

uxy = (f(u))tt;

it will follow that f(u) = eu is the only nontrivial possibility. Introducing the potential
u = ϕt, one obtains the equation ϕxy = (f(ϕt))t which takes the form

vt = wx, f ′(w)wt = vy (28)

in the new variables v = ϕx, w = ϕt. Looking for reductions in the form v = v(R1, ..., Rn),
w = w(R1, ..., Rn) where the Riemann invariants Ri satisfy (2) one readily obtains

∂iv = ∂iw/λi, µi = f ′(w)(λi)2. (29)

The compatibility condition ∂i∂jv = ∂j∂iv implies

∂i∂jw =
λj∂jλ

i

(λj − λi)λi
∂iw +

λi∂iλ
j

(λi − λj)λj
∂jw, (30)

while the commutativity condition (3) results in

∂jλ
i =

f ′′

f ′
(λi)2

λj − λi
∂jw. (31)

The substitution of (21) into (20) implies the system for w(R) and λi(R),

∂jλ
i =

f ′′

f ′
(λi)2

λj − λi
∂jw, ∂i∂jw = 2

f ′′

f ′
λiλj

(λj − λi)2
∂iw∂jw. (32)

A direct computation of ∂k(∂jλ
i) implies

∂k(∂jλ
i) =

(
f ′′

f ′

)′
(λi)2

λj−λi ∂jw∂kw+

(
f ′′

f ′

)2
(λi)2(λi((λj)2+(λk)2)+λjλk(λj+λk)−4λiλjλk)

(λj−λk)2(λj−λi)(λk−λi)
∂jw∂kw.

The compatibility condition ∂k(∂jλ
i) = ∂j(∂kλ

i) is equivalent to the requirement that the
above expression is symmetric in j, k. Since the second term is manifestly symmetric, one
has to require (

f ′′

f ′

)′

= 0
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to ensure the compatibility. This implies f = aebu + c, which is essentially the case of
Example 2.

Example 5. There exist remarkable examples with a fairly simple structure of hy-
drodynamic reductions. Let us consider the system [34]

vt = wx, wt = wvx − vwx + vy. (33)

Looking for reductions in the form v = v(R1, ..., Rn), w = w(R1, ..., Rn) where the Rie-
mann invariants Ri satisfy (2) one obtains

∂iw = λi∂iv, µi = (λi)2 + vλi − w,

so that

∂i∂jv =
∂jλ

i

λj − λi
∂iv +

∂iλ
j

λi − λj
∂jv.

The commutativity condition (3) implies

∂jλ
i = −∂jv, ∂i∂jv = 0.

Hence,

v =
∑

k

fk(Rk), λi = ϕi(Ri)−
∑

k

fk(Rk),

where f i(Ri) and ϕi(Ri) are arbitrary functions of a single argument. Further properties of
these reductions were investigated in [34]. We just mention that the system (33) possesses
three conservation laws of hydrodynamic type:

vt = wx,

(w + v2)t = (vw)x + vy,

(2vw + v3)t = (v2w + w2)x + (v2)y.

Example 6. The method of hydrodynamic reductions carries over to multicomponent
situation in a straightforward way. Here we give details of calculations for the 3-component
system first proposed in [39], see also [21]:

at + (av)x = 0, vt + vvx + wx = 0, wy + ax = 0. (34)

Looking for reductions in the form a = a(R1, ..., Rn), b = b(R1, ..., Rn), w = w(R1, ..., Rn)
where the Riemann invariants Ri satisfy (2) one obtains the relations

∂iw = −(λi + v)∂iv, ∂ia = µi(λi + v)∂iv, µi = − a

(λi + v)2
. (35)

The compatibility condition ∂i∂jw = ∂j∂iw implies

∂i∂jv =
∂jλ

i

λj − λi
∂iv +

∂iλ
j

λi − λj
∂jv, (36)
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while the commutativity condition (3) results in

∂jλ
i =

λj + v

λi − λj
∂jv. (37)

The substitution of (37) into (36) implies the system for v(R) and λi(R),

∂jλ
i =

λj + v

λi − λj
∂jv, ∂i∂jv = −λi + λj + 2v

(λj − λi)2
∂iv∂jv. (38)

One can verify that the remaining compatibility conditions ∂i∂ja = ∂j∂ia are satisfied
identically. For any solution λi, v of the system (38) one can reconstruct w, a, µi by virtue
of (35). The system (38) is compatible, with the general solution depending on n arbitrary
functions of a single argument (modulo symmetries Ri → f i(Ri)).

Notice that the system (34) possesses four conservation laws of hydrodynamic type:

at + (av)x = 0,

vt + (v2/2 + w)x = 0,

wy + ax = 0,

(aw + av2)x + (w2/2)y + (av)t = 0.

Equations (34) can be generalized as follows:

at + (av)x = 0, vt + vvx + wx = 0, wy + p(a)x = 0.

(so that one obtains isentropic gas dynamics in the limit x = y). It can be shown that
this system passes the integrability test if and only if p′′ = 0, which leads to (34).

3 Classification of integrable systems of conservation

laws with a convex quadratic entropy

In this section we discuss systems of conservation laws in Godunov’s form [19],

vt + (fv)x + (gv)y = 0, wt + (fw)x + (gw)y = 0; (39)

here f(v, w) and g(v, w) are given potentials. Systems of this type automatically possess
one extra convex quadratic entropy

1

2
(v2 + w2)t + (vfv + wfw − f)x + (vgv + wgw − g)y = 0.

Equations (39) can be written in the matrix form (1) with

u =

(
v
w

)
, A =

(
fvv fvw

fvw fww

)
, B =

(
gvv gvw

gvw gww

)
;
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in what follows we assume that the commutator

[A, B] =

(
0 s
−s 0

)
is nonzero, that is, s = gvw(fvv−fww)−fvw(gvv−gww) 6= 0; otherwise, the system possesses
no nontrivial n-component hydrodynamic reductions. The integrability conditions lead
to an overdetermined system of fourth order PDEs for f and g. A careful analysis of this
system shows that there exist two essentially different possibilities:
– g is quadratic in v, w (quadratic case) or
– both f and g are harmonic functions (harmonic case).
Remarkably, in both cases the equations for f and g can be solved in a closed form.
We hope that these examples would provide a good venue for developing and testing
the general theory of multidimensional conservation laws (breakdown of solutions, weak
solutions, etc).

The integrability conditions can be derived in the standard way. Looking for reductions
of the system (25) in the form v = v(R1, ..., Rn), w = w(R1, ..., Rn) where the Riemann
invariants satisfy equations (2), and substituting into (25), one arrives at

(λi+fvv +µigvv)∂iv+(fvw +µigvw)∂iw = 0, (fvw +µigvw)∂iv+(λi+fww +µigww)∂iw = 0,

(no summation!) so that λi and µi satisfy the dispersion relation

(λi + fvv + µigvv)(λ
i + fww + µigww) = (fvw + µigvw)2.

Setting ∂iv = ϕi∂iw one obtains the following expressions for λi and µi in terms of ϕi,

λi =
(fvvgvw − fvwgvv)(ϕ

i)2 + (fvvgww − fwwgvv)ϕ
i + (fvwgww − fwwgvw)

gvw(1− (ϕi)2) + (gvv − gww)ϕi
,

µi = −fvw(1− (ϕi)2) + (fvv − fww)ϕi

gvw(1− (ϕi)2) + (gvv − gww)ϕi
,

which define a rational parametrization of the dispersion relation. The compatibility
conditions of the equations ∂iv = ϕi∂iw imply

∂i∂jw =
∂jϕ

i

ϕj − ϕi
∂iw +

∂iϕ
j

ϕi − ϕj
∂jw, (40)

while the commutativity conditions (3) lead to the expressions for ∂jϕ
i in the form ∂jϕ

i =
(...)∂jw. Here dots denote a rational expression in ϕi, ϕj whose coefficients are functions of
the second and third derivatives of f and g. We do not write them down explicitly due to
their complexity. To manipulate with these expressions we used symbolic computations.
One can see that the compatibility condition ∂k∂jϕ

i−∂j∂kϕ
i = 0 is of the form P∂jw∂kw =

0, where P is a complicated rational expression in ϕi, ϕj, ϕk whose coefficients depend on
partial derivatives of f and g up to fourth order. Requiring that P vanishes identically we
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obtain the overdetermined system of fourth order PDEs for f and g. This system yields
the following expressions for the fourth derivatives of f :

sfvvvv = fvvv[2(gww − gvv)fvvw + 3(fvv − fww)gvvw +

2gvw(fvvv + 2fvww)− 2fvwgvww] +

gvvv[(fww − fvv)fvvw − 2fvw(fvww + fvvv)] +

6fvvw(fvwgvvw − gvwfvvw),

−sfvvvw = fvvw(fvwgvvv + 3gvwfvww − 3fvwgvww) + fvvv[2(fww − fvv)gvww −
2(gww − gvv)fvww + fvw(gwww + gvvw)− gvw(fwww + 2fvvw)],

sfvvww = (gww − gvv)(fvwwfvvw + fvvvfwww) +

(fvv − fww)(fvwwgvvw + gvvvfwww) + (41)

2gvw(f 2
vvw − f 2

vww) + 2fvw(fvwwgvww − fvvwgvvw),

sfvwww = fvww(fvwgwww + 3gvwfvvw − 3fvwgvvw) + fwww[2(fvv − fww)gvvw −
2(gvv − gww)fvvw + fvw(gvvv + gvww)− gvw(fvvv + 2fvww)],

−sfwwww = fwww[2(gvv − gww)fvww + 3(fww − fvv)gvww +

2gvw(fwww + 2fvvw)− 2fvwgvvw] +

gwww[(fvv − fww)fvww − 2fvw(fvvw + fwww)] +

6fvww(fvwgvww − gvwfvww);

here s = gvw(fvv − fww)− fvw(gvv − gww) 6= 0. Notice that equations (41)4 and (41)5 can
be obtained from (41)2 and (41)1 by interchanging v and w. Analogous expressions for
the fourth derivatives of g can be obtained from (41) by interchanging f and g. Moreover,
one has five quadratic relations among the third derivatives of f and g:

fvvvgwww − fwwwgvvv + fvwwgwww − fwwwgvww = 0,
fvvvgwww − fwwwgvvv + fvvvgvvw − fvvwgvvv = 0,
fvvvgwww − fwwwgvvv + fvvwgvww − fvwwgvvw = 0,

fvvvgvww − fvwwgvvv = 0,
fvvwgwww − fwwwgvvw = 0.

(42)

This system of PDEs for f and g is not in involution; a careful analysis of the quadratic
relations (42) leads to two essentially different possibilities:
Quadratic case. The third derivatives of g are proportional to the corresponding third
derivatives of f ,

gvvv = µfvvv, gvvw = µfvvw, gvww = µfvww, gwww = µfwww.

Substituting these relations into the remaining integrability conditions one can show that
µ must be constant. Therefore, g − µf is at most quadratic in v, w. Without any loss of
generality one can assume that, say, g is quadratic.
Harmonic case. Here

fvvv + fvww = 0, fwww + fvvw = 0, gvvv + gvww = 0, gwww + gvvw = 0,

13



which imply that 4f and 4g are constants. Without any loss of generality one can
assume that both f and g are harmonic, 4f = 4g = 0.

Remark 4. There exists an obvious group of equivalence transformations which
preserve the integrability and leave equations (39) form-invariant. These are, first of all,
orthogonal transformations of the (v, w)-plane, generated by translations and rotations.
Secondly, these are linear changes of the independent variables in (39),

x → a11x + a12y + a13t, y → a21x + a22y + a23t,

which induce the transformations

f → a11f + a12g + a13
v2 + w2

2
, g → a21f + a22g + a23

v2 + w2

2
.

The classification below is carried out up to this natural equivalence.

3.1 Quadratic case

Setting g(v, w) = av2 + 2bvw + cw2 and introducing C = b(fww − fvv) + (a − c)fvw one
can rewrite equations (41) as follows:

Cfvvvv = 2b(3f 2
vvw − 2fvvvfvww − f 2

vvv) + 2(a− c)fvvvfvvw,

Cfvvvw = b(3fvvwfvww − 2fvvvfvvw − fvvvfwww) + 2(a− c)fvvvfvww,

Cfvvww = 2b(f 2
vww − f 2

vvw) + (a− c)(fvvwfvww + fvvvfwww),

Cfvwww = −b(3fvwwfvvw − 2fwwwfvww − fvvvfwww) + 2(a− c)fvvwfwww,

Cfwwww = −2b(3f 2
vww − 2fwwwfvvw − f 2

www) + 2(a− c)fvwwfwww,

(43)

(the corresponding equations for g are satisfied identically). For any a, b, c this system
is in involution and its solution space is 10-dimensional. Indeed, the values of f , its
first, second and third derivatives can be choosen arbitrarily, while the fourth and higher
derivatives are determined by virtue of (43). Diagonalizing the quadratic form g by a
linear orthogonal change of variables v, w, one can set b = 0. In this case equations (43)
simplify to

fvwfvvvv = 2fvvvfvvw,

fvwfvvvw = 2fvvvfvww,

fvwfvvww = fvvwfvww + fvvvfwww,

fvwfvwww = 2fvvwfwww,

fvwfwwww = 2fvwwfwww.

(44)
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The first two equations imply that fvvv/f
2
vw = const. Similarly, the last two equations

imply fwww/f2
vw = const. Setting fvw = e one can parametrise the third derivatives of f

as follows:

fvvv =
1

2
me2, fvvw = ev, fvww = ew, fwww =

1

2
ne2; (45)

here m,n are arbitrary constants. The compatibility conditions of these equations plus
the equation (44)3 result in the following overdetermined system for e:

(ln e)vw =
mn

4
e2, evv = meew, eww = neev. (46)

It is worth mentioning that the system (46) arises in a completely different context in
projective differential geometry constituting the projective Gauss-Codazzi equations of
the Roman surface of Steiner which is known as the only quartic in P 3 containing a two-
parameter family of conics, see e.g. [12]. At the moment we have no explanation of this
remarkable coincidence.
Solving the first (Liouville) equation for e in the form

e2 =
4

mn

p′(v)q′(w)

(p(v) + q(w))2

and setting
(p′)3/2 =

√
m P (p), (q′)3/2 =

√
n Q(q), (47)

(here P (p) and Q(q) are functions to be determined), one obtains from the last two
equations (46) the following functional-differential equations for P and Q:

P ′′(p+q)2−4P ′(p+q)+6P = 2Q′(p+q)−6Q, Q′′(p+q)2−4Q′(p+q)+6Q = 2P ′(p+q)−6P ;

these equations imply that both P and Q are cubic polynomials in p and q,

P = ap3 + bp2 + cp + d, Q = aq3 − bq2 + cq − d,

where a, b, c, d are arbitrary constants. In the general case, using translations and scalings,
equations (47) can be brought to the form (y′)3 = (y3 − 3λy2 + 3y)2 and solved in terms
of elliptic functions [2]:

y =
2

λ− 3℘′(z; 0, g3)
, g3 =

4− 3λ2

27
.

In the simplest case m = n = 0 equations (46) imply

e = (αv + β)(γw + δ),

and the elementary integration of (45) results in

f(v, w) =
αγ

4
v2w2 +

αδ

2
v2w +

βγ

2
vw2 + βδvw;
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here α, β, γ, δ are arbitrary constants. Using the equivalence transformations one can
reduce f to either f = v2w2 (if both α and γ are nonzero) or f = vw2 (if α = 0). The
corresponding equations (39) take the form

vt + 2(vw2)x + vy = 0, wt + 2(v2w)x − wy = 0

and
vt + (w2)x + vy = 0, wt + 2(vw)x − wy = 0,

respectively (in both cases g = (v2 − w2)/2).
If m = 0, n 6= 0, equations (46) imply

e = (αv + β)ϕ′(w)

where ϕ′′′ = αn(ϕ′)2, α, β = const. Therefore, ϕ(w) = − 6
αn

ζ(w; 0, g3) + γ, where ζ ′(z) =
−℘(z) and g3, γ are constants. The elementary integration of the equations (45) gives

f =
1

2α
(αv + β)2ϕ(w).

This reduces to the previous case if n = 0.

3.2 Harmonic case

We have fvv = −fww, gvv = −gww, so that

fvvv = −fvww, fwww = −fvvw, gvvv = −gvww, gwww = −gvvw.

Differentiating these relations by virtue of (41) (and the analogous equations for g) one
arrives at the additional constraints

fvvp1 + fvwp2 + gwwp3 = 0, − fvwp1 + fvvp2 + gvwp3 = 0,

−gvwp1 + gwwp2 + fvwp4 = 0, gwwp1 + gvwp2 + fvvp4 = 0

where

p1 = fvwwgvww+fvvwgvvw, p2 = fvwwgvvw−fvvwgvww, p3 = f 2
vvw+f 2

vww, p4 = g2
vvw+g2

vww.

Solving the linear system for pi (notice that the corresponding 4 × 4 matrix has rank
three) one obtains

p1 = fvwwgvww + fvvwgvvw = µ2(fvwgvw − fvvgww),

p2 = fvwwgvvw − fvvwgvww = −µ2(fvvgvw + fvwgww),

p3 = f 2
vvw + f 2

vww = µ2(f 2
vw + f 2

vv),

p4 = g2
vvw + g2

vww = µ2(g2
vw + g2

ww).

(48)
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Introducing the two-component vectors

e1 =

(
fvww

fvvw

)
, e2 =

(
gvww

gvvw

)
, s1 =

(
fvw

fww

)
, s2 =

(
gvw

gww

)
,

one can rewrite (48) in vector notation as follows

(e1, e1) = µ2(s1, s1), (e2, e2) = µ2(s2, s2), (e1, e2) = µ2(s1, s2), e1 ∧ e2 = −µ2s1 ∧ s2

where (, ) is the standard Euclidean scalar product. Therefore, the vectors e1, e2 and s1, s2

are related by a composition of a scaling, rotation and reflection, that is,

e1 =

(
X Y
Y −X

)
s1, e2 =

(
X Y
Y −X

)
s2

or, explicitly,
fvww = Xfvw + Y fww, fvvw = Y fvw −Xfww,
gvww = Xgvw + Y gww, gvvw = Y gvw −Xgww

(49)

(notice that equations for f and g coincide). The compatibility conditions of these equa-
tions imply the following equations for X and Y ,

Xv = 2XY, Xw = X2 − Y 2, Yv = Y 2 −X2, Yw = 2XY,

whose general solution (up to translations in v and w) is

X = − w

v2 + w2
, Y = − v

v2 + w2
.

Substituting these expressions into (49) and integrating the corresponding linear system
for the harmonic function f (this integration simplifies if one changes to the complex
variables z = v + iw, z̄ = v− iw) one readily obtains that f must be a linear combination
of the real and imaginary parts of the function z ln z − z. The same result holds for g.
Therefore, without any loss of generality one can set f = Re(z ln z−z), g = Im(z ln z−z).

3.3 Reductions of the system (11)

Here we briefly discuss reductions of the system (11),

θy = −rx

r
+ r sin θ θt − cos θ rt, θx =

ry

r
+ r cos θ θt + sin θ rt.

Assuming θ = θ(R1, ..., Rn), r = r(R1, ..., Rn) where the Riemann invariants satisfy the
equations

Ri
x = λi(R) Ri

t, Ri
y = µi(R) Ri

t

and substituting into (11) one arrives at

(µi − r sin θ)∂iθ + (λi/r + cos θ)∂ir = 0, (λi − r cos θ)∂iθ − (µi/r + sin θ)∂ir = 0,
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(no summation!) Hence, the characteristic speeds λi and µi satisfy the dispersion relation
which takes a particularly simple form

(λi)2 + (µi)2 = r2.

Parametrising λi and µi in the form λi = r cos ϕi, µi = r sin ϕi we obtain

∂iθ =
cos θ + cos ϕi

sin θ − sin ϕi
∂iU, (50)

U = ln r. The compatibility conditions of these equations together with the commutativ-
ity conditions (3) imply the system

∂i∂jU = − ∂iU∂jU

sin2 ϕi−ϕj

2

, ∂jϕ
i = cot

ϕi − ϕj

2
∂jU (51)

which is a trigonometric version of the Gibbons-Tsarev system (16). As shown in [13]
this system is, in fact, equivalent to (16), and its solutions can be constructed from the
known solutions of the Gibbons-Tsarev system [17, 18]. Once the solution of (51) is
known, the corresponding polar angle θ can be calculated from the equations (50) which
are compatible by construction.

4 Classification of integrable Hamiltonian systems of

hydrodynamic type in 2 + 1 dimensions

In this section we classify Hamiltonian systems

vt = (hv)x, wt = (hw)y (52)

which possess infinitely many hydrodynamic reductions. Here h(v, w) is the Hamiltonian
density. Notice that any system of the form (52) possesses one extra conservation law

ht = (h2
v/2)x + (h2

w/2)y.

As mentioned in the introduction, Hamiltonian systems are related to the quadratic case
of Sect. 3 by virtue of the Legendre transform. However, we find it instructive to treat
the Hamiltonian case independently to better illustrate our method.

Looking for reductions in the form v = v(R1, ..., Rn), w = w(R1, ..., Rn) where the
Riemann invariants satisfy the equations

Ri
x = λi(R) Ri

t, Ri
y = µi(R) Ri

t (53)

and substituting into (52) one arrives at the equations

(1− λihvv)∂iv = λihvw∂iw, (1− µihww)∂iw = µihvw∂iv,
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(no summation!) so that λi and µi satisfy the dispersion relation

(1− λihvv)(1− µihww) = λiµih2
vw.

We require that the dispersion relation is nondegenerate (as a conic), that is, hvw 6=
0, h2

vw − hvvhww 6= 0. Setting ∂iv = ϕi∂iw, we obtain the following expressions for λi and
µi in terms of ϕi,

λi =
ϕi

hvw + ϕihvv

, µi =
1

hww + ϕihvw

,

which define a rational parametrization of the dispersion relation. The compatibility
conditions of the equations ∂iv = ϕi∂iw imply

∂i∂jw =
∂jϕ

i

ϕj − ϕi
∂iw +

∂iϕ
j

ϕi − ϕj
∂jw (54)

while the commutativity equations (3) lead to the following complicated expressions for
ϕi:

∂jϕ
i =

ϕi(hvw+ϕjhvv)(hww+ϕihvw)∂jw

hvw(h2
vw−hvvhww)(ϕi−ϕj)

[(hvvw + ϕihvvv)ϕ
j + hvww + ϕihvvw] +

(hvw+ϕihvv)(hww+ϕjhvw)∂jw

hvw(h2
vw−hvvhww)(ϕi−ϕj)

[(hvww + ϕihvvw)ϕj + hwww + ϕihvww] .

(55)

One can see that the compatibility condition ∂k∂jϕ
i−∂j∂kϕ

i = 0 is of the form P∂jw∂kw =
0 where P is a rational expression in ϕi, ϕj, ϕk whose coefficients depend on partial deriva-
tives of the Hamiltonian density h(v, w) up to fourth order. Requiring that P vanishes
we obtain the overdetermined system of fourth order PDEs for the density h:

hvw(h2
vw − hvvhww)hvvvv = 4hvwhvvv(hvwhvvw − hvvhvww)

+3hvvhvwh2
vvw − 2hvvhwwhvvvhvvw − hvwhwwh2

vvv,

hvw(h2
vw − hvvhww)hvvvw = −hvwhvvv(hvvhwww + hwwhvvw)
+3h2

vwh2
vvw − 2hvvhwwhvvvhvww + h2

vwhvvvhvww,

hvw(h2
vw − hvvhww)hvvww = 4h2

vwhvvwhvww

−hvvhvvw(hvwhwww + hwwhvww)− hwwhvvv(hvwhvww + hvvhwww),

hvw(h2
vw − hvvhww)hvwww = −hvwhwww(hwwhvvv + hvvhvww)
+3h2

vwh2
vww − 2hvvhwwhwwwhvvw + h2

vwhwwwhvvw,

hvw(h2
vw − hvvhww)hwwww = 4hvwhwww(hvwhvww − hwwhvvw)

+3hwwhvwh2
vww − 2hvvhwwhwwwhvww − hvwhvvh

2
www.

(56)

It was verified that this system is in involution and its solution space is 10-dimensional.
As mentioned in the introduction, the Legendre transform identifies the systems (56) and
(44).
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5 Concluding remarks

We have demonstrated that the existence of hydrodynamic reductions describing nonlinear
interactions of n ≥ 3 planar simple waves can be viewed as the effective integrability
criterion. The most natural problems arising in this context are the following:
1. Classify multicomponent (2+1)-dimensional integrable quasilinear systems. The main
difference from the two-component case is that the dispersion relation (7) will no longer
define a rational curve.
2. The recent publication [14] suggests that the method of hydrodynamic reductions
carries over to 3 + 1 dimensions. It would be extremely interesting to obtain further
examples (classification results) of dispersionless integrable systems in many dimensions.
3. Nonlinear interactions of n simple waves can be viewed as a natural dispersionless
analogue of ‘n-gap’ solutions. It would be desirable to obtain an alternative description
of these solutions as the ‘stationary points’ of the appropriate ‘higher symmetries’.

We hope to address these questions elsewhere.
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