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Abstract

This paper presents an existence proof for modulating pulse solutions to a wide class of
quadratic quasilinear Klein-Gordon equations of the form

8t2u = &%u —u+ fi(u, Oyu, 8tu)a§u + fo(u, Opu, Opu).

Modulating pulse solutions consist of a pulse-like envelope advancing in the laboratory
frame and modulating an underlying wave-train; they are also referred to as ‘moving breathers’
since they are time-periodic in a moving frame of reference. The problem is formulated as an
infinite-dimensional dynamical system with three stable, three unstable and infinitely many
neutral directions. By transforming part of the equation into a normal form with an exponen-
tially small remainder term and using a generalisation of local invariant-manifold theory to
the quasilinear setting, we prove the existence of small-amplitude modulating pulses on do-
mains in space whose length is exponentially large compared to the magnitude of the pulse.
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1 Introduction

1.1 Breathers and modulating pulses
A breather solution of the nonlinear wave equation
O*u = 0*u —u + g(u), z,t € R,

in which ¢ : R — R is a smooth function, is a solution u(z,t) € R which is periodic in ¢
and decays to zero as x — =+o0; in particular the completely integrable sine-Gordon equation
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(9(u) = u — sinu) admits explicit breather solutions. It seems natural to ask whether wave
equations obtained by perturbing the sine-Gordon nonlinearity also have breather solutions; a
negative answer to this question was given by Denzler [2] and Birnir, McKean & Weinstein [1],
who showed that the only perturbations of the sine-Gordon equation admitting breather solutions
are those which can be transformed back into the sine-Gordon equation by a rescaling.

The ‘non-existence of breathers’ result is remarkable since the existence of small-amplitude
breather solutions is predicted by multiple scaling analysis. Making the Ansatz

u(r,t) = eA(e(z — cyt), e%t)elhor—iwt e

in which 0 < ¢ < 1 is a small perturbation parameter, k is the basic spatial wavenumber,
wo = wo(ko) = /1 + k2 is the basic frequency and ¢, = ¢, (ko) = wo/ko, ¢, = cy(ko) = ko/wo
are the linear phase and group velocities, one finds that at leading order A(X,T') € C satisfies
the nonlinear Schrodinger equation

OrA = i 0?A + i A|A? (1)

with coefficients v; = v;(ko) € R. Equation (1) is said to be focusing if vy, > 0; in this case it
possesses a family of breather solutions

A(X,T) = B(X)e"T, v €R,

where B(X) € R satisfies limy_,+o, B(X) = 0, and it is well known that these solutions
correctly approximate solutions of the nonlinear wave equation on length- and time-scales of
O(1/€?) (see e.g. Kalyakin [8] and Schneider [12]). The breathers considered by Denzler and
Birnir, McKean & Weinstein have a basic wavenumber ko = 0; for ko # 0, so that ¢, (ko) # 0,
the solutions are called moving breathers (because they are time-periodic in a moving frame
of reference) or modulating pulses (because they consist of a pulse like envelope advancing in
the laboratory frame and modulating an underlying periodic wave train). The ‘non-existence of
breathers’ result shows that the above breathers are destroyed in the full equation by higher order
terms which are neglected in the derivation of the nonlinear Schrodinger equation.

The ‘non-persistence’ phenomenon is easily understood in terms of the geometrical theory
of differential equations. Let us examine the equation

Otu = O?u — u + uf(u?), (2)

where f : R — R is another smooth function and seek moving breather solutions u(x,t) =
v(x—cgt, ko(z—cpt)), where v is 2m-periodic and odd in its second variable and ¢, = ¢, +O(?),
¢p = ¢, +O(£%). Writing the equation for v as an evolutionary equation in which the unbounded
spatial variable { = x — c,t plays the role of the time-like variable (‘spatial dynamics’), one
obtains a system of equations of the form

Oz = Az+ F(z,w), (3)
Jdew = Aw+ G(z,w)+ H(w) 4)

(see Groves & Schneider [4]), in which A is a linear operator whose spectrum consists of a
pair of real eigenvalues of opposite signs and infinitely many purely imaginary eigenvalues, z
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and w are the projections of v onto the hyperbolic and centre subspaces of A and F, G, H are
nonlinearities with G(z,0) = 0. A moving breather corresponds to a homoclinic solution of
(3), (4), that is a solution (z,w) such that (z(¢),w(§)) — (0,0) as & — oo, and arises as the
intersection of the stable and unstable manifolds in the phase space of 2m-periodic functions.
Equations (3), (4) have the property that {w = 0} is a two-dimensional invariant subspace when
the higher-order terms H (z) are neglected; the stable and unstable manifolds are contained in this
two-dimensional subspace, and in fact intersect whenever f’(0) > 0, giving rise to homoclinic
solutions of the two-dimensional dynamical system

Ocz = Nz + F(2,0).

On the other hand {w = 0} is no longer invariant when H (z) is included, and the intersection
of the one-dimensional stable and unstable manifolds in the infinite-dimensional phase space is
a rare phenomenon; the homoclinic solution for H(z) = 0 does not persist for H(z) # 0.

Any further analysis of the situation clearly has to take the infinite-dimensional centre space
and hence the variable w into account. Groves & Schneider [4] proved the existence of modulat-
ing pulse solutions to (2) which remain O(e™)-close to the approximate solutions of amplitude
O(e) obtained by setting H(z) = 0 but do not decay to zero as £ — £o0, so that their ‘tails’ are
O(e"); here n € N is arbitrary but fixed. The proof involves using a sequence of normal-form
transformations which eliminate successive terms in the Taylor expansion of H (z), so that it can
be made O(g”), where N is arbitrary but fixed (and determined by the choice of n). A standard
construction for semilinear evolutionary equations yields a family of solutions on { € [0, 00)
whose hyperbolic parts are O(¢") and whose centre part may experience secular growth; the
initial-values of these solutions form the centre-stable manifold. The O(e")-boundedness of
their centre parts follows using an auxiliary argument: a solution v(¢) with initial data on the
centre-stable manifold converges to a solution on an appropriately defined centre manifold, a
graph in phase space upon which all solutions remain so long as they are O(¢"); the existence
of a Lyapunov function (the Hamiltonian function for the wave equation) shows that the centre
manifold is actually globally invariant; and the rate of convergence of v(£) to the centre manifold
is shown to be faster than the rate of secular growth of its centre part. Finally, the reversibility
of (2) is exploited to extend the above solutions to symmetric solutions on € (—oo, c0). Our
result identifies a sense in which the modulating pulses for H(z) = 0 persist for H(z) # 0 and
we generalise our definition of ‘modulating pulses’ and ‘moving breathers’ accordingly. An al-
ternative approach to persistence, which is based upon scattering theory, is given by McLaughlin
& Shatah [10].

Further complications arise when studying quasilinear wave equations. Our technique in ref-
erence [4] relies heavily upon semilinearity, in particular that global existence theory is available
for globally Lipschitz nonlinearities with small Lipschitz constant; this method is therefore not
applicable to quasilinear problems. Progress was however made in our study of the prototype
quasilinear equation

Otu = 0*u — u + 02(u?)

(Groves & Schneider [5]). The theory is analogous to that for semilinear equations: a normal-
form transformation eliminates terms up to O(¢”) in the Taylor expansion of H (z); an iteration
scheme and energy estimates are used to construct solutions which exist on ¢ € [0,e7"] and are
O(g™) close to the approximate solutions of amplitude O(¢) obtained by setting H(z) = 0; and
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reversibility is used to extend these solutions to symmetric solutions on & € [—e~", e "]. The
definition of ‘modulating pulses’ and ‘moving breathers’ is thus generalised further, namely to
include pulses which exist on large but finite spatial intervals in a frame of reference moving
with the pulse.

In the present paper we present an existence theory for modulating pulses which greatly im-
proves and generalises the result given in reference [5]. We show that a large class of quasilinear
wave equations with analytic nonlinearities and whose quadratic terms do not necessarily vanish
admit modulating pulse solutions which exist on £ € [—e¢"/2VE ¢¢"/2VE] and are O(e~¢"/2VE)-
close to the O(e) approximate modulating pulses. Our solutions are therefore exponentially
close to the approximate pulses and exist on exponentially long length scales in a frame of refer-
ence moving with the pulse. The main tool is a normal-form transformation which makes H(z)
exponentially rather than algebraically small.

1.2 The result

O(ec*/ 2\/5)
Figure 1: A modulating pulse solution guaranteed by Theorem 1.1.

We seek modulating pulse solutions to the quasilinear wave equation
Ofu = ?u — u + fi(u, Opu, Opu)02u + fo(u, Opu, dpu), (5)
in which fi, f> : R® — R are analytic functions which satisfy
fila,=b,—c) = fi(a,b,c), i=1,2; (6)

this hypothesis ensures that the spatial dynamics formulation of (5) is reversible, and is an es-
sential requirement for the construction of symmetric modulating pulses. Our result is stated in
Theorem 1.1 and illustrated in Figure 1.



Theorem 1.1 Fix a positive real number ky. There exist positive constants £, and c* with the
property that for each ¢ € (0, q) equation (5) admits an infinite-dimensional, continuous family
of modulating pulse solutions of the form

u(x,t) = v(r — cgt, ko(x — cpt)),

where v is 2m-periodic in its second argument and
— 2 _
Cp = Cp, +NET, Cg = —.

These solutions satisfy

U(é? 7]) - U(_é-? _77)7 |U<§7 77) - he(&a 77)| < e—c*/Qﬁ
foralln € Rand & € [—e/?VE e /2VE] in which
.\ 1/2
e _ 2C4 / <1/2 3/2 —eb¢ %1/2
he(&,m) = +e vy sech(C}""e) cosn + O(e”/“e™%), 0<0 <y
URSD)
(so that 5lirj? he(€,n) = O uniformly inn € R). Here Cy = —2kyy (1 4 k2)%/? is positive for

1 < 0 and Cy is a normal-form coefficient which is defined in equation (29) and required to be
positive.

Example 1.2 The quasilinear wave equation
Otu = 0%u — u — audu — B(9,u)*02u,
in which o, 3 are real parameters, satisfies the hypotheses of Theorem 1.1 with

ko(1+k5)B.
47 ’

27.2
~ o’k

Cy=——1 (2 + kg + k) +

this coefficient is positive for sufficiently large values of ko whenever 3 > 5a.

Remark 1.3 The coefficient C, is positive whenever the asssociated nonlinear Schridinger
equation (1) is focusing.

The proof of Theorem 1.1 has five main steps.

L. Spatial dynamics formulation (Section 2) The equation for v is formulated as an evolu-
tionary system in which the unbounded spatial variable £ is the time-like variable. The linear
operator in this evolutionary system has two geometrically double real eigenvalues of O(¢), two
simple strongly hyperbolic eigenvalues of O(1) and an infinite number of geometrically double
purely imaginary eigenvalues. In terms of the projections z = P,,v and ¢ = Py, v of v onto the
weakly hyperbolic and strongly hyperbolic/centre subspaces, we write the system as the coupled
fourth-order dynamical system

Dez = Kz + F(z,q), K:(g é) )
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and quasilinear wave equation
g = 8)

Dt qo —5k502q1 — 1 + Pane(di(2)@1) + Pene(d2(2)0yq1) + Peane(ds(2)q2)
+ Psh,c(gg(za Q)a$Q1) + gi(’Z? q) + Psh,c(g§<27 Q)anQQ) + hs(z)’ (9)

where the notation for the nonlinearities has been designed to help with the careful book-keeping
which is needed later. The nonlinearities [, g5 and h° are analytic functions of their argu-
ments and the parameter ¢, where g5(z,¢q) contains no e-independent terms which are linear
in z. The functions d; are linear and independent of ¢, so that d;(2)q1, d2(2)0,¢: and d3(2)go
represent the terms ‘missing’ in the Taylor expansion of ¢5(z,q). Hypothesis (6) implies that
95 (21, =22, 1, —=Onq1, —q2) = 95 (21, =22, 1, —Opq1, —q2), h*(21, —22) = h°(21, 22), and this re-
striction is an essential requirement, its purpose being to guarantee the reversibility of equations
(7)-(9), that is their invariance under the transformation { — —¢, (v1,v2) — S(v1,v2), where
S(vr(n), va(n)) = (v1(—n), —va(—n)).

Theorem 1.1 evidently requires an ‘almost global-wellposedness’ result for (8), (9). Itis well
known that the presence of quadratic terms in wave equations causes difficulties in constructing
existence theories of this kind, and the usual approach is to construct a normal-form transforma-
tion which eliminates them (e.g. see Shatah [13]). Unfortunately elimination of the quasilinear
quadratic terms in equation (9) in this fashion would cause a loss of regularity and complicate our
analysis. In fact we do not require a complete theory for the initial-value problem for equations
(7)-(9) since we are only interested in solutions of a certain type, and it is actually not necessary
to eliminate the quadratic terms to solve the initial-value problem for such solutions (see step IV
below).

11. Identification of approximate modulating pulses (Section 3) According to the discussion
in Section 1.1, approximate modulating pulses exist as homoclinic solutions of the equation

Ocz = Kz + F°(2,0), (10)

and the approximations increase in accuracy as a sequence of transformations is constructed
to remove terms of order 2, 3, ...from h®. The transformation eliminating the quadratic part
of h® affects the cubic part of F*, which in turn controls homoclinic bifurcation in equation
(10). It is therefore necessary to carry out this preliminary transformation separately, after which
dynamical systems arguments show that (10) admits a pair of homoclinic solutions provided that
a coefficient C; in the cubic part of F* is positive.

III. Normal-form theory (Section 4) We proceed by using a sequence of normal-form trans-
formations to eliminate terms of order 3, 4, ... 1in the Taylor expansion of 4°. One cannot expect
to eliminate the whole of /¢ in this fashion, because our equations would then admit homoclinic
solutions whose existence would contradict the ‘non-existence of breathers’ result. By restrict-
ing attention to a neighbourhood of the origin (which is large enough to contain the approximate
homoclinic solutions), one can however optimise over the order of the eliminated terms so that
the remainder is exponentially small. The necessary transformation theory (Section 4) is a gen-
eralisation of a theory for finite-dimensional dynamical analytic vector fields given by looss &
Lombardi [7], and here we adopt their notation and make frequent reference to their paper for
needed results of a combinatorial nature. A central requirement of Iooss & Lombardi’s result
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is that the linearised vector field should be diagonalisable (this condition ensures that certain
estimates hold uniformly in the order of terms eliminated from the vector field). In the present
context the corresponding requirement is that the matrix K should be diagonalisable, a condition
which is clearly not met. This difficulty is overcome by writing ¢ = p? and introducing scaled
parameters which convert the equation for 2 into

852 = Fu(27Q)a

in which the linear part of the vector field is the (trivially diagonalisable) zero matrix. A similar
device was used by looss & Lombardi [6] in an application of their normal-form theory to the
0?%w resonance.

The transformation theory in Section 4 amounts to a partial normal form since only certain
higher-order terms (the g-independent terms in the equations for ¢) are eliminated. A complete
normal form would involve eliminating all ‘non-resonant’ terms in the vector field, and this task
is known to be impossible because of a small-divisor problem arising from asymptotic reso-
nances among the frequencies, that is the magnitudes of the purely imaginary eigenvalues (e.g.
see Poschel [11]). By contrast, the frequencies interact in a helpful way in our partial normal
form: they guarantee that the transformation itself is smoothing of degree one (see Proposition
4.1), and this property in turn ensures that the transformed equation for ¢ is again a quasilinear
wave equation.

1V. Existence theory (Section 5) The next step is to construct an existence theory for solutions
of (7)-(9) which remain exponentially close to one of the approximate modulating pulses identi-
fied in step II over an exponentially long time scale. For this purpose we use an iteration scheme
for quasilinear systems of the type suggested by Kato [9], and here the main task is to prove that
the iterative sequence {w(m) }men, for the central part w = P.q of ¢ converges; in particular we
show that

[wemy ()] < e/ ¢ e[0,e7 /2, (11)

1 N
[n+1)(€) = wom () < S lwem (€) = wm-1y (), & € [0,7/] (12)

for each m € Ny, so that w = lim,, e Wy exists and satisfies |w(£)|| < e~/ for £ €
[0, e"/21],

The analysis of the sequence {wy,) }men, is complicated by the presence of quadratic terms
in our nonlinearities. In proving (11) one arrives at the differential inequality

—c* —c* 2 _c* 2
Ol wmy 1 < cpale™ W + e e ) Jwi || + cple™ /™ + pe™ ) Jwim P (13)

for w(), and it is necessary to deduce that ||w(,(€)|| < e/ for ¢ € [0,e“/?*]. A better
inequality is obtained for equations with cubic nonlinearities, namely

a&Hw(m)HZ < Cu(Gic*/# + M2efc*/2#e*#29€>||w(m)H + Clu(e—c*/m + M267u295)|’w(m)”2;
integrating and using the means inequality, one finds that

sup  [[wim) (E)11” < [Jwmy (0)]1” 4+ cpe™* + e sup  [Jweny ()],
£€[0,ec™ /21 £€f0,ec*/2m]



50 that [|wim (&)|| < cpe™"/? for € € [0,e"/?"] whenever |Jw(,(0)|| < pe<"/%*. Notice
however that this calculation does not yield the required result for inequality (13) (the O(u)
coefficient of the third term on the right-hand side of the deduced inequality is replaced by an
O(1) coefficient).

In fact the required result does follow from inequality (13), but a more careful two-step
estimation technique is required. In the first step we define £* so that L ue, where o is
an appropriately chosen positive constant; a straightforward application of Gronwall’s inequality
shows that [|w(, (&)||* < cu|log pule=<"/# for & € [0,£*] whenever |[w(y,)(0)] < pe=¢/?". In
the second step we integrate (13) over [0, e©/?#] and split the range of integration into [0, £*] and
[¢*,e¢"/21]. Satisfactory estimates for the integrals over [¢*, e /?#] are obtained by an optimal
choice of « (and hence £*), while the integrals over [0, {*| are handled using the result from the
first step; the final result is that ||w(,,(€)|| < cu'/?|log ule=<"/?* for £ € [0, /*]. Full details
of this estimate are given in the final part of Lemma 5.3, and the corresponding calculation
needed for (12) is discussed in Lemma 5.4.

V. Extension to symmetric modulating pulses (Section 6) The final step is is based upon the
following observations: (i) solutions v(§) = (z(£), ¢(£)) of (7)—(9) on & € [0, &) with the prop-
erty that v(0) lies on the symmetric section 3 = Fix S can be extended to symmetric solutions
on £ € [—&o, &); (i) the initial values v(0) of the solutions identified in step IV define a man-
ifold in phase space (the centre-stable manifold) which is parameterised by the projections w®
of v(0) onto the infinite-dimensional centre subspace and (Z°, 9, 79) of v(0) onto an appropri-
ately defined three-dimensional stable subspace. An intersection of the centre-stable manifold
with the symmetric section therefore guarantees the existence of symmetric modulating pulse
solutions on & € [—e“ /2 e¢"/21]. Denote the spectral projections of the phase space onto the
centre and hyperbolic subspaces by respectively P, and P,. Because P.v(0) = w® we have that
v(0) € X, := P.X whenever w’ € Y. and fixed-point arguments are used to prove that there
is a unique value of (Z° 9 r9) such that P,v(0) € X, := B,Y (and additional regularity re-
quirements on w" beyond those used in step IV are necessary here). In this fashion we obtain the
result announced in Theorem 1.1, namely the existence of an infinite-dimensional, continuous
family of modulating pulse solutions parameterised by w® € 3.

Acknowledgements The work of Guido Schneider is partially supported by the Deutsche Forsch-
ungsgemeinschaft DFG under the grant Schn 520/3-1/2.
2 Spatial dynamics formulation
We look for modulating pulse solutions of the nonlinear wave equation (5) of the form
U(l’, t) = Ul(x - Cgta ko(x - Cpt)) = U1(§7 77):

where v; is periodic in n with period 27 and kj is a fixed positive number. Making this Ansatz,
one arrives at the equation

(1-— cé)@?vl + 2(1 — ¢g¢p) kO Opv1 + (1 — cf))k?)@?]vl —
+ fg(Ul, 8,71)1, 851)1)(8521)1 + 2]{00,785@1 + kg@gvl) + f4(U1, 877’(}1, 85111) = 0,
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where

f3 (Ul, 8,]1)1, 851}1) = f1 ('Ul, (9{’01 + ko@nvl, —Cgag’Ul — kocp&]vl),
f4(1)1, 8771)1, 851)1) = fg(vl, 85'01 -+ koﬁnvl, —Cgag’l}l — kocp&]vl);

notice that f3, f; are analytic real-valued functions of their arguments with the property that
fila, =b,—c) = fi(a,b,c), i = 3,4. It is convenient to choose

— 2 —
cp = ¢, +ME7, cg = 1/cp,

so that ¢, is a small perturbation of the phase velocity ¢, of the linearised problem and the
equation simplifies to

1 —c + fs(v1, o1, Oevr)
1-— cg + f3(v1, Oy, Ocvy)
2f3(v1, Opvy, Ocvy)

1 —c2 + f3(v1, Oyv1, Ocn)

8522)1 + k:gagvl
f4(01, anvla 3§U1) — U

= 0.
1-— Cg + fg(Ul, 8171)1, 851]1)

koanag’ljl +

Introducing the new variable vy = 0¢v;, we can write the above equation as the evolutionary
system

051)1 = V2, (14)

—c@ké@%vl — cqur + (covr + gg(v))ﬁgvl + (cou1 + g5(v)) 0,02
+ 61711)% + 6172(0771)1)2 + 617303 + 0174"02&7"01 + gf(v), (15)

(95 (%)

which we study in the phase space

X = {v = (v,v) € H5I1(0,27) x H?_(0,27)}, s> 0,

per per
the domain of the vector field on the right-hand side of (14), (15) being D* = X**!. Here

£ 1_C €
Co = C, =
Pl —¢ 4

—1

— 2
1cg

TN

(LSRN

are negative constants and the analytic functions g§, g5, g5 : X! — Hggl (R?) and constants
o> C1,15 - - - C1 4, C2 are defined by

a1 2 + f3(v1, Opur, v2)
°1 — ¢ + f3(v1, Opvr,v2)

—c§+cour + g5(v) =

—cu + cuvf + 01,2(3777}1)2 + cl,gvg + ¢1,4v20,v1 + g} (v)
_ Ja(v1, Opvr, v2) — vy
1-— Cé + f3(v1, 877111,1}2)’

_ 2kof3(v1, Opur, v2)
1 —c2+ fs(v1, Oyv1,v2)

cu1 + gs(v) =

9



so that ¢5(0) = 0, dg5[0] = 0, j = 0,1,2 and d*¢?[0] = 0. (We denote parameter dependence,
which is always analytic, of functions and constants by the superscript €; functions and constants
without the superscript do not depend upon ¢.) The evolutionary system (14), (15) has a discrete
symmetry which plays an important role in the following theory. It is reversible, that is invariant
with respect to the transformation £ — —¢&, (vy,v9) — S(vy,v2), where the reverser S is defined

by the formula
S(01(n), v2(n)) = (v1(=n), =v2(=7)).

This symmetry has the consequence that (v, (—&, —1), —vs(—&, —n)) solves the equation when-

ever (v1(&,m),v2(&,m)) is a solution.

We may express an element of 3 (0,2) as a Fourier series

\ﬁ . \[ 3 {01 () + 100 s}

and define projections Py, Py, o, Pre, P 0 H3.,.(0,27) — H?.(0,27) by the formulae

per per

W/ /1
( _“10+fz Ul]osm]ﬁ +UljeCOS(]77))>: 2—7110

/1 1 — 1
Pm,o ( %Ul,o + \/;;(Ul,j,o Sln(ﬂ?) + U1,j,e COS(QH))) = \/;vl,m,o Sin<m77)7
Puc ({f tno+ /23 (wrosinGin) + vncosim) | = [ Eonccosomn)
e — — V1 7.0 SIN U1 i.e COS = — V1. m.e COS(TM
; o 1,0 . 2 1.4, Jn 1,4, Jn - 1,m, n

with P,, = P, + P, for m = 1,2,.... By extending the Fourier series coordinatewise to
vector-valued functions we find that X'* decomposes into a direct sum @,,¢n, £,, of subspaces,
where

and

Em = Lmyo > Em,ea Em,o = {(Ul,m,oa U?,m,o)}y Em,e = {(U17m7ea U2,m,e)}-

We may therefore write

X5 = (5T g

Y
in which
o0
= {u | ullf = luol® + ) m* (Jumol* + [umel?) < 00},
m=1

and P, o, P, ¢, P, also extend naturally to projections X* — X’® which are denoted by the same
symbols. Notice that P, is infinitely smoothing due to its finite-dimensional range, so that

||val||t1 S Cm,tl,tz

01|45, t1 > ta;

the same smoothing property is enjoyed by F,, , and F,, .. The action of the reverser .S in the
new coordinate system is readily confirmed to be

S(Ul,m V1,e5 V2,0, U2,e) = (—01,07U1,e, V2,0, _U2,e)7
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where (v1,0,20) = {(V1.m.0s V2.m0)}s (ViesV2e) = {(V1me, V2me)}. Note also that the peri-
odicity in y combines with the translation invariance in this variable to give an O(2) symmetry
represented in the new coordinates by

{(Ul,m,m Ul,m,e7 U2,m,07 U2,m,e)} — {(Rma (Ul,m,m Ul,m,e)7 Rma<02,m,07 U2,m,e))}; a < Ra

where Ry is the 2 X 2 matrix representing a rotation through the angle 6.
The spectrum of the linearised system

1€ € (%1 _ (%]
v =L7v, L ( Vg > N ( —c3kg07v1 — vy >

associated with (14), (15) was calculated by Groves & Schneider [4]; we recall the complete
result since extensive use is made of it in the following analysis. The mth Fourier component
satisfies the ordinary differential equations

agvl,m = U2m,

m2k3(1—c2) +1
85112” = L V1,m;
(1-— cg)

and the associated eigenvalues )\, . of this system of equations are given by

m?kg(1 —c2) +1
(1-— cg)
= (kg + 1)(1 = m?) = 2ko(1+ k3) 2 (kg + m®*)me® + O(eh),

2 _
)\m,s -

in which the O(g*) estimate on the remainder term holds uniformly in m.

m = 0: We have two simple, real eigenvalues +-\o . = +(1+k2)'/2+O(?). The corresponding

eigenvectors are given by
U1 . 1
(%) N :i:)\o7 e '

m = 1: For ¢ = 0 we have a geometrically simple and algebraically double zero eigenvalue in
E, ,. The eigenvector and associated generalised eigenvector are given by

(2)-(Damn (2)-(2)on

For ¢ > 0 we have two simple eigenvalues +); . which satisfy the equation (\; . )? = —2kgy1e%(1+
k2)%/2 + O(£*); they are therefore real if 7, < 0. The eigenvectors are

U1 . 1 .
vy = Zi:)\LE sm 7.

The same result holds in £ . with sin 7 replaced by cos 7.
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Im Im

Re Re

e=0 e>0

Figure 2: The spectrum of the linearised problem consists of infinitely many semisimple purely
imaginary eigenvalues and two real semisimple real eigenvalues together with two Jordan blocks
of length two at the origin for ¢ = 0 or two additional semisimple real eigenvalues for e > 0; with
the exception of the geometrically simple real eigenvalues of largest magnitude all eigenvalues
have geometric multiplicity two.

m > 1: We have two simple purely imaginary eigenvalues in FE,, , given by fiw,, ., where
Wi e = Fi(m? — 1)V2(kZ + 1)Y/2 + O(e?). The eigenvectors are

()= (e, o

The same result holds in E,, . with sin(mn) replaced by cos(mmn).

The eigenvalue picture is summarised in Figure 2; for ¢ > 0 we have a two-dimensional
strongly hyperbolic part Xj = FEj, a four-dimensional weakly hyperbolic part X7, = E)
and an infinite-dimensional central part X7 = @~ ,FE,, of phase space. Notice that F is
the projection onto the strongly hyperbolic subspace X3 along the central and weakly hyper-
bolic subspace &5, U X7, while P, is the projection onto the weakly hyperbolic subspace X3,
along the central and strongly hyperbolic subspace Xj U X?. In the theory below we there-
fore write Py, for Iy, Py, for P, P, for I — Py, — Py, and also define Py, = Py, + P
we use the notation (Z;,Z3) = Py (v1,v2), (21,22) = Pan(v1,v2), (w1,ws) = P.(v1,v2)
and (ql,QQ) = Sh’c(vl,w), so that LE(Zl,ZQ) = (ZQ,AEZJ’EZl), LE(Zl,ZQ) = (ZQ,)\%’621> and
LH{(q1ms @2m) mz2 = {(G2.m> —wiy -01.m) Fm>2-

One may formulate equations (14), (15) as the coupled four-dimensional dynamical system

Ocz = Kz + F°(2,q), (16)

0 1 L 0
K:(O 0)’ F(Z’Q)_()\iaz—{—fe(z,q))’

J(2,9) = Panl(co(z 4+ @) + g5(2 + )92 (21 + @1)
+ci1(z + @)+ c1,2(0p (21 + q))* + c1,3(22 + 3)° + c14(22 + q2)0y (21 + 1)
+9i(z +q) + (c2(21 + @1) + g5(2 + @)y (22 + @2)],

12
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and quasilinear wave equation

Oeqi = qo, (17)
Oeqr = —SkgO2q1 — i1 + Pane(di(2)1) 4 Pene(d2(2)0yq1) + Panc(ds(2)q2)
+ Psh,c(gg(zv Q)a$Q1) + gi(’Z? q) + Psh,c(g§<27 q)anQQ) + hs(z)’ (18)
where
dl(Z) = Coagzl + 2C1’121 + 0287722,
do(2) = 2¢120p21 + 142,
d3(2) = 201’322 + 017467721,
g5(2,q9) = colq +21) + g5z +q),
9i(2,0) = Pacl(95(z +q) — 95(2)) 0521 + (95(2 + q) — 95(2))9p2s

+ 1147 + 12(0,q1)° + 1365 + 1402001 + 95 (2 + @) — 91 (2)],
95(2.0) = calq+21) +g5(2 +q),
he(z) = Pael[(coz + gg(z))agzl + (c221 + 65(2)) 0y 22
+c1127 + c12(0,21) + c1325 + c1az0p21 + 65 (2)];

the linear functions d;, 7 = 1, 2, 3 and nonlinearities in equations (16)—(18) satisfy the estimates

1d;(2)]s+1 o(z)),  j7=1,2,3,
15zl = Ollallxz (2, Dllassr + 11(2, ) I7o),
Pzl = Ozl + llallaznll(z, Ol + [1(2, O lI7e),
195z, ) ls+1 = O([(z,@)l|xs+1), =35,
193z, )41 = 0(Hf1\i;;;+H(J!Xé;fg\ZH(w)\),
1P°(2)lss1 = O(|2).

‘We use this formulation in the remainder of the article.

3 Approximate modulating pulses

In this section we construct a pair of approximate modulating pulse solutions to equations (16)—
(18) from which we later obtain genuine modulating pulses by perturbation arguments. Consider
the approximate problem obtained by removing the term h°(z) from equation (18). This approx-
imate problem has the property that £y = {¢ = 0} is an invariant subspace, the flow in which is
given by the equation

Otz = Kz + F°(2,0),

where |F€(2,0)] = O(]z|?). Under a sign condition on the cubic part of the nonlinearity, the
above equation admits a pair of small-amplitude homoclinic orbits p** for small, positive values
of ¢ (see below), and each of these orbits serves as an approximate modulating pulse.

13



Our strategy is therefore to use a sequence of changes of variable which systematically re-
moves the term h5(z) that is homogeneous of degree j in (2,¢) from h® while preserving the
overall structure of the equations. This procedure is carried out in Section 4 below, where it is
shown that the remaining terms in ~° can be made exponentially small in comparison to ¢, so that
p°* become very good approximations to genuine modulating pulses. The transformation which
eliminates the term h9(z) (the term that is homogeneous of degree two in z and does not depend
upon ¢) affects the coefficient in F°(z, 0) whose sign determines whether homoclinic bifurcation
takes place; we therefore consider this transformation as a separate preliminary step.

Lemma 3.1 There is a near-identity, finite-dimensional change of coordinates which transforms
the coupled systems (16), and (17), (18) into

Oz = Kz+F°(z,q), (19)
Oy = a2+ 95(q,2) + h5(2), (20)

Deqo —5k§02q1 — i1 + Pane(di(2)@1) 4 Pene(d2(2)0yq1) + Penc(ds(2)q2)
+ Psh,c(.gg('zv Q)ag(h) + gi(zv Q) + Psh,c(§§(27 Q)anQ2) + h;(Z) (21)

and preserves the reversibility. The nonlinearities Fe, g5, g3, gz satisfy the same estimates as
respectively I'°, g5, g3, gz, while

xet)y 1B

195z Dllsr2 = Ozl s . ) win = O(2P|(z,9))).

Proof. Write h°(2) = hy(2) + hé(z), where h9(z) is the part of h¢(z) that is homogeneous of
degree j in (z,¢€), so that [|2°(2)]| 21 = O(|2[?|(2,€)|). Observe that h; is a mapping from E;
to £y @ Es, and this fact suggests using a finite-dimensional change of coordinates of the form

q§=q+T(2),

where P,,['(z) = 0 for m # 0,2. Substituting ¢ = § — ['(2) into (16) and (17), (18), one finds
that they are transformed into respectively (19) and (20), (21) with

N .
Faa) = (AﬂZ+F@ﬂ))’
Fzd) = f(z,q-T(2)),
i3 = ¢(G-T(), =35
i@ = 6(=d-T(2)

Pane(g5(2, 4 = T(2)) = g5(2, —T'(2)))9;T1(2)
= Pane(95(2, ¢ = T'(2)) — g5(2, =T1'(2))) 9,1 (2)

+
o
)1
no

2
oy

(0]
n
Lo}

|
=

&

|
B
m
N
|
=
I\
S~—
S~—

96(z,q) = dI[z](F*(z, = I'(2)) — F*(z, =T'(2))),
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and

he(z) = —L°T(2) + dT[2](K z) + dT[2](F* (2, —T'(2)))
0
" ( —Fano(di(2)1'1(2)) = Pone(d2(2)931'1(2)) — Pono(d3(2)T'2(2)) >
0
i ( 93(2,—T(2)) = Panclgs(z, —T(2))0201(2) + g5(2, —1(2))9, T2 (2)] + e (2) ) ’

our objective is therefore achieved by choosing I'(z) to be a polynomial which is homogeneous
of degree two and satisfies

[OT(2) — dT[2](Kz) = ( hg(()z) ) . 22)

Notice that (22) decomposes into component equations for PI'(2), P, ,['(2) and P2 ['(2) in
respectively Ey, Fs, and Fs . Let R? denote the space of R?-valued polynomials of degree two
in the variables 21 o, 21 ¢, 22,0, 22.¢, €QUIP R? with the basis

B = {(1 0) Zl 021 622 0Z2 e’ (0 ]') Zl 021 625025 e}2+3+k+f 2

and consider the linear operator £ : R?* — R? defined by (LI')(z) = LoI'(z) — dI'[z](K=z).
Using the calculations

L((1, O) 21 0%1 ezgozg e)
(O 1) Zl ozl ezgoZQ e (1 0) (221 012{ ezg_glzg e + jzl 021 elzézozg—gl)?
L((0,1) 2 7 o5 0%.0)
= A (1,0) 72 o2 o o2p0 — (0, )T (121 A o258 2 0 + 52102 220700 )
to compute the matrix of £ with respect to B, we find that this matrix is invertible, so that the

component equation of (22) for P,I'(z) has a unique solution. A similar argument yields P ,I'(2)
and P, .I'(z), and one concludes that (22) admits a unique solution for I'(z). O

Let us now examine the system of ordinary differential equations

aﬁzl,o = 22,0, 8521,6 = 22,5 (23)
a522,0 = )\%,521,0 + fg(zoa Ze)a 8§Z2,e - )\%752176 + fs(zoa Ze)7 (24)

where fo = Pyof|,—0 and f& = Pyof%|,—0 are O(|(zo, 2e)|?|(Z0, 2o, €2)]), Which is obtained
by neglecting he and setting ¢ = 0 in equation (19). This system inherits the reversibility
and O(2) symmetry of equations (16)—(18): it is invariant under the transformation £ — —¢,
(21,05 21,05 22,05 22.¢) > Sh(Z1.05 21,0, 22,05 22,¢)» Where the reverser Sy, is defined by

Sh(zl,m Z1,e5 %2,0) ZQ,e) - (_Zl,m Z1,ey 22,09 _22,e)7

and under the transformation

21 <1 Z2 z2
,0 — Ra ,O , ,0 — Ra ,O
Z1,e Z1,e Z2.e Z92.e
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for each a € [0, 27). Introducing the scaled variables

=c¢, 2 =ea(), =) =<5,

one finds from (23)—(24) that

agél,o = 22,07 (25)
Oetro = Ciiie — Cofio(3, + 210) + Ri(Fros Fles F200 220)s (26)
aé:gl,e = 22,67 (27)
OgZoe = Cizie — éﬂl,e(iio + ffe) + Re(Z105 21,05 22,05 Z2.e) (28)

in which )
Ol = —2160’}/1(]. + k§)3/2 >0

and the remainder terms R¢ and R¢ are both O(£?) and respectively odd and even in (21, Z2.¢)-
The remaining coefficient C5 is is given by the formulae

1 1
Cy = ey} F7*cosn}®, 0] + mfo’l’l[cos 1, —T0200]
1 . i |
= i FO* 0 sinn}®, 0] + mfo’l’l [sin 7, —I'2000], (29)
and is required to be positive. Here we have adopted the notation

. 1 2
Fomne = —————q75" [0, 0], I'(z) = Z Lijke%10716 %50 %50
(n1 + TLQ)'

it+j+k+£=2

and {u}™ is an abbreviation for the n-tuple (u,...,u). In the limit ¢ — 0 the system (25)—
(26) has the property that the (% ., Z3) coordinate plane is invariant; its phase portrait is shown
in Figure 3. In fact each orbit in the four-dimensional phase space of the limiting equations is
obtained from an orbit in the (Z; ., 22 ) coordinate plane by a rotation R, for some a € (0, 2m)
(so that each subspace (R, (0, Z1¢), R4 (0, 22.)), @ € (0, 27) is invariant). Notice in particular that
the (21 ¢, Z2..) coordinate plane contains two homoclinic orbits = given by the explicit formulae

9 \1/2 <o\ 1/2
pr@ = (1) sean@, g =7 (1) seen(C Erann(cl)
CQ CQ

These orbits are reversible, that is they satisfy S,p~(—¢) = p*(€), and this feature can be
exploited to prove their persistence for small values of €. The necessary argument is given by
Groves & Schneider [5, §4] and yields Lemma 3.2 below; it is based upon the fact that the
stable manifold to the zero equilibrium of the limiting equations (which is the two-dimensional
manifold {(R,(0,p7.(£)), Ra(0, 72.(£)) | a € [0,27),& € R}) intersects the symmetric section
Fix Sy, transversally at the points 5= (0).
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Figure 3: Dynamics in the (2, o, 22.) coordinate plane.

Lemma 3.2 Equations (23), (24) admit a pair p°* of reversible homoclinic orbits of the form

(5 )= (D)

where 5=, Py are smooth functions with bounded derivatives. These homoclinic orbits satisfy
PTHO)] < cee™™E Q) < ce®e T CER
forany 0 € (0, (—2koy1)/2(1 + k2)3/4).

The next step is a partial normal-form theory which eliminates sufficiently many terms in the
Taylor expansion of h°(z) that the remaining terms are exponentially small in comparison with
€. A central requirement of the relevant transformation theory, which is based upon a theory
for finite-dimensional dynamical systems given by looss & Lombardi [7], is that the linearised
vector field in the dynamical system for z should be diagonalisable; this condition ensures that
certain estimates hold uniformly in the order of the terms eliminated from the vector field (see
Lemma 4.1). The matrix K clearly does not meet this criterion, and this difficulty is overcome
by introducing the following scaled variables. Writing € = p? and defining

Zi = /fbilzlu Z; = 611—1/2'“732,27 (q17 QQ) = M72<Q17 q2)7

one finds that (19)—(21) are transformed into

Oz = F"(z,q), (30)
Oeqa = —cék?)@%ql —ciqr + P (di(2)q1) + 1P (d2(2)0yq1) + pPanc(d3(2)q2)
+ Psh,c(gg<z7 Q)as(h) + gff(Z, Q) + Psh,c(gg<zv Q)anQZ) + hg(Z), (32)
in which
O 2z
F“(Z,q) = %1/2 9 2 = 4 ! H—1/22 _3 fe %1/2 3 2 )
Cy iz + (M, — Cipt)z + O 2 o (par, O 2, 1)
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~ <1/2 .
gét(’% q) = gj(/"[/zlﬂ #301/ 22, M2Q)a J = 37 57
o <1/2 4
g.;t(z’ Q) = K 29](5‘(”217 Cl/ :u3227 H’zq)a J= 47 67
W(z) = phf(uzm, O itz)
and, with a slight abuse of notation, we have abbreviated A, c|-— 2, Win e|c=2, ¢5]c= 2 and ¢ |.— 2
to respectively A, 1, Wi e ¢4 and ¢y (the primes have been dropped for notational simplicity).

The linear part of the vector field on the right-hand side of (30) at ;x = 0 is the zero matrix, which
is trivially diagonalisable, while the nonlinearities in (30)—(32) satisfy the estimates

1Bz ) = Ozl + llallyse 1z @)l + 11(2 @) 3eos),
g5 (2 Dllst1 = Oullz O llas+r), 7 =35,
lg2(z llsn = OWllallyens + #llallxga 1211z, D),
(
(

sl (2 @) ),

i = O(P|(z ).

g6 (z Dllsr2 = O(?2llal

17#(2)]

The homoclinic orbits detected in Lemma 3.2 are denoted in the new variables by p#* and satisfy
the estimate
2
)] < cppe L g e R,

for notational simplicity we henceforth use the symbol p* to denote either of the functions p**,
P

4 Normal-form theory

4.1 Construction of the normal-form transformation

Our normal-form theory consists of a sequence of changes of variable which systematically re-
moves the terms //(z), j = 3,...,p that are homogeneous of degree j in (2, ;1) from h*(2)
while preserving the overall structure of equations (30)—(32). It is possible to make an optimal
choice of p so that the remaining terms are exponentially small in comparison to x; the func-
tions p** found in Section 3 therefore become very good approximations to genuine modulating
pulse solutions and can be used as the starting point for a perturbation argument to find gen-
uine modulating pulses. Our analysis is based upon a theory for finite-dimensional dynamical
systems given by looss & Lombardi [7], and we use their notation and refer to several of their
combinatorial results here.

The dependence of our equations upon y is accommodated by introducing the new variable
y = (z, 1) and attaching the additional equation

Oepr =0
to equation (30); in this notation equations (30)—(32) are written as
dy = Fly,q), (33)
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Odeqr = ¢+ 96(y.q) + hi(y),

a§Q2 - _C3 k28291 - C4CI1 + Psh c(d4( )QI) + Psh,c(d5(y)anq1) + Psh,c<d6<y)Q2)
+ Panc(93(y, )07 1) + 94(y, @) + Penc(95(y, 0)0ya2) + ha(y),

where }
F(y.q) = ( t <0z’q> )
9i(v.0) =g (2,0), 7=3,...,6,  h(y)=hi(2), j=12
dj+s(y) = pd;(z), j=1,2,3.

We use a change of variable of the form

qd=q+2(y),

where @ : R> — Xs“’ijf, which transforms equations (33)—(35) into

Oy = F(y,9),

af(jl = CjQ‘*’éﬁ(Z/,d)“‘;ll(y),

OcGa = —chkg0iqi — Gy + Pane(da(y)@) + Pone(ds(y)y@1) + Pene(ds(y)G2)
+ Panoe(93(y, )001) + 94(y, @) + Pene(95(y, 1) OnGa) + ha(y).

Here
(y.q) = F(y.q—2(y)),
(v, q) = gi(y,a—2(y)), Jj=3,5,
91(¥,9) = 9a(y, G — P(y)) — 9aly, —P(y)) + dL2[y](F(y,q — ®(y)) — F(y, —2(v)))
Pane(93(y, G — 2(y)) — g3y, —®(y))) 2P (y)
Pane(95(y, 7 — (y)) — g5(y, —2(y))) 0, P2(y),
96y, @) = 96y, G —P(y)) — g6y, —P(y)) + d®1[y](F(y,q — D(

hiy) = —L°®(y) + N(y),
in which N : R® — X'} is defined by the formula

N(y) = —(L" — L°)®(y) + d®[y](F(y, —®(y))) + h(y)
96(y, —®(y))

D
T ( —Pane(da(y)P1(y)) — Pone(ds(y)0,P1(y)) — Pone(ds(y)P2(y))

0

* ( 91(y, =P (y)) — Panclgs(y, —®(y))02®1(y) + g5(y, —P(y)) 0y P2(y)] )

and L* is an abbreviation for L®|._ 2.
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Let us write

where ®%(y) is a polynomial which is homogeneous of degree k in y and takes values in XSSh*f.
We denote the space of such polynomials by PF,, and equip it with the inner product and norm
s 1/2

(P.Q)pr, = P0,)-QWlo. [P =(P.P) .

in which the period denotes the X;gf inner product, and for later use we also introduce the

symbol Q,, for the space of polynomials R® — R® that are homogenous of degree % in y. We
proceed by choosing ®F so that

LOF =Nk k=2...p, (44)

where
(LO")(y) = L°®"(y) (45)

and N*(y) is the part of N(y) which is homogeneous of degree  in y; this choice of ® ensures
that the Taylor expansion of ﬁ(y) does not contain any terms of order less than p (see equation
(43)). Notice that N?(y) = h*(y) = 0, so that the term ®? is not actually needed; certain
combinatorial aspects of the following theory are however simplified by allowing this zero term
to remain in the expansion for ®2. It is also important to note that ®* affects N**1, ..., NP, so
that ®* must be chosen systematically for k = 2,...,p.)

The following result shows that equation (44) admits a unique solution for any value for &
and yields an estimate for ®* in terms of N* which is independent of k. This estimate, which
plays a crucial role in the following analysis, follows from the simple formula for the operator
L, which is in turn a consequence of the fact that the linearisation of the vector field on the
right-hand of equation (36) is the zero matrix.

Proposition 4.1 The operator L : P* o — " '\, defined by (45) is invertible and its operator
norm

L7 = sup [L7@F[5F

@5 =1

is less than unity (and in particular is independent of k).

Proof. Let {eg 1, €02}, {€m1.0, €m20} and {€m 1., €m2.} be the usual bases for respectively Ej,
Ero,m > 2and E,, ., m > 2 and consider the orthonormal basis

o (67 o o (0% (63 . R
Bk = {P eO,lap 60,2713 €m,1,09 P em,2,0>P €m,1,e) P €m,2,e - ‘04’ - ka m 2 2}
for P*, where o € N? is a multi-index and
s 0

1
o a2 o3 04 Q5
P - | | | | |/’l’ 210216220226'
O 0! 03: 0 O

Observe that

P;f:'? P“kl? Pakﬁe pok (46)
al=k al=k =
m>2 m>2
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. . &
in which the subspaces Py = span{P%¢ 1, P2}, 77,?1’713 = span{ P, 1,0, P*€m 2} and
P%’ff) = span{ P 1., P“€m1.}. are invariant under £; furthermore Eg’k = £|%k,0 admits an

inverse whose matrix with respect to the basis { P“eq 1, P“eg 2} for Py is

(Ea k) 0 1//\
1 0
and L3 = Lok, LOF = £]Pa » admit inverses whose matrices with respect to the bases
{P%p 1.0, P¥€maoo} for Pa ok and {Paem Les PY€mae} for Pk are

ajky—1_ [ 0 _1/%%@,0 ajkyv—1_ [ O _1/%%@,0
(Em,o> = ( 1 0 ) (Em,e) - 1 0 '

Let us write
SIS TP I

|al=Fk la|=Fk la|=k
m>2 m>2

in accordance with the orthogonal decomposition (46), so that

(12" = ) |8G™? DN @pENPH( @D D mP(@)a H(@k)al),
|a|=k la|=k la|=k
m>2 m>2

where the symbols (v); and (v)s denote the first and second components of a vector v € X™°.

Since
,C_lq)k: Z(ﬁak) 1q)ock+ Z ﬁak 1(I)ak: Z ﬁakz 1(1);17{’12
la|=k |a|=k |a|=k
m>2 m>2

it follows that
("Cfl (I)k s+2)

Z lq)ak|

+ 3 mEE (LR TTRNE ) P + (L8 TenE)[?)

o=k
m>2
+ Y ML) T R )P 4 (L) k)l
s
< (I)a k2 2 (s+3) (I)a,k 2 (I)a,k: 2
< D1+ Z mo)2l” +[(®50)2])
o=k lal=F
m>2
+ Z m2(s+2)‘ (I)ak:) ’2—{—|((I)ak) | )
S5
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< D IRRTE Y mPEI@n )+ [(@50)2)
la|=k la|=k
m>2
+ ) mE @R + (D))
=)
— (‘q)k s+1) ’
where we have used the fact that w,,, o ~ m as m — oo. O

4.2 Estimates for the transformation

The next task is to estimate the size of ®, and for this purpose we use the norms |®™ 512,

@7 ()] 2 and
127 (Y)| 52
|q)m|s+2 = sup sh,c
yERS |y|m
for m = 2,...,p. Our estimates for these quantities are used in Section 4.3 below to show that

ﬁ(y) is exponentially small with respect to y.
We begin by estimating |[N™|5*!, from which an estimate for |®™|5? is obtained using
Proposition 4.1. A straightforward calculation shows that

N (y)

= W Y Z ST @y, —er L —are]

2<q<m 1=0 i+p1+...pg—i=m

+ > dcp’f[y]( DY Fi’qi[{y}(i),—Q)pl,...,—CI)pqi]), (47)

2<k<m—1 2<g¢g<m—k+1 i=0 i+pi1+...pq—;
=m—k+1

Ny (y)
= hy[{y}]

+ Z d<1>15[3/] ( Z Z Z Fi,qfi[{y}(i% —oP _q)pqi])

2<k<m—1 2<q<m—k+1 i=0 i+p1+...pg_i
=m—k+1

I DED D T (1) LI R o o
1<g<m—1 i=0 p1+...pg—i

+i+r=m
r>0

q
DD DD DI (A S

2<g<m i=0 i+p1+.. Dg—i=m

- > Z > Pacles” {yy? —om, ... —@]0,P})

1<g<m—1 i=0 p1+...pg—i
+i4+r=m
r>0
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+ Z c?—kum—kk§a§®§+ Z CT_k,um_kCI)'f

2<k<m—1 2<k<m—1

— Pao(da(y) @7 7?) — Pano(ds(y) 0, @7 72) — P o(ds(y) P52, (48)

in which we use the notation

1
fn[yla"'ayn] = Ednf[o](ylaﬂﬁl)a
n1,n 1 ni,n
T2 yg, o Yng, Wy ey Why| = mdlf2 2FI01(Was - - vy Yngs Wy -+ Why)

for derivatives of functions of one and two variables and write
o0 o0
=D du, =) du
i=0 i=0
s+1

An estimate for |[N™|57" can be obtained from formulae (47), (48) using the following lemma,
whose proof is readily deduced from that of Lemmata 2.10 and 2.11 of Iooss & Lombardi [7].

Lemma 4.2 Define

S 1 S m
P35, = W|P|za P e P

and |
|P|2,m — W|P|2, PE Q .

(i) The estimates
[PFfy < [@F)5, < VERHDM

hold for each ®* € P;.

(ii) Suppose that ¢ € N, i € {0,...,q}, {pe}1<i<q—i C N and that R, is a bounded,
g-linear operator (R®> x X5 )9 — X5 . with operator norm ||R,||. For each choice
of ®,, € P, L =1,...,q — i the polynomial R,[{y}!, ®*, ... ®Ps=i] lies in P with
n =pi + ...+ pe_i + i and satisfies the estimate

R [{y} om . @Pf3, < IR IVE |75, ... |@P

Squfi .
The analogous result holds when P is replaced by Q™.

(iii) Suppose thatp € N, k € Ny and ®* € P¥, NP € QP. The polynomial d®*[y)(N?P) lies
in P} withn = k — p+ 1 and satisfies the estimate

AP ) (N)[3,, < VE2 + K| D] ([N
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Because g : R® x X3!} — H3E2(R?), j = 3,4,5 is analytic, it satisfies the inequality

per

ni,n2 [

196 Yis - Yn Qs - o sz < pn1+n2‘y1‘ ‘ym'H(Jl‘Xsshfcl qu')(jhfcl

foreach ny,ny € Ny, where a > 1 and p < 1 are universal constants, and the analogous estimates
apply to F': R® x X3! — R® and h : R® — X537 ; for notational simplicity later we estimate

sh,c
192" 1. - Y - il
< sl g g, 7=3.45
and a
<o J=34, 1 (W)]ls1 < 3, lylP G =4.5,6.

Using these estimates together with Proposition 4.1 and Lemma 4.2, we find from equations
(47), (48) that

TE R VT SIS DD SIS DRSOV S

2<k<m-—1 2<g<m—k+1 =0 i+p1+...4+pg—s
=m—k+1
q a .
)
> YD E\/S Dpr -+« Dpy_ sy
2<q<m—1 i=0 p1+...pg—i
+it+r=m
r>0
1 g a i
+3 d D ) E\/Sgbm...qqu_i
2<g<m =0 i+p1+.. Dg—i=m
2
2 SVE ety S
2<k<m-—1
a q
m 2 1/2
< VBT Y B es Y Y D W¢p1...¢pq7i
P 2<k<m-—1 2<g<m—k+1 =0 i+p1+...4+pg—:
=m—k+1

4 .
+3 Z Z Z %\/gngpl s Cbquia (49)

2<g<m =0 i+p1+...pq—i=m

where
(b | Cpm |s+2

The above inequalities are converted into an estimate for ¢,, in Propositions 4.3 and 4.4 below,
the first of which is proved by straightforward mathematical induction; we note that

Bo = 4, ¢2<4\/_<\/_a>=\/_<\{0_a)527

so that the result holds for m = 2, and proceed inductively using (49).
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Proposition 4.3 Consider the sequence {3,,} defined recursively by the formulae
/61 = 17

N O >0 S S

2<g<m =0 i+p1+...pg—i=m

+5 03 ke Y zq: 3 (g)wﬁpl...ﬁpq_i, m> 2.

2<k<m~—1 2<¢g<m—k+1 i=0 i+pi+...4+pq—i
=m—k+1

The quantity ¢,, satisfies the estimate

m—1

p

Proposition 4.4 Consider the sequence {«,,} defined by the formulae

a1 = 1,
U = O™ 2%(m —2)!, m > 2,

where © > 1 is a constant. The estimate
Om < 2",  m21 (50)
holds for © > 25 + 13p/a.
Proof. This result is also established using mathematical induction. We note that
Br=1<2=20, By =4 = 2%,

so that (50) holds for m = 1 and m = 2, and proceed inductively by choosing m > 3 and
supposing that 3, < 2Faqy, for 1 < k < m.
Observe that

Do > BuBe= Y BB,

i=0 i+p1+..4+pg—i=m p1+...+pg=m
p;>2 pj=1

because 3; = 1; the recursion relation for (3, can therefore be rewritten as

e R S I )

2<q<m =0 pi1+...+pg=m

pj=>1
q p q—2
+ 5 E k‘lﬁk’ E E § <a> ﬁpl cee /quv m Z 27
2<k<m-—1 2<q<m—k+1 i=0 pi+...4pq
=m—k-+1
pj=>1
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and it follows that

miAl 2 3 4 P\ 2
Bm < 2M[AL + AL + A + AL+ ;

a
where
q—2
1 P
A, = 3 E E <a> Qpy - Qi
3<gsm pi+..pg=m
pj=1
q—2
2 P
Ay =5 g kay, g g (a) a,
2<k<m—1 3<q<m—k+1 pi+...+pq
=m—k+1
pj=1
3
A =3 ) aam,
1<k<m—1
4 Z Z
Am = 9 k‘CYk ( CYjOzm_k_H_j) .
2<k<m—1 1<j<m—k
To estimate the quantities Al , ..., A% we use the inequalities

C Oy,

2
Z Apy o Q. < mam, 3<qg<m,

p1t...pg=m
p;j=1
5
E kopo, i1 < —Qum, m > 3,
20
2<k<m—1
2
E Q. < 604m, m > 3,
1<k<m—1

(5D

(52)

(53)

which were established by Iooss & Lombardi [7, Lemma 2.13]. We find from inequality (51)

that

R

1— £
3<q<m a®

whenever p/(a©) < 1/13. Inequalities (51), (52) similarly yield

5 25
A2 < 26 Z kogom g1 <

4_@20%7

inequality (53) shows that

and it follows from (52), (53) that

10 25
A, < 5 > kokomoppr < =5 0m.

@2

26
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Finally, note that

DY (2 s < Ly
<a a® = qc m

and choosing © > 25, one concludes that

3 6 125
m < n ~ Yay) 2n1 nz<< 2nz me Ol
B _<4+@+4@2> am < 2™
In keeping with Proposition 4.4 we choose
13
©=25+-" (54)
a
and fix this value of © for the remainder of the article. The proposition implies that
m—2
20a [ 2v/5a0
aﬁms—f(ff ) (m—2),  m=23.., (55)
P p

and by imposing a mutual constraint upon the order p of the normal form and the maximum size
d of |y|, we can use this fact to obtain another estimate for .

Proposition 4.5 Suppose that 6 > 0 and p > 2 satisfy

0

4500

>oow| <%0 || T <

2<k<p shc 2<k<p

hold for every y € R® such that ly| < 6. Here || Y,,., d®*[y]|| denotes the operator norm of
Zzgkgp dq)k[y] ' R® — Xsircz-

Proof. Observe that

op < (56)

The estimates

> k() < >R
2<k<p X5 2<k<p
< > @R
2<k<p
< Y st
2<k<p
k—2
20062 [ 2v/5a05
< 3 MR (2E)
2<k<p P p
k—1
< 2%55 (QL) (ki — 2)
2<k<p P
k—1
)
@p 2<k<p 2
< —\/55,
- 0
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where the inequalities |®* |5 < [®F|3*? (see Lemma 4.2(i)) and (k—2)!/p*~" < 1/p have been

used. Furthermore, it follows from the estimate

142 [y ()| 2
Jy|+!

< JdO*[y)() 53
A" [y](9)1547

< VE 4 AK|DF 5321720
V5ker ||

IN

IN

that

> d@’“[y]m < Y VBkepst,

2<k<p 2<k<p

(57)

and one obtains the estimate for [ > o, d®*[y]|| from this inequality by applying the argu-

ments used in the previous calculation.

4.3 Estimates for the transformed nonlinearities

O

In this section we use the above estimates for ® = > 7 _, ®* with an optimal choice of p to derive
estimates for the terms ', g;, 7 = 3,...,6 and h appearing in equations (37), (38); in particular

we show that ||l~1(y)|

x5 is exponentially small with respect to y.

It follows from that fact that 2™ is identically zero for m < p that

hi(y)
= 3 M)

p+1<q

q
DD D DI V] SN

2<q<p i=0 i+p1+...pg—i
>p+1

£ S s el

p+1<q i=0 2<k<p

+ > dd)’f[y]( Y ) Py, e —ore]

2<k<p 2<g<n—k+1 i=0 i+p1+...pg—i
p+1<n<p+k—1 =n—k+1

+ Zp:dCD’f[y] qu: > Py e P
)

2<q<p i=0 i+p1+...pg—:

>p+1
q o ' (q—1)
zEe {2 )
pt+1<q i=0 2<k<p
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ha(y)

ST D ur > b+ YT ey

ptl=q p<q 2<k<p 1<q<p—1
r>p+l—q
491252 k q,91.292F%KT
+§ C3ft koan( E oY ) + ki 02 ]
P=q 2<k<p 1<q<p—1
r>p+l—q

q
S gm0 e, —enoke

1<q<p—1 i=0 i+p1+...+Pg—i
+r>p+1
r>0

q
SN AT, e a0,

1<¢<p—1 i=0 i+pi+...+pg—:
+r>p+1
r>0

q
+ DD gy e, ]

2<q<p i=0 i+p1+..pg—i

>p+1
Sy s o) a( )
p<q =0 2<k<p 2<k<p
q—1)
e[ 3 e o 5 )
p<q i=0 2<k<p 2<k<p
a . i (g—1)
£ 3 S| S e
p+1<q =0 2<k<p
q
+ > d@’;[y]( >y Fzzq—z‘[{y}u),_q)pl,._"_q)pq_i])
2<k<p 2<q<n—k+1 i=0 i+p1+..pg—;
p+1<n<p+k—1 =n—k+1

+ (id@’;@])( > Xq: > Py —or L P

2<q<p i=0 i+p1+...pg—i

>p+l
L . (a—1)
DLy [{yw,—{ y o D
p+1<q i=0 2<k<p
+ Z Pshc d4 (I)q Z Pshc a CI)q Z Pshc q)‘I) (59)
p—1<q<p p—1<q<p p—1<q<p

Suppose that |y| < 6 and p, ¢ satisfy the constraint (56). Using Proposition 4.5 and the rule

12" ()]

x5 < OFEFlyl* < gyl
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one finds from the above formulae that

e < 3 2 (Hg)zz S b

p+1<q 2<q<p =0 n=it+pi+..4pg—i
>p+1

(o8) 250w (5)

p+1<q =0

D SERCETD SED S SIS AL A

2<q<n—k+1 i=0 i+p1+...4pg—i

2<k<p
p+1<n<p+k—1 =n—k+1
10 10
< (2+§) A§,+<1+6) A2 A, (60)
) NG )
IXPINAEED SICINCLES Dt ( -
p+1<q p p<q 1<q¢<p—-1 p
rzp+l—gq
1 10 I ad" i
+ (5 + 5) Z Z Z _q\/glﬁbm Doy
2<q<p i=0 n=i+p1+..+pq_i P
2p+1
2 K ad” =i
+ g Z Z Z _q\/51¢p1 v ¢pq—i¢7’
1<q<p—1 i=0 n=i+p1+...+pg—i P
+r2p+1
r>0
(D ey (“ )
p+1<q i= 0
VBN (/56
+3 ZZ ( )
p<q =0
g ad”™ i
D RRCTED oD DD D CC IR
2<k<p 2<q<n—k+1 i=0 i+p1+...4+pg_i
p+1<n<p+k: 1 =n—k+1
+ Y SV
p—1<q<p
10 10
< (3+6) A;+(3+6) A2 A3, (61)
where

A= 3 S+ VE

p+1<q
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5n
A= Y Y p—¢¢

2<q<p n=pi1+...+pq

>p+1
pj=>1
ad”™ =i
P _
Ab = > VBker ) > V5 by,
2<k<p 2<q<n—k+1 i+p1+...4pq P
p+1<n<p+k—1 =n—k+1

and we have defined ¢ = V5.

Proposition 4.6 Suppose that 6 > 0 and p > 2 satisfy the stronger mutual constraint

P2
op < ———.
b= 4v/5ea©

The estimate

- 1 4\/5a@
+1 —
bl e (Corins ), o=
holds for every y € R such that |y| < 4.

Proof. We proceed by estimating the quantities A}, AY, AL, making use of the inequalities

dar? 1 1
S Y (-2 (- 2) < e;‘fl.ﬁ.l_r, (62)

2<qg<p  n>p+1 p1+...4+pg<n
1<p;<p

where r = p/(a©), and

S k(k=2(CorT > (CO)"P T n—k— 1)l < 2(CoPTIpl (63)

2<k<p p+1<n<p+k—1

which were established by Iooss & Lombardi [7, pp. 30-32].
Observe that ¢ + 1 < 27 and
2v/58 < T

< <
P 2p

=~ 3

for p > 2, so that

1 256 ol r\q 4a 250 ol 8a [ /50 ol
Ap S a _— Z (—) = R S — _
p ~ 4 4—r p 7 P

q=z

for r < 1/2 (in accordance with (54)). The quantity A; is estimated using the calculation

n—2q
5 (200 [ 2/5
MY YOy (p_)<\”) —

p1 Y
2<q<p n>p+1 p1+...4pe<n
1<p;<p
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A

> Y Sevy (Ma@> (— 2 (5~ 2)!

2<q<pn>p+1

< a E r g E (Co)"(p1 —2)!... (pg — 2)!

2<g<p  n>p+l p1+...4+ps<n

1<p;<p

dar® 1 1
< .

ePtl p2 1 —r

2a

< =
— p2ep+1

for < 1/2, where the fourth line follows from the third by (62). Finally, we find from (51) that

> oY ()

2<q<n—k+1 i+p1+...+pq

=n—k+1
pj=>1
p N2 2
< Z 2(@) 1 < T, Cn—kt1 < dap_p
2<q<n—k+1

for r < 1/2, and combining this estimate with (63) yields

A§ < Z NG 20a (2\/_(1) o

2<k<p p
p+H1<n<p+k—1

n—k+1—
ad™ [ 20a\! [ 2v/5a i
X E g — == .0y,

q 2 2
2<g<n—k+1 i+p1+...4pq P P P
=n—k+1
p]>1

- Y 20V (2\/—a> b Y 3 <§>q2a1...apq

2<k<p 2<q<n—k+1 i+pi+...+pq
p+1<n<p+k—1 =n—k+1
pj>4q
n—1
2v/5
< s0vs Y 5”( C“) R
2<k<p P
p+1<n<p+k—1
40p? .
< > (CH)"k(k—2)!(n—k — 1)
2<k<p
p+1<n<p+k—1
40 -
= & > k(k=2UCort > (GO -k —1)!
2<k<p p+1<n<p+k—1
80p?
< C§ptt pl.
- a@3( )

The result follows from inequalities (60), (61) and the above estimates for AL, A2 A3 O
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Remark 4.7 Inspecting the proof of the above proposition, one finds that it can proved under

the weaker hypothesis
2

< __F
b= 2v/5ea©

and with C replaced by 2v/5a0©/p?. The stronger constraint and larger value of C are how-
ever required later (see Proposition 4.12) and we introduce them from the outset for notational
simplicity.

The final step in the derivation of our estimate for ||A|| P is given by the following propo-

sition, which was proved by looss & Lombardi [7, Lemma 2 18]

Proposition 4.8 Choose © > 0. The function fy : N — R defined by
falp) = 9"*'p!

20
72/19e ep:
fo ([ }) B m[ m= Sgg pPt1/2e—p’

where [] denotes the integer part of a real number.

Define

satisfies

1
popt — GO(S )
and note that p,, satisfies
1
2 < Popt < ——;
= Popt = eCd
applying Proposition 4.6, we therefore find that

h 1
|R(y)]|ysr1 < ((Cg)pomﬂ t!+—)

sh,c epopt +1p

< (m [~ —2/eC§ 2605)2 —1/eC§>
2
< C? ( mi/ SZ +4de ) §2e1/eC% (64)

in which the second line follows from the first by Proposition 4.8 with ¥y = C'¢ and the inequali-
ties

1
o 1, < 2eC.
605 _ppt+ Popt =
Let us now return to the original notation by writing equations (36)—(38) as

Oz = F"(z,q), (65)
8561 = Cjz‘*‘@é(%@)"‘il‘f(z)? (66)
OcGo = —céfkéf’?%q] — q1 + P (di(2)G1) + pPene(d2(2)0nG1) + pPanc(d3(2)G2)

+ Pane(35 (2, 6)33611) 94(2,q) + Panc(35 (2, §)0nG2) + hy 5(2), (67)
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where y = (z, uu); these equations are valid for |(z, )| < 0. Recall that the approximate modu-
lating pulses p* found in Section 3 satisfies

P(€)] < cnpe™ %, €€ [0,00),

and it is therefore necessary to choose d so that |(p*(&), )| < d for & € [0,00). This task is
accomplished by defining 6 = (3¢, + 1) and restricting (z, i) to {|z] < 2enpo, 0 < p < po}s
without loss of generality we henceforth suppose that ;1 = . It follows from inequality (64)
that 5
()|

i < cpPe M, (68)

where ¢* = (eC'(3¢, + 1)), and inequality (68) is the requisite estimate showing that 2* is
exponentially small with respect to y for p = pgpy.

We conclude this section by stating estimates for the remaining nonlinearities F* and g;.‘ ,
j =3,...,6 appearing in the transformed equations (36)—(38). These estimates are obtained as
a corollary of the following proposition, which refines the results of Proposition 4.5.

Proposition 4.9 Suppose that 6 > 0 and p > 2 satisfy (56). The estimates

40
Yo ety < 5 VI0RP
2<k<p P

a’©
> dq”“[y]m < 80—y’

X5 2<k<p
hold for every y € R such that |y| < 6.
Proof. The key step in the first estimate is the inequality

194 ()l 2 < V/I0K(R — DISH 52015 222 2 <k <p,

which is obtained by a straightforward calculation using the fact that ®*(0, u1) = 0, d; ®*[0, u] = 0
(see Iooss & Lombardi [7, Lemma A.3] for a similar calculation). It follows that

> dk(y) < > V10k(E — 1)gpd* 2|2,

542
2<k<p Xoe  2<k<p

while the inequality

> avlf| < 3 VEhout

2<k<p 3<k<p

is a direct consequence of (57) and the fact that ®? = 0. The stated estimates are derived by

applying the arguments used in Proposition 4.5 to the above inequalities. O
Corollary 4.10 The transformed nonlinearities F* and gf , ] =3,...,6 satisfy the inequalities
F @) = 0GR+ 1@l |2 @) eess + 11208 ),
18Dl < culz@lags. =35
18Dl < el 1 @) e,
3Dz < el Iz @) s
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Proof. Recall that F** and g};, 7 = 3,...,6 are defined in terms of F*, g*, j = 3,...,6 and
®#(z) by formulae (39)—(42). The stated estimates for the transformed nonlinearities follow
directly from these formulae, the estimates

[F'(z ) = Ozl + llallys 1z @) llaeer + 11(z @) 3eon),
195 (2 Dllst2 = Oull(z, @) llxssr), 5 =35,
lg2(z )l = OWllallyens + #llallxga 1211z, D),
g6 (2, Dllsv2 = O |2lllall sz (2, @)lls1)
for the original nonlinearities and the estimates for ®(y) given in Proposition 4.9. a

4.4 Estimates for the derivatives of the transformed nonlinearities

The existence theory for modulating pulses presented in Sections 5 and 6 below is based upon
perturbation arguments around an approximate modulating pulse p*. In order to use perturbation
theory of this kind we require additional estimates upon the derivatives of the nonlinearities in
the transformed equations (36)—(38), and the appropriate estimates are derived in this section.
We begin by estimating the derivative 0®(y) of ®(y) with respect to y = (z, u). It follows

from equation (44) that
L(OP™) = IN™, m=2...,p,

and differentiating (47), (48), one finds that

ONT"(y)
= mhP[{y}" 1]

q
DD IS (igéq Hyyi-D 1, —dP .. —PPai]

2<q<m =0 i+p1+...pg—;=m

q—1
+ Z géle*l[{y}(i)’ _(I)p1’ ) _8@177', s T (I)pqi])
j=1

D STV (D DD DI DI A (MUS N RS A

2<k<m~—1 2<¢g<m—k+1 i=0 i+pi1+...pg—;
=m—k+1

q—1i
" Z Fi7q7i[{y}(i)7 _(I);Dl7 e _a(I)PJ" e — (I)pqi]>>a
j=1

together with a similar expression for 0 NJ*(y). The methods used to establish Proposition 4.3
show that ¢, 1 = |0®,, ;jﬁ_l satisfies

wm 1 < \/_m <\/p_a> Bm7
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so that

m—2
20a { 2v/5a0 |
Um-1 < 7 e m(m — 2)!, m=23,..., (69)

and the arguments in the proof of Proposition 4.5 yield another estimate for 0®.

Proposition 4.11 Suppose that 6 > 0 and p > 2 satisfy

0

4500

op <

The estimates

)
xye o ©

> 00y

2<k<p

> a0t < g5

2<k<p

hold for every y € R® such that |y| < 4.

The next step is to derive an estimate for ||Oh(y)| x:+1. Differentiating equations (58), (59)

and proceeding as in Section 4.3, we find that
= 20\ « 20\ - .

sl < (2+5) a0+ (143) 82443

10ha () |lss1 < (3 + §> Al + (3 + 6) AZ+ A3

where

A= T Sgg+1)VE!

p+1<q

. é‘n—l
M= 3 X Tt

2<q<p n=pi1+...+pq

>p+1
p;j=>1
-1 .
. and™ i
P _
Ab = > VBker Y > i V5 Gy oo D
2<k<p 2<q<n—k+1 i+p1+...4pq
p+1<n<p+k-1 =n—k+1

p;j=>1

(In deriving these estimates we have replaced v,,,_1 by ma,,; this procedure is permissible in
view of inequalities (55) and (69), which are used to estimate ¢, 1 and ¢y, in the subsequent
analysis.) An estimate for ||Oh(y)| xs+1 is obtained from the above calculation by estimating

q(q + 1)\/5q < (2v/5)7 and repeating the proof of Proposition 4.6.

Proposition 4.12 Suppose that 6 > 0 and p > 2 satisfy the stronger mutual constraint

Pz

op < ———.
P= 4+/5ea®
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The estimate

ol < 5 (o i) - 4“?@ (70)
holds for every y € R® such that |y| < 6.
Proposition 4.12 and the calculation above inequality (64) yield the inequality
|0A(y)| a1 < cC? (m\/g—l— 4e2> e~ 1/eCs
for p = popt, from which it follows that
|07 (2)] 51 < cpe™ /™. (71)
It remains to derive the corresponding estimates for the derivatives of g;” ,7=23,...,6,and this

task is accomplished by repeating the arguments used in Proposition 4.9 and Corollary 4.10.
Proposition 4.13 The transformed nonlinearities Qf , ] =3,...,0 satisfy the inequalities

‘|82§;L(Z7q)’|s+1 S cu, j:3,57
1035 (2, Dllsr < er®]|(2,0)|| s,
<

10:96 (2. Dllsv2 < ep®ll(2,9)]

Xs+1
fori=1,2.

The existence theory presented in Sections 5 and 6 below makes frequent use of the fact that
the nonlinearities g;% ,j=3,...,6and h* are Lipschitz functions of their arguments whose Lip-
schitz constants are estimated by inequality (71) and Proposition 4.13. The Lipschitz continuity
of their derivatives is also required, but here the size of the Lipschitz constants is not important.
In these circumstances we use estimates of the form

1096 (21, 41) — 013 (22, @2)[[s42 < cull(z1 — 22,01 — @) |assr, G =1,2,
in which the Lipschitz constant c,, depends upon 1; these estimates follow from the analyticity
of the nonlinearities and the restriction (70).

5 The local centre-stable manifold

In this section we construct solutions of equations (36)—(38) whose pointwise distance from an
approximate pulse p* identified in Section 3 does not exceed e¢"/?* for £ € [0, /2] (see
Figure 4). The local centre-stable manifold is the set of initial data for such solutions, and we
use it in the next section to extend these solutions to symmetric modulating pulses which exist
for & € [—e®"/2 e¢"/21], The centre-stable manifold is a generalisation of a concept familiar
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in dynamical-systems theory, although the methods used to find the solutions whose initial data
defines the manifold is rather different here due to the quasilinear nature of our problem.

We begin by writing 2 = p* 4+, so that r is a perturbation around an approximate modulating
pulse, and decomposing equations (37), (38) into equations for the strongly hyperbolic part Z =
Py.q and central part w = P.q of ¢q. Recall that the mth Fourier components of d;(z) vanish for
m # 1, so that

Pa(di(2)q1) = 0, Pe(di(2)q1) = Pe(di(2)wr).

Using this calculation and the corresponding results for dy and ds, one finds that

0:Z = LEZ + FY(Z,p" +r,w) + Fl'(p" + 1), (72)
Oer = Lir+ N*(Z,r,w), (73)
where
Ly = LMas,

., P (g6 (2, Z 4+ w))
Fy(Z,z,w) = ( Panldh (2, Z +w)02(Zy +w1) + 35 (2, Z + w) + (2, Z + w)0y(Zs + ws)] ) ’

v Pal(2)
Fie) = ( <s<z>>>
Llr = dyF*p*, 0](r),
NMZ,ryw) = FrP'4+r Z +w)— F*(p*, Z + w) — d, F*[p*, 0](r),

and
Dewy = wy + GE(Z,p" + r,w) + By (p + 1), (74)
Ogwy = —cgk:g@zwl — cywy + pP.(dy(2)wy) + pPe(da(2)0ywy) + pPe(ds(z)ws)
+ Po(g5(Z,p" + r,w)0iwr) + G4 (Z,p" + 7, w)
+ Po(g8(Z,p" + v, w)dyws) + R (p" + 1), (75)
where

g;(Z7Z7w):§H(ZJZ+w)7 j:3757
94(Z, z,w) = Pl (2, Z + w) + 35 (2, Z + w)0; 21 + G5 (2, Z + w) 9, Za),
G(Z,z,0) = Pgi(z, Z +w),  W(z) = PRi(z), j=1,2.

Estimates for the nonlinearities in equations (72) and (74), (75) are obtained from Corollary
4.10. Notice that

B (Zzw) < cull(Zw)llgn + 12121(Z,w) | gzp), (76)
0F(Z,zw)| < el (Zow)lla + 422, G =1,2,3, (77)
and
105(Z 2 0)llsr < el (Z ) + 02 1211(Zw0) | z). (78)
10:35(Z, z,w)llspr < e(ull(Z w)llazrr + 1%z, G =1,2.3 (79)
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because Pags(z, Z + w)07(Z1 + w1), Pangs(2, Z + w)0y(Za + wa), Pegs(2, Z + w)0; Z, and
P.g5(z, Z + w)0,Z, do not contain any terms which are linear in z. Clearly

|F{(2)] < cp’e @/ |OFM2)| < cpe /P, (80)

while ¢4 (Z, z,w), ¢5(Z, z,w) and g§ (Z, z, w) satisfy the same estimates as respectively g5 (z, q),
Gt (z,q) and g§ (z, q) with ¢ = Z + w. The following result gives estimates for N*.

Proposition 5.1 The nonlinearity N* appearing in equation (73) satisfies the estimates

o
vzl < (L izl ).

T
e R L)

C T
antzrol < < (L iz o).
/"L /"L sh,c
Xssh+cl) ’

Proof. Define (2, 1) = 6~'(z, 1) and suppose that |§| = |(%, ii)| < 1. The estimate

V58

7]

@W@m@\écﬁjwwwn

12" (59)]

(see Proposition 4.5) implies that ® is a polynomial in ¢ whose coefficients are bounded inde-
pendently of p. It follows that F° M2, Z +w) = F*(2,Z + w) is an analytic function of Z, §
and w whose Taylor coefficients are bounded independently of p, and the same is true of the
quadratic function

NMZ, #w) = Fr(u™'p + 7, Z +w) — FM#, Z +w) — & FP ™ p*, 0] (7),
which therefore satisfies

INH(Z, 7 w)| < el + [[(Z,w)]

)
1
‘/Y:h,c ’

0N Zw)| < e(|P] + |I(Z,w))

w) =123

The stated estimates for N*(Z,r,w) = N(Z,# w) are obtained by returning to the unscaled
variable = 07 = (3cy + 1)u7 in the above inequalities. a

Our task is to find solutions (Z, 7, w) of (72)—(75) for which | Z(¢)[, [r(£)] and [[w (&) ]| s+
do not exceed e="/?* for £ € [0,e“"/?#], and for this purpose we require some information
concerning the spectrum of the linear part of the vector fields on the right-hand sides of (72)
and (73). Recall that L} has a pair &)Xy, = (1 + k2)/2 + O(u*) of simple eigenvalues
with corresponding eigenvectors ug = (1, o) and so = (1, —\g,) which define the stable
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*
e ¢ /2p

Figure 4: Solutions with initial data on the local centre-stable manifold W remain within a
distance of e=<"/? of p" on the timescale [0, e<"/?"].

and unstable directions associated with this matrix. The projections onto these directions are
constructed in the usual fashion using the dual basis {s§, u$} to {so, up} in X2, , where

1 1
LS Y C— e —1).
So 2AO,M ( 0,5 )7 Ug 2)\07u ( (UNT3) )

The stable and unstable directions associated with the time-dependent linear operator £ are
described by the following result; it is proved by noting that

| cH — L* X, s, S C;Le_elﬂlg‘, EeR

Xon
and using the method explained by Groves & Mielke [3, §4.3].

Proposition 5.2 The equation
O¢r = Lir

has solutions sy 1(§), s12(§), u1.1(§), u12(§) on [0, 00) such that
[s15(€)] < ce™ €, fuy (€)] S et j=12, £€[0,00).

The dual basis {s7 1(£), 51 2(€), u7 1(€), ui 2(§)} 10 {51,1(§), 51.2(€), u1,1(§), u1,2(€) } in Xy, sat-

isfies

* c * & — .
|57, (§)] < h\ et luz ;(€)] < e Arnt, j=12 £€l0,00).
17//4 1,/1,

The requisite solutions of (72)—(75) are constructed using the following iteration scheme.
Choose real numbers Z°, r,7) whose magnitude is at most pe=¢/% and w® € X*' such
that [|w®| sz < pe /2. Set Zgy = 0, 7o) = 0, w) = 0 and for m = 0,1,2,... define
Zim+1) € C([0,e7 /2] R?), 141y € C([0,€/2], R?) by the formulae
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3
Bt = 250+ [ ((Flyy + Pl (1), 502007 s
0
e¢ */2u

/ <(F(/6m) + F(/im))(T% USG_AO”‘T> dr uoeko,;é? (81)
3

) (€) = 17 51.1(€) 4+ 79 51,2()
oc /zu

2 ¢
Dy / (NP (), 55, (7)) dr 148 Z / ot (1) drusy(€) (82)

and let w11y € C([0,e"/?*], X*1) be the solution of the equations

Oewi(m1) = Wam+1) + Jom) + Py (83)
OcWa(my1) = —Cgk882w1(m+1) - Cﬁfwl(mﬂ)

+ Pe(dym)wWi(m+1)) + Pe(dam)Opwiim+1)) + Pe(dsm)Waim+1))

+ e (93 2 L Wi(m+1)) + f]ff( )+ e (93 8 ) Wa(mt1)) + h’Q(m (34)

with initial data w(,,11)l¢ezo = w’; here Fj,), N(’“;n), dj(m), f];-‘(m) and ﬁg(m) are abbreviations
for respectively £ (Z(my, T(m), Wm))s N*(Z(mys T(m)> Wm))s dj(2am))s 35 (Z(my, T(m), Wim)) and
W (Zmys T(mys Wim))-

Lemma 5.3 Suppose that ||w"| ys+1 < pe™¢"/?. The estimates

sup  sup  |Zemy(&)] < e/ sup  sup  ram ()] < ce /2
meEN ¢¢(0,e¢™/21] meEN g[0,e¢™ /21

and
_ak
Xés < ce c /ZM

sup  sup [[wm)(§)]
meN ¢g[0,ec™/21]

hold for all sufficiently small values of .

Proof. We demonstrate that

Sup [ Zmi1)(§)] < epe™ /2, SUp |71 (€)] < cpem /2
£€[0,ec™ /21 £€[0,e¢™ /21
and
sup ([ w1y (§)llae < cp!/?[log ple /2
£€[0,e¢™ /21
whenever
swp (1261 + Iy ()] + lhwiy(©)lle ) < e/
£€[0,e°7/20]
for j =0, ..., m; the lemma follows inductively from this result.
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Observe that
| Z(m+1)(8)]
3 00
S c (|ZO| + ’u3e—c*/2,u/ GAO‘”T dr e—A07#§ + ,u3e_c*/2“/ e_)\O,uT ar e)\(”@)
0 3

< (120 + el 85)
< CMe-C*/QM

and
|7 (m+1) ()]
I A A IR S A
< C(’T?H—’T’Q"F 5 /el’“TdTe_ Lub 4 3 / e 1"‘TdTel’“5>
IU/)\L/L 0 /'L>\1Hu f
(1+ 81+ ) (36

< c| ||+ || + ———

NIRRT e
S C,ue_C*/2H

for £ € [0, e“"/2#]; here we have used the estimates

[ Fomy| < cpe= [Flmy] < cpte [ Nogmy! < —e

which are obtained from (76), (80) and Proposition 5.1. The corresponding result for w,, 1) is
obtained by applying energy estimates to equations (83), (84).
Define the energy £;,1 by

Euni(w) = / (0 wa)? — R0 un)? + (O )

- / (0 wn)? dy + 3 (=2 + )72 2 oy
j=1

and note that &1 is equivalent to the usual norm on X! because w has zero mean and ¢ < 0.
Applying the operator 8Z+1w2(m+1)8g+1 to (84), integrating with respect to 77 over one period and
using the calculation

/{a;+1w2(m+l)8582+1w2(m+1) + BRSO wo (1) 05 P Wi mr) + 4 0) T  Wa(n41) 0 W01 sy }
1 s s ~ 7
=i [ 057 01001003 Gy + ) O

which is obtained by integrating by parts and using equation (83), one finds that
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_afgs+1( m+1)
= k2/58 Wit 419 (G +hu ))dn+ ¢ /as+ Wi 19 (G +h” my) A1
- u/8$+1w2(m+1)8;+1]3¢(dl(m)wl(m+1))dn—l—u/@i“wg(mﬂ)@;* P (do(myOpwi(m+1y) dn
+p / O wa(m 4 1) 05 Pe(da(m) Wam1)) A1 + /a$+1w2(m+1)3f,+1(§f(m) + ilg(m)) dn
+/8;+1w2(m+1)85+1}7c(gg(m)agwl(mﬂ))dn_|_/3;+1w2 s lP( Ot omst)) 1.

An estimate for &1 (w(y41)) can be derived from this identity with the help of the estimates

I djmllsrs < (e 4 pe %), =123
1Gjmllst1 < cu(e™ /> + pe %), =35
|Gaemylls1 < cpfe™ i 2e g 120¢ )
lGoemyllsre < cp(e™ /M 4 ple™ /e~ n0E)
"ﬁ(m)\|X5+1 < eple

which are obtained from (78) and Corollary 4.10.
Notice that

‘/8;+3w1(m+1)(3f]+1(§g(m) + h’f(m)) dn‘

= | 05l ) 0

[wim1) |2 (1| Gy ls2 & ATy ls2)
(m) (m)

< a1 (W) PP 4 e e,

IN

and similarly

‘/ 0y w1 n 4 1) 0T Peldagmywrminy) A < e 4 pe T ) Eq i (Wi ),

‘/ a$+1w1(m+1)3f,+1Pc(dQ(m)&;wumH)) dn| < cle /% 4 ue_“29§)55+1(w(m+1)),

‘/ a;+1w1(m+1)3$+1Pc(d3(m)w2(m+1)) dn| < e(e /% 4 ue_“295)55+1(w(m+1)),
‘/ 6Z+1w1(m+1)8f7+1(gg(m) + iz’f(m)) dn| < CM55+1(w(m+1))1/2(e—C*/ﬂ n /Lze_c*/Q“e_“Qef),
‘/8 wy(m 1) 0y +1( m) T hu my)dn| < a1 (Wimyr)) (e /M pPe= ¢ 2 h08),

Straightforward calculations show that
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/ 6;+1w2(m+1)82+1Pc(g}g‘(m)agwl(mﬂ)) d77

= /8,‘;+1w2(m+1)8;+1 (gg‘(m)(‘?zwl(mﬂ)) d?? + S1

= /as+ Wa(m+1)J 6 wl(m+1 dn + s1 + 52

= — / a;+2w2(m+1)5$+2w1(m+1)§§(m) dn +s1 + 52+ 53

= _/as+2(a§wl(m+l) 96 - h“ )3S+ W1(m+1) 93 d77 + 51+ 52 + 83

= ——ag /<a77 2'U)l(m-t,-l)) @g"(m) dn + S1 + So + S3 + S4 + S5,

where
51 = /8S+ 'lU2 m+l (Ph(93 a wl(m+1 )) d7]7
S S —I— 1 S
Sg = /@fr W2 (m+1) (Z( . )3 g “ aﬁ wq m+1> dn,
§=0 J
S3 = —/3f,+1w2(m+1 &793 m)an Wa(m+1) A,
sS4 = / a;+2<§g(m) +ﬁ¥(m))a;+2wl(m+l)§§(m) dn
1 < .
55 = 5 /(8n+2w1(m+1)>2859§(m) dn,
and
[ 03 a0 Py Bty
o R A A R P VR
- / Oy wa(m 1)y Oy OetWi(ms1) A + 5 + 57
1
= 5/8 ((6 w2(m+1)) ) d77+56 + s7
= S¢ + S7 + Sg,
where
Sg = —/8;+1w2(m+1)8f]“]3h(gg‘(m)ﬁnwg(mﬂ))dn,
. ~((s+1)
Sy = /a W2(m+1) (Z ( )a +1—j :U* a]+ w2(m+1))> d?’],
Jj=0 J
S8 /3 i) )95 my 103
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these quantities satisfy the estimates
sl < P Eapr(Winin) V2™ g e AT =123,
|8]| S :LL((/’S-i-l(U)(’H’L-i-l))(e_c*/zu + ,ue—lﬂ@ﬁ)’ .] = 47 67 77 8

and

|35| C€s+1(w(m+1))||a§g§(m)||s
ot (Wns1) 105 1519 Ziomy | + 107 my | + 1060] + Dt

piEs i1 (Wi yny) (€72 4 o)

IA A

Xg )

IN

(the inequalities

0 Zmy| < o™ Oy | < e || g [lae < cem

follow directly from the inductive hypothesis by means of equations (81)—(84) with m replaced
by m — 1).
Finally, let us define

1 .
ﬁﬂmozaﬂmo—Efwyam%%mw
and note that 1
Egs+1(w) < &l (w) < i (w) (87)

since

/(8Z+2w1)2§§(m) dy‘ < 5s+1(w)||§l§(m)||s+1 < u253+1(w).
Altogether, we have that

OeE5 1 (Wim1))
< cp(e™ /4 u2e_c*/2”e_”295)€s+1(w(m+1))1/2 + cp(e¢ /2 4 ue_“295)€5+1(w(m+1)). (88)

We proceed by establishing an estimate for £, | (w(m+1)) on the short interval £ € [0,£*],
where
e = a| log |
=gz
so that e #*0¢" = 1<, and « 1s an appropriately chosen positive constant. It follows from inequal-
ity (88) that
O (Wims1)) < CLpPESy (Wims1)) + cape™ @/,

and an application of Gronwall’s inequality yields

g§+1(w(m+l))(§) S (5§+1(w(m+1))(0) —+ 02M4e_c*/u§)eclu2§‘

Choosing o = /¢y, one finds that
1

661u2§* —

W
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whereby

1 s
Eoi(Wuman)(§) < ;(5§+1(w(m+1))(0> + copite1ER)
1. o
< ;(55+1(w(m+1))(0) +cpPe /¥ log )
< cpe /" log yl (89)

for £ € [0,£*]. This intermediate step may now be used to deduce the desired estimate for
E¢ 1 (W(m+1)) on the long interval & € [0, e/,
Integrating inequality (88), we find that

Egr1(Wim+1))(§)
< E(Winan)(0) +ep sup  ELLy (Wint1))(T)
T€[0,e¢*/21]
e sy (W) V()
T€[0,e¢%/2]
ec™ /20
* 2
el [ sup 2 ) V(D)
0 TE[0,e¢* /21
eC*/2M

+ cp? / e TE (Wit n)) (T) dr, €€ 0,e /. (90)
0

Observe that
et /21
—u20r ce
i [ e i) () e
0
ec*/2u

£
= 12 / eTHOTES (Wi (7) dT + 2 /5 eTHOTES (Wimany)(7) dT
0 *

*

* e > — 2 T e
<16 sup 4y (W) (7) + 112 / A sup €% (wWiyn))(7)
ref0.] 3 ref0.ec” /2]
2 ¢#* e—@/ﬂ&*
= p&" sup Eg(Wina))(7) + 7
T€[0,6%]

sup €5y (Wimy1))(7)
TE[0,e¢* /2]

< cpe™ M log pl* + ep®  sup  ESy (Wimyn))(T),

TE[0,e¢%/2¢]

in which the last step follows by (89) and the definition of £*. Inserting this estimate and the

inequality
e /2m [e's) 1
/ e 0T 47 < / e T qr = —
0 0 O
into (90), one concludes that

Eo1 (Wimt1))(€) < cpllog e+ c(pu+ p®) sup | Ei1(Wini1))(§), ¢ € 0,67/,
£€[0,e0%/21]

so that
Ee1 (W) (€) < cpllog pfPe™ /", € € [0,e/). 0
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Lemma 5.4 Suppose that ||u°|

a2 < ue_c*/ 21, The iterates Z(m)» T(m) and Wy, satisfy

w0 (1Zone O] + Fonsn (O] + i€

£€[0,e0%/21]

1 = - -
<5 s (121 + ()] + m (©)
2 £€[0,ec™/2m]

s+1
Xsh,c >

for each m € Ny, where

Zm+1) = Zm+1) = Z(m),  Tim+1) = Tm+1) — T(m)s  Wim+41) = Wm+1) — Wim).-

Proof. Examining the equations

3
Z(m+1) <€) - /0 <(F(§L(m) T Flﬂ(m) o F(;L(m—l) - Flu(m—l))<7—>7 SSGAO’”T> dr Soefko’”é
eC*/2I»"

— /g <(F5‘(m) + Fl“(m) — Fé‘(m_l) — Fl“(m_l))(T),uge’)‘o’“U dr ugeors,
2 3
mmmzzéwmpwmwwmmwm@

- Z/€ (Nl = Niguo)(7), 1 5(7)) d7 ua 5(6),

one finds that

| Zm+1) (&)

&
gcQﬁAuam@n+mmemM@n

Xs+1)e)‘°v” dr e tosé

ec™/2u

+ujl 1Zm )]+ [Fm| + | (€)]

x5+ )e’)‘WT dr e’\O’F‘g)

<’ sup <|Z<m>(£)|+\f(m>|+||’J)<m>(§)ng+1),

£€[0,ec™ /21
|Fm1) ()]
R A - . AT 4 AL
<c(Sa [ 021+ Foml + N ©lgra)es dre
H=A1Lu Jo
—c*/2u o /21
e Z - ~ “ALuT Q7 Mo
+— (IZm) ()] + |7y | + [0 () | s +1)e Te
WAL Je
e_C*/2:U'

XCS“)

<l s (1Ze (O] + ] + I (©)
HoAT 1 €06 /21]
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for ¢ € [0,e¢"/2#], in which the estimates

Egy = Foimen| < et (it (@m) ' + [ Zm)| + [y ),
Flmy = Flnen| < cne™ M (Eir (W) + | Zimy | + 7))
c*/2p
ce - ad ~
Ny = Nyl £ 5= (Esa (@) "* + 1 Zm) | + |7y )

I
have been used (see equations (77), (80) and Proposition 5.1).

Similarly, the estimate for w,,1) is obtained by studying the equations
OeWi(m+1) = Wam+1) T Jom) — Jo(m—1) T iLT( ) hlf(m 1) €2V
OgWa(m+1) = —c§k282u~)1 (m+1) — ChW1(m11) + ML (d1m)D1(mt1)) + 1P (d2(m) Op D1 (ms1))

+ P (d3(m)Wa(m+1)) + Pe (93 6 - Wi(mi1)) + Pe(g5, m)a Wa(m+1))

+ 1P ((di(m) — dim—1))W1(m) ‘l- PP ((dagmy — daim—1)) OnwWi(m)

+ 1Pe((dsm) — dam—1))wam) + Fo ((93( ) Qé‘(m_l))aﬁwum))

+ Pc(@g(m) - g5(m—1))aﬂw2(m)) + 94(m) - fo(m_n + iLg(m) - Bg(m—l) 92)

and using the additional estimates

[l m) _d'm pllssr < dfeml, 7 =1,2,3,

195, mopllstr < o™ 4 pe ) (€ (i) + | Zimy |+ [Fm) ),
H96<m> - ﬁg(m—n lovz < eple™ /4 @20 (Ega (Bm) > + | Zim| + [T ),
135y = B pllstr < eu(Err (@)™ + | Zom| + [Fm)s 5= 3,5,

Wy = Byl < cme™ i)

which are obtained from (79) and Proposition 4.13. We apply the operator 0, o+1 wg(mﬂ)@ *to
(92), integrate with respect to 77 over one period and use the estimation technlques developed in
the previous lemma; the result is

0:E¢11 (Wimy1))
< ep(emC P 4 e N ES | (Wit
Foep(e™ 4 e ES L (Wi i) 2 (Esit (D)) V2 | Zmy P F [Ty ])s (93)

where we have used the further calculations

/8,S]+1?1~J2(m+1)a;+lpc((d1(m) - dl(m—l))wl(m)> dﬁ‘

< gs+1(@(m+1))1/2€5+1(w( )1/2||d1(m) _dl(m*1)||5+1
< e PE L (Wims)) [Fmy s

[ 0 5 P @y 100 0

< €s+1(w(m+1))1/258+2(w )1/2H gg m—1 H5+1
(m—1)
< cpe ™/ 2“5$+1(w<m+1>)(5s+1(w(m)) / 2 | Zomy |+ [Ty

48



(The estimate & o(w(m)) < e~"/1 is obtained by repeating Lemma 5.3 with s replaced by s + 1
(and requires the stronger condition [|w°| a2 < pe’ /2. Using the two-step method in the
proof of the previous lemma, one finds from (93) that

sup 5S+1 (w(m-i-l)(T)) < C:u| lOg :U”Q sup (é:s—i-l(w(m) (T)) + |Z(m)‘ + ‘f(m) (7—)’2> . g

re[0,e" /21] 0,0 /20]

The following convergence result is a direct consequence of the above lemmata.

Theorem 5.5 For each 7°, r?, rg and w° with

1 Z°) < e ) < e )] < e ||w) —c* /2

Xs+2 S Me

the sequence (Z(y), T(m), W) )men, converges in C ([0, /"], X*1) to a limit (Z,, r., w,) which
satisfies the estimate

*
Xs+1 S e_c /2/14

sup  |[(Z,(€), (&), wi(€))]

£€[0,e¢™/2m]

and solves equations (72)—(75).

We now use the above results to define a local centre-stable manifold at time £ = 0 for the
nonautonomous equations (72)—(75). According to Lemmata 5.3 and 5.4 the solutions defining
this manifold are available under the hypothesis that ||w°|[ ys+2 < pe=¢"/2; to ensure its differ-
entiability one however requires the stronger hypothesis that [|w°|| ys+s < pe=¢" /2 (see Section
6 below), and we therefore make this hypothesis from the outset.

Definition 5.6 The set of points

Wiz, = [ J1(Z.(0),7.(0), w.(0))},

in which the union is taken over the set of Z°, 1%, r9 and w° such that

1Z°) < e 2 ) < e rS) < e A ||l

—c*/2
Xt < pe / N’

is called the local centre-stable manifold for solutions to (72)—(75) at time £ = 0.

6 Existence theory for symmetric modulating pulses

In this section we identify solutions (Z,,7,, w,) to equations (72)—(75) on the interval [0, e¢"/?#]
whose initial data (Z,(0),7,(0),w,(0)) lies on W2 and which can be extended to solutions that
remain O(e~¢"/%) on [—e®"/?*, e¢"/2#]. The idea is to exploit the reversibility of equations (72)—
(75) (see Section 2); in particular, solutions with the property that (Z,(0), 7,(0),w,(0)) lies on

the symmetric section
Y= Fix S = X N {(v1,0,v2,) = (0,0)}
49



can be extended to symmetric solutions on [—e®"/2# e¢"/2#], Because w,(0) = w” we have that
w,(0) € X, := P.X whenever w® € ¥, and our task is reduced to that of finding a criterion on
(Z°,r9,r9) which guarantees that (Z,(0),7.(0)) € ¥y, := B,X.

Our first step is to introduce an artificial parameter by replacing F! and h* in equations (72)—
(75) by pF{" and pﬁ”; the construction of W!°¢ undertaken in Section 5 above clearly remains
valid for all values of p € [0, 1]. Observe that p = 1 yields the original equations while p = 0
yields the system considered in Section 3, in which {(Z,w) = (0,0)} is an invariant subspace
containing the homoclinic solution p* (generated by the solution (Z,r,w) = (0,0,0) in the
present coordinates). We consider a solution (Z,, r,, w,) with (Z,(0),7.(0),w,(0)) € W as a
function of Z°, v, rJ which depends upon p € R and w® € Y. as parameters (with p € [0, 1],
[w°| js+a < pe™"/2#) and therefore write (Z,, 7., w,) as (2,0, 70, Wpu0)(Z°, 77, r3) in the
following analysis. Notice that (2,0, 7,0, W0 )(Z%, 1{,759)|c=0 € ¥ whenever (Z°,r{,9) is
a solution of the equation

Jpwo(ZO, 7’(1), 7’0) =0, (94)
where J, 0 : B,e-cr/24(0) C R* — R is defined by

sty = (ST Ze e )

J
([‘_'fiwh)rpﬂﬂo(ézoaT?>T8)|E=0

p

(The right-hand side of this equation is a vector in X;**! with only three nonzero entries, namely
its Zs, 21, and 23 . components, and is therefore identified with a triplet of real numbers.) Equa-
tion (94) has the solution (Z° r9,7) = (0,0, 0) at (p,w®) = (0, 0) since the unique solution of
(72)—~(75) with (p,w®) = (0,0) is (Z,r,w) = (0,0, 0). We therefore seek a solution of (72)—~(75)
near this known solution for parameter values (p, w°) near (0, 0), and it seems natural to apply
the implicit-function theorem; notice, however, that we are forced to work from first principles
(by applying the contraction mapping principle) since we require precise information concerning
the parameter-dependence of the solutions, in particular that the solution exists for values of p
up to one.

In order to carry out the above programme it is necessary to show that .J, 0 is differentiable
with respect to Z°, 7?, rQ and obtain some estimates on its derivatives. We therefore need to
show that the solutions (Z,, .0, 7,40, W, 0) described above are differentiable with respect to
Z° 19, r9 and obtain some estimates on their derivatives. To this end we formally differentiate
equations (81)—(84) with respect to Z° and use a dot to denote 9,0; we treat the resulting linear
equations for A , T, W with the iteration scheme

Zim+1) (&) = s0(&) + /0 (AF1Z,p" 4+ 1, w(Z iy T(m), Wiy )

PB4 1)), 5007) sy
ec*/2u

—l«ﬂmﬁﬂ+nﬂgwiwﬂmﬂ

+ pdFY[p" + 7] (7)) (7), uge™0#7) dT uge* <, 95)
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Fomin( Z / (AN (Z,7,0)(Zany, Fomys iom))(7), 55 (7)) AT 51,4(€)

2 ec */2p
-y / (AN, 1,10) By o ) (1) 16, 96)
j=17¢
Oethy (1) = Wam+1) + AGELZ, D" + 7, 0N Dy, Pom) ) + pARE [ + 1) (Fm)), 7
Dgto(my1) = —C3 koanwl (m+1) — CGW1(m+1)

+ pPe(di(p" + 7)1 (mgr)) + pPe(dao(p" + 1)1 (ms1y) + pPe(ds(p" 4 7)Wo(m+1))
+ 1 Pe(dy (7 my)w1) + pPe(da(7(my) Ogwr) + pPe(ds(7 (my)w2)

+ PC(QB (Z,p +, w)anwl(erl)) + PC(dg3 [va +, ’LU](Z(m W(m))82w1)
+ Pc(gg(zv pM + T, w)aan(m+1)) _I_ Pc(dgg[zv pM + T, ’LUKZ w(m))aﬁw2)
+dgy[Z, p" + v, wl(Zimy, Fmy, Wimy) + pARG [P 4 7] (Fm) ). (98)

Let us now choose Z, r, w which satisty |Z(€)|, [7(£)], [Jw(€)||ys+s < /2 for & € [0, e /2],
take Z(o) = 0, 7o) = 0, 1) = 0, and for m = 0,1,2,... define Z(,;1) € C([0,e” /], R?),
Fms1y € C([0,e/2#],R*) by formulae (95), (96) and let i, 11y € C([0,e /%], X5*1) be the
solution of (97), (98) with initial data (w1, W2)|e=o = (0, 0).

Lemma 6.1

(i) The estimate

sup (| Zms1) ()| + [Fams1) (©)] + ([ Wty (€)]

xe+1)
€€[0,e" /2]

sup (12l + [Fom (©)] + 1 (&)]

1
— Xs+1) , mEN
2 cefo,eet /2] e

holds uniformly over the set of (Z,r, w) which satisfy | Z(£)|, |r(€)], |Jw(&)] g2 < o /2u
for & € [0,e */2“], where R(m+1 =R (m+1) R(m Wimt1) = Wimt1) — Wem). Under

these hypotheses the sequence {(Z(m), 7(m), Wim)) } is bounded independently of (Z,r,w)
in O([0,ec"/24] xs+1),

>

(ii) Suppose additionally that ||w (&) ys+s < e~ 2 for & € [0,e"/?"]. For each fixed value
Of (Z(m), f(m), ’Lb(m)) the iterate (Z(m+1), 7'"(m+1), w(m+1)) S C([O, ec*/Q’L], Xs+1) depends
Lipschitz-continuously on (Z,r,w) € C([0,e/?*], X**2); the Lipschitz constant is an
affine function of the norm ||(Zmy, ¥(m)» Wim) )|l o((0,ec* /26] 5413

Proof. Equations for the difference (Z (m)s T(m), W(m)) are obtained by replacing (Z (m)s T'(m)> Wim))
by (Z(m),F(m), W) and Zo by zero in equations (95)—(98). Observe that the equations for
(Z(m),f(m),w(m)) are transformed into those for (Z(m), T(m), W(m)) €xamined in Lemma 5.4
by replacing derivatives such as dF}'[Z, p* + r, w](Z (), F(m), Wmy) With differences such as
|F5‘(m) — Fé‘(m_l) |, where the derivatives obey the same estimates as the differences. The first as-
sertion in part (1) therefore follows from the conclusion of Lemma 5.4; the second assertion is a
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consequence of the first together with the linearity of the right-hand sides of equations (95)—(98)

in (Z(m), T"(m), ’d}(m)).
Turning to part (i), note that

R ¢
Z(§) = / ((dFp, — dEg, + pd Py — pdFY5)(7), spe o T) dr sge0nt
0

ec*/2u

N / ((AFgy — dFg,y + pdFYy — pdFY5)(7), uge 0nTY dr ugeront,
3

2 3
_ Z / (dNF = dANE)(7), 55(r)) dr ;(€)

eC */2u

—Z/ (ANF — AN (7), (7)) dr uy (€),

Oer(m1) = Dam+r) + Ay — g + pdhty — pdhil,
O Wa(mi1) = —Cgkgé’iwl(mﬂ) - ngl(m+1)
+ uPe(d1 1 W1 (m+1)) + pPe(da, 10y (me1y) + pPe(ds1Wa(m41))
+ 1Pe((dvy — di2) Wl ) + pPe((dog — da2) 0y} 11)) + pPe((ds — ds2)tW( 1))
+ UPe(dr (Fm) )W01) + pPe(d2(F(m) ) Oy1) + pPe(ds (7 (m) ) 2)
+ P4 10501(m41)) + Pe(35 10y Wa(m 1))
c(<93,1 - g3,2)a’r]w1(m+1)) + Pc((95,1 - gg,2)a77w§(m+l))
Pe((dgh, — dghs)dhwi) + Pe((dgh, — dgh2)dyw3)
Po(dAgh ,021) + Po(dgh, Oyia) + dghy — dghy + pdhf — pdhf,

in which (Z,7,40) denotes the difference between the values (Z(lm 1) Tms1)s Wimyr)) and
(Z(2m+1),r% L1y w?mﬂ)) of (Z(m+1), T(m+1), Wim+1)) for (Z,r,w) = (Z', v, w') and (Z,r,w) =

(Z2,7%,w?), dF!" is an abbreviation for AF*[Z7, 17, w]( Z(my, (m), Wim) ), § = 1,2 (similar ab-
breviations are used for the other functions) and (Z, 7, w) = (Z",r',w") — (Z2,r2, w?).
Employing the symbol ¢, to denote a constant which depends upon ;. and estimating

xeri|[(Z,7,0)]

1dg51 — dg5alls+1 < cull(Zomys Tm)s Wimy)|

Xs+1

together with similar estimates for the other terms involving differences of derivatives (see the
remarks at the end of Section 4.4), we find that

(AOM/ IZony o))

ec /2/,L

#3a Iz Fn t))
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for £ < e"/2# whence

sup  |Z(E)| < cu sup | Zimys Fmys W) ()l wstr sup  [[(Z,7, @) ()]
€€[0,ee™/21] gef0,ec*/21] £€[0,ec* /2u)

Xs+1

and similarly

sup [P < ¢ sup  ((Zmy, Ty, W) (€)lavswr sup (2,7, 0) (6wt
gel0,ec” /2] gef0,ec /2] gef0,ec/20]

Furthermore, the usual energy estimates show that

0:E¢ 1 (Wim1))
< ep(emC P 4 eI ES | (Wit
E /(c/' ( -2 1/2 £ ~\1/2 Z =
+ a1 (Wint1)) “Esp2(Wimgn)) ' (Esra (W) 7 + | Z] +[7])
+ uEE 1 (Wama1)) 2 Era (W) 2 (Esir (W) * + | Zmy | + Py ) (Esr (@)% + | Z] + |7])
+ Cu s+1(7f1 m~+1) )1/253+2( ) /2(5 +1(w( )1/2 + |Z(m)| + ’f(m)‘)
et (W) (Esr (@) + | Z) 4+ |F]) (Esir (W) * + | Ziny | + Ty ),

which in turn yields the estimate

sup ||<Z(m), f(m)7 w(m))<§>‘ As+1
£e[0,ec%/21]
< s (1(Znys s wm) )l +1) sup (2,7, 6)(E) w2
£€[0,e¢™/2m] £€]0,e¢"/21]
because
gs+2(w(2m+1)) < 85+2<w2) < Ce_c*/2#

for & < e’ /2 (The first of the above inequalities follows from part (1) of this lemma and Lemma
5.3 with s replaced by s + 1.) a

Corollary 6.2 Any solution (Z,, 1., w,) to equations (72)—(75) whose initial data lies on W,
is differentiable in the topology of X**1 with respect to Z°, 9 and r9.

Proof. Let T be the operator which maps (Z(m), T(m)> Wim)) tO (Z(m+1), T(m+1), Wim+1)) in the
iteration scheme (95)—(98), which may therefore be written as

(Z(m+1) T(m+1)5 w(m+1)) =T((Z,rw), (Z(m)’ T(m) w(m)))'
Consider the new iteration scheme
(Zim1)s P2 Wms1)) = T(Zmys Tomys Wim))s (Zam) s Fam)» Wiem)))

with initial data Z(O) =0, 7(0) = 0, w(y = 0, which is obtained by differentiating (81)—(84) with
respect to Z° and using the dot to denote d0. Let us write this iteration scheme as

(Z(m+1)’ fj(m-ﬁ-l)v w(m-l—l)) = T((Z*7 Txs w*)? (Z(m)’ ’f’(m)’ li)(m)>) + ),
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where
my = T((Z(my, Tmys Win))s (Zimys Tmys Wny)) — T((Zas Ty W), (Zamys Tmys Wim)))-

It follows from Lemma 6.1(i) that T((R,, w,), ) : C([0, e /4], X5F1) — C([0, e /2], X5+1)
is a contraction whenever ||w,(€)|| ys+2 < /2 for & € [0,¢“/?], while Lemma 6.1(ii) and
Theorem 5.5 with s replaced by s + 1 show that

HOé(m) HC([O,eC*/2uLXs+1)
< cull(Zomy = Zis Ty = Tas Wimy — W)l 0,00 1200, 20002y | (Zmy s Py s Wiyl oo, /20,0041
_I_C/LH (Z(m) - Z*7 T(m) - 7"*, w(m) - w*) HC([O,eC*/QMLXSJﬁQ)

= 0()[|(Z(my» Fm)» Wiy )l (000 1201 20541y + 0(1)

yets < e /2 for & € [0,e”/?]; according to Theorem 5.5
xs+s < pe /2 in the definition of W

loc

whenever W) (§)]] ys+3, |w.(§)]
with s replaced by s + 3 the hypothesis ||w"|

guar-
antees that these conditions are met. Elementary arguments show that (Z(m) T(m)> w(m)) con-
verges in C([0, /2], X**1) to (Z,, 74, ). By construction, one has that (Z(), 7(m), W(m)) =

(Oz0 Z(m)s 0707 (m), O70W(rm) ) for each m € Ny, and a familiar uniform continuity argument as-

serts that ‘
(Z*a 7;'*7 w*) = (8ZOZ*7 820’/“*, aZowa()-

A similar procedure yields the differentiability of (Z,, 7, w,) with respect to r{ and rJ. O

We now turn to the requisite estimates on the derivative of J, 0.
Proposition 6.3

(i) The operator dJyp[0,0,0] : R® — R is a bijection and

[dJ0[0,0,0]7] < 7. (99)

1u
(ii) The operator d.J, ,0[Z°, 1},79] : R® — R? satisfies the estimate

|de,w°[Z 7“1,7’2] dJOO[O 0,0]| < CM (100)

Proof. Clearly

81J0,0(070a0> = (

aj :]0,0(0, O, O) - (

and
(070 Z0,0(0,0,0)2°% =0, s5) = Z°, (02070,0(0,0,0)Z2°% ¢=0, s5) = 0,
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<(9 OZO 0(0 0, O) ’5 0750> 0, <ar?r0,0(070’0)7:jo‘§=07SS> =0,

in which (-,-) is the inner product on X! ~ RS and the vectors whose inner products are
taken are regarded as elements of X;°"'. Using the fact that S}, : X't — A is a self-adjoint
involution, we may rewrite the first of the above formulae as

1

§<([ — Sh)azOZO70(0, 0, O)ZO|§:0, ([ + S}JSS)

70—
with corresponding expressions for the others, so that

- 1 o o~ "

Z° = 5(dJ0,0[0,0, 0](Z°,70,79), (1 + Su)sp)- (101)

A similar argument shows that

- 1 0 - .
My = 5(dJool0,0,01(Z2° 7, 75), (I + Su)s1(0), 5 =1,2, (102)
and the first assertion is a direct consequence of (101), (102).
Define 7! = pro(ZO r,19), 22 = Zyp(0,0,0), 7t =1, ,0(Z°, rl,rg) 7% = 100(0,0,0),

ZV = dZ,,0[2° 19, 13], Z2 = dZy[0,0,0] and 7' = dr,0[Z2°,79,79], i* = drgo ,0, O] By
construction we have that

(Z1 — Z5)(€)
3 ] .
= / ((OFG (Z1,p" +r1,w1) 2y — OLF(0,p,0) Zy
0

+ o F (Z1,p" 4 11, wi)i — 0o F5 (0, p*, 0)75
+ O3 F' (Z1,p" 4 11, wi )y — O3 F3(0, p*, 0)airg
+ pOF (p" + 1)1 — pOFY (p)r1) (1), s(’;e)‘o’“T> dr sge Aomé

e‘:* /2

- / <(81F§(Zl,pu + Tlawl)Zl - 81F§(07PM70)ZQ
3

+ 0o F (Zh, p" + r1,wi)r — 0o FJ (0, p, 0)ro
—+ 83 (Z p + 1, wl)wl 83F5L<O,p‘u, O)U)Q
+ pOF{' (p" +r1)iv — pOFY (p")i1) (1), uge™ 0+ 7) dT uge <,

whence
suwp (21— Z)(©) < en®  sup Z ZO)] + [75(6)] + [y (€)] er)-
gef0,ec”/21] £€[0,ec* /2u]
A similar argument yields
_C*/2IJ‘ 2 .
sup  |(71 —72)(§)] < CT sup Z(IZj(E)I 175 ()] + [l (O] 1)
€€(0,0¢" /2] PN eeloest /2] 42
and these inequalities imply the second assertion. O
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We now study the solution set of the equation

J

w0 (Z2°,71,19) =0
near the known solution (Z°%, 7%, r9) = (0,0, 0) at (p, w°) = (0, 0) by writing it as
(Z2°,79,79) = (Z2°19,79) — dJoo0,0,01 1T, o (Z2°, 79, 79) (103)

and examining this fixed point problem. According to a standard argument in nonlinear analysis
the fixed-point problem (103) has a unique solution (Z°, r{,79) = (Z°,r{,79)(p,w) in B, (0) C
R3 whenever

|dJo,0[0,0,0] 71| J,.0(0,0,0)] <

(Z07 T?) Tg) € BW(O)

N~ N3

|d‘]070[0> 07 O]_lHde,wO [ZO’ T’(l), T(Q)] - dJO,O[Oa 07 OH S

The estimates (99), (100) and

|Jp7w0(0, 0, 0)| < c

Z w0 (0,0,0)|e=o ) 3 ot/
, W » < cule c 1
(TPMO(O,O,O)’g:O =

(see formulae (85), (86)) show that we can take n = p2e=%"/2",

We have therefore constructed a family of symmetric solutions (Z,,0, 70, wyo) to (72)—(75)
on [—e“' /2 ¢’ /2] which are parameterised by w® € X with ||w®| ys+a < pe™¢/2 and satisfy
1(Zo (€), 700 (€), W0 (€)) || s+ < €772 for each € € [—e"/2# e /2], The formula

2u0(€) = PH(€) +ry0(£), € € [~/ e/

defines a family of modulating pulse solutions to the coupled system (65)—-(67) which was ob-
tained from the original spatial dynamics formulation of the problem by the normal-form theory
in Section 4; these solutions are parameterised by w® € Y, that is by w?’e and wgp. Notice that
p"(0),7,0(0) € Xy, so that z,0(0) € Xy, and by construction Z,0(0) € g, wy,o(0) € 3.
The existence result for modulating pulses stated in Section 1 (Theorem 1.1) follows by tracing
the coordinate transformations back to the original variable v(¢, 1) and replacing p with /.
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