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Abstract

Simple model flows demonstrating the combined effect of thermobaricity

with either salinity variations or nonlinear temperature-dependence in the equa-

tion of state of water are investigated. An inviscid flow exhibits a three-layer

behaviour, resulting in the formation of a mid-depth temperature maximum,

such as is observed in some high-latitude oceans and deep lakes. This may be

subsequently overtaken by nonlinear frontogenesis, which in the viscous case

is shown to generate a thermal bar. Thermobaricity shifts the thermal bar

towards the colder water, and initially produces a slope in the downwelling

plume, but this transient feature disappears as the dominant frontogenesis tilts

the plume back to the vertical.
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1 Introduction

The equation of state of water has three features of great importance to the dynamics

of deep lakes and oceans: nonlinear temperature-dependence, thermobaricity and

salinity-dependence. The nonlinear dependence of density on temperature is such

that at atmospheric pressure and zero salinity there is a maximum of density at

3.98◦C. Hence a mixture of two waters at different temperatures may be denser than

both the original components; this phenomenon is known as cabbeling. Cabbeling

results in the thermal bar phenomenon, discovered by Forel (1880), in temperate lakes.

Even at oceanic salinities, where the temperature-density relationship is monotonic,

cabbeling can still occur if there are variations of salinity as well as temperature:

Garrett & Horne (1978) have discussed the role of cabbeling in oceanic fronts and

Foster (1972) has shown that an instability due to cabbeling may be important in the

formation of Antarctic bottom water.

The variation of the thermal expansion coefficient with pressure, known as ther-

mobaricity (McDougall, 1987), has recently received considerable attention in studies

of convection in lakes and oceans (Akitomo, 1999, and references therein). Because

of thermobaricity the temperature of maximum density θmd in fresh water decreases

with depth at a rate of 0.002◦C.m−1. This allows the formation of a mid-depth tem-

perature maximum in Winter if the deep waters are warmer than the local value

of θmd but cooler than its surface value, and have stable stratification (temperature

decreasing with depth): during the Autumn cooling period, these deep waters are

not disturbed while convective mixing takes place in a surface layer above 3.98◦C,

and they still retain their temperature profile while the surface layer is cooled be-

low 3.98◦C and develops reverse stratification (temperature increasing with depth)
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(Shimaraev & Granin, 1991). However, Carmack & Weiss (1991) have also identified

a dynamical process resulting from thermobaricity that could in principle create a

mid-depth temperature maximum: this thermobaric flow is illustrated in figure 1.

When salinity variations are also present, Aagaard et al. (1985) have shown how a

similar process may be responsible for the intrusion of a layer of warm salty water at

mid-depth in the Fram Strait.

We present below some mathematical models which elucidate the dynamics of

thermobaric flow. In Section 2 we use formalisms developed by Simpson & Linden

(1989) and Kay (1992) for the study of frontogenesis in buoyancy-driven flows to solve

the dynamical equations for 2-dimensional inviscid flow, using Farmer & Carmack’s

(1981) freshwater equation of state which incorporates both nonlinearity and thermo-

baricity in the simplest possible form. As an initial condition we consider a body of

water with a uniform horizontal temperature gradient rather than the discontinuity

in temperature shown in figure 1. In the non-rotating case the mid-depth temper-

ature maximum forms initially but is overtaken by frontogenesis, resulting from a

positive feedback mechanism between steepening density gradients and intensifying

convergent flow (Simpson & Linden, 1989; Kay, 1992). Alternatively, if the coriolis

force due to planetary rotation is included, there may be a geostrophic adjustment to

a steady state if the Rossby number is small enough (Ou, 1984). However, there is no

damping to cause an inviscid flow to settle down in its geostrophic equilibrium state,

so a strictly inviscid model should exhibit inertial oscillations whose amplitude will

grow by the frontogenesis mechanism described above (Blumen, 2000). We consider

only the non-rotating case here, but will develop the theory of rotating thermobaric

flow in a subsequent paper.

3



Although nonlinearity of the temperature-density relationship plays a major role

in the inviscid model, there is no cabbeling since there is no mixing. By including

viscosity and heat conduction in the equations we can model the formation of a

thermobaric thermal bar; although there are now numerous thermal bar models in

the literature, very few have included the decrease of temperature of maximum density

with depth. Among those that have, Tsvetova (1995) and Botte & Kay (2000) have

modelled the circulation in a cross-section of Lake Baikal during Spring warming,

while S.J. Walker (unpublished manuscript) has made a more fundamental study

of the dynamics: Walker’s model has initial conditions of horizontal uniformity of

temperature below 300 metres depth, whereas in the upper 300 metres there is a

vertical discontinuity between regions above and below the temperature of maximum

density, temperature profiles being arranged so that densities are equal across the

discontinuity at all depths. As mixing starts, the discontinuity becomes a thermal

bar with a downwelling plume, which eventually penetrates below 300 metres. A

curious feature is that the most rapidly descending water is at a temperature of

around 3.8◦C, and this appears to undercut cooler denser water; the explanation is

that the warmer water has descended from near the surface, so has gathered greater

inertia than the cooler water.

In Section 3 of this paper we present a model of viscous thermobaric flow which

differs from Walker’s model in its initial conditions: consistently with our inviscid

model, we start with a simple linear horizontal temperature variation. Evidence of

the formation of a mid-depth temperature maximum will be sought, and we shall also

examine the effect of thermobaricity on the development of a thermal bar, using a

comparison with a model in which thermobaricity is excluded from the equation of
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state.

Finally, in section 4 we model the oceanic thermobaric flow of Aagaard et al.

(1985). The prerequisite for thermobaric flow is that waters of different temperatures

should have the same density at some depth, known as the compensation depth hc.

In fresh water it is the nonlinearity of the equation of state that allows this condition

to be realised; in seawater it may be realised if salinity varies as well as temperature.

Thus we shall concentrate on a simple model of this flow, in which density depends

linearly on both temperature and salinity; however, we shall also briefly consider the

effects of nonlinearity in the temperature dependence in oceanic flow.

As in some of the other theoretical studies referenced above, the initial conditions

for all our models are somewhat artificial. The models are intended to provide some

insight into dynamical processes that may be responsible for observed features; even

with quasi-stationary features such as the warm, salty intrusion observed by Aagaard

et al. (1985), there are questions about their origin that can best be investigated by

time-dependent analyses starting from simple notional initial conditions.

2 A model of inviscid thermobaric flow in fresh

water

2.1 Formulation of the model

We consider two-dimensional flow in a channel of uniform depth h and infinite hori-

zontal extent. The flow is driven by pressure gradients arising from horizontal density

variations. We describe the flow in the x-z plane (where x and z are horizontal and
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vertical coordinates, respectively, with z = 0 at the upper surface of the channel) in

terms of the vorticity

ω ≡ ∂u

∂z
− ∂w

∂x
(2.1)

where (u, w) are the velocity components in the (x, z) directions. Under the Boussi-

nesq approximation, the vorticity equation is

∂ω

∂t
= −u

∂ω

∂x
− w

∂ω

∂z
+

g

ρm

∂ρ

∂x
. (2.2)

Here ρ is density and ρm is a constant reference density, which we take to be the

maximum density of water at atmospheric pressure and zero salinity.

The density is given as a function of temperature, pressure and salinity by an

equation of state. While precise equations of state are available for both fresh wa-

ter and sea water (Chen & Millero, 1986; UNESCO, 1981), it is more profitable to

use a simple approximation containing the important features of nonlinearity and

thermobaricity when seeking to gain insight into the fundamental processes. Such

an approximate equation is given by Farmer & Carmack (1981): for water at zero

salinity,

ρ = ρm[1 + p(C0 − γ(θ − θm)) − β(θ − θm)2] (2.3)

where p is pressure above atmospheric, θ is temperature in degrees Celsius and θm =

3.98◦C, the temperature of maximum density for fresh water at atmospheric pressure.

The remaining constants in (2.3) have the values

ρm = 999.975 kg.m−3

C0 = 4.9388 × 10−10 Pa−1

γ = 3.3039 × 10−12 ◦C−1.Pa−1
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β = 8.2545 × 10−6 ◦C−2.

For use in (2.3), pressure may be calculated hydrostatically using the reference den-

sity:

p = −ρmgz; (2.4)

this incurs errors of order pγ(θ − θm) (around 10−4 for typical conditions in a deep

lake such as Baikal) relative to the magnitudes of the terms producing density vari-

ations in (2.3). We do not distinguish between in situ and potential density and

temperature; the difference is rather small, even in the deepest lakes (Farmer, 1975),

and introducing adiabatic warming and cooling would unnecessarily complicate the

equations. Thus the temperature is simply an advected tracer,

∂θ

∂t
= −u

∂θ

∂x
− w

∂θ

∂z
, (2.5)

and the gradient Richardson number may be calculated as

Ri =
− g

ρm

∂ρ
∂θ

∂θ
∂z(

∂u
∂z

)2 , (2.6)

with a value of Ri greater than 1
4

implying that the flow is stable.

Although the equation of state implies a degree of compressibility, we apply the

anelastic approximation whereby the divergence of the velocity vector is zero, so that

∂u

∂x
+

∂w

∂z
= 0. (2.7)

When combined with the condition of zero flow across horizontal boundaries, i.e.

w = 0 at z = 0 and at z = −h, (2.8)

this yields ∫ 0

−h
u dz = constant (2.9)
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and in the absence of coriolis force it is reasonable to assume that the constant will

be zero.

We consider the development of the flow from rest with an initially uniform hori-

zontal temperature gradient λ, i.e.

θ = θm + λx at t = 0. (2.10)

With the equation of state (2.3), this results in an initial density field as illustrated

in figure 2. The density of water is at a maximum (with respect to temperature and

horizontal position) at x = 0 at the surface (z = 0). However, the temperature of

maximum density decreases with depth at a rate −ρmgγ/2β (from (2.3) and (2.4)),

so that at the bed (z = −h) water of maximum density is found at x = −xθ, where

xθ = ρmgγh/2βλ. (2.11)

Note that xθ is a horizontal length scale for the problem – no such scale exists in the

absence of thermobaricity (Kay, 1992).

Two methods of analysis will be used. Firstly, we can obtain useful insight into the

early development of the flow in response to buoyancy and inertia forces by obtaining

expansions of the form

ω = ω0 + ω1t + ω2t
2 + . . . , (2.12)

which are valid at times soon after the start of the flow (Simpson & Linden, 1989). The

successive terms in (2.12) and in similar expansions for u, v, w, θ and ρ are obtained

by substituting the expansions into the dynamical equations and extracting terms at

each order in t. Secondly, we examine the process of frontogenesis by obtaining a full

solution to the dynamical equations by the method of characteristsics (Kay, 1992;

Grundy & Kay, 2001).
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2.2 Early development of the flow: the mid-depth tempera-

ture maximum

With the initial density gradient calculated from (2.3) and (2.10), substitutions of

the form (2.12) into the vorticity equation (2.2) yield

ω1 = −Ax + Bz (2.13)

at zero’th order in t, where

A = 2βλ2g and B = γλg2ρm; (2.14)

the parameters A and B can be considered as representative of the magnitudes of

nonlinear and thermobaric effects, respectively. Note that these parameters are also

related to our length scales:

xθ

h
=

B

A
. (2.15)

Using (2.1) and (2.7) – (2.9) to obtain the O(t) velocity components from the vorticity

(2.13), we find

u1 = −Ax

(
z +

h

2

)
+

B

2

(
z2 − h2

3

)
(2.16)

w1 =
A

2
z(z + h). (2.17)

The vertical flow is a consequence of the horizontal convergence which results from

nonlinearity in the density profile (Kay, 1992), and is unaffected by thermobaricity.

The horizontal component shows a thermobaric term, which introduces a curvature

into the profiles of the convergent/divergent flow. Some profiles are shown in figure

3 for locations in the region −xθ ≤ x ≤ 0 (i.e. where the density maximum can
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be found at some level within the channel): the three-layer flow suggested in figure

1, with warm water collapsing into the mid-depth region of the channel and flowing

between layers of cooler water, is seen to occur in the region

−2xθ

3
< x < −xθ

3
. (2.18)

More precisely, the region (2.18) is where the flow at both the upper and lower surfaces

of the channel is in the opposite direction to that at some intermediate depth; however,

the horizontal velocity has an extremum (with respect to depth) within the channel

throughout the region

−xθ < x < 0. (2.19)

Figure 3 also shows that the surface convergence front is initially located at x = −1
3
xθ,

as is seen more clearly in a streamline plot (figure 4). Thus thermobaricity causes the

convergence front and the downwelling plume to be distinct from the line of maximum

density (see figure 2); the plume and the maximum-density line would coincide and

be vertical if thermobaric effects were ignored.

The streamline plot obscures the extremum of the horizontal velocity component.

Nevertheless, the effect of this extremum in producing a mid-depth temperature max-

imum may be easily confirmed: from (2.5), the lowest-order perturbation to the initial

temperature is

θ2 = −λ

2
u1 =

λ

2

{
Ax

(
z +

h

2

)
− B

2

(
z2 − h2

3

)}
(2.20)

which has a maximum with respect to depth at z = Ax/B, i.e. located coincident

with the original density maximum and the horizontal velocity extremum. From

(2.20), profiles of θ2 have the same form as those of u1 but with the sign reversed,
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so that figure 3 can be seen as a set of profiles of the negative of the temperature

perturbation; an isotherm plot (figure 5) shows the mid-depth temperature maximum

even more clearly. Finally, since

∂u

∂z
≈ ∂u1

∂z
t =

g

ρm

∂ρ

∂θ
λ (2.21)

and

∂θ

∂z
≈ ∂θ2

∂z
t2 = −λ

2

∂u1

∂z
, (2.22)

we find from (2.6) that Ri ≈ 1
2
, indicating that the flow is stable in this initial stage

(cf. Tandon & Garrett, 1994).

Higher-order terms in the expansions are available, but they only provide useful

information on the effects of nonlinearity: they show the frontogenesis process as

found by Kay (1992), and do not indicate clearly the effects of thermobaricity on this

process.

2.3 Thermobaric effects on frontogenesis

The procedure for finding the full solutions to the dynamical equations is only a little

more complicated than in the non-thermobaric case (Kay, 1992). Equations (2.10),

(2.13), (2.16), (2.17) and (2.20) suggest seeking solutions of the form

θ = θm + Axθn(z, t) + Bθt(z, t) (2.23)

ω = Axωn(z, t) + Bωt(z, t) (2.24)

u = Axun(z, t) + But(z, t) (2.25)

w = Awn(z, t) (2.26)
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with subscripts n and t referring to nonlinear and thermobaric effects, respectively.

We define dimensionless variables by

Z =
z + h

h
(2.27)

X =
x

xθ

(2.28)

T = (Ah)1/2t (2.29)

Θn =
A

λ
θn (2.30)

Θt =
A

λh
θt (2.31)

Ωn = (Ah)1/2ωn (2.32)

Ωt =
(

A

h

)1/2

ωt (2.33)

Un =
(

A

h

)1/2

un (2.34)

Ut =
(

A

h3

)1/2

ut (2.35)

Wn =
(

A

h3

)1/2

wn (2.36)

and substitute (2.23) – (2.36) and the equation of state into the vorticity equation

(2.2) and the temperature equation (2.5). After separating terms proportional to x

from those independent of x, this yields the following set of first-order quasi-linear

partial differential equations:

∂Ωn

∂T
= −UnΩn − Wn

∂Ωn

∂Z
− Θ2

n (2.37)

∂Ωt

∂T
= −UtΩn − Wn

∂Ωt

∂Z
+ ZΘn − ΘnΘt (2.38)
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∂Θn

∂T
= −UnΘn − Wn

∂Θn

∂Z
(2.39)

∂Θt

∂T
= −UtΘn − Wn

∂Θt

∂Z
. (2.40)

The definition of vorticity (2.1) and the continuity equation yield

Ωn =
∂Un

∂Z
= −∂2Wn

∂Z2
(2.41)

Ωt =
∂Ut

∂Z
. (2.42)

Initial conditions are

Ωn = Ωt = 0, Θn = 1, Θt = 0 at t = 0 (2.43)

and boundary conditions are

Wn = 0 at Z = 0 and at Z = 1. (2.44)

The formula (2.6) for Richardson number becomes

Ri =
(XΘn + Θt + 1 − Z)

(
X ∂Θn

∂Z
+ ∂Θt

∂Z

)
(
X ∂Un

∂Z
+ ∂Ut

∂Z

)2 . (2.45)

The solution of (2.37) – (2.40) in terms of characteristics is

dT =
dZ

Wn

= − dΩn

UnΩn + Θ2
n

= − dΩt

UtΩn − ZΘn + ΘnΘt

= − dΘn

UnΘn

= − dΘt

UtΘn

, (2.46)

which may be numerically integrated by a procedure described by Grundy & Kay

(2001). Streamline and isotherm plots derived from these numerical integrations

were presented for dimensionless time T = 1.0 in figures 4 and 5 above, and are

now shown for T = 2.0 in figures 6 and 7. Temperature gradients near the surface

have clearly steepened at T = 2.0; the absence of a temperature front at a particular
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location is due to the horizontally infinite domain in this model, but we take the

steepening of gradients as indicative of frontogenesis. The circulation has moved the

surface signature of the line of maximum density a substantial distance to the left,

while the surface convergence line has moved a little to the right because it is in

a region where the density gradient is creating clockwise vorticity. The mid-depth

temperature maximum has been pushed towards the bed by the downwelling flow;

its horizontal extent, being the same as that of the line of maximum density, now

stretches further to the left due to the divergent flow near the bed.

An isoline plot of Richardson number is shown in figure 8. As the convergent

flow near the surface intensifies, its shear increases more rapidly than the stable

stratification, so the Richardson number decreases here; as time proceeds, isolines

with decreasing values of Ri appear at the surface and then descend. At the same time,

the shear of the divergent flow near the bed weakens (relative to the stratification),

so that the Richardson number increases here. There is also a region in the vicinity of

the mid-depth temperature maximum and the line of maximum density where Ri has

wide fluctuations over small distances, and falls to zero at the temperature maximum;

values of Ri are not a reliable indicator of stability here, firstly because the simplified

formulation of stratification (see caption of figure 2) gives misleading values of Ri in

this region, and secondly because the flow has a substantial vertical component here.

The isoline Ri=0.25 appears at the surface at dimensionless time T = 2.07. Sub-

sequently the flow near the surface may be destabilised by the shear, resulting in

turbulent mixing which will tend to inhibit further frontogenesis. Nevertheless, we

have continued to integrate the model equations ignoring the possible instability, in

order to compare results with those of Grundy & Kay (2001) for a non-thermobaric
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flow. Our equations (2.37), (2.39) and (2.41) are identical to Grundy & Kay’s equa-

tions, while equations (2.38), (2.40) and (2.42) govern thermobaric effects. Grundy &

Kay’s solution developed a singularity at the upper surface Z = 1 at a dimensionless

time Tb = 2.278235, so this “finite-time blow-up” will also occur in the present case,

but with velocity and temperature profiles on the approach to blow-up altered by

thermobaricity.

Figures 9 and 10 show streamlines and isotherms shortly before blow-up. The

downwelling plume is now vertical and coincides with the line of maximum density

which is also vertical in the upper part of the channel; these features, which would

constitute a thermal bar in a channel of finite horizontal extent and with viscosity and

heat transfer accounted for, are located at x ≈ −0.27426xθ at blow-up. The form

of this thermal bar is similar to that in a non-thermobaric model, indicating that

thermobaric effects are swamped by frontogenesis as blow-up approaches; however its

location is determined by the effects of thermobaricity at earlier times.

In the lower part of the channel the effects of blow-up are felt less strongly, and

the thermobaric flow features (extrema of temperature and horizontal velocity com-

ponent) persist here, being found at a depth of 0.8h − 0.9h over a broad region

to the left (i.e. cold-water side) of the thermal bar. With regard to blow-up, the

temperature maximum can be regarded as irrelevant as T → Tb, since temperature

variations in the lower part of the channel are O(1) whereas they are O((Tb − T )−1)

near the surface; however, the persistence of the temperature maximum in this solu-

tion may imply that thermobaric flow is genuinely a possible cause of such phenomena

in oceans and deep lakes, and that the temperature maximum should occur near the

base of a layer in which thermobaric flow is operating.
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The computational results are supported by asymptotic analysis, extending the

work of Grundy & Kay (2001) to examine the behaviour of the thermobaric variables

on the approach to blow-up. Writing the dimensionless time remaining until blow-up

as

τ = Tb − T, (2.47)

we obtain the formulae

Ut ∼ − C1

2τ ln τ

[
1 +

f(τ)

− ln τ
+ τ−(Z2−1) ln τ

{
Z2e2b(Z2−1) + O

( −1

ln τ

)}]
, (2.48)

Θt ∼ τ−Z2
[√

2C1Ze2b(Z2−1) + O
( −1

ln τ

)]
, (2.49)

which are uniformly valid for 0 < Z ≤ 1 as τ ↓ 0. In these formulae, f(τ) is some

function (as yet undetermined) which is O(1) as τ ↓ 0; b is a coefficient which arises

in the solution of the nonlinear equations (Grundy & Kay, 2001), being determined

by initial conditions and estimated from computations to have a value of about -0.16;

C1 is a constant of proportionality arising because we are solving linear equations

(2.38) and (2.40) for the thermobaric variables, and so can only be determined by

computation from the initial conditions.

The final two terms in (2.38), which characterise the thermobaric effect, do not

affect the asymptotic analysis to the order given in (2.48) and (2.49); the thermobaric

variables are simply driven to blow-up by the nonlinear variables, but the specifically

thermobaric behaviour is swamped by the nonlinear effects at this stage of the flow.

Thus the formulae (2.48) and (2.49) have similar forms to Grundy & Kay’s formulae

for the nonlinear variables; combining these results according to (2.23) and (2.25), we
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find that

u ∼ −(Ah)1/2

2τ ln τ

(
1 + Z2e2b(Z2−1)τ−(Z2−1) ln τ

)
(x + C1xθ) (2.50)

θ − θm ∼
√

2λze2b(Z2−1)τ−Z2

(x + C1xθ), (2.51)

so that u and θ must remain small at x = −C1xθ as τ ↓ 0, while the values of these

quantities become unbounded at other horizontal stations for all Z (except possibly

in a layer of dimensionless thickness of order (− ln τ)−1/2 at the bed, see Grundy &

Kay, 2001). From (2.51) the location x = −C1xθ is the line of maximum density, so

we identify C1 ≈ 0.27426 from the computational results.

3 Thermal bar development in viscous thermobaric

flow

3.1 Formulation of the mathematical model

We now develop a two-dimensional thermobaric flow model including viscosity and

heat conduction. We consider the flow in a rectangular cavity 0 ≤ x ≤ L,−h ≤ z ≤ 0,

with small aspect ratio (all calculations presented below are for L = 15 km, h = 750 m,

but similar results have been obtained with different aspect ratios); this is in contrast

to the horizontally unbounded domain of our inviscid model, and will ensure that

frontogenesis is localised. For spatially uniform eddy viscosities νx and νz in the

horizontal and vertical directions respectively, the vorticity equation is

∂ω

∂t
= −u

∂ω

∂x
− w

∂ω

∂z
+

g

ρm

∂ρ

∂x
+ νx

∂2ω

∂x2
+ νz

∂2ω

∂z2
, (3.1)
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while the temperature equation is

∂θ

∂t
= −u

∂θ

∂x
− w

∂θ

∂z
+ Kx

∂2θ

∂x2
+ Kz

∂2θ

∂z2
, (3.2)

where eddy diffusivities of heat Kx and Kz are again assumed spatially uniform. To

satisfy the zero-divergence condition (2.7) we introduce a stream function ψ by

u = −∂ψ

∂z
, w =

∂ψ

∂x
, (3.3)

so that

∇2ψ = −ω. (3.4)

The vertical sides and the base of the cavity are rigid, no-slip, insulating bound-

aries. The upper surface is considered a free surface in the sense of having zero stress

(we do not include wind forcing in the model), but displacements of this surface are

ignored. We also impose zero heat flux on this surface; this is in contrast to the ma-

jority of thermal bar models which are driven by surface heating, but is appropriate

to our aim of examining the mechanics of thermobaric flow and frontogenesis. These

boundary conditions are expressed as

ψ = 0 on x = 0, x = L, z = −h, z = 0; (3.5)

∂ψ

∂n
= 0 on x = 0, x = L, z = −h;

∂2ψ

∂n2
= 0 on z = 0; (3.6)

∂θ

∂n
= 0 on x = 0, x = L, z = −h, z = 0. (3.7)

Here ∂/∂n represents the derivative normal to a boundary.

Initial conditions are similar to those in the inviscid model, with the fluid at rest

with a linear horizontal temperature variation and no stratification. In the calcula-
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tions presented below, we have taken the initial temperature distribution to be

θ0 =
(

x

L
+ 0.35

)
θm, (3.8)

giving a range of temperatures from approximately 1.4◦C to 5.4◦C from left to right

across the domain; water of maximum density (for the appropriate pressure) is found

at x = 0.65L at the surface and at about x = 0.275L at the bed. Having a broad

region in which water of maximum density is found at some depth should make

thermobaric effects clear, but there is the disadvantage that end-wall effects may be

too prominent.

For the purposes of numerical solution, we use dimensionless variables defined as

follows (differently from the inviscid calculations):

ξ =
x

L
(3.9)

ζ =
z

L
(3.10)

Θ =
θ − θm

θm

(3.11)

τ =

(
gβθ2

m

L

)1/2

t (3.12)

Ψ =
(
gβθ2

mL3
)−1/2

ψ (3.13)

U =
(
gβθ2

mL
)−1/2

u (3.14)

W =
(
gβθ2

mL
)−1/2

w (3.15)

Ω =

(
gβθ2

m

L

)−1/2

ω. (3.16)
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The vorticity and temperature equations can then be written

∂Ω

∂τ
=

∂(Ω, Ψ)

∂(ξ, ζ)
− (2Θ − εζ)

∂Θ

∂ξ
+ Gr−1/2

x

∂2Ω

∂ξ2
+ Gr−1/2

z

∂2Ω

∂ζ2
(3.17)

∂Θ

∂τ
=

∂(Θ, Ψ)

∂(ξ, ζ)
+ Gr−1/2

x Pr−1
x

∂2Θ

∂ξ2
+ Gr−1/2

z Pr−1
z

∂2Θ

∂ζ2
, (3.18)

and (3.4) becomes

∇2Ψ = −Ω. (3.19)

Here the horizontal and vertical Grashof numbers are defined by

Grx,z =
gβθ2

mL3

ν2
x,z

(3.20)

and the Prandtl numbers are

Prx,z =
νx,z

Kx,z

. (3.21)

The equation of state (2.3), with pressure given by (2.4), has been incorporated into

(3.17), and we have introduced the “thermobaricity parameter”

ε =
gρmγL

βθm

(3.22)

which has the value 14.8 for the data given above. We have set Grx = 108 and

Grz = 1010, corresponding to eddy viscosities νx ≈ 7 m2.s
−1

and νz ≈ 0.7 m2.s
−1

, in

the calculations described below. These rather large viscosities were chosen mainly to

ensure stability of the computations; experiments with more realistic values showed

the flow developing in a very similar manner to that shown below (except near the

end-walls of our domain), but numerical instabilities prevented these computations

from running for as long as desired. Prandtl numbers were set to unity, on the

assumption that turbulent processes diffuse heat and vorticity at similiar rates.
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The system of equations (3.17) – (3.19) is solved by the finite-difference method,

using Arakawa’s (1966) representation of the nonlinear advection terms (written as

Jacobians in (3.17) and (3.18)), which conserves mean square vorticity and kinetic

energy. An integration was done with ε set to zero, i.e. with a quadratic temperature-

density relation but no thermobaricity, for comparison with the case where the full

thermobaric equation of state (2.3) is used.

3.2 Results

Streamlines and isotherms for the thermobaric case are shown in figures 11 and 12

for dimensionless time τ = 8.0 (where one dimensionless time unit is a little less than

one hour, according to (3.12) with the given data). There is evidence in figure 12 of

a rather weak mid-depth temperature maximum, barely visible as a slight leftward

bulge in the isotherms to the left of the θ = θm isotherm, occurring at greater depth

for isotherms at lower temperatures – although towards the bottom left of this figure

the curvature of isotherms is due to friction at the bed retarding the flow diverging

from below the thermal bar. In contrast, the non-thermobaric case (not shown here)

shows even more prominent bulges in isotherms near the bottom left, but no such

effect around mid-depth.

At time τ = 8.0 the convergence front has not moved from its initial location at

x ≈ 0.525L (see figure 11), but the downwelling plume has become more vertical (the

dividing streamline would initially meet the bed at x ≈ 0.4L). The upper part of

the line of maximum density also becomes more vertical (figure 12), while its surface

signature has migrated substantially towards the convergence front from its initial

location at x = 0.65L, as in the inviscid case. There is evidence of frontogenesis in
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figure 12, with isotherms crowding together around the line of maximum density in

the upper half of the domain.

Figures 13 and 14 show the situation at time τ = 16.0, when frontogenesis is

complete; the line of maximum density is now aligned with the downwelling plume

in the upper half of the domain, and the frontogenetic effect of the convergent flow

near the surface is balanced by horizontal diffusion of heat across the front. The

front is noticeably asymmetric, with the steep temperature gradient mainly on the

warm side of the θ = θm isotherm. This asymmetry, which is also evident at earlier

times (figure 12), is due to the separation of the downwelling plume from the line of

maximum density in the early stages of the flow. In the region between these two

features, vorticity is being generated in the opposite sense to the large-scale rotation

of the fluid. Frontogenesis, characterised by Kay (1992) as a positive feedback process

involving the density gradient, the vorticity and the horizontal flow convergence, is

thus being inhibited in a region on the cold side of the line of maximum density during

the early development of the flow, while it proceeds without hindrance on the warm

side. The positive feedback amplifies this difference, which is then evident in the final

form of the front. A related effect is that the stratification is very weak (isotherms

are nearly vertical) on the cold side of the front, so that the Richardson number here

is very low; however, since we have taken large values of eddy viscosities, it can be

argued that we have already accounted for the turbulence resulting from any shear

instability.

Figures 13 and 14 represent a quasi-steady state, with any subsequent evolution

of the flow and temperature distribution being on a much slower time-scale. The

thermal bar is migrating slowly to the left, possibly as a result of the asymmetry
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described above, and is already further to the left than predicted by the inviscid

model; but its form remains essentially unchanged. A temperature maximum does

persist below the line of maximum density, but it is not clear to what extent this is

due to thermobaric flow or simply to bed friction.

4 Oceanic thermobaric flow

Aagaard et al. (1985) have described an oceanic flow of similar form to the freshwater

thermobaric flow shown in figure 1. In the Fram Strait the relatively warm and salty

Eurasian Basin Deep Water (EBDW) from the Arctic Ocean is observed to intrude

into the cooler, fresher Greenland Sea Deep Water (GSDW) at depths of around 1500

m.

To model this flow we adopt a simplified equation of state of the type used by

Garwood et al. (1994), featuring linear dependence of density on both salinity and

temperature, and including a thermobaric term:

ρ = ρ[1 + p(C − γs(θ − θ)) − α(θ − θ) + σ(S − S)], (4.1)

where S is salinity in psu (practical salinity units, i.e. parts per thousand), θ, S and

ρ are reference values of temperature, salinity and density, respectively. Values of

other relevant constants may be found from data in Garwood et al. (1994):

ρ = 1.028 × 103 kg.m−3

γs = 2.83 × 10−12 ◦C−1.Pa−1

α = 2.75 × 10−5 ◦C−1
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σ = 7.91 × 10−4 psu−1,

and the compressibility constant C is not given by Garwood et al. and has no effect

on the dynamics. The compensation depth, at which waters with temperature and

salinity values (θ1, S1) and (θ2, S2) have the same density, is

hc =
σ(S2 − S1) − α(θ2 − θ1)

ρgγs(θ2 − θ1)
. (4.2)

With Aagaard et al.’s (1985) temperature and salinity data for GSDW and EBDW

in the Fram Strait, this yields hc ≈ 2400 m.; the discrepancy with Aagaard et al.’s

calculated value of 1900 m. is due to the approximations made in our equation of

state, and is of no importance to our modelling of the flow.

Our model uses the dynamical equations and boundary conditions set out in §2.1

above for inviscid flow, together with an advection equation for salinity,

∂S

∂t
= −u

∂S

∂x
− w

∂S

∂z
, (4.3)

and the initial conditions of a body of water at rest with uniform horizontal temper-

ature and salinity gradients, i.e.

θ = θ + λx and S = S + µx at t = 0. (4.4)

In this scenario (4.2) becomes

hc =
σµ − αλ

ρgγsλ
, (4.5)

so that the compensation depth exists within a water body of depth h if

α

σ
<

µ

λ
<

α

σ
+

ρgγsh

σ
. (4.6)
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Irrespective of whether this condition is satisfied, the dynamical equations have an

exact solution in which the horizontal flow accelerates from rest at a rate

a(z) =

{
ρgγsλ

(
z2

2
− h2

6

)
+ (σµ − αλ)(z + h)

}
g (4.7)

and there is no vertical motion, due to the linearity of the equation of state (4.1) and

the infinite horizontal extent of the domain. Thus the velocity components at time t

are

u = a(z)t, w = 0 (4.8)

and the temperature and salinity are

θ = λ
(
x − 1

2
a(z)t2

)
, S = µ

(
x − 1

2
a(z)t2

)
, (4.9)

while the Richardson number, calculated as

Ri =
− g

ρm

(
∂ρ
∂θ

∂θ
∂z

+ ∂ρ
∂S

∂S
∂z

)
(

∂u
∂z

)2 , (4.10)

(cf. (2.6)) has the constant value 1
2
, indicating stability at all times. The term in (4.7)

that is linear in z arises from the linear dependence of density on temperature and

salinity, while the term that is quadratic in z arises from thermobaricity; the presence

of this term creates maxima in the vertical profiles of both temperature and salinity

at the compensation depth z = hc, arising from a flow in which the horizontal velocity

also has an extremum at this depth. These findings are in accord with the reasoning

of Aagaard et al. (1985), even though these authors considered adjacent bodies of

water with a sharp change in temperature and salinity between them, rather than a

constant gradient of these properties.

The simplifications in our model lead to the absence of any horizontal variation of

the velocity, temperature and salinity profiles and the absence of any vertical motion.
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However, vertical motion will occur if we take account of the nonlinear temperature

dependence in the equation of state. A simple way to model the effects of nonlinearity

is to propose an equation of state of a similar form to the freshwater equation (2.3),

but adding linear salinity dependence:

ρ = ρ[1 + p(Cs − γs(θ − θ)) − βs(θ − θ)2 + α(S − S)]. (4.11)

The constants in (4.11) may be obtained by fitting the equation to values of density

for temperatures, salinities and pressures within the range of interest, noting that

the equation will not be accurate outside these ranges. Using Aagaard et al.’s (1985)

temperature and salinity values for GSDW and EBDW and for a 1:1 mixture of these

waters, all at the compensation pressure for which GSDW and EBDW have the same

density, and evaluating densities from the International Equation of State of Seawater

(UNESCO, 1981), we obtain βs ≈ 2.8 × 10−6 ◦C−2 and θ ≈ −8◦C, taking α and γs

to have the same values as used in (4.1). The reference temperature θ in (4.11) is

a notional temperature of maximum density, which does not explicitly depend on

salinity (unlike in Farmer & Carmack’s (1981) freshwater equation of state). At

constant salinity S > 24.7psu the maximum of density (with respect to temperature)

is reached at the freezing point, but it has been recognised since Witte’s (1902)

seminal account of the cabbeling phenomenon that nonlinearity of the temperature

dependence is important in ocean dynamics.

If we again suppose that there are initially uniform horizontal temperature and

salinity gradients as given by (4.4), we find with the equation of state (4.11) that

there is an initial density maximum (with respect to horizontal position) at

x =
αµ + ρgγsλz

2βsλ2
, (4.12)
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i.e. at a position which varies linearly with depth. The initial density structure is

in fact identical to that for fresh water, apart from a horizontal shift indicated by

the term αµ in (4.12) (i.e. due to the salinity gradient) and, more importantly, the

difference in the value of the coefficient of the quadratic term in the equation of state:

βs as estimated above has a value about one-third that of the freshwater coefficient

β. Thus the flow will take the same form as freshwater thermobaric flow, but with

slower frontogenesis. The time-scale for frontogenesis is

tf = (2βsλ
2gh)−1/2 (4.13)

(from (2.29) with (2.14)); for conditions in the Fram Strait, with a temperature

difference of 0.33◦C over a distance of order 1000 km in water of depth around 3

km (Aagaard et al. 1985), tf is of order 3 months. The contrast with the time-

scale of less than a day found in the model described in §3 above is due mainly to

the contrast in temperature gradients: in §3 we considered temperature variations of

4◦C over the width of a moderate-sized lake. The slowness of frontogenesis in the

oceanic conditions suggests that the model based on the linear equation of state (4.1)

may provide an adequate explanation of thermobaric flow effects, in particular the

mid-depth temperature and salinity maximum, in polar oceans.

5 Conclusions

We have considered some simple model flows to illustrate the combined effects of three

of the distinctive features of the equation of state of water. These are, firstly, ther-

mobaricity, which may be thought of either as an increase in the thermal expansion

coefficient with increasing pressure or as a decrease in compressibility with increasing
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temperature; secondly, the nonlinearity of the temperature-dependence of density, in

particular the existence in fresh water of a temperature of maximum density (de-

creasing with depth due to thermobaricity); and thirdly, the increase in density with

salinity. The initial conditions in our models are greatly simplified: uniform hori-

zontal gradients of temperature and, if applicable, salinity are used to represent any

horizontal non-uniformity of these quantities as simply as possible; the absence of any

initial motion or stratification allows us to see clearly how the flow and stratification

develop in response to the imposed temperature and salinity gradients.

Our inviscid models have confirmed the possibility of three-layer horizontal ”ther-

mobaric flows”, as speculated by Aagaard et al. (1985) and Carmack & Weiss (1991)

in polar oceans and deep temperate lakes, respectively. This flow creates a mid-depth

temperature maximum, which in fresh water appears in a region where the surface

water is colder than its temperature of maximum density. However, it does not neces-

sarily follow that observed mid-depth temperature maxima in lakes and oceans are a

result of this mechanism. In particular, the annual cycle of surface heating and cool-

ing provides a much stronger mechanism to create the relatively shallow (around 200

m depth) Winter temperature maximum in Lake Baikal (Shimaraev & Granin, 1991),

although thermobaric flow may still have some influence on the temperature profile at

deeper levels. In the Fram Strait, on the other hand, the much deeper temperature

maximum cannot be explained by surface cooling, and the horizontal thermobaric

flow seems a more likely mechanism for the creation of this feature. Furthermore, the

nonlinearity of the temperature-dependence, which leads to frontogenesis, is weaker

in the polar oceans than in a freshwater lake; thus the mid-depth temperature max-

imum, which results from a linear phenomenon (the horizontal thermobaric flow),
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can remain more prominent in the ocean. In contrast, frontogenesis will occur more

rapidly in a lake near the temperature of maximum density, so the mid-depth tem-

perature maximum becomes a relatively weak feature, though it can persist in the

lower part of the water body where the flow is divergent rather than frontogenetic.

When frontogenesis occurs, leading to the formation of a thermal bar in fresh

water, thermobaricity does nevertheless influence the process. Firstly there are some

transient effects: the downwelling plume is initially distinct from the line of maximum

density, and both are sloping (this is unrelated to the sloping thermal bars reported

in some studies which ignore thermobaricity (e.g. Elliott, 1971), where the slope is

due to motion of the thermal bar across a lake surface as the lake is progressively

warmed). These features disappear as the thermal bar reaches a quasi-steady state

in which the downwelling plume and the line of maximum density are coincident

and vertical (as in the absence of thermobaricity). However, there are some lasting

effects of thermobaricity: the thermal bar is displaced to the cold side of where the

maximum-density surface water would otherwise be found, and the region of steep

density gradient is asymmetric about the temperature of maximum density.
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Figure captions

Figure 1: Schema illustrating the mechanism of thermobaric flow for adjacent homo-

geneous columns of water at different temperatures but equal density at mid-depth

(from Carmack & Weiss, 1991). At the surface, water at temperature T2 is denser

than water at T1 (being closer to the temperature of maximum density Tρmax), but

at the bed , water at T1 is denser: hence the adjustment whereby water at T1 rises in

the upper half of the basin but sinks in the lower half.

Figure 2: The initial density field for the inviscid thermobaric flow model. The

contour interval is 0.1ρmAx2
θ/g, where A and xθ are given by (2.13) and (2.10) re-

spectively (contours in the upper left region are closely packed and have been omitted

for clarity). See equations (2.27), (2.28) and (2.11) for definitions of the dimensionless

coordinates X and Z used here and in figures 3 – 10. The bold line is the locus of

maximum density (with respect to horizontal coordinate). Note that the compress-

ibility term pC0 is ignored in calculating density from (2.3) for this plot; this term

would vanish if potential density were calculated. The stability is actually positive

or neutral everywhere, despite the appearance of a region of static instability in this

plot. This region would not be entirely eliminated by plotting potential density: as

explained by Gill (1982), §3.7, and in more detail by Peeters et al. (1996), potential

density can give misleading indications of stability in cases where the thermal expan-

sion coefficient varies down the water column. Hence we use the simpler formulation

of density, noting that it is horizontal density gradients that are fundamental to the

dynamics in our model.

Figure 3: Profiles of leading-order horizontal velocity u1 at early times in the devel-

opment of inviscid thermobaric flow. The profiles are shown at x = −xθ, x = −2
3
xθ,
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x = −1
2
xθ, x = −1

3
xθ and x = 0. These profiles also represent the negative of the

lowest-order temperature perturbation θ2.

Figure 4: Streamlines, at intervals of 0.01 dimensionless units, at dimensionless time

T = 1.0 from the numerical solution described in §2.3, but representative of the early

development of the flow. Note in particular the dividing streamline, representing a

downwelling plume originating at a convergence front on the surface at x = −1
3
xθ.

Figure 5: Isotherms at dimensionless time T = 1.0 from the numerical solution de-

scribed in §2.3, but representative of the early development of the flow. The isotherm

interval is 0.1 dimensionless units, and the bold line is the line of maximum density.

Figure 6: Streamlines, at intervals of 0.025 dimensionless units, at dimensionless time

T = 2.0 in inviscid thermobaric flow. The flow has strengthened since T = 1.0 (figure

4) and the dividing streamline is closer to vertical.

Figure 7: Isotherms at dimensionless time T = 2.0 in inviscid thermobaric flow,

showing steepening (slackening) of temperature gradients near the surface (bed), with

the mid-depth temperature maximum shifted towards the bed. Note that this figure

shows a broader domain than previous figures. The isotherm interval is 0.2 dimension-

less units, and the bold line is the line of maximum density; closely packed isotherms

in the upper left and upper right regions have been omitted for clarity.

Figure 8: Isolines of Richardson number, at intervals of 0.05, at dimensionless time

T = 2.0 in inviscid thermobaric flow. The main feature is the general increase in Ri

(and hence of stability) with increasing depth. Isolines are omitted in a region around

the mid-depth temperature maximum and the line of maximum density, where Ri

varies widely over short distances.

Figure 9: Streamlines, at intervals of 8.0 dimensionless units, at dimensionless time
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T = 2.278 in inviscid thermobaric flow (with blow-up occuring at T = 2.278235).

The dividing streamline is now vertical and its surface signature coincides with that

of the line of maximum density (see figure 10).

Figure 10: Isotherms at dimensionless time T = 2.278 in inviscid thermobaric flow.

The impression of a sharp front is misleading: isotherms are only shown for tem-

peratures between -2.0 and 2.0 dimensionless units (at intervals of 0.2 units), and

temperature gradients are in fact very steep across the entire near-surface region. In

contrast, very slack gradients and a temperature maximum are found near the bed.

The bold line is the line of maximum density.

Figure 11: Streamlines for viscous thermobaric flow in a rectangular cavity of length

L = 15km and depth h = 750m, at dimensionless time τ = 8.0. The dividing stream-

line marks the centre-line of a downwelling plume. See equations (3.9) and (3.10) for

definitions of the dimensionless coordinates ξ and ζ used here and in the remaining

figures.

Figure 12: Isotherms for viscous thermobaric flow at dimensionless time τ = 8.0. The

isotherm interval is 0.1θm (about 0.4◦C), and the bold line is the contour of maximum

density.

Figure 13: As figure 11, but at τ = 16.0.

Figure 14: As figure 12, but at τ = 16.0.
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