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Abstract
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functional integral representations of the classical Nelson model and relativistic Nelson
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1 Introduction

In this paper we are interested in some stochastic properties of the so called Nelson model
of an electrically charged spinless quantum particle coupled to a scalar boson field. These
properties will be formulated in terms of central limit theorem-type behaviours of functionals
of the particle-field operators. While the quantum field models discussed here are defined in
terms of self-adjoint operators on a joint particle-field space of functions, for our purposes a
Feynman-Kac type approach will be more suitable. Then the related evolution semigroups
can be represented in terms of averages over the paths of suitable random processes, which
has been much explored lately.
The Nelson model is defined by a self-adjoint operator of the form

Hy = H,® 1+ 1® He + H;, (1.1)

on a Hilbert space L?(R?) ®.%,, where .7, denotes the boson Fock space over L?(R?), and the
components describe the Hamilton operators of the free particle, free field, and particle-field
interaction, respectively. The classical and the relativistic Nelson models differ by the choice
of the free particle operator Hj,, which in the classical model is a Schrodinger operator and
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in the relativistic case a relativistic Schrédinger operator, as given by the expressions (2.1I)
and (2.2]) below. On the functional integral representation level this difference will appear
in the fact that a Schrodinger operator generates a diffusion, while a relativistic Schrédinger
operator generates a jump process.

A functional CLT for the classical Nelson model has been first established by Betz and
Spohn in [2]. They have shown that under the Gibbs measure obtained from taking the
marginal over the particle-generated component of the path measure in the functional integral
representation of Hy, the process scaled by Brownian scaling converges in distribution to
Brownian motion having reduced diffusion coefficients. This means that the particle increases
its effective mass due to the coupling to the boson field. The main observation in this paper is
that one can associate a martingale with functionals of the process, whose long time behaviour
can be predicted by using the martingale convergence theorem. The result for more general
Markov processes is originally due to Kipnis and Varadhan [I4] Theorem 1.8], and similar
problems are studied also in [3] [4], [6]. Whenever in H,, the external potential V' is chosen to
be sufficiently regular, the operator semigroup {e~*r : ¢t > 0} can be studied by a Feynman-
Kac type representation, i.e., there exists a random process (Z;);>0 on a suitable probability
space such that

(70 f) () = B ™o V& £ (7] (1.2)

holds for all Borel measurable f on R?, where the expectation is taken with respect to the
path measure of (Z;);>9. When H,, is a classical Schrédinger operator, the process is a d-
dimensional Brownian motion (B;);>0 and the path measure is Wiener measure )V on the
space of continuous paths C((0,00), R?). When, however, H, is a relativistic Schrédinger
operator, the process changes to a d-dimensional Lévy process with their corresponding path
measures, now on the Skorokhod space D((0,00),R?%) of cadlag paths (i.e., the paths are dis-
continuous, but continuous from the left with right limits). Whenever the coupling between
the particle and field is turned on, the boson field will contribute by an infinite dimensional
Ornstein-Uhlenbeck process so that in the path integral representation of the evolution semi-
group {e tAN
below. Due to the linear coupling between particle and field, one can integrate over the
OU-component and the marginal distribution for the particle will contain beside the given
external potential also an effective pair-interaction potential resulting from the interaction.
Assuming that the external potential is chosen in such a way that the bottom of the
spectrum E, = inf o(H,) is an isolated eigenvalue, i.e., a ground state ¢, (L*-normalized

:t > 0} a two-component random process will appear, as it will be explained

eigenfunction corresponding to the bottom of the spectrum) of Hy, exists, by standard meth-
ods it can be shown that it is unique and has a strictly positive version, which we will choose
throughout. Using the ground state, we can define the unitary operator

U:L*(RY, @ldz) — L*(RY, dz), f— ¢pf,

and consider the self-adjoint operator U _I(Hp — E,)U. This operator generates a stationary
Markov process, which we denote by (Y;);>0 and call a P(¢);-process associated with Hp,.
We then have with suitable test functions f and g the formula

(f‘ppve_t(Hp_Ep)g‘Pp)L%Rd,dx) = /]R

) E*[f(Y0)g(Ye) iy () da. (1.3)
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In what follows, we are interested in constructing a P(¢);-process associated with the Nelson
Hamiltonian. This will be then obtained by a similar unitary operator, and will give rise to
a two-component random process according to the separate contributions of the particle and
the fields operators. Our main aim is then to study a FCLT behaviour of this process in the
sense of the invariance principle due to [5].

This paper is organized as follows. In Section 2 we discuss the functional integral repre-
sentations of the classical and relativistic Nelson models. In Section 3, we construct P(¢);-
process associated with the two models. Section 4 is devoted to proving a functional central
limit theorem for additive functionals associated with the Nelson models by using the prop-
erties of the P(¢)1-process. We show some functionals of special interest for both cases and
determine explicitly the variance in the related FCLT. Finally, we make some remarks on
extensions to related models in Section 5.

2 Functional integral representations of the Nelson model

2.1 Functional integral representation of the free particle Hamiltonians

We will consider the classical and relativistic Nelson models in parallel. In some aspects of
the construction the relevant property is the Markov property of the underlying processes,
thus the expressions will appear similar with the difference that the appropriate processes
are applied, however, in some other aspects the path properties will become crucial and
significant differences appear.

Let V : R — R be a Borel-measurable function giving the potential. We denote the
multiplication operator defined by V by the same label. The energy of the free particle in
the classical model is described by the Schrédinger operator acting on L?*(R?) and formally
written as

1
Hy = —5A+V. (2.1)

The relativistic model is described by the relativistic Schrodinger operator acting on L?(R%)

and formally written as .
H,=vV-A+m?>-—m+7V, (2.2)

where the square-root operator is defined by Fourier transform in the standard way, and the
parameter m > 0 is the rest mass of the particle. These Schrodinger operators can be defined
in the sense of perturbation theory by choosing suitable conditions on V. However, since
we will use methods of functional integration, we are interested to choose V' in a way which
allows a Feynman-Kac type representation to hold. The natural choice is Kato-class, in each
case given in terms of the related random processes.

In order to describe the classical case, consider the space 2 = C(RT,R?) of R%valued
continuous functions on RT. Let (B;);>¢ be d-dimensional Brownian motion defined on
(Z,B(Z)), where B(Z") is the o-field generated by the cylinder sets of 2", and denote
by W? the Wiener measure starting from z at ¢ = 0. Also, consider 2~ = D(RT,RY), the
space of cadlag paths (i.e., continuous from right with left limits) with values in R?, and
B(Z") the o-field generated by the cylinder sets of 2. Let (bs);>0 denote a d-dimensional
rotationally symmetric relativistic Cauchy process generated by ([22) when m > 0, and a
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rotationally symmetric Cauchy process when m = 0. In each case we denote by &% the
path measure of the process in question starting from x at time ¢ = 0. It is well-known that
all these processes have the strong Markov property with respect to their natural filtrations.
When we do not need to specify the process, we will use the generic notation (Z;);>0, and it
will be understood that expectations are taken with respect to the own path measure of the
process.

Definition 2.1 (Kato-class) We say that V = V. — V_ is a Kato-class potential with
respect to the random process (Z;):>o whenever for its positive and negative parts

V.o e k? and Vile € KZ for every compact set C' C RY,

hold, where f € K? means that

lim sup E* [/ F(2 \ds} 0. (2.3)

=0 peprd

When (Z;)¢>0 = (Bt)t>0, we call this space Kato-class, and when (Z;)i>0 = (bt)¢>0, we call
it relativistic Kato-class.

By Khasminskii’s lemma [15] Lemma 3.37] and its straightforward extension to relativistic
Kato-class it follows that the random variables — fg V(Zs)ds are exponentially integrable for
all £ > 0, and thus we can define the Feynman-Kac semigroup

T,f(z) = E® [e= Jo V(Zo)ds f(zt)} ., feLXRY, t>o0. (2.4)

Using the Markov property and stochastic continuity of the process (Z;)¢>0, we can show that
{T; : t > 0} is a strongly continuous one-parameter semigroup of symmetric operators on
Lz(Rd). Then, by the Hille-Yoshida theorem, there exists a self-adjoint operator K bounded
from below such that e *% = T,. Using the generator K, we can give a definition to a classical
and a relativistic Schrodinger operator for Kato-class potentials.

Definition 2.2 If (Z;);>0 = (Bi)i>0, then we call the self-adjoint operator K on L%(R%) a
Schrodinger operator with Kato-class potential V. If (Z;);>0 = (bt)¢>0, we call K a relativistic
Schrodinger operator with Kato-class potential V.

For simplicity, we keep using the notations (ZI]) and ([2.2). In both the non-relativistic and
relativistic cases we have then the following Feynman-Kac formula.

Proposition 2.3 (Functional integral representation) Let f,g € L?>(R?). If V is of
Kato-class, then for any of the operators K defined above we have

(ﬂe_tKg)de):/ *[f(Zo)e™ ho V@ g(2))da. (2.5)
In particular,

(e K g)(w) = E¥[e b VZ)g(7,)), @R (2.6)
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Proof: See [15, Sections 3.3, 3.6], [II], Section 4].

Below we will need two-sided processes (b;)cr, i.€., indexed by the time-line R instead of
usually by the semi-axis RT. These processes can be defined as follows. Consider the measur-
able space (2, B(2)), with cadlag space Q@ = D, (R; RY), as well as Q = D,(RT,RY) x D; (R, RY)
and 2% = P* x P* where D|(RT,R?) denotes caglad space (i.e., paths continuous from
left with right limits). Let w = (w1, ws) € € and define

= w1 (t), t> 0,

bulw) = { wa(—t), t<0.
Since Zt(w) is cadlag in t € R under 2%, we define b : (Q, B(Q)) — (2, B()) by by(w) = gt(w).
Then we have that b € B(Q)/B(2) since b=1(E) € B(<), for all cylinder sets E € B(f2). Thus
b is an Q-valued random variable on Q). Denote again the image measure of 2% on (Q,B(2))
with respect to b by 2% = 2% o b~!. The coordinate process denoted by the same symbol
by w € Q> w(t) € RYis a Cauchy (respectively, relativistic Cauchy) process over R on
(Q,B(22), 7). The properties of the so obtained process can be summarized as follows.

Proposition 2.4 The following hold:
1. e92“7:(()0 = :E) =1
2. the increments (by, — by, | )1<i<n are independent symmetric Cauchy (respectively, rel-
atiwistic Cauchy) random variables for any 0 = tog < t1 < -+ < t,, with by — by 4 by

fort >s

3. the increments (b_y, , — b_t,)1<i<n are independent symmetric Cauchy (respectively,
relativistic Cauchy) random variables for any 0 = —tg > —t1 > -+ > —t,, with b_; —

b_g 4 bs_t for —t > —s
4. the function R 3 t — b(w) € R is cadlag for every w € )

5. by and bs are independent fort > 0 and s < 0.

A completely similar construction can be made of two-sided Brownian motion, with simpli-
fications due to path continuity.

2.2 Nelson Hamiltonian in boson Fock space

The Nelson Hamiltonian is defined on a Hilbert space in terms of a self-adjoint operator
bounded from below. Consider the boson Fock space .7, over L?(R?) defined as

F, = j‘b(n),
n=0
where .7, = & L?(R?). The Fock space can be identified with the space of lo-sequences
(w(n))neN such that zp(“) c y‘b(n) and

lolZ, = > @)% @ < oo (2.7)
n=0
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We denote the “smeared” annihilation and creation operators by a(f) and a*(f), f : C — RY,
f € L%(RY), respectively, satisfying the canonical commutation relations

[a(f);a*(9)] = (f,9)1, [a(f);alg)] = 0= [a"(f),a"(g)]

on a dense domain of .%},. Using these operators, the field operator and its conjugate mo-
mentum on %, are defined, respectively, by
1

<I>(f)=ﬁ(a*(f)+a(f)) and H(f)Z%(a*(f)—a(f))-

For real-valued L?-functions f, g, the commutation relations become

[@(f), 1L(g)] = i(f,9), [1(f),1L(g)] = [®(f), ®(g)] = 0. (2.8)

Denote by dI'(T') : %, — %, the second quantization of a self-adjoint operator 7T :
L?*(RY) — L2(R?), defined by

n jth
A(T)=0® |G, 1@ T @l
J=1 n—fold

The self-adjoint operator
H; = dI'(w),
is the free field Hamiltonian, where
w(k) = VIRE + 72 (2.9)

is the dispersion relation, and v > 0 denotes the mass of a single boson. Formally, the free
field Hamiltonian can be written as

Hf = /]Rd w(k)a*(k)a(k)dk. (2.10)

Physically, it describes the total energy of the interaction-free boson field since a*(k)a(k)
gives the number of bosons carrying momentum k and w(k) is the energy of a single boson.
The commutation relations

[He, a(f)] = —a(wf), [Hi,a"(f)] = a*(wf) (2.11)
hold for f € D(w) on a dense domain of .%},. Hence we deduce that
[Hr, @(f)] = —ill(wf). (2.12)
Let ¢ : R? — R be a function describing the charge distribution of the particle, denote by @
its Fourier transform, and write (k) = $(—k). For every x € R, define

Hi(x) ((@e ™/ Vi) + al@e® Vi) (2.13)

_
V2
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Let 7 = L?(R%) ®.%,. We define the interaction Hamiltonian H; : J# — J by the constant
fiber direct integral (H;V)(z) = Hi(z)¥(z) for ¥ € 4 such that ¥(z) € D(H;(x)), for almost
every x € R?. Here we use the identification

®
e / Fdz = {F & 7, | |FIy = / (@), de < oo ).
R4 R4
Formally, this is written as

ke *a* (k) + 3(—k)e*a(k))dk. (2.14)

1 ~
Hi(z) = /]Rd W((P(
The Nelson Hamiltonian describing the interacting particle-field system is then defined by
Hy =H,® 1+ 1® He + H; (2.15)
Similarly, the relativistic Nelson Hamiltonian is defined by the operator
Hxy=H,® 1+ 1® H; + H; (2.16)

on the space 7.
We will use the following standing assumptions throughout this paper.

Assumption 2.5 The following conditions hold:
L. ¢(k) = p(—k) and 3/vw, p/w € L*(RY).
2. §/wy/w € L2(RY).
3. The external potential V =V, — V_ is of Kato-class in the sense of Definition 211

4. Hp has a unique, strictly positive ground state ¢, € D(Hy), with Hyp, = Eppp,
lepll2@ay = 1, where Ej, = info(H,). Similarly, H}, has a unique, strictly positive
ground state ¢, € D(H,), with Hy@, = Epp, 16pll L2(rey = 1, where E, = inf o(H,).

5. Hx has a unique, strictly positive ground state ¢, € D(Hy), with Hyp, = Eg,,
llogll .z =1, where E = inf o(Hy). Similarly, Hy has a unique, strictly positive ground
state ¢y € D(Hx) with Hngg = Egg, ||fgll# = 1, where E = inf o(Hy).

Denote the “free” operators by
Hy=H,®1+1® H and Hy=H,® 1+ 1® H;.

The spectrum of Hy can be derived from the spectra of H, and Hy. We have o(H,,) = [0, 00),
o(Hf) = {0} U [r,00), and in the case v = 0 the bottom of the spectrum of Hy is the edge
of the continuous spectrum. In general, it is not clear whether the bottom of the spectrum
of Hy is in the point spectrum or not, however, whenever it is, the eigenfunction associated
with this eigenvalue is a ground state. The same considerations hold also for the relativistic
operators.

Using Assumption it follows that Hj is symmetric, and thus Hy, Hy are self-adjoint
operators.
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Proposition 2.6 Hy is a self-adjoint operator on D(Hp @ 1) N D(1 ® Hy) and essentially
self-adjoint on any core of Hy. Sz’mz’lar{y, Hy s self-adjoint on D(H, ® 1) N D(1® Hy) and
essentially self-adjoint on any core of Hy.

Proof: For any F € D(H) we have

~ 1/2 ~
IHF | < 20\3/20 || 5> Il + |13/v20 | FI.

Let € > 0 be arbitrary. We obtain that

1/2 1
I < (. (Hy + HOF) = BlFI? < el ar P + (1 + 5] ) IFIP

Thus there exists b, > 0 such that

[HiF|| < el HoF[| + be || F],

and the claim follows by the Kato-Rellich theorem, see [I5, Theorem 3.11]. The second part
of the statement follows similarly. O

2.3

Nelson Hamiltonian in function space

2.3.1 P(¢)i-process for the free particle operators

Definition 2.7 (P(¢)1-process) Let (E,.#,P) be a probability space and K be a self-
adjoint operator in L?(FE,dP), bounded from below. We say that an FE-valued stochas-
tic process (Z;)ier on a probability space (#,8,Q%) is a P(¢);-process associated with
((E, #,P),K) if conditions 1-4 below are satisfied:

1.

2.

(Reflection symmetry) (Z;);>0 and (Z;);<o are independent and Z; 4 Z_; for every

teR.

(Markov property) (Z;);>0 and (Z;)i<o are Markov processes with respect to the
fields 0(Zs,0 < s < t) and o(Z,,t < s < 0), respectively.

. (Shift invariance) Let —oco <ty <t} < ... <t, <oo, f; € L°(E,dP),j=1,...,n—1

and fo, fn € L?(E,dP). Then for every s € R,

[ B [H fﬂ%)} ar(:) = [ Eo [H fj<ztj+s>} aP(2)

J=0 j=0
= (]17 fOe_(tl _tO)Kfl T fn—le_(tn_tnil)Kfn). (217)

Denote

dN(y) = ¢35 (y)dy. (2.18)
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Since by part (4) of Assumption (Z.]) the function ¢y, is square integrable and L*normalized,
dN is a probability measure on R%. Define the unitary operator Uy, : L2(R%, dN) — L%(R%, dy)
by U, : f = ¢pf. Using that ¢ is strictly positive, the image

_ 1
L, = Up 1(Hp - Ep)Up = (p_p(Hp - Ep)‘Ppa (2.19)

of the Schrédinger operator (2.I]) under this map is well-defined and has the domain D(L,) =

{f € L2(R4,dN) | fpy € D(Hp)}. Since e tL»1 = 1 for the identity function 1 € L%(R%, dN),
the operator Ly, is the generator of a Markov process.

Proposition 2.8 If V is in Kato class, then
1. there exists a probability measure NV on (2 ,B(Z")) such that the coordinate process
(Yy)ier on (27,B(Z),NY) is a P(¢)1-process starting from y € R, associated with the
pair (R?, B(R?),dN), L)
2. the function t — Y; is almost surely continuous.
Proof: See [15, Theorem 3.106]. O

We can define a P(¢);-process for the relativistic Schrodinger operator (Z2)) in a similar
way. As above, denote

dN = @ (z)dz, (2.20)

which is a probability measure on R for similar reasons as for the non-relativistic operator.
Taking now the unitary map U, : L? (R?, dN) — L*(R?, dx), f ¢p f, we similarly obtain

Ly = p_l(f{p - Ep)ﬁp = ~_(lflp - Ep)@pa (2.21)

which is again a Markov generator. Then we have
Theorem 2.9 IfV is in relativistic Kato class, then
L. there exists a probability measure NY on (2 ,B(Z)) such that the coordinate process
(Yo)ier on (27,B(2),NY) is a P(¢);-process starting from y € R%, associated with
((Rda B(Rd)7 dN)7 LP)

2. the function t — Y; is almost surely cadlig.

Proof: See [12, Theorem 5.1]. O
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2.3.2 Infinite dimensional Ornstein-Uhlenbeck process

Let # be a Hilbert space over R, defined by the completion of D(1/\/w) C L?(R?) with
respect to the norm determined by the scalar product

1

(Fo)e = [ Fah) o (222)

ie.,

= Wll'llx.
Let T : # — & be a positive self-adjoint operator with Hilbert-Schmidt inverse such that
VwT 1 is bounded. Define the space C°(T) = N> D(T™"), and write

a7 T Nl

Hn = C=(T)

We construct a triplet o C # C # 5, where we identify %, = #_5. Write Q = o,
and endow () with its Borel o-field B(Q), defining the measurable space (Q, B(Q)).

Consider the set # = C(R, Q) of continuous functions on R, with values in @), and denote
its Borel o-field by B(#'). We define a Q-valued Ornstein-Uhlenbeck process (&;)¢cr,

Rot— &€

on the probability space (%,B(%),G) with probability measure G. Let &(f) = (&, f)) for
f € Mo, where ((.,.)) denotes the pairing between @) and M_o. Then for every t € R and
f we have that &(f) is a Gaussian random variable with mean zero and covariance

1

Bl Neo)) = [ Fatke =0 . (223)

Note that by [223]) every & (f) can be uniquely extended to test functions f € M, which for
simplicity we will denote in the same way.

In what follows we will need conditional measures of this Gaussian measure. Since the
conditional expectation Eg[1 4|0 (&p)] with respect to o (&) is trivially o(§p)-measurable, there
exists a measurable function h : @ — R such that h o {y(w) = Eg[la|o(&o)](w). We will use
the notation h(§) = G(A|¢ = &), however, we remark that G(A[|{y = ) is well defined for
¢ € Q\ N4 with anull set Ny only. Nevertheless, since @) is a separable complete metric space,
there exists a null set N such that G(A[&y = &) is well defined for all A and § € @\ N. The
notation G¢(-) = G(- |& = &) for the family of conditional probability measures G(-|¢y = £) on
% with € € Q\ N makes then sense, and it is seen that G¢ is a regular conditional probability
measure. Then we have Eg|...| = fQ Ege[...]dG(§), where G is the distribution of the random
process (&;)ier on the measurable space (Q,B(Q)), and it is the stationary measure of G.
Thus we are led to the probability space (Q, B(Q),G).
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2.3.3 Functional integral representation of the Nelson Hamiltonians

The Wiener-Ito-Segal isomorphism U : %, — L2(Q,dG), Up®(f)Us~! = £(f), establishes
a close connection between ., and L?(Q,dG). Using ([ZI8) and the stationary measure
obtained above, define the product measure

P=N®G, (2.24)
which is a probability measure on the product space R?x Q). The unitary map
U, @ Up : # — L*(RYxQ, dP)

establishes a unitary equivalence between L?*(RYx Q,dP) and ., and we make the identifi-
cation

A= LPRY @ LA(Q) = L2 (RYxQ, dP). (2.25)

For convenience, hereafter we write L2(R%xQ,dP) simply as L?(P), moreover L?(N) and
L%(G) for L2(R?,dN) and L%(Q, dG), respectively. The images of the free field and interaction
Hamiltonians on L?(P) under this unitary map are given by

Hfo = UfoUf_l (2.26)
and
HY%(y) = UsHiU;: ' (y) = £(@(- — v)), y€R% (2.27)

Here ¢ is the inverse Fourier transform of ¢//w. To simplify the notations, we write again
H; for HiV*, and H; for H;Y*. Then the classical Nelson Hamiltonian Hy is unitary equivalent
with

H=L,21+1® H; + H; (2.28)

acting on L?(P), where L, is given by (2I9).
Recall that (Y;)ier is the P(¢)i-process associated with the pair ((27,B(27),NY), L),
and write

AN = dN(y)dNV.

The probability space for the joint system without the particle-field interaction is then the
product space (2 x %, 3, Py), where ¥ = B(Z") ® B(#') and

P(]ZN@g.

Define the shift operator 7, : L*(Q,dG) — L*(Q,dG) by 7.£(h) = &(h(- — s)). We have
then the following functional integral representation for the classical Nelson Hamiltonian H
in L2(P).

Proposition 2.10 (Functional integral representation) Let ®, ¥ € L?*(P) and suppose
that s <0 <t. Then

+ ~
(=) ) = B [B(Yy, &, ) S o6 @0 (v, 6],
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See [I5] Theorem 6.2]. O

Corollary 2.11 Let ®, ¥ € L*(P), ty < ... < t, and Ay,..., A, € B(R*xQ). Then,

(P, ]IAOe_(tl_tO)H]lA1 e~ (t2—t)H <Ay (t”_t"*l)H]lAn\If)Lz(p)

nl

n
7 — [ 1y, Es(P)d
— Ep, H (Y3, 86) | BV, &g )e o TSPy, g, )

Proof: We have
(@, Dage My, e M1y, T)
= Ep, [B(Yo, §0) Lag (Yo, €0)e™ B ™8 D0y (¥, )6 I mo b D0 1y, (¥, €60) W (Vi €]
= Ep, [O(Y0, €0) Lty (Yo, §0) Lty (Y €) Lag (Yot Son)e™ 0 & D0 (¥, 040)
By iterating this, we obtain

(@, Ly e (0, o~ (2t)H o= ln—ta-)H Y, )

= Ep, H IlAj (Y%j —toaftj —ty) me_ Jo" TYS&S(@dS\I’(Y%n—tO,ftn—to)

j=0

Since both N and G are invariant under time shift, we can replace Yy by Ysi4, and & by
Es+1y, to find that

(@7 ]lAOe—(tl—to)H]lAl e—(tz—tl)H . ]1A7Le—(tn—tn,1)H\I,)
=Ep, | [ [T, (%0 &,) | 2. G o ™% u(y, ¢,
j=0
O

Finally, for later use we quote the following representation formula using Wiener measure
instead of the particle P(¢);-measure.

Proposition 2.12 Let ®, ¥ € L?(P) and s <0 < t. Then
(@, e D) 1oy

t ~ t
- / ERE [#(By, &) (B)e TSP Y (B, g oy (Bye IV EI] dy @ dG
RXQ

Proof: See [15] Theorem 6.3]. O

For convenience, we write

YNV ®GE, (3,6 eRIXQ,
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so that Ep,[- - - fRde Eg’o’f) [+ ]dP(y,&). The above transformations and constructions can
be repeated for the relativistic model. Then we have
P=N®G (2.29)
and the relativistic Nelson Hamiltonian H in L%(P) becomes
H=L,®1+1® H; + H;, (2.30)
using (Z21)). We write
dN = dN(y)dNVY.

We consider the probability space (2 @%, %, Py) where ¥ = B(2 )@ B(%) and Py ZN./\7®Q.
Then we have the following expression for the relativistic Nelson Hamiltonian in L?(P).

Proposition 2.13 Let tg < ... < t,, fo, fn € L*(P) and fj € LX), forj=1,...,n — 1.
Then

(fo, (t1—to er (tn—tn— 1an)_

fom,&)(]'[f] Yt],@> i () ]

j=1
Proof: The proof is analogous to the proof of Corollary 2.11] (see [15, Theorem 6.2]). O

Now we can give a functional integral representation of e thN by making use of the Lévy
process (b;)ier and the infinite dimensional OU-process (&;)ier.

Proposition 2.14 Let ®, ¥ € L*(P) and s <0 <t. Then

(¢’ e_(t_S)]:I\II)LQ(IS)
t ~ t
:/ . E%)g[ Dby, £4)Bp(bs)e I & DG (b, )5 (by)e VO] gy & dG.
R

Proof: The proof is similar to the proof of Proposition (see [15, Theorem 6.3]). O
In what follows we write 755‘%5) = NY ® G for (y,€) € RTxQ.

3 P(¢);-processes associated with the Nelson Hamiltonians

3.1 Classical Nelson model

Since the ground state ¢, of H is strictly positive and L?-normalized, we define the probability
measure
dM = 7 dP
on RYx Q. Also, we define the unitary operator Uy : L2(R¢xQ,dM) — L?(R¢xQ,dP) by
Ug : @ — . We write # = L?(R?xQ,dM) and define the self-adjoint operator
Ly = H-F
%( )pe

Let Zg = C(R; R%x Q) be the set of continuous paths with values in R? x @ and indexed by
the real line R, and Bg the o-field generated by the cylinder sets. The main result of this
section is the following.
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Theorem 3.1 (P(¢);-process for the classical Nelson Hamiltonian) Let (y,£) € R¥x Q.
Then the following hold.

1. There exists a probability measure PWE) on (Zq,Bg) such that the coordinate process
(Xi)ter on (2g,Bg, PW9) is a P(¢)1-process associated with the pair

(=15 & 5(Q). . Ly
2. The function t — X3 is almost surely continuous.

In order to show this theorem we need a string of lemmas. The idea of proof is taken from [15].
Write ¥/ = B(R?) ® B(Q) and define the family of set functions {My | A C [0,00), #A < oo}
on YA =3 x ... x ¥ by
—_——
#A—times

Ma(Ag x Ap % . X Ayp) = (ﬂAme—(tl—to)LNﬂAle—(tz—m)LNﬂAl o ]lAnile_(tn—tn—l)LN‘ﬂAn)%

for A = {tg,...,tn}, n € N. It is straightforward to show that the family of set functions
M satisfies the Kolmogorov consistency relation

Mitotrtmimt (X2 Ai) X (XIET L RIXQ)) = Mgyt (XiopAi).

Define the projection 7 : (RExQ)%®) — (RYxQ)* by w — (w(ty),...,w(t,)) for A =
{to,...,tn}, n € N. Then

o = {myN(A)| A e N 4N < oo}

is a finitely additive family of sets, and the Kolmogorov extension theorem [I3] Theorem 2.2]
yields that there exists a unique probability measure M on ((R?x Q)% g(<7)) such that

Mt (A x o x Ay) = Ma(Ar X . x Ay),
for all A C [0,00) with #A < oo and A; € ¥, and
Myp(a %+ % 42) = Eaa| [T 1a, (1) (3.)
j=0
holds. Here (Z;)>0 is the coordinate process defined by Zi(w) = w(t) for w € (R?x Q)10
Lemma 3.2 The random process (Z)>0 on (RExQ)0%®) (7)) has a continuous version.

Proof: We write Z; = (w4,&), where x; € R% and & € (@ are the coordinate processes
zi(w) = w'(t) and &(w) = W3(t) for all t > 0 and w = (W', w?) € (R¥xQ)>). Define
1 Zt]|gasg = 1/H:Et||]12w + ||£t\|22 Using the Kolmogorov-Centsov theorem [I3, Theorem 2.8],

the estimate
Em|Zt = Zsllgayg) < DIt — s (3.2)
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with some D > 0 implies that (Z;):>0 has a continuous version. Since

1Zellpaxg < 2(ll2ellza + 1&lIG),
Q=

it will suffice to prove the bounds

Emlllze — @sllza] < Daft = s, (3-3)

Emlllé — &gl < Dalt — s (3:4)
To obtain (3.3, recall the moments formula E[|B; — B|*"] = K,|t — 5|, with a constant K,
for n > 0. Let oy = (x,...,2¢). By using the formula in Proposition 212, we have for all
1 <i4,j <d that

E ()" ()™ ]
= (&) pg, e IIB @d) M 0g) 12p)
—(t—s)(HN—E

= ((2")"ppepg, € (@)™ 0p08) L2(mt)0 12(Q)

= [ By [(B) (B )" 00 Bo)oe Bos 0B B )

we—Jo B & (@))dr =[5V (Br)dr

Using the eigenvalue equations and the Feynman-Kac formula for the free particle and the
full Nelson Hamiltonians, it follows that

sup |pp(x)| = C1 < oo and sup  |pg(z,8)| = Cy < o0,
zERY (z,€)ERIXQ

Thus we have

EMH% - xs’4] = / de%xg UBO - Bt—s‘4<,0p(BO)90g(BoafO)SDp(Bt—s)SDg(Bt—s=§t—s)

e~ f(f 78, &r (@ f(f s Br-i—:c)dr]

S 022 /RddeWngop(x) |:(10p(Bt s +x)‘BO — Bt 8’ e f() TBrJﬁ:vf’f“(‘p) e fO SV(Br‘i‘SC)dT’]

1/2
<C3 (/ddeWxg [lp(Bi—s + :L")|2}>
R

t—s —s ~ 1/2
([ delen(@)PByy [1B0 — BT Vg [ 2l s o] )
R

Since
t—s

Eg[e_ o TBT&-(gb)dr] < e(t—s)“@/"*’”2 =C,
we see that
1/4 B nyar) /4
Eallee — /'] < G301yl Bow [1Bo — Beoa|*]) " (Byplet 5" V420

s 1/4
< C’22C’K§/4 sup <Ew[€_4fg V(Br+x)dr]> / It — s|?.

zCRY
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Thus (B3] follows. Next we prove B.4]). Let f € .#.o. In the same way as in the proof of

B3) we have
Exl&(f) € (1)) = (€(f) " pgr eI HENE(F) ™ 0g) 12 (ap)
= (&(f)"pppg, e TIINTENE(£)M 0 00) 12 (mayar2()

— [ B 0 o B Bos €0} (B (B i)
e Jo B (@)dr o~ [37° V(B
Hence
Emllen(f) — & ()Y
= [ 0By [60(9) = DI pBo)s o) Bro-)e (B i)

xe~ fg 7B, &r(@))dr —f(f s Br-i—:c)dr]

< C22 /ddeWXg [(Pp(x)tpp(Bt_S + x)‘ft(f) — gt—s(f)’4
R
xXe fo TBT+&E57‘ ))dr _f()t S Br+$)d7‘:|
<G / ddﬂwa [sop(:c)cpp(Bt_S +z)e” Ji7 V(Brta)dr
R
xEg [!&(f) —&s(N'e” fJ*STBT.Hsr(@))drH

<Cj3 /Rddl’EW [‘Pp(x)(pp(Bt—s +x)e” Jo ™"V (Braydr (Eg [I&:(f) — &—s(f)m)

X <Eg [6—2 o ergr(sa))erl/ 2] :
By Lemma below we have
Epmllée(f) — &I
< C3lt - s f11%,,C / dxByy [tpp(x)cpp(Bt_s +z)e” fot*SV(Br—i-x)dr}

1/2

_ o [t—s 2)dr 1/2
< C21t — 52| f11%,,Cllep1? sup (EW[ 2 170 V(B +a)d ]> '
rER

Hence A
Em M < Dot — s (3.5)
1712,

with a constant Da. Since [|§; — &sllq = sup g §(f) — Es(OI/I1fl.zy, for every e > 0 there
exists fo € M1 such that ||§ — &llo < |&(fe) — &(fo)l/ Il fell.zn + €. Thus together with
BE) we have

En [[é — &Y — e < Dot — s, (3.6)

and thus (3.4]) follows. O
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Lemma 3.3 We have Eg[|&;(f) — &(f)1?] < Dyt — 3‘n|’f”7}/+2

Proof: Since &(f) — &(f) is a Gaussian process and Eg e € (H)=&()] = e_%CTz, where
C = (f/\w, (1 — e =slw)f/\ /), by taking derivatives 2n times at t = 0 on both sides we
obtain
Eqll61(f) — &(NIP") < Dulf Ve, (1= 7 2) f/ /)"
< Dt — s["[| £z
< Dplt = sl f 7
Here we used that the embedding i : .#, 5 — L?(R?) is bounded [I5, p288]. O

We denote the continuous version of (Z;)i>0 by (Zt)t207 and the set of R%x Q-valued
continuous paths by 2, = C([0,00),R?x Q). Note that (Z;);>0 is a stochastic process on

the probability space ((R?x Q)% ¢(a7), M), and the map
Z.: (R%Q)) o (), M) — (2, B)

is measurable, where BT denotes the o-field generated by cylinder sets. This map induces
the image measure Py = Mo Z~! on (3?,”5, BT). Thus for the coordinate process (X;")i>0

on (%J,BJF,PJF) we have Z, 4 X" for t > 0. Let (y,£) € RYxQ, and define the regular
conditional probability measure

PO =Pl XS = @)
on (3?,”5 ,B%). Since the distribution of X is dM, we see that

P = [ ELO M. ).

Using the measure P, we have

(Foeohe = [ BRI, (3.7)
RIXQ
which implies that
(e7g) (y,€) = EY I [g(X;)]. (3.8)

Lemma 3.4 The random process (X; )i=0 on (%5’, BT, PJ(ry’S)) has the Markov property with
respect to the natural filtration o(X;", 0 < s <t).

Proof: In this proof we set z = (y,€),z; = (y;,&;) € R¢xQ for notational simplicity. Let
pi(z, A) = (7" 1a)(2), A€ B(RY) x B(Q). (3.9)

Notice that
pi(z, A) = Ep, [1a(X;")] = Ep, [1a(X,")|Xg = 2],

We show that p;(z, A) is a probability transition kernel, i.e.,
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1. pi(z,-) is a probability measure on B(Q)
2. the function z — p.(z, A) is Borel measurable

3. the Chapman-Kolmogorov identity

/ pt(27 A)ps (217 dZ) = Ps+t (xla A) (310)
RIXQ

is satisfied.

Note first that by ([B.7) it is easy to see that e/~ is positivity improving. For every function
f € A such that 0 < f < 1, we have

(™ F) (2) = B, [F(X,N)] < Ep, [1] = 1.

Then we deduce that 0 < !N f < 1 and e/*N1 = 1, and (1)-(2) follow. We can also show
that the finite dimensional distribution is given by

HI[A X+}—/ HIlA Zj Hpt —ti—1 (2j-1,dzj).
R

dxQ)n

Ep,

Thus (X, )i>0 is a Markov process by [15, Proposition 2.17]. O

Now we extend (X, )i>o to ar random process mdexed by the full real line R. Consider
the product probability space (%5, B*, PJ(ry 5)) with %Jr %Jr X %Jr Bt =Bt ® B+ and
735;%5) = Psry’g) ® Piy’g), and let ()?t)teR be the stochastic process

= [ X (w) t>0,
Xt(”)_{ Xt (wy) t<0,

—

on the product space, for w = (w1, wsy) € %ér
Lemma 3.5 It follows that
(1) Xo= (1,6 as.
(2) Xt >0 and X, s <0 are independent
(3) X, 4 X_; forallt € R,

(4) (X))o (resp. (Xi)i<o) is a Markov process with respect to 0(X,,0 < s < t) (resp.
o(Xs,t<s<0))

(5) for fo,.c, fn € K and —t =tg <t <...<t, =t, we have

N - (X —(t1+t)Ln n—1)Ln
Es, j];[of](xtj)} (foe= 0N fy et DN ) (3.11)
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Proof: (1)-(3) are straightforward. (4) follows from Lemma B4l (5) follows from (BI]) and a
simple limiting argument. a

Proof of Theorem[3 1l We show that the stochastic process (Xt)teR defined on (%5 , l§, 734(_3”5))
is a P(¢)i-process associated with ((R?xQ, %', M), Ly). The Markov property, reflection
symmetry and the shift invariance property follow from Lemma Continuity of t — X,

has been shown in Lemma Thus X. : (3&”5,@, 734(_3/’5)) — (Zg,Bg) is measurable and

the image measure P¥$) = 7/54(_3”5) o X1 defines a probability measure on (Zq, Bg). Hence

the coordinate process (X¢)ier on (%Q,BQ,P(%@) satisfies X; 4 X’t, and then (Xi)ier is a
P(¢)1-process associated with ((R?xQ, X', dMy), Ly). O

Lemma 3.6 The random process (Xi)ier is a reversible Markov process under P, and its
stationary measure is M, i.e., for every n > 1 we have that (Xy,, X4,, ..., X1,) has the same
distribution as (Xr—,, Xo—tyy ooy Xo—y, ) for all t1,...,t,, 7 € R.

Proof: Let f,g € . Then Ep[f(X})g(Xs)] = (f, e"t_s‘LNg)%. Thus the lemma follows. O

3.2 Relativistic Nelson model
Define a probability measure on R%xQ by
dM = @3dP.
The unitary operator ﬁg c L2(RY%Q,dM) — L*(R%*xQ,dP) is defined by ® — Qg P. Let
H = L*(RYxQ,dM). Define the operator

~ 1 = ~
LN = ~—(H — E)QOg
g

Let 3&7@ ZND(R, R?x Q) be the space of cadlag paths with values in R? x Q on the whole real
line, and Bg the o-field generated by cylinder sets. Similarly to the classical Nelson model,
we can construct a P(¢); process for the relativistic Nelson Hamiltonian.

Theorem 3.7 (P(¢);-process for the relativistic Nelson Hamiltonian) Let (y,&) €
R*x Q. Then ,

1. There exists a~pr0babz'lz'ty measure PYE) on (27@,5’@) such that the coordinate process
(Xi)ter on (Zg,Bg, PW9) is P(4)1-process associated with the pair

<(Rd xQ, B(RY) ® B(Q),dM), ZN>.

2. The function t — X; is cadlag a.s.
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The proof of Theorem B.7lis parallel with that of Theorem Bl except for path regularity. We
only discuss this part of the proof. Define the family of set functions { My | A C R, #A < oo}
on YA =3 x ... x ¥ by
A
#

AZA(A0><fh,x...x.An):: (ﬂA07e_ﬁl—m)iNﬂAle—@2—ﬁ)£N.”ﬂA e—@n—m%J)ZNﬂAn>/

n—1

for A = {to,...,t,}. By the same way as for the classical Nelson Hamiltonian, we de-
fine the projection mp : (RIx Q)0 — (RIxQ)A by w — (w(tg),...,w(t,)) for A =
{to, . tn}, and o = {71 (A)|A € S/#A HA < oo} is a finitely additive family of sets.
Using the Kolmogorov extension theorem, there exists a unique probability measure M on
(R Q)0 5(a7)) such that

]EM |:H ]lAtj (th ):| = M{to,'“,tn}(AO X oo X An)
j=0

= (ﬂAO,e_(tl_to)iNﬂAle_(tQ_tl)iN]lAl...ﬂA e_(t"_t"”)LN]lA >
n ,)f;’

(3.12)

n—1

where (Z;)i0 is the coordinate process on ((R%x Q)% o(er), M). The equality (312)
leads to the following result:

Lemma 3.8 The stochastic process (Zt)t;() is shift invariant under M, i.e, for fo, ..., fn € Va
and s = 0 it follows that

EM |:H fj(th+5):| = EM |:H fj(th ):| = (f07 e—(tl—l-t)szfl R e_(t—tnfl)ian)j . (313)
j=0 j=0 -

Now we prove that (Zt)t>0 has cadlag version under M. For this purpose, we need the
following technical lemmas which make use of the ideas in [I8 pp 59-62]. Let I C [0,00)
and € > 0. We say that Z. (w), with w fixed, has e-oscillation n times in I, if there exist
to,t1,...,t, € I such that top < t1 < t9... < t, and |]th — Z~tj71|’RdXQ >ecforj=1,...,n.
We say that Z.(w) has e-oscillation infinitely often in I, if, for every n, Z.(w) has e-oscillation
n times in I. Let

Q= {w €Q| lim Zy(w)and lim Z(w) exist in RYxQ for all ¢t > O} ,
SEQ,slt SEQ,sTt

ANy = {w € Q| Z;(w) does not have 1/k — oscillation infinitely often in [0, N] N Q} ,

o () A e
N

=1k=1

Similarly as in [I8, Lemma 11.2], we can see that Q" C €. Define

B(p,e,I) = {w e (R?x Q)% | Z,(w) has ¢ — oscillation p times in I} .
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Lemma 3.9 For every € > 0 we have ‘ li]Tn OM <||Zt - ZsHRdXQ > 5) =0 and M(Q") = 1.
t—s|—

Proof: In this proof we set

Ppg(y, &) = Sp(¥)Pe (Y, §)
and E[- fRde dy ® dGE(]X)g[ -] for notational simplicity. Consider

J.= sup (PY®G) <Zt—s € Bc((y,ﬁ),s)>
(,£)ERIXQ

— (2 ®G) (Zt_s e Bc(0,5)> = (20) (|Zt_s| > e) .
By Proposition 214 we have
M (120 = Zillgag > €) = (1e™ N 0500,) 7,
where B((y/,€'),¢) = {(y,€) € R*xQ|[|(4,€) — (v, €')llgaxg > €} Also, we have

sup [ pg(y, )| = VEK; < oo and supEY, et ] < Cy.
(yvg)eRdXQ yE]Rd

We have
M(12: = Zlwog > )
=k |:¢pg(y7£)e_ Ja e @ o Vb dr@pg(bt—s,Et—s)]lBC((yf),a)(bt—s,ft—s)} l=IE,
The right-hand side can be evaluated as
M (”z — Zillrang > a)
< Kol [@p( Je~Jo & (Bdr = Jy V(br)dr(ﬁp(bt—s)ﬂBC((y’f)vf)(bt—sagt—s)] et=E.
By using Schwarz inequality twice, we have
M (120 = Zullang > )
< K|y ||IE [|¢p(y)|2e—2 I8 o (@)dr ,—2 fOt*SV(br)drﬂBc((y’g) (brrbr s)}

1
< Ka@p||[E [|¢p(y)|2ﬂBc((y,g),e)(bt_s, &s)]
1 ~
B ([ et @t v o

(NI

(t S)E

Since .
E (8o 1) P Lpe(@y,e).e) (bes, E—s)] T < T4

and

E [|¢p(y)|2e—4 S (@) = f V(br)dr}

= / EY, |[@p(y)Pemtdo” Ve EE |t me &0 | gy G,
RIXQ
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By [15, Section 6.5] we have
_ (k) |2 (k)|
|: _4f0 begf ) i| S e(t S) (fmd %Q_dk—l—fmd hdk) — Ct s < 00.

We deduce that

o [Isﬁp(y)lze_”gfs (D)= fy ™ V(br)dr}
<G / Bo@)PEY, [0V dy @ dG < Croy O |31,
RIXQ

and so we obtain
M <HZt - ZSHRdXQ > E) = K20\1//4|’95p|’2Ct—sjal/4e(t_s)E~ (3.14)

Next we show that | lil‘n J. = 0. In fact, we have
t—s|—0

J. = (29 0) ({w = @"w?) € ®x Qb (w2 + &5 @I > 7}) .

By the stochastic continuity of the Lévy process (bt):>0 and the OU-process (& )¢>0 we deduce
that lim J. =0. Then lim ./\/l <||Zt ZSHRdXQ > 6) = 0 follows. To see that M(Q")=

[t—s|—0 [t—s|—

it suffices to show that M(A?Vk) = 0 for any fixed N and k. We have

M( Vi) = M ({Zt has 1/k — oscillation infinitely often in [0, N] N Q})

l . :
- 1
< ZM ({Zt has 1/k — oscillation infinitely often in []—N ZN} N Q})

l T
! . 1
=S lim M (3 <p, [—N N} >> .
— p—r00 k’

Jj=1

We enumerate as {t1,...,tn,...} = [N, #N] N Q. Thus

~ Llj—-1.7 - 1
Then by Proposition 214l we obtain
M (B (p,1/k{t1,..., n}))
= eNEIE | o [ pe(y,§)e” Tbrﬁr(@)drq’pg(ij/ufzv/l) —Jo v dr]lB(p,l/k,{tl,...,tn})(bN/laSN/I)] ~

Hence in the same estimate preceding ([3.14]) we have

w4 (B (gttt}

1 i -
< KOy Y| Gyl Pex O (( sup, Qw®g€B(p,E,{t1,...,tn})> eVME - (3.15)
y,§ ) ERX

Jun
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By [18, Lemma 11.4], furthermore we have

p
(Y © ) <B<p,%,{t1,...,tn}>> <| s (#00) (\(bs,fs)—(bt,gt)] > i)
t—s€[0,N/1] (3‘16)

Moreover, by stochastic continuity of ((b¢, &))r>0, we can prove uniform stochastic continuity,
ie.,

1
sSup (32 & g) |(bs,£s) - (btygt)| 2 - — 0 (317)
s,t€[0,N] 4]{7
t—s€[0,N/1]
as | — oo in Lemma [3.10] below. O

Lemma 3.10 (5.17) holds.

Proof: For notational simplicity we write X, = (bs,&). Fix a > 0. For any ¢ there exists
8 > 0 such that (Z ®G)(| X[ — X.| > ¢/2) < a/2 for |t — s| < §; by stochastic continuity. Let
Iy = (t — 0¢/2,t + 0¢/2). Since I; is compact, there exists a finite covering I;,, j = 1,...,n,
such that U?_ I;; D [0, N]. Let 6 = minj—y,. 5 0. If |s—t| <0 and s,t € [0, N], then t € I,
for some j, hence [s — ¢;| < d;; and

(Z@G)(|X{ - Xi| =) <(ZRG)(|1X; — Xi,| 2 ) +(Z @ G)(|X], — Xi| > ¢) <a.

Hence the lemma follows. O

Lemma 3.11 The process (Zi)i>0 has a right continuous version with left limits (cadlag)
with respect to M.

Proof: Let (Z')1=0 be a cadlag process defined by

. lim Z,(w) we”,
Zj(w) = s€Qslt (3.18)
' 0 we Q.

By Lemmas the process (Zt)tzo is stochastically continuous, which implies that there
exists a sequence s,, such that

lim  Zs,(w) = Z 3.19
jam | Zs, (@) = Zi(w) (3.19)

for w € Q" = (R x Q)% \ N; with some null set N;. We can also see by the definition of

the process (Z');>o that

im  Z, (w) = Z{ 3.20
pam | Zs, (@) = Z,(w) (3.20)
for w € Q, and M(Q") =1 by Lemma 3.9l For each ¢ by (B.19) and (B.20) we can derive
that Zi(w) = Zj(w) for w € Q" NQ", and M(Q"NQ") = 1. Then (Z');>¢ is a cadlag version
Of (Z)t;(). O
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We denote the cadlag version of (Zt)tzo by (ét)t207 and the set of R% x Q-valued cadlag
paths by 2 = D([0,00),R?x Q). Note that (Z;);>0 is a stochastic process on the probability
space (R4x Q)0 o (e7), M), and the map

Z.: (R4 Q) o (ar), M) — (5, B")

is measurable, where B+ denotes the o-field generated by cylinder sets. This map induces
the image measure Py = Mo Z:._l on (,%;5, B*). Then the coordinate process (X; )0 on
(z%;g,ljﬁ,?ir) satisfies that Z:t 4 X;r for t > 0. Let (y,&) € RYxQ and define the regular
conditional probability measure on (,%75, B*t) by 754(3’5)(') =P (| X5 = (y,6)).

Lemma 3.12 The process (X; )0 is a Markov process on (3?/;5, l’;’+,75§ry’§)) with respect to
the natural filtration U(f(;r, 0<s<t).

Proof: The proof is the same as that of Lemma [3.4] O

We extend (X;");>0 to a Markov process to the whole real line R. This can be done in the
same way as the extension of (X, );>0 to a process on the whole real line as seen in the case

of the classical Nelson Hamiltonian in the previous section. Consider the product probability

2 ~+ ’:( 75) 2 ~ ~ ~+ ~ ~ ’:( 75) ~ ~
space (2, B P, ) with 2 = Zf x 43, B =BtaB* and P, = PP g po),

Let (X{)ter be a stochastic process on the product space, defined by X;(w) = X;" (wy) for
t >0, and X;(w) = X (wy) for t <0, with w = (wy,ws) € Q”J

Lemma 3.13 It follows that

D<)

1. 0= (y7£) a.s.

2. X, t >0 and X, s < 0 are independent

3. Xti)i'_t forallt e R

~

4. (X¢)iso (resp. (Xi)i<o) is a Markov process with respect to 0(X,0 < s < t) (resp.

~

o(Xs,t<s5<0))

5. forfo,...,fne,}gand—t:togtlg...gtn:t, we have

Ez, [1HX]| = <fo, 6_(t1+t)LNf1~-6_(t_t”’1)Lan)j- (3.21)
J=0 -
Proof: The proof is similar to the proof of Lemma O

=~ 2 ~+ =)
Proof of Theorem[3.7: We show that the random process (X;)ier defined on (ﬁ?fér B P, )

is a P(¢)i-process associated with ((R%xQ,¥’ ,M),ﬂN). The Markov property, reflection
symmetry and the shift invariance follow from Lemma B.I3l The cadlag property of the
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path ¢ — X;, t > 0, (resp. caglad property of ¢ — X, t < 0) was shown in Lemma B.IT]
= 2 oot 29 S
Thus the map X. : (3?,”5 B P, ) = (£,Bg) is measurable and the image measure

- <8 =~- -
Pw) = p 4+ ©oX. defines a probability measure on (2", Bg). Hence the coordinate process

(Xi)ier on (2, Bg, PW4)) satisfies X; 4 X4, is a P(¢)1-process associated with the pair
(1 QB & 5(Q), o), L ). -

4 Functional central limit theorems

4.1 Classical Nelson model

Next we discuss FCLT related to the classical and relativistic Nelson models, starting with
the classical case. Let

t
Mt:f(Xt)—f(Xo)Jr/O Inf(X,)ds, t30, (4.1)
where f € D(Ln) C .

Lemma 4.1 (M) is a martingale with stationary increments under P.

Proof: By Lemma B4l (X;)¢=0 is a Markov process with semigroup T} = e~ t > 0. Using
the Markov property, we have

Ep[f(Xe)|Fs| = Ti—sf(Xs), 0<s<t. (4.2)
Since the function ¢t — T} is differentiable, we obtain

t
%th = —LNT)f = —-T,Lnf and Tof — f = —/ InTsfds, t>0. (4.3)
0

Hence

Ep[M|Fs] = Ms + Ep [f(Xt) — f(Xs) +/ Ly f(X,)dr ]]—"5] a.s. (4.4)

s

Using ([A.2])-([3]) we show that the second term on the right hand side of (£4)) is zero. Indeed,

Ep |10~ (X + [ LS (X, dr 7]

S

t
ST f(X) — F(X) + / INTy—of (X)dr

ST (X)) — F(X) + /0 U INT f(X)dr
= Tt—sf(Xs) - f(Xs) - Tt—sf(Xs) + f(Xs) = 0.
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By the shift invariance of the process (X;)i>o, it then follows that (M;);>o is a martingale
under P, and it has stationary increments. a

We begin by proving a CLT for the process (M;)¢>o under P. The fundamental tool will
be the following martingale central limit theorem [9, Section 5]:

Proposition 4.2 Let (N¢)icr be a martingale on a probability space (2, F, P) with
o? = lim 1IE [N?] < o0
t—oot LY ’

and assume that (Ny)ier has stationary increments. Then

Jim 7N £ 0B
Lemma 4.3 If Ep[f%(X;)] < co and Ep[(Lnf)?(X;)] < oo for everyt > 0 and f # 0, then
Jim SEp (M =2 (£, I f) - (4.5)
(fsLnf) . > 0. (4.6)

Proof: We have

Ep[M?] = Ep[f*(X:)] + Ep[f*(Xo0)] — 2Ep[f(Xo0) f(X)]] + 2Ep [f(Xt) /0 QrLNﬂXr)}

< /0 drLx f(Xr)>2] . (4.7)
Jim 1B [( /0 QrLNﬂXr))Q] -

Writing 73 = e &N, and using the shift invariance and Markov properties of (Xt)t=0, we

obtain
</27‘LNJC(XT)>2]

=Ep [/ds/erNf DLnf(X } /ds/drEp [INf(Xo)Inf(Xjp—g))]

t
— 2Ep f(X(]) /OdT‘LNf(XT)] + Ep

Consider

Ep

= /ods /OdTEP [Inf(X0)Ep[Lnf(Xjr—s)) | Fol] = /OdS /odT (Bs—r/Inf, INS) - (48)

Hence

. 1
Jm By

</OZMN"C (X")ﬂ =20 Inf)r - (4.9)
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By Schwarz inequality, we have

Ep

( / tcerNf(X») 2] ) "

(B [P <E [( Oizmm»)z])m.

rex [ ierNf<Xr>H < (®p [F2(x0]) <Ep

Thus we obtain

lim E’p f(Xy) /OterNf(XT) =0. (4.10)

t—oo t

Moreover, by the same argument, we have

.1 t |
Jim 1Ep | 7(Xo) /0 arIng(X,)| =0, (4.11)

Furthermore, by Schwarz inequality again,

[Ep[f(Xo)f(X0)]| < Ep[f2(X:)]2Ep[f2(Xo)]2 = Ep[f*(Xo)] (4.12)

Thus tli)m 1Ep[f(Xo)f(Xy)] = 0. Then by @) we conclude that

lim 1E7>[ M?) = hm E’p
t—oo ¢

</dTLNf )>2] =2(f, Inf) - (4.13)

Hence (1)) follows. Next we prove ([4.0). By (@8] we can write

Ep [(/erNf ) ] /dr/ds s—r NS INS)

2/ drds (Ts—rLnf, LNf) o = 2/ drds (T, Lnf, LN f)
0<r<s<t 0<r<s<t

J!
o<r

<s<t

= 4/ ds(t — 2s) (T Lnf, ToLNf) 5 -
0

drds (TyLnf.TiInf) = 2/Oiir(t 1) (TyLnf. TiINS)

ol [A

We have Ly = Ly and thus T; = T} for all ¢t > 0, hence the invariant probability measure P
is reversible. Using now reversibility of P, we obtain

t t 2 t
2t/4 ds|TsLx f]|* < Ep [(/erNf(XT)> ] < 4t/2 ds|| T Lx f1|2.
0 0 0

This implies (4.0]). 0
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Theorem 4.4 (Functional central limit theorem) Let (B;);>o be standard Brownian
motion. Under the assumptions of Lemma[{.5 we have

. 1 d 9
slggo %M[st] =0 By,

where 02 = 2 (feg, [Ho, f]‘Pg)LQ(P)'

Proof: By Lemma[Z1] the process (M;);>0 is a martingale with stationary increments under P.
Furthermore, by Lemma we have that o? is finite, hence by Proposition the theorem
follows. To determine o2 note that (H — E)fps = [Ho, flgg. Thus 0? = 2(f,Lnf),, =
2(f90ga[H0,f]90g)L2(P)- 0

For suitable f, define
¢
L= / Lnf(X,)ds, (4.14)
0

which is an additive functional of the reversible Markov process. We can obtain a central
limit theorem for such additive functionals by using Theorem [£.4] and the fundamental result
below, see [14] Theorem 1.8].

Proposition 4.5 (Kipnis-Varadhan) Let (2, F, (Ft)t>0, 1) be a filtered probability space
and (A, o) a measurable space, where p and pg denote probability measures on ) and A
respectively. Let (Yi)i>o be an A-valued Markov process with respect to (Fi)i>o0. Assume that
(Y2)t>0 is a reversible and ergodic Markov process with respect to . Let F': A — R be a o
square integrable function with fA Fdug = 0. Suppose in addition that F' is in the domain of
L‘1/2, where L is the generator of the process (Yi)i>0. Let

t
R = / F(Y.)ds.
0

Then there exists a square integrable martingale (Ny)i>o0 with respect to (Fi)e>0, with station-
ary increments, such that

1
lim — sup |Rs — Ng| =0 (4.15)
t—o0 t 0<s<t

in probability with respect to u, where Ry = Ny = 0. Moreover,
1 )
tlif}}o zEMHRt - N7} =0. (4.16)
Now we show a central limit theorem for the additive functional L;.

Theorem 4.6 (Functional central limit theorem) Under the assumptions of Lemma[{.3
the random process (L)~ satisfies a functional central limit theorem relative to P, and the
limit variance is given by o = 2 (fpg, [Ho, f]gpg)Lg(P).

Proof: By Lemma [B.6], the process (X;);>0 is a reversible Markov process under P. On the
other hand, we see by Proposition 2.10] that the semigroup (7});>0 associated to (Xt)¢>0 is
positive, i.e., the process is ergodic. We have

Ep[Lnf(X¢)] = (pg, (H — E) fog) = (H — E)pg, feg) = 0.
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Thus Ep[L;] = 0, and the assumptions of Proposition are satisfied. Then (L;);>¢ is also
a martingale up to a correction term that disappears in the scaling limit. In fact, by ([4.153)
there exists an (F;)-martingale (/NV¢);>o such that

1
lim —Ep[ sup |N; — L[] = 0,

S0 /8 0<t<s

and by ([@I) we have that Ny = M, and hence

1
lim —Ep[ sup |[M; — L|] = 0. (4.17)

SO0 /S 0<t<s

Moreover, by (I3 we have
.1 9
Jim —Ep[|M — L[] = 0. (4.18)

Finally, by (@I7) the difference My — L; vanishes in the diffusive limit. By (£I3]) and since
the martingale (M;);>0 has stationary increments, we conclude by Theorem [£4] that

1 1
lim —=Mgy 2 lim —Lgy 2 02B;, t > 0.
§—00 \/5 S§—00 /S

4.2 Examples of the variance o2

In this section we give some examples of direct interest of the functions f € D(Ln), f :
RIxQ > (2,€) — f(x,&) € C, in the FCLT, which allows to compute the variance o
explicitly. In what follows we assume that h € L?*(R?) is any test function and v € R? any
real vector. Moreover, we will denote the vector in L?(Q) associated with the conjugate
momentum II(h) in %, with the same symbol II(h), i.e., we have

1

[£(h), TI(R)] = 5(/1, ). (4.19)

Example 4.7 Let f(z,§) = -z (a related example is given in [2]). We have
1
[Ho, (1-2)] = [~38, (@) = =7 V.
Then
0 =2((v-2)pg, (=7 Voe)) = =2 D> %k (2504, Viog)
1<j,k<d
Denote X, = (¢, Vipg). For j # k we have
Xik = — (Vizjpg, pg) = — (@ Vipg, ¢g) = — (Vigg, Tj0g) = — Xk,

ie,, ReX;, = 0. For j = k we have Re Xj;, = —% since
Xjk = — (kakﬁpgvﬁpg) = - (‘ngﬁpg) — (zx Vg, 0g) = _H‘Pg”2 - (Vk(PgakaOg) =—-1- Xjk’

Hence finally we get 02 = |y|2, in particular,

VP = 2(v - Ve, (H — E) "'y - Vi) = 0. (4.20)
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Example 4.8 Let f(z,&) = &(h). By ([2Z12]), we have
[Ho, f] = [H, £(h)] = —iIl(wh).

With X =2 (£(h)pg, —ill(wh)pg), we obtain

= —2i (g, {(M)IL(wh)pg)

= =21 (pg, (wh)§(h)pg) + 2i (g, IH(wh)E(h)eg)
= —2i (II"(wh)pg, (h)pg) + 21 (‘ng _iH\/ahH2<Pg)
= —2i (~I(wh)pg, E(h)pg) + 2lleg | 72y | VWh | = 2l Vwh|* ~ X,
hence

0 =Re X = ||Vwhl|>

Example 4.9 Let f(z,&) = (v x){(h). We have

1

[Ho, (v - 2)E(h)] = [=5A, (v 2)E(h) + (v 2)[Hr, £()]

— - VE(h) — iy - 2)(wh),

Then
o =2((v- 2)E(h)eg, E(M) (=7 - Vipg)) + 2 (7 - 2)E(h) g, —i(y - )T (wh)pg) (4.21)
=-2 > 7 (@E(h)eg, EMVrpg) +2 D> vk (iE(h) g, —iTl(wh)zrpy) -
1<j,k<d 1<j,k<d

Denote again X, = (2;£(h)pg,{(h)Vipg). For j #k

Xjp = — (E(M)Vizjpg, E(h)pg) = — (§(R)T;Vipg, E(h)pg)
= (g(h)vk‘ﬁg’xjg(h)@g) = - 7jk-

For the diagonal part we have

Xik = = (§(h) Viarepg, §(h)pg)
= = (E(h)pg, §(h)pg) — (E(h) 2k Vg, E(h)eg)
= — (£(h)pg, E(h)pg) — (E(R) Vg, k€ (h)pg) = —Hf(h)cngz — Xk
ie., ReXy, = —35[&(h)pg|?>. To determine the second term in (A2I)), write now Xjz =
(€ (h)pg, —ill(wh)xkp,). We have
Xji = —i(zjpg, v (M) (wh)pg)
= —i(zjpg mpll(wh)E(h)pg) + i (zjpg, xrIl(wh)E(R) X @)

= —i (@Il (Wh)pg, 7€ (h)g) + (20, | VwhlPzrpg) = =Xk + (2505, 2rpg) [ Vwhl|*.

Hence we finally obtain

o® = PlEM)esl? + 20 (7 - 2)eg Pl Vwhl.
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Example 4.10 Let f(z,€) = "), We have
. . . 1 . .
=€) Frei ) = i i{Hy, (1)) + 1 [[Hr, i€(h)] i€ (1)
1
= Hy + II(wh) + 5\\\/@1\\2.

Thus 1
Hpet () = i) e 4 ST (wh) + §||\/c_uh\|2ei§(h)

and
(Ho, e600] = O I(ut) + Ly e

follow. This gives
0? =2 (Mg, [Ho, M, ) =2 (g, M(wh)ipy) + [[Vaoh] 2
Example 4.11 Let f(z,€) = (v - z)e®). We have

. 1 '
[Ho, (v - z)e® )] = [_§A + Hy, (7 - z)e* )]

=[5, (7 @) 4 (y - )y, 5O

= = D & )€ (1) + 3G )
Then
02 =2 ( (3 2)e Mg, [Ho, (7 - 2)e Mgy )
2 (0 2)e W = Ty 4 (- 2)e (Tnh) + ZIVHIE) o

2((7- 2)pg =7 - Vegg) +2((7 - @) g, (v - @) IL(wh)pg) + [|(v - ) gl [Vwh]*  (4.22)

= > v (@0g Vi) + 2((v - 1)@, (v - 2) T (wh)pg) + [|(v - 2) g | * | Vwhl .
1<j,k<d

To get the first term, denote X, = — (245, Vipg). For the off-diagonal part we have
Xjk = (Viajpg, vg) = (2 Vepg: 0g) = (Vipg: Tjvg) = =X,

and the diagonal part gives Xy, = (Vizrpg, 0g) = 1 + (Vipg, Trpg). Hence in total
0% = Iy + 117 - 2)pglPIVWh® +2 (7 - 2)pg, Hwh) (7 - 2)g) -

Example 4.12 Let f(z,&) = !0 +%()  We have

(Ho, ei0ro)+iE(h)] — [_% A+ Hy, dira)+igh)] — [_% A, el [y, €] itr)

= O (|2 iy 7) + 0D (TT(wh) + 5 |VEh])
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Thus
o2 =9 <ei(v-m)+i£(h) s, [Ho, ei(v':v)JriS(h)](pg)
= 71 = 2 (g, 7 - Vipg) + 2 (g, H(wh)pg) + | VwhI[.

Let X = (¢g,77 - Vyg). Note that ¢, > 0. Since X € R and —iX € R, we have X = 0 and
thus
= 71 + 2 (g, L(wh)pg) + [|Vwh]*.

4.3 Relativistic Nelson model

The previous constructions can be extended to the relativistic case. Let

M, = F(X)) — f(X) + /0 Inf(Xds, 130, (4.23)

Theorem 4.13 (M;);>0 is a martingale with stationary increments under P, and

lim — ~5t = O'2Bt,
S5—00
where 5 =2 ( f g, [Ho, /1)
Proof: The proof is an analogue of Lemma T and Theorem .41 O

We conclude by some explicit cases of variances &2.

Example 4.14 Let g(z,£) = v - x. We have

o, (v 2)] = [V=A+ 2, (7-2)] = —LY)

V=A+m?
Then
=2 _ . —(V)
G" =2 <(7-:v)90g, _A+m2<pg>

2 > ’Y’Y( Ve, cp)
- ik T 5 i Pe
1<5,k<d A+m

@ L]gag) — 52, (4.24)
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Moreover, we have

Vi 1
i — .’V 4+ B
ey e AL Wy e L Y ey

By (@24)), we obtain

—A +m?)

33

~ ~ 1 ~ ~ ViV ~ )
=2 Y (sog, \/_Ajwwg> Sg+2 > U (‘;Dga g ’ gwg> - 52,

1<) k<d 1<) k<d

Hence we conclude that
1 V.V
~2 Z ) ~ ~ ) ) ~ kVy ~
5 = ViV <<pg, 7%) Sik+ D U <<,0g, — sog) :
1<jk<d V—A+m? 1<j.k<d (—A +m?2)2
Example 4.15 Let g(z,£) = (v - 2)¢(h). We have

[Ho, (v 2)(h)] = [V =A +m?, (v - 2)]E(h) + (v - @) [Hy, §(h)].

Thus

Qe
[N}
Il
[N}
/N

(7 D) (W), [V =B+ 2, (7 - D)€ (R)@s ) +2 (7 - )& (h) G, [HE, EM](7 - 2)5)
ViV

= Z Vi Vk <§(h)¢g7\/%+m2§(h)¢g> Skt D U <§(h)¢gam§(h)¢g)

1<j,k<d
+2)|(y - 2)@g | [ Vwhl>.

Example 4.16 Let g(z,¢) = (- z)e ™. We have

[Ho, (- 2)e €] = [V/ZA + m2, (v - 2)]e® + (v - z)[Hy, e€P)].

Similarly, we obtain

5% =2 ( (v 2)e Mg, [V=2A+m?, (v )M ) +2 (7 2)e gy, [Hy, €0 (y - 2)54)

= > vy <¢> S — >5‘k+ > v <95 _VYi s >
- J 2 g J J 2 37g
1< k<d V=A+m? 1< k<d (A +m?)2
+ (v - @) Bg |2 IVWhI® + 2 (v - 2) g, TL(wh) (v - 2)@g) -

Example 4.17 Let g(z,¢) = ¢/(r®)+i€(h) | We have

[Ho, e ™€M) = [\/ZA § m2, 7)) 4 oo [Hy, 0],
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Since e~/ —A + m2eT® = \/—(V — iy)? + m2, we obtain
[V —=A+m2,e7T) =7\ /—(V —i7)2 + m2 — 7T/~ A 4+ m2.

Finally, we deduce that

5* =2 (@ga \/_(V — )% + m295g) -2 <¢g7 V—A+ m295g) + 2 (@g, H(wh)@g) + ”\/C_th
=2 (@e VEV =7+ 25, ) — 2 (B V=R + 120, ) +2 (85 Lwh)By) + [[Vaoh] 2

5 Concluding remarks

Although in this paper we focused on the Nelson model, P(¢); processes and an FCLT can
further be constructed also for related models. We briefly mention two cases.

Nelson model with fixed total momentum P. Let V = 0. Then Hy is translation invariant,
i.e., [Hx, Tiot) = 0, where Tioy = p@ 1+ 1®7T; denotes the total momentum and Tt,, = dI'(k,).
Thus Hy can be decomposed as

&)
Hy = / Hy(P)dP,
Rd

where .

Hn(P) = §(P —T1)* + ¢(0) + Hy
is a self-adjoint operator in %, called Nelson Hamiltonian with total momentum P € R%. Tt
is known that for sufficiently small |P| the operator Hx(P) has a ground state [7].

Pauli-Fierz model. The Pauli-Fierz Hamiltonian in non-relativistic quantum electrodynamics
is defined by

1
HPF:%(—N®11+\/5A)2+V®11+11®Hf,

where A denotes the quantized radiation filed given by

— i (,/5(]{3) e . eikxa* . (ﬁ(_k)e . e—ikxa .
AH(:E) - \/5].;2/11@ ( w(k) u(k7]) (k7]) + w(k) u(k7]) (kvj)) dk

Here e(k,1) and e(k,2) denote polarisation vectors such that & - e(k,j) = 0 for j = 1,2,
and [a(k,j),a*(K', )] = d;;70(k — k') is satisfied. Then Hpp is a self-adjoint operator in
L2(R3) @ F,(L?(R3 x {1,2})). The existence of the ground state is studied in [I1 8, [10].
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