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Abstract

We construct P (φ)1-processes indexed by the full time-line, separately derived from the
functional integral representations of the classical Nelson model and relativistic Nelson
model in quantum field theory. Associated with these processes we define a martingale
which, under proper scaling, allows to obtain a central limit theorem for additive function-
als of the two processes. We show a number of examples by choosing specific functionals
related to particle-field operators.
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1 Introduction

In this paper we are interested in some stochastic properties of the so called Nelson model

of an electrically charged spinless quantum particle coupled to a scalar boson field. These

properties will be formulated in terms of central limit theorem-type behaviours of functionals

of the particle-field operators. While the quantum field models discussed here are defined in

terms of self-adjoint operators on a joint particle-field space of functions, for our purposes a

Feynman-Kac type approach will be more suitable. Then the related evolution semigroups

can be represented in terms of averages over the paths of suitable random processes, which

has been much explored lately.

The Nelson model is defined by a self-adjoint operator of the form

HN = Hp ⊗ 1l + 1l⊗Hf +Hi, (1.1)

on a Hilbert space L2(Rd)⊗Fb, where Fb denotes the boson Fock space over L2(Rd), and the

components describe the Hamilton operators of the free particle, free field, and particle-field

interaction, respectively. The classical and the relativistic Nelson models differ by the choice

of the free particle operator Hp, which in the classical model is a Schrödinger operator and
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2 FCLT for Nelson model

in the relativistic case a relativistic Schrödinger operator, as given by the expressions (2.1)

and (2.2) below. On the functional integral representation level this difference will appear

in the fact that a Schrödinger operator generates a diffusion, while a relativistic Schrödinger

operator generates a jump process.

A functional CLT for the classical Nelson model has been first established by Betz and

Spohn in [2]. They have shown that under the Gibbs measure obtained from taking the

marginal over the particle-generated component of the path measure in the functional integral

representation of HN, the process scaled by Brownian scaling converges in distribution to

Brownian motion having reduced diffusion coefficients. This means that the particle increases

its effective mass due to the coupling to the boson field. The main observation in this paper is

that one can associate a martingale with functionals of the process, whose long time behaviour

can be predicted by using the martingale convergence theorem. The result for more general

Markov processes is originally due to Kipnis and Varadhan [14, Theorem 1.8], and similar

problems are studied also in [3, 4, 6]. Whenever in Hp the external potential V is chosen to

be sufficiently regular, the operator semigroup {e−tHp : t ≥ 0} can be studied by a Feynman-

Kac type representation, i.e., there exists a random process (Zt)t≥0 on a suitable probability

space such that (
e−tHpf

)
(x) = Ex

[
e−

∫ t
0
V (Zs)dsf(Zt)

]
(1.2)

holds for all Borel measurable f on Rd, where the expectation is taken with respect to the

path measure of (Zt)t≥0. When Hp is a classical Schrödinger operator, the process is a d-

dimensional Brownian motion (Bt)t≥0 and the path measure is Wiener measure W on the

space of continuous paths C((0,∞),Rd). When, however, Hp is a relativistic Schrödinger

operator, the process changes to a d-dimensional Lévy process with their corresponding path

measures, now on the Skorokhod space D((0,∞),Rd) of càdlàg paths (i.e., the paths are dis-

continuous, but continuous from the left with right limits). Whenever the coupling between

the particle and field is turned on, the boson field will contribute by an infinite dimensional

Ornstein-Uhlenbeck process so that in the path integral representation of the evolution semi-

group {e−tHN : t ≥ 0} a two-component random process will appear, as it will be explained

below. Due to the linear coupling between particle and field, one can integrate over the

OU-component and the marginal distribution for the particle will contain beside the given

external potential also an effective pair-interaction potential resulting from the interaction.

Assuming that the external potential is chosen in such a way that the bottom of the

spectrum Ep = inf σ(Hp) is an isolated eigenvalue, i.e., a ground state ϕp (L2-normalized

eigenfunction corresponding to the bottom of the spectrum) of Hp exists, by standard meth-

ods it can be shown that it is unique and has a strictly positive version, which we will choose

throughout. Using the ground state, we can define the unitary operator

U : L2(Rd, ϕ2
pdx) → L2(Rd, dx), f 7→ ϕpf,

and consider the self-adjoint operator U−1(Hp −Ep)U . This operator generates a stationary

Markov process, which we denote by (Yt)t≥0 and call a P (φ)1-process associated with Hp.

We then have with suitable test functions f and g the formula

(fϕp, e
−t(Hp−Ep)gϕp)L2(Rd,dx) =

∫

Rd

Ex[f(Y0)g(Yt)]ϕ
2
p(x)dx. (1.3)
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In what follows, we are interested in constructing a P (φ)1-process associated with the Nelson

Hamiltonian. This will be then obtained by a similar unitary operator, and will give rise to

a two-component random process according to the separate contributions of the particle and

the fields operators. Our main aim is then to study a FCLT behaviour of this process in the

sense of the invariance principle due to [5].

This paper is organized as follows. In Section 2 we discuss the functional integral repre-

sentations of the classical and relativistic Nelson models. In Section 3, we construct P (φ)1-

process associated with the two models. Section 4 is devoted to proving a functional central

limit theorem for additive functionals associated with the Nelson models by using the prop-

erties of the P (φ)1-process. We show some functionals of special interest for both cases and

determine explicitly the variance in the related FCLT. Finally, we make some remarks on

extensions to related models in Section 5.

2 Functional integral representations of the Nelson model

2.1 Functional integral representation of the free particle Hamiltonians

We will consider the classical and relativistic Nelson models in parallel. In some aspects of

the construction the relevant property is the Markov property of the underlying processes,

thus the expressions will appear similar with the difference that the appropriate processes

are applied, however, in some other aspects the path properties will become crucial and

significant differences appear.

Let V : Rd → R be a Borel-measurable function giving the potential. We denote the

multiplication operator defined by V by the same label. The energy of the free particle in

the classical model is described by the Schrödinger operator acting on L2(Rd) and formally

written as

Hp = −1

2
∆ + V. (2.1)

The relativistic model is described by the relativistic Schrödinger operator acting on L2(Rd)

and formally written as

H̃p =
√

−∆+m2 −m+ V, (2.2)

where the square-root operator is defined by Fourier transform in the standard way, and the

parameter m ≥ 0 is the rest mass of the particle. These Schrödinger operators can be defined

in the sense of perturbation theory by choosing suitable conditions on V . However, since

we will use methods of functional integration, we are interested to choose V in a way which

allows a Feynman-Kac type representation to hold. The natural choice is Kato-class, in each

case given in terms of the related random processes.

In order to describe the classical case, consider the space X = C(R+,Rd) of Rd-valued

continuous functions on R+. Let (Bt)t≥0 be d-dimensional Brownian motion defined on

(X ,B(X )), where B(X ) is the σ-field generated by the cylinder sets of X , and denote

by Wx the Wiener measure starting from x at t = 0. Also, consider X̃ = D(R+,Rd), the

space of càdlàg paths (i.e., continuous from right with left limits) with values in Rd, and

B(X̃ ) the σ-field generated by the cylinder sets of X̃ . Let (bt)t≥0 denote a d-dimensional

rotationally symmetric relativistic Cauchy process generated by (2.2) when m > 0, and a
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rotationally symmetric Cauchy process when m = 0. In each case we denote by Px the

path measure of the process in question starting from x at time t = 0. It is well-known that

all these processes have the strong Markov property with respect to their natural filtrations.

When we do not need to specify the process, we will use the generic notation (Zt)t≥0, and it

will be understood that expectations are taken with respect to the own path measure of the

process.

Definition 2.1 (Kato-class) We say that V = V+ − V− is a Kato-class potential with

respect to the random process (Zt)t≥0 whenever for its positive and negative parts

V− ∈ KZ and V+1C ∈ KZ for every compact set C ⊂ Rd,

hold, where f ∈ KZ means that

lim
t→0

sup
x∈Rd

Ex

[∫ t

0
|f(Zs)|ds

]
= 0. (2.3)

When (Zt)t≥0 = (Bt)t≥0, we call this space Kato-class, and when (Zt)t≥0 = (bt)t≥0, we call

it relativistic Kato-class.

By Khasminskii’s lemma [15, Lemma 3.37] and its straightforward extension to relativistic

Kato-class it follows that the random variables −
∫ t
0 V (Zs)ds are exponentially integrable for

all t ≥ 0, and thus we can define the Feynman-Kac semigroup

Ttf(x) = Ex
[
e−

∫ t
0 V (Zs)dsf(Zt)

]
, f ∈ L2(Rd), t > 0. (2.4)

Using the Markov property and stochastic continuity of the process (Zt)t≥0, we can show that

{Tt : t ≥ 0} is a strongly continuous one-parameter semigroup of symmetric operators on

L2(Rd). Then, by the Hille-Yoshida theorem, there exists a self-adjoint operator K bounded

from below such that e−tK = Tt. Using the generator K, we can give a definition to a classical

and a relativistic Schrödinger operator for Kato-class potentials.

Definition 2.2 If (Zt)t≥0 = (Bt)t≥0, then we call the self-adjoint operator K on L2(Rd) a

Schrödinger operator with Kato-class potential V . If (Zt)t≥0 = (bt)t≥0, we callK a relativistic

Schrödinger operator with Kato-class potential V .

For simplicity, we keep using the notations (2.1) and (2.2). In both the non-relativistic and

relativistic cases we have then the following Feynman-Kac formula.

Proposition 2.3 (Functional integral representation) Let f, g ∈ L2(Rd). If V is of

Kato-class, then for any of the operators K defined above we have

(
f, e−tKg

)
L2(Rd)

=

∫

Rd

Ex[f̄(Z0)e
−

∫ t
0 V (Zs)dsg(Zt)]dx. (2.5)

In particular,

(e−tKg)(x) = Ex[e−
∫ t
0 V (Zs)dsg(Zt)], x ∈ R

d. (2.6)
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Proof: See [15, Sections 3.3, 3.6], [11, Section 4].

Below we will need two-sided processes (bt)t∈R, i.e., indexed by the time-line R instead of

usually by the semi-axis R+. These processes can be defined as follows. Consider the measur-

able space (Ω,B(Ω)), with càdlàg space Ω = Dr(R;R
d), as well as Ω̂ = Dr(R

+,Rd)×Dl(R
+,Rd)

and P̂x = Px × Px, where Dl(R
+,Rd) denotes càglàd space (i.e., paths continuous from

left with right limits). Let ω = (ω1, ω2) ∈ Ω̂ and define

b̂t(ω) =

{
ω1(t), t ≥ 0,
ω2(−t), t < 0.

Since b̂t(ω) is càdlàg in t ∈ R under P̂x, we define b : (Ω̂,B(Ω̂)) → (Ω,B(Ω)) by bt(ω) = b̂t(ω).

Then we have that b ∈ B(Ω̂)/B(Ω) since b−1(E) ∈ B(Ω̂), for all cylinder sets E ∈ B(Ω). Thus
b is an Ω-valued random variable on Ω̂. Denote again the image measure of P̂x on (Ω,B(Ω))
with respect to b by Px = P̂x ◦ b−1. The coordinate process denoted by the same symbol

bt : ω ∈ Ω 7→ ω(t) ∈ Rd is a Cauchy (respectively, relativistic Cauchy) process over R on

(Ω,B(Ω),Px). The properties of the so obtained process can be summarized as follows.

Proposition 2.4 The following hold:

1. Px(b0 = x) = 1

2. the increments (bti − bti−1)1≤i≤n are independent symmetric Cauchy (respectively, rel-

ativistic Cauchy) random variables for any 0 = t0 < t1 < · · · < tn with bt − bs
d
= bt−s

for t > s

3. the increments (b−ti−1 − b−ti)1≤i≤n are independent symmetric Cauchy (respectively,

relativistic Cauchy) random variables for any 0 = −t0 > −t1 > · · · > −tn with b−t −
b−s

d
= bs−t for −t > −s

4. the function R ∋ t 7→ bt(ω) ∈ R is càdlàg for every ω ∈ Ω

5. bt and bs are independent for t > 0 and s < 0.

A completely similar construction can be made of two-sided Brownian motion, with simpli-

fications due to path continuity.

2.2 Nelson Hamiltonian in boson Fock space

The Nelson Hamiltonian is defined on a Hilbert space in terms of a self-adjoint operator

bounded from below. Consider the boson Fock space Fb over L2(Rd) defined as

Fb =

∞⊕

n=0

Fb
(n),

where Fb
(n) = ⊗n

symL
2(Rd). The Fock space can be identified with the space of l2-sequences

(ψ(n))n∈N such that ψ(n) ∈ Fb
(n) and

‖ψ‖2Fb
=

∞∑

n=0

‖(ψ(n))‖2
Fb

(n) <∞. (2.7)
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We denote the “smeared” annihilation and creation operators by a(f) and a∗(f), f : C → Rd,

f ∈ L2(Rd), respectively, satisfying the canonical commutation relations

[a(f), a∗(g)] = (f̄ , g)1l, [a(f), a(g)] = 0 = [a∗(f), a∗(g)]

on a dense domain of Fb. Using these operators, the field operator and its conjugate mo-

mentum on Fb are defined, respectively, by

Φ(f) =
1√
2
(a∗(f̄) + a(f)) and Π(f) =

i√
2
(a∗(f̄)− a(f)).

For real-valued L2-functions f, g, the commutation relations become

[Φ(f),Π(g)] = i(f, g), [Π(f),Π(g)] = [Φ(f),Φ(g)] = 0. (2.8)

Denote by dΓ(T ) : Fb → Fb the second quantization of a self-adjoint operator T :

L2(Rd) → L2(Rd), defined by

dΓ(T ) = 0⊕


⊕∞

n=1

n∑

j=1

1l⊗ · · ·
jth

T · · · ⊗ 1l︸ ︷︷ ︸
n−fold


 .

The self-adjoint operator

Hf = dΓ(ω),

is the free field Hamiltonian, where

ω(k) =
√
|k|2 + ν2 (2.9)

is the dispersion relation, and ν ≥ 0 denotes the mass of a single boson. Formally, the free

field Hamiltonian can be written as

Hf =

∫

Rd

ω(k)a∗(k)a(k)dk. (2.10)

Physically, it describes the total energy of the interaction-free boson field since a∗(k)a(k)

gives the number of bosons carrying momentum k and ω(k) is the energy of a single boson.

The commutation relations

[Hf , a(f)] = −a(ωf), [Hf , a
∗(f)] = a∗(ωf) (2.11)

hold for f ∈ D(ω) on a dense domain of Fb. Hence we deduce that

[Hf ,Φ(f)] = −iΠ(ωf). (2.12)

Let ϕ : Rd → R be a function describing the charge distribution of the particle, denote by ϕ̂

its Fourier transform, and write ˜̂ϕ(k) = ϕ̂(−k). For every x ∈ Rd, define

Hi(x) =
1√
2

(
a∗(ϕ̂e−ikx/

√
ω) + a(˜̂ϕeikx/√ω)

)
. (2.13)
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Let H = L2(Rd)⊗Fb. We define the interaction Hamiltonian Hi : H → H by the constant

fiber direct integral (HiΨ)(x) = Hi(x)Ψ(x) for Ψ ∈ H such that Ψ(x) ∈ D(Hi(x)), for almost

every x ∈ Rd. Here we use the identification

H ∼=
∫ ⊕

Rd

Fbdx =
{
F : Rd → Fb

∣∣∣ ‖F‖2H =

∫

Rd

‖F (x)‖2Fb
dx <∞

}
.

Formally, this is written as

Hi(x) =

∫

Rd

1√
2ω(k)

(ϕ̂(k)e−ikxa∗(k) + ϕ̂(−k)eikxa(k))dk. (2.14)

The Nelson Hamiltonian describing the interacting particle-field system is then defined by

HN = Hp ⊗ 1l + 1l⊗Hf +Hi (2.15)

Similarly, the relativistic Nelson Hamiltonian is defined by the operator

H̃N = H̃p ⊗ 1l + 1l⊗Hf +Hi (2.16)

on the space H .

We will use the following standing assumptions throughout this paper.

Assumption 2.5 The following conditions hold:

1. ϕ̂(k) = ϕ̂(−k) and ϕ̂/√ω, ϕ̂/ω ∈ L2(Rd).

2. ϕ̂/ω
√
ω ∈ L2(Rd).

3. The external potential V = V+ − V− is of Kato-class in the sense of Definition 2.1.

4. Hp has a unique, strictly positive ground state ϕp ∈ D(Hp), with Hpϕp = Epϕp,

‖ϕp‖L2(Rd) = 1, where Ep = inf σ(Hp). Similarly, H̃p has a unique, strictly positive

ground state ϕ̃p ∈ D(H̃p), with H̃pϕ̃p = Ẽpϕ̃p, ‖ϕ̃p‖L2(Rd) = 1, where Ẽp = inf σ(H̃p).

5. HN has a unique, strictly positive ground state ϕg ∈ D(HN), with HNϕg = Eϕg,

‖ϕg‖H = 1, where E = inf σ(HN). Similarly, H̃N has a unique, strictly positive ground

state ϕ̃g ∈ D(H̃N) with H̃Nϕ̃g = Ẽϕ̃g, ‖ϕ̃g‖H = 1, where Ẽ = inf σ(H̃N).

Denote the “free” operators by

H0 = Hp ⊗ 1l + 1l⊗Hf and H̃0 = H̃p ⊗ 1l + 1l⊗Hf .

The spectrum of H0 can be derived from the spectra of Hp and Hf . We have σ(Hp) = [0,∞),

σ(Hf) = {0} ∪ [ν,∞), and in the case ν = 0 the bottom of the spectrum of H0 is the edge

of the continuous spectrum. In general, it is not clear whether the bottom of the spectrum

of HN is in the point spectrum or not, however, whenever it is, the eigenfunction associated

with this eigenvalue is a ground state. The same considerations hold also for the relativistic

operators.

Using Assumption 2.5 it follows that Hi is symmetric, and thus HN, H̃N are self-adjoint

operators.
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Proposition 2.6 HN is a self-adjoint operator on D(Hp ⊗ 1l) ∩D(1l ⊗ Hf) and essentially

self-adjoint on any core of H0. Similarly, H̃N is self-adjoint on D(H̃p ⊗ 1l) ∩D(1l⊗Hf) and

essentially self-adjoint on any core of H̃0.

Proof: For any F ∈ D(H0) we have

‖HiF‖ ≤ 2‖ϕ̂/2ω‖‖H1/2
f F‖+ ‖ϕ̂/

√
2ω‖‖F‖.

Let ε > 0 be arbitrary. We obtain that

‖H1/2
f F‖2 ≤ (F, (Hp +Hf)F )− Ep‖F‖2 ≤ ε‖H0F‖2 +

(
1

4ε
+ |Ep|

)
‖F‖2.

Thus there exists bε > 0 such that

‖HiF‖ ≤ ε‖H0F‖+ bε‖F‖,

and the claim follows by the Kato-Rellich theorem, see [15, Theorem 3.11]. The second part

of the statement follows similarly. ✷

2.3 Nelson Hamiltonian in function space

2.3.1 P (φ)1-process for the free particle operators

Definition 2.7 (P (φ)1-process) Let (E,F , P ) be a probability space and K be a self-

adjoint operator in L2(E, dP ), bounded from below. We say that an E-valued stochas-

tic process (Zt)t∈R on a probability space (Y ,B,Qz) is a P (φ)1-process associated with

((E,F , P ),K) if conditions 1-4 below are satisfied:

1. Qz(Z0 = z) = 1.

2. (Reflection symmetry) (Zt)t≥0 and (Zt)t≤0 are independent and Zt
d
= Z−t for every

t ∈ R.

3. (Markov property) (Zt)t≥0 and (Zt)t≤0 are Markov processes with respect to the

fields σ(Zs, 0 ≤ s ≤ t) and σ(Zs, t ≤ s ≤ 0), respectively.

4. (Shift invariance) Let −∞ < t0 ≤ t1 < ... ≤ tn <∞, fj ∈ L∞(E, dP ), j = 1, ..., n−1

and f0, fn ∈ L2(E, dP ). Then for every s ∈ R,

∫

E
EQz

[ n∏

j=0

fj(Ztj )

]
dP (z) =

∫

E
EQz

[ n∏

j=0

fj(Ztj+s)

]
dP (z)

= (1l, f0e
−(t1−t0)Kf1 · · · fn−1e

−(tn−tn−1)Kfn). (2.17)

Denote

dN(y) = ϕ2
p(y)dy. (2.18)
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Since by part (4) of Assumption (2.5) the function ϕp is square integrable and L2-normalized,

dN is a probability measure on Rd. Define the unitary operator Up : L2(Rd, dN) → L2(Rd, dy)

by Up : f 7→ ϕpf . Using that ϕp is strictly positive, the image

Lp = U−1
p (Hp − Ep)Up =

1

ϕp
(Hp − Ep)ϕp, (2.19)

of the Schrödinger operator (2.1) under this map is well-defined and has the domain D(Lp) =

{f ∈ L2(Rd, dN) | fϕg ∈ D(Hp)}. Since e−tLp1l = 1l for the identity function 1l ∈ L2(Rd, dN),

the operator Lp is the generator of a Markov process.

Proposition 2.8 If V is in Kato class, then

1. there exists a probability measure N y on (X ,B(X )) such that the coordinate process

(Yt)t∈R on (X ,B(X ),N y) is a P (φ)1-process starting from y ∈ Rd, associated with the

pair ((Rd,B(Rd), dN), Lp)

2. the function t 7→ Yt is almost surely continuous.

Proof: See [15, Theorem 3.106]. ✷

We can define a P (φ)1-process for the relativistic Schrödinger operator (2.2) in a similar

way. As above, denote

dÑ = ϕ̃2
p(x)dx, (2.20)

which is a probability measure on Rd for similar reasons as for the non-relativistic operator.

Taking now the unitary map Ũp : L2(Rd, dÑ) → L2(Rd, dx), f 7→ ϕ̃pf , we similarly obtain

L̃p = Ũ−1
p (H̃p − Ẽp)Ũp =

1

ϕ̃p
(H̃p − Ẽp)ϕ̃p, (2.21)

which is again a Markov generator. Then we have

Theorem 2.9 If V is in relativistic Kato class, then

1. there exists a probability measure Ñ y on (X̃ ,B(X̃ )) such that the coordinate process

(Ỹt)t∈R on (X̃ ,B(X̃ ), Ñ y) is a P (φ)1-process starting from y ∈ Rd, associated with

((Rd,B(Rd), dÑ), L̃p)

2. the function t 7→ Ỹt is almost surely càdlàg.

Proof: See [12, Theorem 5.1]. ✷
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2.3.2 Infinite dimensional Ornstein-Uhlenbeck process

Let K be a Hilbert space over R, defined by the completion of D(1/
√
ω) ⊂ L2(Rd) with

respect to the norm determined by the scalar product

(f, g)K =

∫

Rd

f̂(k)ĝ(k)
1

2ω(k)
dk, (2.22)

i.e.,

K = D(1/
√
ω)

‖·‖K

.

Let T : K → K be a positive self-adjoint operator with Hilbert-Schmidt inverse such that√
ωT−1 is bounded. Define the space C∞(T ) = ∩∞

n=1D(T n), and write

Kn = C∞(T )
‖Tn/2·‖K

.

We construct a triplet K+2 ⊂ K ⊂ K−2, where we identify K ∗
+2 = K−2. Write Q = K−2,

and endow Q with its Borel σ-field B(Q), defining the measurable space (Q,B(Q)).

Consider the set Y = C(R, Q) of continuous functions on R, with values in Q, and denote

its Borel σ-field by B(Y ). We define a Q-valued Ornstein-Uhlenbeck process (ξt)t∈R,

R ∋ t 7→ ξt ∈ Q

on the probability space (Y ,B(Y ),G) with probability measure G. Let ξt(f) = ((ξt, f)) for

f ∈ M+2, where ((., .)) denotes the pairing between Q and M+2. Then for every t ∈ R and

f we have that ξt(f) is a Gaussian random variable with mean zero and covariance

EG [ξt(f)ξs(g)] =

∫

Rd

f̂(k)ĝ(k)e−|t−s|ω(k) 1

2ω(k)
dk. (2.23)

Note that by (2.23) every ξt(f) can be uniquely extended to test functions f ∈ M, which for

simplicity we will denote in the same way.

In what follows we will need conditional measures of this Gaussian measure. Since the

conditional expectation EG [1A|σ(ξ0)] with respect to σ(ξ0) is trivially σ(ξ0)-measurable, there

exists a measurable function h : Q → R such that h ◦ ξ0(ω) = EG[1A|σ(ξ0)](ω). We will use

the notation h(ξ) = G(A|ξ0 = ξ), however, we remark that G(A|ξ0 = ξ) is well defined for

ξ ∈ Q\NA with a null set NA only. Nevertheless, since Q is a separable complete metric space,

there exists a null set N such that G(A|ξ0 = ξ) is well defined for all A and ξ ∈ Q \N . The

notation Gξ(·) = G(· |ξ0 = ξ) for the family of conditional probability measures G(·|ξ0 = ξ) on

Y with ξ ∈ Q\N makes then sense, and it is seen that Gξ is a regular conditional probability

measure. Then we have EG[...] =
∫
Q EGξ [...]dG(ξ), where G is the distribution of the random

process (ξt)t∈R on the measurable space (Q,B(Q)), and it is the stationary measure of G.
Thus we are led to the probability space (Q,B(Q),G).
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2.3.3 Functional integral representation of the Nelson Hamiltonians

The Wiener-Itô-Segal isomorphism Uf : Fb −→ L2(Q, dG), UfΦ(f)Uf
−1 = ξ(f), establishes

a close connection between Fb and L2(Q, dG). Using (2.18) and the stationary measure

obtained above, define the product measure

P = N⊗G, (2.24)

which is a probability measure on the product space Rd×Q. The unitary map

Up ⊗ Uf : H −→ L2(Rd×Q, dP)

establishes a unitary equivalence between L2(Rd×Q, dP) and H , and we make the identifi-

cation

H ∼= L2(Rd)⊗ L2(Q) ∼= L2(Rd×Q, dP). (2.25)

For convenience, hereafter we write L2(Rd×Q, dP) simply as L2(P), moreover L2(N) and

L2(G) for L2(Rd, dN) and L2(Q, dG), respectively. The images of the free field and interaction

Hamiltonians on L2(P) under this unitary map are given by

Hf
Uf = UfHfUf

−1 (2.26)

and

Hi
Uf (y) = UfHiUf

−1(y) = ξ(ϕ̃(· − y)), y ∈ R
d. (2.27)

Here ϕ̃ is the inverse Fourier transform of ϕ̂/
√
ω. To simplify the notations, we write again

Hf for Hf
Uf , and Hi for Hi

Uf . Then the classical Nelson Hamiltonian HN is unitary equivalent

with

H = Lp ⊗ 1l + 1l⊗Hf +Hi (2.28)

acting on L2(P), where Lp is given by (2.19).

Recall that (Yt)t∈R is the P (φ)1-process associated with the pair ((X ,B(X ),N y), Lp),

and write

dN = dN(y)dN y .

The probability space for the joint system without the particle-field interaction is then the

product space (X × Y ,Σ,P0), where Σ = B(X )⊗ B(Y ) and

P0 = N ⊗ G.

Define the shift operator τs : L2(Q, dG) 7→ L2(Q, dG) by τsξ(h) = ξ(h(· − s)). We have

then the following functional integral representation for the classical Nelson Hamiltonian H

in L2(P).

Proposition 2.10 (Functional integral representation) Let Φ,Ψ ∈ L2(P) and suppose

that s ≤ 0 ≤ t. Then

(Φ, e−(t−s)HΨ)L2(P) = EP0 [Φ(Ys, ξs)e
−

∫ t
s
τYr ξr(ϕ̃)drΨ(Yt, ξt)].



12 FCLT for Nelson model

See [15, Theorem 6.2]. ✷

Corollary 2.11 Let Φ,Ψ ∈ L2(P), t0 ≤ ... ≤ tn and A0, ..., An ∈ B(Rd×Q). Then,

(Φ, 1lA0e
−(t1−t0)H1lA1e

−(t2−t1)H · · · 1lAn−1e
−(tn−tn−1)H1lAnΨ)L2(P)

= EP0






n∏

j=0

1lAj(Ytj , ξtj )


Φ(Yt0 , ξt0)e

−
∫ tn
t0

τYsξs(ϕ̃)dsΨ(Ytn , ξtn)


 .

Proof: We have

(Φ, 1lA0e
−sH1lA1e

−tH1lA2Ψ)

= EP0 [Φ(Y0, ξ0)1lA0(Y0, ξ0)e
−

∫ s
0 τYr ξr(ϕ̃)dr1lA1(Ys, ξs)e

−
∫ s+t
s τYr ξr(ϕ̃)dr1lA2(Ys+t, ξs+t)Ψ(Ys+t, ξs+t)]

= EP0 [Φ(Y0, ξ0)1lA0(Y0, ξ0)1lA1(Ys, ξs)1lA2(Ys+t, ξs+t)e
−

∫ s+t
0

τYr ξr(ϕ̃)drΨ(Ys+t, ξs+t)].

By iterating this, we obtain

(Φ, 1lA0e
−(t1−t0)H1lA1e

−(t2−t1)H · · · 1lAn−1e
−(tn−tn−1)H1lAnΨ)

= EP0






n∏

j=0

1lAj(Ytj−t0 , ξtj−t0)


Φ(Y0, ξ0)e

−
∫ tn−t0
0 τYsξs(ϕ̃)dsΨ(Ytn−t0 , ξtn−t0)


 .

Since both N and G are invariant under time shift, we can replace Ys by Ys+t0 and ξs by

ξs+t0 , to find that

(Φ, 1lA0e
−(t1−t0)H1lA1e

−(t2−t1)H · · · 1lAne
−(tn−tn−1)HΨ)

= EP0






n∏

j=0

1lAj(Ytj , ξtj )


Φ(Yt0 , ξt0)e

−
∫ tn
t0

τYsξs(ϕ̃)dsΨ(Ytn , ξtn)


 .

✷

Finally, for later use we quote the following representation formula using Wiener measure

instead of the particle P (φ)1-measure.

Proposition 2.12 Let Φ,Ψ ∈ L2(P) and s ≤ 0 ≤ t. Then

(Φ, e−(t−s)HΨ)L2(P)

=

∫

Rd×Q
E
(y,ξ)
W⊗G

[
Φ(Bs, ξs)ϕp(Bs)e

−
∫ t
s
τBr ξr(ϕ̃)drΨ(Bt, ξt)ϕp(Bt)e

−
∫ t
s
V (Br)dr

]
dy ⊗ dG.

Proof: See [15, Theorem 6.3]. ✷

For convenience, we write

P(y,ξ)
0 = N y ⊗ Gξ, (y, ξ) ∈ R

d×Q,
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so that EP0 [· · · ] =
∫
Rd×Q E

(y,ξ)
P0

[· · · ]dP(y, ξ). The above transformations and constructions can

be repeated for the relativistic model. Then we have

P̃ = Ñ⊗G (2.29)

and the relativistic Nelson Hamiltonian H̃ in L2(P̃) becomes

H̃ = L̃p ⊗ 1l + 1l⊗Hf +Hi, (2.30)

using (2.21). We write

dÑ = dÑ(y)dÑ y .

We consider the probability space (X̃ ⊗Y , Σ̃, P̃0) where Σ̃ = B(X̃ )⊗B(Y ) and P̃0 = Ñ ⊗G.
Then we have the following expression for the relativistic Nelson Hamiltonian in L2(P̃).

Proposition 2.13 Let t0 ≤ ... ≤ tn, f0, fn ∈ L2(P̃) and fj ∈ L∞(P̃), for j = 1, . . . , n − 1.

Then

(f0, e
−(t1−t0)H̃f1e

−(tn−tn−1)H̃fn) = EP̃0

[
f0(Ỹ0, ξ0)

( n∏

j=1

fj(Ỹtj , ξtj )

)
e
−

∫ tn
t0

τỸsξs(ϕ̃)ds
]
.

Proof: The proof is analogous to the proof of Corollary 2.11 (see [15, Theorem 6.2]). ✷

Now we can give a functional integral representation of e−tH̃N by making use of the Lévy

process (bt)t∈R and the infinite dimensional OU-process (ξt)t∈R.

Proposition 2.14 Let Φ,Ψ ∈ L2(P̃) and s ≤ 0 ≤ t. Then

(Φ, e−(t−s)H̃Ψ)L2(P̃)

=

∫

Rd×Q
E
(y,ξ)
P⊗G

[
Φ(bs, ξs)ϕ̃p(bs)e

−
∫ t
s
τbr ξr(ϕ̃)drΨ(bt, ξt)ϕ̃p(bt)e

−
∫ t
s
V (br)dr

]
dy ⊗ dG.

Proof: The proof is similar to the proof of Proposition 2.12 (see [15, Theorem 6.3]). ✷

In what follows we write P̃(y,ξ)
0 = Ñ y ⊗ Gξ for (y, ξ) ∈ Rd×Q.

3 P (φ)1-processes associated with the Nelson Hamiltonians

3.1 Classical Nelson model

Since the ground state ϕg ofH is strictly positive and L2-normalized, we define the probability

measure

dM = ϕ2
gdP

on Rd×Q. Also, we define the unitary operator Ug : L2(Rd×Q, dM) → L2(Rd×Q, dP) by

Ug : Φ 7→ ϕgΦ. We write K = L2(Rd×Q, dM) and define the self-adjoint operator

LN =
1

ϕg
(H − E)ϕg.

Let XQ = C(R;Rd×Q) be the set of continuous paths with values in Rd×Q and indexed by

the real line R, and BQ the σ-field generated by the cylinder sets. The main result of this

section is the following.
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Theorem 3.1 (P (φ)1-process for the classical Nelson Hamiltonian) Let (y, ξ) ∈ Rd×Q.

Then the following hold.

1. There exists a probability measure P(y,ξ) on (XQ,BQ) such that the coordinate process

(Xt)t∈R on (XQ,BQ,P(y,ξ)) is a P (φ)1-process associated with the pair(
(Rd×Q,B(Rd)⊗ B(Q), dM), LN

)
.

2. The function t 7→ Xt is almost surely continuous.

In order to show this theorem we need a string of lemmas. The idea of proof is taken from [15].

Write Σ′ = B(Rd)⊗B(Q) and define the family of set functions {MΛ |Λ ⊂ [0,∞),#Λ <∞}
on Σ′#Λ = Σ′ × · · · × Σ′

︸ ︷︷ ︸
#Λ−times

by

MΛ(A0 ×A1 × ...×An) =
(
1lA0 , e

−(t1−t0)LN1lA1e
−(t2−t1)LN1lA1 · · · 1lAn−1e

−(tn−tn−1)LN1lAn

)
K

for Λ = {t0, . . . , tn}, n ∈ N. It is straightforward to show that the family of set functions

MΛ satisfies the Kolmogorov consistency relation

M{t0,t1,...,tn+m}((×n
i=0Ai)× (×n+m

i=n+1R
d×Q)) = M{t0,t1,...,tn}(×n

i=0Ai).

Define the projection πΛ : (Rd×Q)[0,∞) −→ (Rd×Q)Λ by w 7−→ (w(t0), ..., w(tn)) for Λ =

{t0, ..., tn}, n ∈ N. Then

A = {π−1
Λ (A) |A ∈ Σ′#Λ

, #Λ <∞}

is a finitely additive family of sets, and the Kolmogorov extension theorem [13, Theorem 2.2]

yields that there exists a unique probability measure M on ((Rd×Q)[0,∞), σ(A )) such that

M(π−1
Λ (A1 × ...×An) = MΛ(A1 × ...×An),

for all Λ ⊂ [0,∞) with #Λ <∞ and Aj ∈ Σ′, and

M{t0,...,tn}(A0 × · · · ×An) = EM

[ n∏

j=0

1lAtj
(Ztj )

]
(3.1)

holds. Here (Zt)t≥0 is the coordinate process defined by Zt(ω) = ω(t) for ω ∈ (Rd×Q)[0,∞).

Lemma 3.2 The random process (Zt)t≥0 on ((Rd×Q)[0,∞), σ(A )) has a continuous version.

Proof: We write Zt = (xt, ξt), where xt ∈ Rd and ξt ∈ Q are the coordinate processes

xt(ω) = ω1(t) and ξt(ω) = ω2(t) for all t > 0 and ω = (ω1, ω2) ∈ (Rd×Q)[0,∞). Define

‖Zt‖Rd×Q =
√

‖xt‖2Rd + ‖ξt‖2Q. Using the Kolmogorov-Čentsov theorem [13, Theorem 2.8],

the estimate

EM[‖Zt − Zs‖4Rd×Q] ≤ D|t− s|2 (3.2)



FCLT for Nelson model 15

with some D > 0 implies that (Zt)t≥0 has a continuous version. Since

‖Zt‖4Rd×Q ≤ 2(‖xt‖4Rd + ‖ξt‖4Q),

it will suffice to prove the bounds

EM[‖xt − xs‖4Rd ] ≤ D1|t− s|2, (3.3)

EM[‖ξt − ξs‖4Q] ≤ D2|t− s|2. (3.4)

To obtain (3.3), recall the moments formula E[|Bt −Bs|2n] = Kn|t− s|n, with a constant Kn

for n ≥ 0. Let xt = (x1t , . . . , x
d
t ). By using the formula in Proposition 2.12, we have for all

1 ≤ i, j ≤ d that

EM[(xit)
n(xjs)

m]

= ((xi)nϕg, e
−(t−s)(H−E)(xj)mϕg)L2(P)

= ((xi)nϕpϕg, e
−(t−s)(HN−E)(xj)mϕpϕg)L2(Rd)⊗L2(Q)

=

∫

Rd

dxEx
W×G

[
(Bi

0)
n(Bj

t−s)
mϕp(B0)ϕg(B0, ξ0)ϕp(Bt−s)ϕg(Bt−s, ξt−s)

×e−
∫ t−s
0

τBr ξr(ϕ̃))dre−
∫ t−s
0

V (Br)dr
]
.

Using the eigenvalue equations and the Feynman-Kac formula for the free particle and the

full Nelson Hamiltonians, it follows that

sup
x∈Rd

|ϕp(x)| = C1 <∞ and sup
(x,ξ)∈Rd×Q

|ϕg(x, ξ)| = C2 <∞.

Thus we have

EM[|xt − xs|4] =
∫

Rd

dxEx
W×G

[
|B0 −Bt−s|4ϕp(B0)ϕg(B0, ξ0)ϕp(Bt−s)ϕg(Bt−s, ξt−s)

×e−
∫ t−s
0

τBr ξr(ϕ̃)e−
∫ t−s
0

V (Br+x)dr
]

≤ C2
2

∫

Rd

dxEW×Gϕp(x)
[
ϕp(Bt−s + x)|B0 −Bt−s|4e−

∫ t−s
0

τBr+xξr(ϕ̃))dre−
∫ t−s
0

V (Br+x)dr
]

≤ C2
2

(∫

Rd

dxEW×G

[
|ϕp(Bt−s + x)|2

])1/2

×
(∫

Rd

dx|ϕp(x)|2EW

[
|B0 −Bt−s|8e−2

∫ t−s
0

V (Br+x)drEG

[
e−2

∫ t−s
0

τBr+xξr(ϕ̃))dr
]])1/2

.

Since

EG[e
−

∫ t−s
0 τBr ξr(ϕ̃)dr] ≤ e(t−s)‖ϕ̂/ω‖2 = C,

we see that

EM[|xt − xs|4] ≤ C2
2C‖ϕp‖2

(
EW

[
|B0 −Bt−s|16

])1/4 (
EW [e−4

∫ t−s
0 V (Br+x)dr]

)1/4

≤ C2
2CK

1/4
8 sup

x∈Rd

(
EW [e−4

∫ t−s
0 V (Br+x)dr]

)1/4
|t− s|2.
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Thus (3.3) follows. Next we prove (3.4). Let f ∈ M+2. In the same way as in the proof of

(3.3) we have

EM[ξt(f)
nξs(f)

m] = (ξ(f)nϕg, e
−(t−s)(H−E)ξ(f)mϕg)L2(dP)

= (ξ(f)nϕpϕg, e
−(t−s)(HN−E)ξ(f)mϕpϕg)L2(Rd)⊗L2(Q)

=

∫

Rd

dxEx
W×G [ξ0(f)

nξs(f)
mϕp(B0)ϕg(B0, ξ0)ϕp(Bt−s)ϕg(Bt−s, ξt−s)

×e−
∫ t−s
0 τBr ξr(ϕ̃))dre−

∫ t−s
0 V (Br)dr

]
.

Hence

EM[|ξt(f)− ξs(f)|4]

=

∫

Rd

dxEx
W×G

[
|ξ0(f)− ξt−s(f)|4ϕp(B0)ϕg(B0, ξ0)ϕp(Bt−s)ϕg(Bt−s, ξt−s)

×e−
∫ t−s
0

τBr ξr(ϕ̃))dre−
∫ t−s
0

V (Br+x)dr
]

≤ C2
2

∫

Rd

dxEW×G

[
ϕp(x)ϕp(Bt−s + x)|ξt(f)− ξt−s(f)|4

×e−
∫ t−s
0 τBr+xξr(ϕ̃))dre−

∫ t−s
0 V (Br+x)dr

]

≤ C2
2

∫

Rd

dxEW

[
ϕp(x)ϕp(Bt−s + x)e−

∫ t−s
0 V (Br+x)dr

×EG

[
|ξt(f)− ξt−s(f)|4e−

∫ t−s
0 τBr+xξr(ϕ̃))dr

]]

≤ C2
2

∫

Rd

dxEW

[
ϕp(x)ϕp(Bt−s + x)e−

∫ t−s
0 V (Br+x)dr

(
EG

[
|ξt(f)− ξt−s(f)|8

])1/2

×
(
EG

[
e−2

∫ t−s
0

τBr+xξr(ϕ̃))dr
])1/2]

.

By Lemma 3.3 below we have

EM[|ξt(f)− ξs(f)|4]

≤ C2
2 |t− s|2‖f‖2M+2

C

∫

Rd

dxEW

[
ϕp(x)ϕp(Bt−s + x)e−

∫ t−s
0

V (Br+x)dr
]

≤ C2
2 |t− s|2‖f‖2M+2

C‖ϕp‖2 sup
x∈Rd

(
EW [e−2

∫ t−s
0 V (Br+x)dr]

)1/2
.

Hence

EM

[
|ξt(f)− ξs(f)|4

‖f‖2
M+2

]
≤ D2|t− s|2 (3.5)

with a constant D2. Since ‖ξt − ξs‖Q = supf 6=0 |ξt(f)− ξs(f)|/‖f‖M+2 , for every ε > 0 there

exists fε ∈ M+2 such that ‖ξt − ξs‖Q ≤ |ξt(fε) − ξs(fε)|/‖fε‖M+2 + ε. Thus together with

(3.5) we have

EM

[
|ξt − ξs|4

]
− ε ≤ D2|t− s|2, (3.6)

and thus (3.4) follows. ✷



FCLT for Nelson model 17

Lemma 3.3 We have EG[|ξt(f)− ξs(f)|2n] ≤ Dn|t− s|n‖f‖n
M+2

.

Proof: Since ξt(f) − ξs(f) is a Gaussian process and EG [e
iT (ξt(f)−ξs(f))] = e−

1
2
CT 2

, where

C = (f̂ /
√
ω, (1 − e−|t−s|ω)f̂ /

√
ω), by taking derivatives 2n times at t = 0 on both sides we

obtain

EG[|ξt(f)− ξs(f)|2n] ≤ Dn(f̂ /
√
ω, (1− e−|t−s|ω)f̂/

√
ω)n

≤ Dn|t− s|n‖f̂‖nL2

≤ D′
n|t− s|n‖f‖nM+2

.

Here we used that the embedding i : M+2 → L2(Rd) is bounded [15, p288]. ✷

We denote the continuous version of (Zt)t≥0 by (Z̄t)t≥0, and the set of Rd×Q-valued

continuous paths by X
+
Q = C([0,∞),Rd×Q). Note that (Z̄t)t≥0 is a stochastic process on

the probability space ((Rd×Q)[0,∞), σ(A ),M), and the map

Z̄· : ((R
d×Q)[0,∞), σ(A ),M) → (X +

Q ,B+)

is measurable, where B+ denotes the σ-field generated by cylinder sets. This map induces

the image measure P+ = M◦ Z̄−1
· on (X +

Q ,B+). Thus for the coordinate process (X+
t )t≥0

on (X +
Q ,B+,P+) we have Z̄t

d
= X+

t for t ≥ 0. Let (y, ξ) ∈ Rd×Q, and define the regular

conditional probability measure

P(y,ξ)
+ (·) = P+(· |X+

0 = (y, ξ))

on (X +
Q ,B+). Since the distribution of X+

0 is dM, we see that

P+(A) =

∫

Rd×Q
E
(y,ξ)
P+

[1lA]dM(y, ξ).

Using the measure P+ we have

(f, e−tLNg)K =

∫

Rd×Q
E
(y,ξ)
P+

[f̄(X+
0 )g(X+

t )]dM(y, ξ), (3.7)

which implies that (
e−tLNg

)
(y, ξ) = E

(y,ξ)
P+

[g(X+
t )]. (3.8)

Lemma 3.4 The random process (X+
t )t>0 on (X +

Q ,B+,P(y,ξ)
+ ) has the Markov property with

respect to the natural filtration σ(X+
t , 0 ≤ s ≤ t).

Proof: In this proof we set z = (y, ξ), zj = (yj, ξj) ∈ Rd×Q for notational simplicity. Let

pt(z,A) = (e−tLN1lA)(z), A ∈ B(Rd)× B(Q). (3.9)

Notice that

pt(z,A) = Ez
P+

[1lA(X
+
t )] = EP+ [1lA(X

+
t )|X+

0 = z].

We show that pt(z,A) is a probability transition kernel, i.e.,



18 FCLT for Nelson model

1. pt(z, ·) is a probability measure on B(Q)

2. the function z 7→ pt(z,A) is Borel measurable

3. the Chapman-Kolmogorov identity

∫

Rd×Q
pt(z,A)ps(z1, dz) = ps+t(x1, A) (3.10)

is satisfied.

Note first that by (3.7) it is easy to see that e−tLN is positivity improving. For every function

f ∈ H such that 0 ≤ f ≤ 1l, we have

(
e−tLNf

)
(z) = Ez

P+
[f(X+

t )] ≤ Ez
P+

[1l] = 1.

Then we deduce that 0 ≤ etLNf ≤ 1l and etLN1l = 1l, and (1)-(2) follow. We can also show

that the finite dimensional distribution is given by

EP+

[ n∏

j=1

1lAj(X
+
tj
)

]
=

∫

(Rd×Q)n

n∏

j=1

1lAj (zj)
n∏

j=1

ptj−tj−1(zj−1, dzj).

Thus (X+
t )t≥0 is a Markov process by [15, Proposition 2.17]. ✷

Now we extend (X+
t )t≥0 to a random process indexed by the full real line R. Consider

the product probability space (X̂ +
Q , B̂+, P̂(y,ξ)

+ ) with X̂
+
Q = X

+
Q × X

+
Q , B̂+ = B+ ⊗B+ and

P̂(y,ξ)
+ = P(y,ξ)

+ ⊗ P(y,ξ)
+ , and let (X̂t)t∈R be the stochastic process

X̂t(ω) =

{
X+

t (ω1) t ≥ 0,
X+

−t(ω2) t ≤ 0,

on the product space, for ω = (ω1, ω2) ∈ X̂
+
Q .

Lemma 3.5 It follows that

(1) X̂0 = (y, ξ) a.s.

(2) X̂t, t ≥ 0 and X̂s, s < 0 are independent

(3) X̂t
d
= X̂−t for all t ∈ R,

(4) (X̂t)t≥0 (resp. (X̂t)t≤0) is a Markov process with respect to σ(X̂s, 0 ≤ s ≤ t) (resp.

σ(X̂s, t ≤ s ≤ 0))

(5) for f0, ..., fn ∈ K and −t = t0 ≤ t1 ≤ . . . ≤ tn = t, we have

E
P̂+

[ n∏

j=0

fj(X̂tj )

]
=
(
f0, e

−(t1+t)LNf1...e
−(t−tn−1)LNfn

)
K
. (3.11)
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Proof: (1)-(3) are straightforward. (4) follows from Lemma 3.4. (5) follows from (3.1) and a

simple limiting argument. ✷

Proof of Theorem 3.1. We show that the stochastic process (X̂t)t∈R defined on (X̂ +
Q , B̂, P̂(y,ξ)

+ )

is a P (φ)1-process associated with ((Rd×Q,Σ′,M), LN). The Markov property, reflection

symmetry and the shift invariance property follow from Lemma 3.5. Continuity of t 7→ X̂t

has been shown in Lemma 3.2. Thus X̂· : (X̂
+
Q , B̂, P̂(y,ξ)

+ ) → (XQ,BQ) is measurable and

the image measure P(y,ξ) = P̂(y,ξ)
+ ◦ X̂−1

· defines a probability measure on (XQ,BQ). Hence

the coordinate process (Xt)t∈R on (XQ,BQ,P(y,ξ)) satisfies Xt
d
= X̂t, and then (Xt)t∈R is a

P (φ)1-process associated with ((Rd×Q,Σ′, dM0), LN). ✷

Lemma 3.6 The random process (Xt)t∈R is a reversible Markov process under P, and its

stationary measure is M, i.e., for every n ≥ 1 we have that (Xt1 ,Xt2 , ...,Xtn ) has the same

distribution as (Xτ−t1 ,Xτ−t2 , ...,Xτ−tn ) for all t1, ..., tn, τ ∈ R.

Proof: Let f, g ∈ K . Then EP [f(Xt)g(Xs)] =
(
f, e−|t−s|LNg

)
K
. Thus the lemma follows. ✷

3.2 Relativistic Nelson model

Define a probability measure on Rd×Q by

dM̃ = ϕ̃2
gdP̃.

The unitary operator Ũg : L2(Rd×Q, dM̃) → L2(Rd×Q, dP̃) is defined by Φ 7→ ϕ̃gΦ. Let

K̃ = L2(Rd×Q, dM̃). Define the operator

L̃N =
1

ϕ̃g
(H̃ − Ẽ)ϕ̃g.

Let X̃Q = D(R,Rd×Q) be the space of càdlàg paths with values in Rd×Q on the whole real

line, and B̃Q the σ-field generated by cylinder sets. Similarly to the classical Nelson model,

we can construct a P (φ)1 process for the relativistic Nelson Hamiltonian.

Theorem 3.7 (P (φ)1-process for the relativistic Nelson Hamiltonian) Let (y, ξ) ∈
Rd×Q. Then ,

1. There exists a probability measure P̃(y,ξ) on (X̃Q, B̃Q) such that the coordinate process

(X̃t)t∈R on (X̃Q, B̃Q, P̃(y,ξ)) is P (φ)1-process associated with the pair(
(Rd×Q,B(Rd)⊗ B(Q), dM̃), L̃N

)
.

2. The function t 7→ X̃t is càdlàg a.s.
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The proof of Theorem 3.7 is parallel with that of Theorem 3.1 except for path regularity. We

only discuss this part of the proof. Define the family of set functions {M̃Λ |Λ ⊂ R,#Λ <∞}
on Σ′#Λ = Σ′ × · · · × Σ′

︸ ︷︷ ︸
#Λ

by

M̃Λ(A0 ×A1 × ...×An) =
(
1lA0 , e

−(t1−t0)L̃N 1lA1e
−(t2−t1)L̃N ...1lAn−1e

−(tn−tn−1)L̃N1lAn

)
K̃

for Λ = {t0, . . . , tn}. By the same way as for the classical Nelson Hamiltonian, we de-

fine the projection πΛ : (Rd×Q)[0,∞) −→ (Rd×Q)Λ by w 7−→ (w(t0), ..., w(tn)) for Λ =

{t0, ..., tn}, and A = {π−1
Λ (A) |A ∈ Σ′#Λ, #Λ < ∞} is a finitely additive family of sets.

Using the Kolmogorov extension theorem, there exists a unique probability measure M̃ on

((Rd×Q)[0,∞), σ(A )) such that

EM̃

[ n∏

j=0

1lAtj
(Z̃tj )

]
= M̃{t0,··· ,tn}(A0 × · · · ×An)

=
(
1lA0 , e

−(t1−t0)L̃N1lA1e
−(t2−t1)L̃N1lA1 ...1lAn−1e

−(tn−tn−1)L̃N1lAn

)
K̃
,

(3.12)

where (Z̃t)t>0 is the coordinate process on ((Rd×Q)[0,∞), σ(A ),M̃). The equality (3.12)

leads to the following result:

Lemma 3.8 The stochastic process (Z̃t)t>0 is shift invariant under M̃, i.e, for f0, ..., fn ∈ K̃

and s > 0 it follows that

EM̃

[ n∏

j=0

fj(Z̃tj+s)

]
= EM̃

[ n∏

j=0

fj(Z̃tj )

]
=
(
f0, e

−(t1+t)L̃Nf1 · · · e−(t−tn−1)L̃Nfn

)
K̃
. (3.13)

Now we prove that (Z̃t)t>0 has càdlàg version under M̃. For this purpose, we need the

following technical lemmas which make use of the ideas in [18, pp 59-62]. Let I ⊂ [0,∞)

and ε > 0. We say that Z̃·(ω), with ω fixed, has ε-oscillation n times in I, if there exist

t0, t1, . . . , tn ∈ I such that t0 < t1 < t2 . . . < tn and ‖Z̃tj − Z̃tj−1‖Rd×Q > ε for j = 1, . . . , n.

We say that Z̃·(ω) has ε-oscillation infinitely often in I, if, for every n, Z̃·(ω) has ε-oscillation

n times in I. Let

Ω′ =

{
ω ∈ Ω | lim

s∈Q,s↓t
Z̃s(ω) and lim

s∈Q,s↑t
Z̃s(ω) exist in R

d×Q for all t ≥ 0

}
,

AN,k =
{
ω ∈ Ω | Z̃t(ω) does not have 1/k − oscillation infinitely often in [0, N ] ∩ Q

}
,

Ω′′ =
∞⋂

N=1

∞⋂

k=1

AN,k.

Similarly as in [18, Lemma 11.2], we can see that Ω′′ ⊂ Ω′. Define

B(p, ε, I) =
{
ω ∈ (Rd×Q)[0,∞) | Z̃t(ω) has ε− oscillation p times in I

}
.
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Lemma 3.9 For every ε > 0 we have lim
|t−s|→0

M̃
(
‖Z̃t − Z̃s‖Rd×Q > ε

)
= 0 and M̃(Ω′′) = 1.

Proof: In this proof we set

Φpg(y, ξ) = ϕ̃p(y)ϕ̃g(y, ξ)

and E[· · · ] =
∫
Rd×Q dy ⊗ dGE

(y,ξ)
P×G [· · · ] for notational simplicity. Consider

Jε = sup
(y,ξ)∈Rd×Q

(Py ⊗ Gξ)
(
Z̃t−s ∈ Bc((y, ξ), ε)

)

= (P ⊗ G)
(
Z̃t−s ∈ Bc(0, ε)

)
= (P ⊗ G)

(
|Z̃t−s| > ε

)
.

By Proposition 2.14 we have

M̃
(
‖Z̃t − Z̃s‖Rd×Q > ε

)
= (1l, e−(t−s)L̃N1lBc(0,ε))K̃ ,

where Bc((y′, ξ′), ε) = {(y, ξ) ∈ Rd×Q | ‖(y, ξ) − (y′, ξ′)‖Rd×Q ≥ ε}. Also, we have

sup
(y,ξ)∈Rd×Q

|ϕ̃g(y, ξ)| =
√
K2 <∞ and sup

y∈Rd

E
y
P

[
e−4

∫ t−s
0 V (br)dr

]
≤ CV .

We have

M̃
(
‖Z̃t − Z̃s‖Rd×Q > ε

)

= E
[
Φpg(y, ξ)e

−
∫ t−s
0 τbr ξr(ϕ̃)dre−

∫ t−s
0 V (br)drΦpg(bt−s, ξt−s)1lBc((y,ξ),ε)(bt−s, ξt−s)

]
e(t−s)Ẽ .

The right-hand side can be evaluated as

M̃
(
‖Z̃t − Z̃s‖Rd×Q > ε

)

≤ K2E

[
ϕ̃p(y)e

−
∫ t−s
0

τbr ξr(ϕ̃)dre−
∫ t−s
0

V (br)drϕ̃p(bt−s)1lBc((y,ξ),ε)(bt−s, ξt−s)
]
e(t−s)Ẽ .

By using Schwarz inequality twice, we have

M̃
(
‖Z̃t − Z̃s‖Rd×Q > ε

)

≤ K2‖ϕ̃p‖E
[
|ϕ̃p(y)|2e−2

∫ t−s
0 τbr ξr(ϕ̃)dre−2

∫ t−s
0 V (br)dr1lBc((y,ξ),ε)(bt−s, ξt−s)

] 1
2
e(t−s)Ẽ

≤ K2‖ϕ̃p‖E
[
|ϕ̃p(y)|21lBc((y,ξ),ε)(bt−s, ξt−s)

] 1
4

× E
[
|ϕ̃p(y)|2e−4

∫ t−s
0 τbr ξr(ϕ̃)dre−4

∫ t−s
0 V (br)dr

] 1
4
e(t−s)Ẽ .

Since

E
[
|ϕ̃p(y)|21lBc((y,ξ),ε)(bt−s, ξt−s)

] 1
4 ≤ J1/4

ε ‖ϕ̃p‖1/2

and

E

[
|ϕ̃p(y)|2e−4

∫ t−s
0

τbr ξr(ϕ̃)dre−4
∫ t−s
0

V (br)dr
]

=

∫

Rd×Q
E
y
P

[
|ϕ̃p(y)|2e−4

∫ t−s
0

V (br)dr
]
E
ξ
G

[
e−4

∫ t−s
0

τbr ξr(ϕ̃)dr
]
dy ⊗ dG.
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By [15, Section 6.5] we have

E
ξ
G

[
e−4

∫ t−s
0

τbr ξr(ϕ̃)dr
]
≤ e

(t−s)

(∫
Rd

|ϕ̂(k)|2

ω(k)2
dk+

∫
Rd

|ϕ̂(k)|2

ω(k)3
dk

)

= Ct−s <∞.

We deduce that

E

[
|ϕ̃p(y)|2e−4

∫ t−s
0

τbr ξr(ϕ̃)dre−4
∫ t−s
0

V (br)dr
]

≤ Ct−s

∫

Rd×Q
|ϕ̃p(y)|2Ey

P

[
e−4

∫ t−s
0

V (br)dr
]
dy ⊗ dG ≤ Ct−sCV ‖ϕ̃p‖2,

and so we obtain

M̃
(
‖Z̃t − Z̃s‖Rd×Q > ε

)
≤ K2C

1/4
V ‖ϕ̃p‖2Ct−sJ

1/4
ε e(t−s)Ẽ . (3.14)

Next we show that lim
|t−s|→0

Jε = 0. In fact, we have

Jε = (P ⊗ G)
(
{ω = (ω1, ω2) ∈ (Rd×Q)[0,∞)|‖bt−s(ω

1)‖2
Rd + ‖ξt−s(ω

2)‖2Q > ε2}
)
.

By the stochastic continuity of the Lévy process (bt)t≥0 and the OU-process (ξt)t≥0 we deduce

that lim
|t−s|→0

Jε = 0. Then lim
|t−s|→0

M̃
(
‖Z̃t − Z̃s‖Rd×Q > ε

)
= 0 follows. To see that M̃(Ω′′)=1,

it suffices to show that M̃(Ac
N,k) = 0 for any fixed N and k. We have

M̃(Ac
N,k) = M̃

({
Z̃t has 1/k − oscillation infinitely often in

[
0, N

]
∩ Q

})

≤
l∑

j=1

M̃
({

Z̃t has 1/k − oscillation infinitely often in

[
j − 1

l
N,

j

l
N

]
∩ Q

})

=

l∑

j=1

lim
p→∞

M̃
(
B

(
p,

1

k
,

[
j − 1

l
N,

j

l
N

]
∩ Q

))
.

We enumerate as {t1, . . . , tn, . . .} = [ j−1
l N,

j
lN ] ∩ Q. Thus

M̃
(
B

(
p,

1

k
,

[
j − 1

l
N,

j

l
N

]
∩ Q

))
= lim

n→∞
M̃
(
B

(
p,

1

k
, {t1, · · · , tn}

))
.

Then by Proposition 2.14 we obtain

M̃ (B (p, 1/k, {t1, . . . , tn}))
= eNẼ/lE

[
Φpg(y, ξ)e

−
∫N/l
0 τbr ξr(ϕ̃)drΦpg(bN/l, ξN/l)e

−
∫N/l
0 V (br)dr1lB(p,1/k,{t1,...,tn})(bN/l, ξN/l)

]
.

Hence in the same estimate preceding (3.14) we have

M̃
(
B

(
p,

1

k
, {t1, . . . , tn}

))

≤ K2C
1/4
V ‖ϕ̃p‖2e

1
2
CN/l

(
sup

(y,ξ)∈Rd×Q

P
y ⊗ GξB

(
p,

1

k
, {t1, . . . , tn}

)) 1
4

e(N/l)Ẽ . (3.15)
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By [18, Lemma 11.4], furthermore we have

(Py ⊗ Gξ)

(
B

(
p,

1

k
, {t1, . . . , tn}

))
≤


 sup

s,t∈[0,N]
t−s∈[0,N/l]

(P ⊗ G)
(
|(bs, ξs)− (bt, ξt)| ≥

1

4k

)


p

.

(3.16)

Moreover, by stochastic continuity of ((bt, ξt))t≥0, we can prove uniform stochastic continuity,

i.e.,

sup
s,t∈[0,N]

t−s∈[0,N/l]

(P ⊗ G)
(
|(bs, ξs)− (bt, ξt)| ≥

1

4k

)
→ 0 (3.17)

as l → ∞ in Lemma 3.10 below. ✷

Lemma 3.10 (3.17) holds.

Proof: For notational simplicity we write X ′
s = (bs, ξs). Fix a > 0. For any t there exists

δt > 0 such that (P ⊗G)(|X ′
t−X ′

s| ≥ ε/2) ≤ a/2 for |t− s| < δt by stochastic continuity. Let

It = (t − δt/2, t + δt/2). Since It is compact, there exists a finite covering Itj , j = 1, . . . , n,

such that ∪n
j=1Itj ⊃ [0, N ]. Let δ = minj=1,...,n δtj . If |s− t| < δ and s, t ∈ [0, N ], then t ∈ Itj

for some j, hence |s− tj| < δtj and

(P ⊗ G)(|X ′
t −X ′

s| ≥ ε) ≤ (P ⊗ G)(|X ′
t −X ′

tj | ≥ ε) + (P ⊗ G)(|X ′
tj −X ′

s| ≥ ε) < a.

Hence the lemma follows. ✷

Lemma 3.11 The process (Z̃t)t≥0 has a right continuous version with left limits (càdlàg)

with respect to M̃.

Proof: Let (Z̃ ′)t>0 be a càdlàg process defined by

Z̃ ′
t(ω) =

{
lim

s∈Q,s↓t
Z̃s(ω) ω ∈ Ω′′,

0 ω /∈ Ω′′.
(3.18)

By Lemmas 3.9 the process (Z̃t)t≥0 is stochastically continuous, which implies that there

exists a sequence sn such that

lim
sn∈Q,sn↓t

Z̃sn(ω) = Z̃t(ω) (3.19)

for ω ∈ Ω′′′ = (Rd ×Q)[0,∞) \Nt with some null set Nt. We can also see by the definition of

the process (Z̃ ′)t>0 that

lim
sn∈Q,sn↓t

Z̃sn(ω) = Z̃ ′
t(ω) (3.20)

for ω ∈ Ω′′, and M̃(Ω′′) = 1 by Lemma 3.9. For each t by (3.19) and (3.20) we can derive

that Z̃t(ω) = Z̃ ′
t(ω) for ω ∈ Ω′′ ∩Ω′′′, and M̃(Ω′′ ∩Ω′′′) = 1. Then (Z̃ ′)t>0 is a càdlàg version

of (Z̃)t>0. ✷
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We denote the càdlàg version of (Z̃t)t≥0 by ( ¯̃Zt)t≥0, and the set of Rd×Q-valued càdlàg

paths by X̃
+
Q = D([0,∞),Rd×Q). Note that ( ¯̃Zt)t≥0 is a stochastic process on the probability

space ((Rd×Q)[0,∞), σ(A ),M̃), and the map

¯̃Z· : ((R
d×Q)[0,∞), σ(A ),M̃) → (X̃ +

Q , B̃+)

is measurable, where B̃+ denotes the σ-field generated by cylinder sets. This map induces

the image measure P̃+ = M̃ ◦ ¯̃Z·

−1
on (X̃ +

Q , B̃+). Then the coordinate process (X̃+
t )t≥0 on

(X̃ +
Q , B̃+, P̃+) satisfies that ¯̃Zt

d
= X̃+

t for t ≥ 0. Let (y, ξ) ∈ Rd×Q and define the regular

conditional probability measure on (X̃ +
Q , B̃+) by P̃(y,ξ)

+ (·) = P̃+(· | X̃+
0 = (y, ξ)).

Lemma 3.12 The process (X̃+
t )t>0 is a Markov process on (X̃ +

Q , B̃+, P̃(y,ξ)
+ ) with respect to

the natural filtration σ(X̃+
t , 0 ≤ s ≤ t).

Proof: The proof is the same as that of Lemma 3.4. ✷

We extend (X̃+
t )t≥0 to a Markov process to the whole real line R. This can be done in the

same way as the extension of (X+
t )t≥0 to a process on the whole real line as seen in the case

of the classical Nelson Hamiltonian in the previous section. Consider the product probability

space (
ˆ̃

X
+
Q , ̂̃B

+

, ̂̃P
(y,ξ)

+ ) with
ˆ̃

X
+
Q = X̃

+
Q × X̃

+
Q , ̂̃B

+

= B̃+ ⊗ B̃+, and ̂̃P
(y,ξ)

+ = P̃(y,ξ)
+ ⊗ P̃(y,ξ)

+ .

Let ( ̂̃X t)t∈R be a stochastic process on the product space, defined by ̂̃X t(ω) = X̃+
t (ω1) for

t ≥ 0, and ̂̃Xt(ω) = X̃+
−t(ω2) for t ≤ 0, with ω = (ω1, ω2) ∈ ˆ̃

X
+
Q .

Lemma 3.13 It follows that

1. ̂̃X0 = (y, ξ) a.s.

2. ̂̃X t, t ≥ 0 and ̂̃Xs, s < 0 are independent

3. ̂̃X t
d
= ̂̃X−t for all t ∈ R

4. ( ̂̃X t)t≥0 (resp. ( ̂̃X t)t≤0) is a Markov process with respect to σ( ̂̃Xs, 0 ≤ s ≤ t) (resp.

σ( ̂̃Xs, t ≤ s ≤ 0))

5. for f0, . . . , fn ∈ K̃ and −t = t0 ≤ t1 ≤ . . . ≤ tn = t, we have

E ̂̃P+




n∏

j=0

fj(
̂̃Xtj )


 =

(
f0, e

−(t1+t)L̃Nf1...e
−(t−tn−1)L̃Nfn

)
K̃
. (3.21)

Proof: The proof is similar to the proof of Lemma 3.5 ✷

Proof of Theorem 3.7: We show that the random process ( ̂̃X t)t∈R defined on (
ˆ̃

X
+
Q , ̂̃B

+
, ̂̃P

(y,ξ)

+ )

is a P (φ)1-process associated with ((Rd×Q,Σ′, M̃), L̃N). The Markov property, reflection

symmetry and the shift invariance follow from Lemma 3.13. The càdlàg property of the
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path t 7→ X̂t, t ≥ 0, (resp. càglàd property of t 7→ X̂t, t ≤ 0) was shown in Lemma 3.11.

Thus the map ̂̃X · : (
ˆ̃

X
+
Q , ̂̃B

+

, ̂̃P
(y,ξ)

+ ) → (X̃ , B̃Q) is measurable and the image measure

P̃(y,ξ) = ̂̃P
(y,ξ)

+ ◦ ̂̃X
−1

· defines a probability measure on (X̃ , B̃Q). Hence the coordinate process

(X̃t)t∈R on (X̃ , B̃Q, P̃(y,ξ)) satisfies X̃t
d
= ̂̃Xt, is a P (φ)1-process associated with the pair(

(Rd×Q,B(Rd)⊗B(Q), dM̃0), L̃N

)
. ✷

4 Functional central limit theorems

4.1 Classical Nelson model

Next we discuss FCLT related to the classical and relativistic Nelson models, starting with

the classical case. Let

Mt = f(Xt)− f(X0) +

∫ t

0
LNf(Xs)ds, t > 0, (4.1)

where f ∈ D(LN) ⊂ K .

Lemma 4.1 (Mt)t>0 is a martingale with stationary increments under P.

Proof: By Lemma 3.4 (Xt)t>0 is a Markov process with semigroup Tt = e−tLN , t > 0. Using

the Markov property, we have

EP [f(Xt)|Fs] = Tt−sf(Xs), 0 ≤ s ≤ t. (4.2)

Since the function t→ Tt is differentiable, we obtain

d

dt
Ttf = −LNTtf = −TtLNf and Ttf − f = −

∫ t

0
LNTsfds, t ≥ 0. (4.3)

Hence

EP [Mt|Fs] =Ms + EP

[
f(Xt)− f(Xs) +

∫ t

s
LNf(Xr)dr |Fs

]
a.s. (4.4)

Using (4.2)-(4.3) we show that the second term on the right hand side of (4.4) is zero. Indeed,

EP

[
f(Xt)− f(Xs) +

∫ t

s
LNf(Xr)dr |Fs

]

= Tt−sf(Xs)− f(Xs) +

∫ t

s
LNTr−sf(Xs)dr

= Tt−sf(Xs)− f(Xs) +

∫ t−s

0
LNTrf(Xs)dr

= Tt−sf(Xs)− f(Xs)− Tt−sf(Xs) + f(Xs) = 0.
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By the shift invariance of the process (Xt)t>0, it then follows that (Mt)t≥0 is a martingale

under P, and it has stationary increments. ✷

We begin by proving a CLT for the process (Mt)t>0 under P. The fundamental tool will

be the following martingale central limit theorem [9, Section 5]:

Proposition 4.2 Let (Nt)t∈R be a martingale on a probability space (Ω,F , P ) with

α2 = lim
t→∞

1

t
EP [N

2
t ] <∞,

and assume that (Nt)t∈R has stationary increments. Then

lim
s→∞

1√
s
N[st]

d
= α2Bt.

Lemma 4.3 If EP [f
2(Xt)] <∞ and EP [(LNf)

2(Xt)] <∞ for every t ≥ 0 and f 6= 0, then

lim
t→∞

1

t
EP [M

2
t ] = 2 (f, LNf)K . (4.5)

(f, LNf)K > 0. (4.6)

Proof: We have

EP [M
2
t ] = EP [f

2(Xt)] + EP [f
2(X0)]− 2EP [f(X0)f(Xt)]] + 2EP

[
f(Xt)

∫ t

0
drLNf(Xr)

]

− 2EP

[
f(X0)

∫ t

0
drLNf(Xr)

]
+ EP

[(∫ t

0
drLNf(Xr)

)2
]
. (4.7)

Consider

lim
t→∞

1

t
EP

[(∫ t

0
drLNf(Xr)

)2
]
.

Writing Tt = e−tLN , and using the shift invariance and Markov properties of (Xt)t>0, we

obtain

EP

[(∫ t

0
drLNf(Xr)

)2
]

= EP

[∫ t

0
ds

∫ t

0
drLNf(Xr)LNf(Xs)

]
=

∫ t

0
ds

∫ t

0
drEP [LNf(X0)LNf(X|r−s|)]

=

∫ t

0
ds

∫ t

0
drEP

[
LNf(X0)EP [LNf(X|r−s|) |F0]

]
=

∫ t

0
ds

∫ t

0
dr
(
T|s−r|LNf, LNf

)
K
. (4.8)

Hence

lim
t→∞

1

t
EP

[(∫ t

0
drLNf(Xr)

)2
]
= 2 (f, LNf)K . (4.9)
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By Schwarz inequality, we have

∣∣∣∣EP

[
f(Xt)

∫ t

0
drLNf(Xr)

]∣∣∣∣ ≤
(
EP

[
f2(Xt)

])1/2
(
EP

[(∫ t

0
drLNf(Xr)

)2
])1/2

=
(
EP

[
f2(X0)

])1/2
(
EP

[(∫ t

0
drLNf(Xr)

)2
])1/2

.

Thus we obtain

lim
t→∞

1

t
EP

[
f(Xt)

∫ t

0
drLNf(Xr)

]
= 0. (4.10)

Moreover, by the same argument, we have

lim
t→∞

1

t
EP

[
f(X0)

∫ t

0
drLNf(Xr)

]
= 0. (4.11)

Furthermore, by Schwarz inequality again,

|EP [f(X0)f(Xt)]| ≤ EP [f
2(Xt)]

1
2EP [f

2(X0)]
1
2 = EP [f

2(X0)]. (4.12)

Thus lim
t→∞

1
tEP [f(X0)f(Xt)] = 0. Then by (4.7) we conclude that

lim
t→∞

1

t
EP [M

2
t ] = lim

t→∞

1

t
EP

[(∫ t

0
drLNf(Xr)

)2
]
= 2 (f, LNf)K . (4.13)

Hence (4.5) follows. Next we prove (4.6). By (4.8) we can write

EP

[(∫ t

0
drLNf(Xr)

)2
]
=

∫ t

0
dr

∫ t

0
ds
(
T|s−r|LNf, LNf

)
K

= 2

∫

0≤r≤s≤t
drds (Ts−rLNf, LNf)K = 2

∫

0≤r≤s≤t
drds (TrLNf, LNf)K

= 2

∫

0≤r≤s≤t
drds

(
T r

2
LNf, T

∗
r
2
LNf

)
K

= 2

∫ t

0
dr(t− r)

(
T r

2
LNf, T

∗
r
2
LNf

)
K

= 4

∫ t
2

0
ds(t− 2s) (TsLNf, T

∗
s LNf)K .

We have LN = L∗
N and thus Tt = T ∗

t for all t > 0, hence the invariant probability measure P
is reversible. Using now reversibility of P, we obtain

2t

∫ t
4

0
ds‖TsLNf‖2 ≤ EP

[(∫ t

0
drLNf(Xr)

)2
]
≤ 4t

∫ t
2

0
ds‖TsLNf‖2.

This implies (4.6). ✷
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Theorem 4.4 (Functional central limit theorem) Let (Bt)t≥0 be standard Brownian

motion. Under the assumptions of Lemma 4.3 we have

lim
s→∞

1√
s
M[st]

d
= σ2Bt,

where σ2 = 2 (fϕg, [H0, f ]ϕg)L2(P).

Proof: By Lemma 4.1 the process (Mt)t>0 is a martingale with stationary increments under P.

Furthermore, by Lemma 4.3 we have that σ2 is finite, hence by Proposition 4.2 the theorem

follows. To determine σ2 note that (H − E)fϕg = [H0, f ]ϕg. Thus σ2 = 2 (f, LNf)K =

2 (fϕg, [H0, f ]ϕg)L2(P). ✷

For suitable f , define

Lt =

∫ t

0
LNf(Xs)ds, (4.14)

which is an additive functional of the reversible Markov process. We can obtain a central

limit theorem for such additive functionals by using Theorem 4.4 and the fundamental result

below, see [14, Theorem 1.8].

Proposition 4.5 (Kipnis-Varadhan) Let (Ω,F , (Ft)t≥0, µ) be a filtered probability space

and (A,µ0) a measurable space, where µ and µ0 denote probability measures on Ω and A

respectively. Let (Yt)t≥0 be an A-valued Markov process with respect to (Ft)t≥0. Assume that

(Yt)t≥0 is a reversible and ergodic Markov process with respect to µ. Let F : A → R be a µ0
square integrable function with

∫
A Fdµ0 = 0. Suppose in addition that F is in the domain of

L−1/2, where L is the generator of the process (Yt)t≥0. Let

Rt =

∫ t

0
F (Ys)ds.

Then there exists a square integrable martingale (Nt)t≥0 with respect to (Ft)t≥0, with station-

ary increments, such that

lim
t→∞

1√
t

sup
0≤s≤t

|Rs −Ns| = 0 (4.15)

in probability with respect to µ, where R0 = N0 = 0. Moreover,

lim
t→∞

1

t
Eµ[|Rt −Nt|2] = 0. (4.16)

Now we show a central limit theorem for the additive functional Lt.

Theorem 4.6 (Functional central limit theorem) Under the assumptions of Lemma 4.3

the random process (Lt)t≥0 satisfies a functional central limit theorem relative to P, and the

limit variance is given by σ2 = 2 (fϕg, [H0, f ]ϕg)L2(P).

Proof: By Lemma 3.6, the process (Xt)t≥0 is a reversible Markov process under P. On the

other hand, we see by Proposition 2.10 that the semigroup (Tt)t≥0 associated to (Xt)t≥0 is

positive, i.e., the process is ergodic. We have

EP [LNf(Xt)] = (ϕg, (H − E)fϕg) = ((H − E)ϕg, fϕg) = 0.
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Thus EP [Lt] = 0, and the assumptions of Proposition 4.5 are satisfied. Then (Lt)t≥0 is also

a martingale up to a correction term that disappears in the scaling limit. In fact, by (4.15)

there exists an (Ft)-martingale (Nt)t≥0 such that

lim
s→∞

1√
s
EP [ sup

0≤t≤s
|Nt − Lt|] = 0,

and by (4.1) we have that Nt =Mt, and hence

lim
s→∞

1√
s
EP [ sup

0≤t≤s
|Mt − Lt|] = 0. (4.17)

Moreover, by (4.13) we have

lim
t→∞

1

t
EP [|Mt − Lt|2] = 0. (4.18)

Finally, by (4.17) the difference Mt − Lt vanishes in the diffusive limit. By (4.13) and since

the martingale (Mt)t≥0 has stationary increments, we conclude by Theorem 4.4 that

lim
s→∞

1√
s
Mst

P
= lim

s→∞

1√
s
Lst

P
= σ2Bt, t > 0.

✷

4.2 Examples of the variance σ2

In this section we give some examples of direct interest of the functions f ∈ D(LN), f :

Rd×Q ∋ (x, ξ) 7→ f(x, ξ) ∈ C, in the FCLT, which allows to compute the variance σ2

explicitly. In what follows we assume that h ∈ L2(Rd) is any test function and γ ∈ Rd any

real vector. Moreover, we will denote the vector in L2(Q) associated with the conjugate

momentum Π(h) in Fb, with the same symbol Π(h), i.e., we have

[ξ(h),Π(h′)] =
1

2
(h, h′). (4.19)

Example 4.7 Let f(x, ξ) = γ · x (a related example is given in [2]). We have

[H0, (γ · x)] = [−1

2
∆, (γ · x)] = −γ · ∇.

Then

σ2 = 2 ((γ · x)ϕg, (−γ · ∇ϕg)) = −2
∑

1≤j,k≤d

γjγk (xjϕg,∇kϕg)

Denote Xjk = (xjϕg,∇kϕg). For j 6= k we have

Xjk = − (∇kxjϕg, ϕg) = − (xj∇kϕg, ϕg) = − (∇kϕg, xjϕg) = −X̄jk,

i.e., ReXjk = 0. For j = k we have ReXjk = −1
2 since

Xjk = − (∇kxkϕg, ϕg) = − (ϕg, ϕg)− (xk∇kϕg, ϕg) = −‖ϕg‖2 − (∇kϕg, xkϕg) = −1− X̄jk.

Hence finally we get σ2 = |γ|2, in particular,

|γ|2 − 2(γ · ∇ϕg, (H − E)−1γ · ∇ϕg) = 0. (4.20)
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Example 4.8 Let f(x, ξ) = ξ(h). By (2.12), we have

[H0, f ] = [Hf , ξ(h)] = −iΠ(ωh).

With X = 2 (ξ(h)ϕg,−iΠ(ωh)ϕg), we obtain

X = −2i (ϕg, ξ(h)Π(ωh)ϕg)

= −2i (ϕg,Π(ωh)ξ(h)ϕg) + 2i (ϕg,Π(ωh)ξ(h)ϕg)

= −2i (Π∗(ωh)ϕg, ξ(h)ϕg) + 2i
(
ϕg,−i‖

√
ωh‖2ϕg

)

= −2i (−Π(ωh)ϕg, ξ(h)ϕg) + 2‖ϕg‖2L2(P)‖
√
ωh‖2 = 2‖√ωh‖2 −X,

hence

σ2 = ReX = ‖√ωh‖2.

Example 4.9 Let f(x, ξ) = (γ · x)ξ(h). We have

[H0, (γ · x)ξ(h)] = [−1

2
∆, (γ · x)]ξ(h) + (γ · x)[Hf , ξ(h)]

= −γ · ∇ξ(h)− i(γ · x)Π(ωh).

Then

σ2 = 2 ((γ · x)ξ(h)ϕg , ξ(h)(−γ · ∇ϕg)) + 2 ((γ · x)ξ(h)ϕg,−i(γ · x)Π(ωh)ϕg) (4.21)

= −2
∑

1≤j,k≤d

γjγk (xjξ(h)ϕg, ξ(h)∇kϕg) + 2
∑

1≤j,k≤d

γjγk (xjξ(h)ϕg,−iΠ(ωh)xkϕg) .

Denote again Xjk = (xjξ(h)ϕg, ξ(h)∇kϕg). For j 6= k

Xjk = − (ξ(h)∇kxjϕg, ξ(h)ϕg) = − (ξ(h)xj∇kϕg, ξ(h)ϕg)

= − (ξ(h)∇kϕg, xjξ(h)ϕg) = −X̄jk.

For the diagonal part we have

Xkk = − (ξ(h)∇kxkϕg, ξ(h)ϕg)

= − (ξ(h)ϕg, ξ(h)ϕg)− (ξ(h)xk∇kϕg, ξ(h)ϕg)

= − (ξ(h)ϕg, ξ(h)ϕg)− (ξ(h)∇kϕg, xkξ(h)ϕg) = −‖ξ(h)ϕg‖2 − X̄kk,

i.e., ReXkk = −1
2‖ξ(h)ϕg‖2. To determine the second term in (4.21), write now Xjk =

(xjξ(h)ϕg,−iΠ(ωh)xkϕg). We have

Xjk = −i (xjϕg, xkξ(h)Π(ωh)ϕg)

= −i (xjϕg, xkΠ(ωh)ξ(h)ϕg) + i (xjϕg, xkΠ(ωh)ξ(h) × ϕg)

= −i (xkΠ∗(ωh)ϕg, xjξ(h)ϕg) +
(
xjϕg, ‖

√
ωh‖2xkϕg

)
= −X̄jk + (xjϕg, xkϕg) ‖

√
ωh‖2.

Hence we finally obtain

σ2 = |γ|2‖ξ(h)ϕg‖2 + 2‖(γ · x)ϕg‖2‖
√
ωh‖2.
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Example 4.10 Let f(x, ξ) = eiξ(h). We have

e−iξ(h)Hfe
iξ(h) = Hf + i[Hf , ξ(h)] +

1

2
[[Hf , iξ(h)], iξ(h)]

= Hf +Π(ωh) +
1

2
‖√ωh‖2.

Thus

Hfe
iξ(h) = eiξ(h)Hf + eiξ(h)Π(ωh) +

1

2
‖√ωh‖2eiξ(h)

and

[H0, e
iξ(h)] = eiξ(h)Π(ωh) +

1

2
‖√ωh‖2eiξ(h)

follow. This gives

σ2 = 2
(
eiξ(h)ϕg, [H0, e

iξ(h)]ϕg

)
= 2 (ϕg,Π(ωh)ϕg) + ‖√ωh‖2.

Example 4.11 Let f(x, ξ) = (γ · x)eiξ(h). We have

[H0, (γ · x)eiξ(h)] = [−1

2
∆ +Hf , (γ · x)eiξ(h)]

= [−1

2
∆, (γ · x)]eiξ(h) + (γ · x)[Hf , e

iξ(h)]

= −γ · ∇eiξ(h) + (γ · x)eiξ(h)
(
Π(ωh) +

1

2
‖√ωh‖2

)
.

Then

σ2 = 2
(
(γ · x)eiξ(h)ϕg, [H0, (γ · x)eiξ(h)]ϕg

)

= 2

(
(γ · x)eiξ(h)ϕg,−γ · ∇ϕge

iξ(h) + (γ · x)eiξ(h)
(
Π(ωh) +

1

2
‖√ωh‖2

)
ϕg

)

= 2 ((γ · x)ϕg,−γ · ∇ϕg) + 2 ((γ · x)ϕg, (γ · x)Π(ωh)ϕg) + ‖(γ · x)ϕg‖‖
√
ωh‖2 (4.22)

=
∑

1≤j,k≤d

γjγk (xjϕg,∇kϕg) + 2 ((γ · x)ϕg, (γ · x)Π(ωh)ϕg) + ‖(γ · x)ϕg‖2‖
√
ωh‖2.

To get the first term, denote Xjk = − (xjϕg,∇kϕg). For the off-diagonal part we have

Xjk = (∇kxjϕg, ϕg) = (xj∇kϕg, ϕg) = (∇kϕg, xjϕg) = −X̄jk,

and the diagonal part gives Xkk = (∇kxkϕg, ϕg) = 1 + (∇kϕg, xkϕg). Hence in total

σ2 = |γ|2 + ‖(γ · x)ϕg‖2‖
√
ωh‖2 + 2 ((γ · x)ϕg,Π(ωh)(γ · x)ϕg) .

Example 4.12 Let f(x, ξ) = ei(γ·x)+iξ(h). We have

[H0, e
i(γ·x)+iξ(h)] = [−1

2
∆ +Hf , e

i(γ·x)+iξ(h)] = [−1

2
∆, ei(γ·x)]eiξ(h) + [Hf , e

iξ(h)]ei(γ·x)

= ei(γ·x)+iξ(h)(
1

2
|γ|2 − iγ · ∇) + ei(γ·x)+iξ(h)(Π(ωh) +

1

2
‖√ωh‖2)
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Thus

σ2 = 2
(
ei(γ·x)+iξ(h)ϕg, [H0, e

i(γ·x)+iξ(h)]ϕg

)

= |γ|2 − 2 (ϕg, iγ · ∇ϕg) + 2 (ϕg,Π(ωh)ϕg) + ‖√ωh‖2.

Let X = (ϕg, iγ · ∇ϕg). Note that ϕg > 0. Since X ∈ R and −iX ∈ R, we have X = 0 and

thus

σ2 = |γ|2 + 2 (ϕg,Π(ωh)ϕg) + ‖√ωh‖2.

4.3 Relativistic Nelson model

The previous constructions can be extended to the relativistic case. Let

M̃t = f(X̃t)− f(X̃0) +

∫ t

0
L̃Nf(X̃s)ds, t > 0. (4.23)

Theorem 4.13 (M̃t)t>0 is a martingale with stationary increments under P̃, and

lim
s→∞

1√
s
M̃st

d
= σ̃2Bt,

where σ̃2 = 2
(
fϕg, [H̃0, f ]ϕg

)
.

Proof: The proof is an analogue of Lemma 4.1 and Theorem 4.4. ✷

We conclude by some explicit cases of variances σ̃2.

Example 4.14 Let g(x, ξ) = γ · x. We have

[H̃0, (γ · x)] = [
√

−∆+m2, (γ · x)] = −(γ · ∇)√
−∆+m2

.

Then

σ̃2 = 2

(
(γ · x)ϕ̃g,

−(γ · ∇)√
−∆+m2

ϕ̃g

)

= −2
∑

1≤j,k≤d

γjγk

( −∇k√
−∆+m2

xjϕ̃g, ϕ̃g

)

= −2
∑

1≤j,k≤d

γjγk

(
ϕ̃g, [xj ,

∇k√
−∆+m2

]ϕ̃g

)
− 2

( −∇k√
−∆+m2

ϕ̃g, xjϕ̃g

)

= −2
∑

1≤j,k≤d

γjγk

(
ϕ̃g, [xj ,

∇k√
−∆+m2

]ϕ̃g

)
− σ̃2. (4.24)
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Moreover, we have

[xj ,
∇k√

−∆+m2
] = [xj ,∇k]

1√
−∆+m2

+∇k[xj ,
1√

−∆+m2
]

= − δjk√
−∆+m2

− ∇k∇j

(−∆+m2)
3
2

.

By (4.24), we obtain

σ̃2 = 2
∑

1≤j,k≤d

γjγk

(
ϕ̃g,

1√
−∆+m2

ϕ̃g

)
δjk + 2

∑

1≤j,k≤d

γjγk

(
ϕ̃g,

∇k∇j

(−∆+m2)
3
2

ϕ̃g

)
− σ̃2.

Hence we conclude that

σ̃2 =
∑

1≤j,k≤d

γjγk

(
ϕ̃g,

1√
−∆+m2

ϕ̃g

)
δjk +

∑

1≤j,k≤d

γjγk

(
ϕ̃g,

∇k∇j

(−∆+m2)
3
2

ϕ̃g

)
.

Example 4.15 Let g(x, ξ) = (γ · x)ξ(h). We have

[H̃0, (γ · x)ξ(h)] = [
√

−∆+m2, (γ · x)]ξ(h) + (γ · x)[Hf , ξ(h)].

Thus

σ̃2 = 2
(
(γ · x)ξ(h)ϕ̃g, [

√
−∆+m2, (γ · x)]ξ(h)ϕ̃g

)
+ 2 ((γ · x)ξ(h)ϕ̃g, [Hf , ξ(h)](γ · x)ϕ̃g)

=
∑

1≤j,k≤d

γjγk

(
ξ(h)ϕ̃g,

1√
−∆+m2

ξ(h)ϕ̃g

)
δjk +

∑

1≤j,k≤d

γjγk

(
ξ(h)ϕ̃g,

∇k∇j

(−∆+m2)
3
2

ξ(h)ϕ̃g

)

+ 2‖(γ · x)ϕ̃g‖‖
√
ωh‖2.

Example 4.16 Let g(x, ξ) = (γ · x)eiξ(h). We have

[H̃0, (γ · x)eiξ(h)] = [
√

−∆+m2, (γ · x)]eiξ(h) + (γ · x)[Hf , e
iξ(h)].

Similarly, we obtain

σ̃2 = 2
(
(γ · x)eiξ(h)ϕ̃g, [

√
−∆+m2, (γ · x)]eiξ(h)ϕ̃g

)
+ 2

(
(γ · x)eiξ(h)ϕ̃g, [Hf , e

iξ(h)](γ · x)ϕ̃g

)

=
∑

1≤j,k≤d

γjγk

(
ϕ̃g,

1√
−∆+m2

ϕ̃g

)
δjk +

∑

1≤j,k≤d

γjγk

(
ϕ̃g,

∇k∇j

(−∆+m2)
3
2

ϕ̃g

)

+ ‖(γ · x)ϕ̃g‖2‖
√
ωh‖2 + 2 ((γ · x)ϕ̃g,Π(ωh)(γ · x)ϕ̃g) .

Example 4.17 Let g(x, ξ) = ei(γ·x)+iξ(h). We have

[H̃0, e
iγ·x+iξ(h)] = [

√
−∆+m2, eiγ·x]eiξ(h) + eγ·x[Hf , e

iξ(h)].
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Since e−iγ·x
√
−∆+m2eiγ·x =

√
−(∇− iγ)2 +m2, we obtain

[
√

−∆+m2, eiγ·x] = eiγ·x
√

−(∇− iγ)2 +m2 − eiγ·x
√

−∆+m2.

Finally, we deduce that

σ̃2 = 2
(
ϕ̃g,
√

−(∇− iγ)2 +m2ϕ̃g

)
− 2

(
ϕ̃g,
√

−∆+m2ϕ̃g

)
+ 2 (ϕ̃g,Π(ωh)ϕ̃g) + ‖√ωh‖2

= 2
(
ϕ̃g,
√

(−i∇− γ)2 +m2ϕ̃g

)
− 2

(
ϕ̃g,
√

−∆+m2ϕ̃g

)
+ 2 (ϕ̃g,Π(ωh)ϕ̃g) + ‖√ωh‖2.

5 Concluding remarks

Although in this paper we focused on the Nelson model, P (φ)1 processes and an FCLT can

further be constructed also for related models. We briefly mention two cases.

Nelson model with fixed total momentum P . Let V = 0. Then HN is translation invariant,

i.e., [HN, Ttot] = 0, where Ttot = p⊗1l+1l⊗Tf denotes the total momentum and Tfµ = dΓ(kµ).

Thus HN can be decomposed as

HN =

∫ ⊕

Rd

HN(P )dP,

where

HN(P ) =
1

2
(P − Tf)

2 + φ(0) +Hf

is a self-adjoint operator in Fb, called Nelson Hamiltonian with total momentum P ∈ Rd. It

is known that for sufficiently small |P | the operator HN(P ) has a ground state [7].

Pauli-Fierz model. The Pauli-Fierz Hamiltonian in non-relativistic quantum electrodynamics

is defined by

HPF =
1

2m
(−i∇⊗ 1l +

√
αA)2 + V ⊗ 1l + 1l⊗Hf ,

where A denotes the quantized radiation filed given by

Aµ(x) =
1√
2

∑

j=1,2

∫

Rd

(
ϕ̂(k)√
ω(k)

eµ(k, j)e
ikxa∗(k, j) +

ϕ̂(−k)√
ω(k)

eµ(k, j)e
−ikxa(k, j)

)
dk.

Here e(k, 1) and e(k, 2) denote polarisation vectors such that k · e(k, j) = 0 for j = 1, 2,

and [a(k, j), a∗(k′, j′)] = δjj′δ(k − k′) is satisfied. Then HPF is a self-adjoint operator in

L2(R3)⊗ Fb(L
2(R3 × {1, 2})). The existence of the ground state is studied in [1, 8, 10].
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[18] K. Sato: Lévy Processes and Infinitely Divisible Distributions, Cambridge University

Press, 1999.

[19] H. Spohn: Ground state of quantum particle coupled to a scalar boson field, Lett. Math.

Phys. 44, 9-16, 1998.


	1 Introduction
	2 Functional integral representations of the Nelson model
	2.1 Functional integral representation of the free particle Hamiltonians
	2.2 Nelson Hamiltonian in boson Fock space
	2.3 Nelson Hamiltonian in function space
	2.3.1 P()1-process for the free particle operators
	2.3.2 Infinite dimensional Ornstein-Uhlenbeck process
	2.3.3 Functional integral representation of the Nelson Hamiltonians


	3 P()1-processes associated with the Nelson Hamiltonians
	3.1 Classical Nelson model
	3.2 Relativistic Nelson model

	4 Functional central limit theorems
	4.1 Classical Nelson model
	4.2 Examples of the variance 2
	4.3 Relativistic Nelson model

	5 Concluding remarks

