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"THE COLLISION OF PLANE WAVES IN THE GENERAL THEORY OF RELATIVITY" 

by N. H. E. Prince 

AESTPACT 

The problem of colliding plane waves in General Pelativity is diseuEsec 

and all kno;ffi exact solutions ef the Einstein-Max1;ell e,uaticns corres

ponding to various collisi0ns are reviel;ed. These include collisicns 

invcl ving combinations of electromagnetic and gravi taticnal 1-,aves 1''; th 

bcth oollinear and non-collinear polarization. 

It is fainted out hm; the c011ision problem may be simrlified cy a suit

able choice of reference frame. In this "lay incoming ,'aves approach from 

spatially opposite directions and the plane symmetry of the waves enable 

the spacetime to ce considered tc consist of four regions. One of these 

regions contains coth ,;aves as they interact subsequent to the collision. 

A solution of the collision problem may be uniquely determined by solving 

the field equations for this region subject to appropriate junction con

ditions at the regional boundaries. 

To facilitate this revie>J, the formalism of Ne>Jman and Penrose is 

utilized and using this it is shOlm hm,' the field equations meybe more 

appropriately formulated for the treatment of the collision problem. 

Furthermore, the formalism allocs a ready interpretation of the geometry 

of the spaoetime congruences. Mere precisely, the congruence gecmetry is 

described by certain scalar funotions which arise in the fermalism. 

The colliding fields may eaoh be ccnsidered to define physically a 

congruence in spacetime and the focus sing effect ",hich each field induces 

on the congruences of the other may then be used to interpret the develop

ment of irregularities in the varicus selutions rublished. 
< 

Real curvature singularities develop in all the selutions discussed in 

this thesis except in the case of colliding electromagnetic waves, for 

which only a single highly specialized solution exists. Moreover, it is 

shc;;n that for more realistic electromagnetic wave collisions, lveyl 

curvature necessarily develofs in the interaction region. A theorem, due 

to Tipler, "hioh is discussed in the context of the results given, 

rec;uires that this curvature must become infinite and consequently real

istiC, planeNave electromagnetic collisions cannot be singularity free. 
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1 Introduction 

In the General Theory of Relativity much difficulty arises when attempts 

are made to dra,/ physically important conclusions from the basic assump

tions of the theory. This is largely due to the non-linearity of the 

field equations. One "ay in which insight into the implications of the 

equations may be obtained is to construct suitable exaot solutions and 

study their properties. 

The non-linear features of the theory can be especially highlighted and 

studied "hen solutions are found for ,;aves \·/hich collide. This is cecause 

the collisions do net give rise to simple superpesitions cut instead the 

non-linearity of the theory oauseS the waveS to interaot. Unfortunately 

the complexity of the field equations generally requires the imposition 

of oertain symmetries in order to find exaot solutions at all. This 

simplifying procedure has made it possible for a number of exact solutions 

to be disoovered corresponding to colliding pla.ne "aves. These solutions 

merit special consideration because they nearly all possess a character

istic future closing singularity. Moreover, the factors whioh lead to 

the development of these irregularities have been a matter of disoussion 

for some time and a oertain amount of controversy has naturally arisen 

over them. It is intended that this thesis should help in clarifying 

the theory at this stage. 

We proceed initially by developing the idea of the spaoetime cnngruence 

since using this a geometrically fle.voured interpretation may be given 

to the solutions. More preoisely, "e give a quantitative description 

of the various combinations of oollisions "hich oan ocour. In each case 

the collision and subsequent interaction is interpreted in terms of the 

fooussing effeot "hich each field induces on the congruences defined by 

the other. The exact solutions reviewed in this thesiS confirm the fact 

that where singularities occur, they do so on the hypersurfaces onto 

which the null ray congruences are focus sed. 

Chapters have a.lso been included in crder to set up the collision 

problem and the more appropriate formulation of the field equations, 

initiated by S'zekeres (1972) is given. A short resume of graVitational 

"ave polarization, both constant and variable is included since examples 

of both occur in the literature cited. 



The exact solutions are then reviewed and expressed in a Common 

notation. In most cases we have cheoked the solutions by direct sub

sti tution into the field equaticns and "e have stated why this has not 

been practical in those few cases where such a verification is absent. 

In each caSe Our review follows a fairly general format which includes 

expressions for the Weyl curvature compcnents. We have calculated these 

explicitly for the numerous cases where they have been omitted in the 

original referBnces cr given in assymptotic form. 

2 

Additionally, ;;here singularities arise in the solutions they have been 

classified as either real or co-ordinate dependent by utilizing the 

Polynomial Curvature Scalars and appcying them appropriately. This has 

allowed us to clarify the status of the singularity structure behind the 

main singularity in a number of results. In the oase of mcre specialized 

solutions, such as those with non-collinear polarization or with mixed 

fields, we have pointed out ho;, these may reduoe tc other less specialized 

solutions in limiting oases. Relevant boundary conditions which are satis

fied by the solutions are also referred to. 

In some cases ,le have found it appropriate to restate results in the more 

ooncise form of theorems since they are sufficiently general as to profit 

from such a rationalization. Generally these theorems may then be used 

to derive new solutions using metric coefficients from others which are 

less specialized. 

Following this revie;;,the singularity problem is discussed in detail and 

particular attention is drawn to the case of colliding plane electro

magnetic waves. The only relevant result available in the literature 

for this case is a highly idealized particular solution, included in our 

review and due to Bell and Szekeres (1974). Furthermore, it is the only 

singularity free planewave collision known. According to a theorem of 

Tipler (1980), ho;;ever, all planewave collisions satisfying oertain 

criteria must neoessarily develop singularities. Aotually the solution 

of Bell and S~keres fails to meet these requirements because of the 

idealized wave profiles it possesses. We have sho;ffi, however, that it is 

a direct consequence of the field equations themselves, that Weyl curvature 

must generally develop within the interaction region cf all colliding 

electro-magnetic waves with more realistic profiles. Thus such collisions 

are at least potentially singular as Tipler's theorem demands. Unfortunately, 

we have nct yet been able to obtain a mcre general solution of the field 



equations which sati-s~y the appropriate boundary ccnditicns fer this case 

and consequently have been unable to verify Tipler's thecrem with a con

crete example. Nonetheless, we are reasonably cenvinced that ,Ihen such 

solutions are obtained. they teo \·,ill be Singular. 

It is interesting to note that Tipler's \;crk implicates plane symmetry 

itself to be the factor responsible fer the emergence ef singularities 

in the solutions reviewed. It is therefore probably unlikely that such 

irregular behaviour would actually appear in the real world where such a 

high degree of symmetry is net expected to Occur. 

This thesis is concluded with a summary of the present kno\dedge and 

suggestions for further work in the field of wave collisions. 

3 



<' RELEVANT CONCEPISAND METECDS 

In order to facilitate the discussion of planewave collisions it ,rill be 

convenient to make use of certain relevant topics which will be briefly 

introduced in the following sections. 

§ 2.1 Notation and Conventions 

We begin by introduoing the notations and conventions whioh have been 

adopted '"ithin this thesis. 

The form A)IA. or, when oonfusion ,>±th tensor indices is not possible, filA. 
will be used to denote partial derivatives. Covariant derivatives "'ill 

be distinguished by a semi-oolon thus A;I'. It is assumed that spaoetime 

is a pseudo-Fiemannian Manifold having a symmetrio affine ocnnection Jl~~ 
and a metric ~I''' >li th signature (---+). The Riemann curvature tensor "t" 
is given by 

here the greek letters, denoting tensor indices take values 1, 2, 3, ,1. 

The covariant symmetric Ricci tensor and the Ricci scalar are formed as 

follows 

~Y - r<;v~ 

R = R 0( 0<. 

The Weyl tensor is given by 

Einstein's gravitational field equations are given by 

4 



Hhere ~1I is the Stress-Energy tenser and,le. is decined by 

Square and reund brackets will be used to denote symmetrization and 

antisymmetrization respectively, e.g. 

The symbols 9Cx} and 1)Cxh,ill be used to denote the Heaviside unit 

step function and the Dirac distribution respectively. 

§ 2.2 Ccngruences in Sracetime 

Congruences in a regien of spacetime are three parameter families of 

curves such that there exists a unique curve passing threugh each point 

of the region defined by 

5 

__ .. (~.1) 

... 
where the ~ are the three parameters identifying particular curves of 

the congruence and r is a parameter along each. A tangent veotor to 

each congruenoe is given by 

and the congruence is null 'N' lu 

I.I'L 
r<. I<j" = o 

The congruences are gecdesio if their tangent vectors are parallelly 

propagated along them, i.e. 



6 

The parameter r is a~fine a'-cng the geodesic ccngruence iff )..= 0 

§ 2.3 Tetrads 

At any point in spacetime it is possible tc define feur linea~ 
independent basis vectors 

et? 
"here i(=1, 2, 3, 4) labels each vector. 

These may be chosen to satisfy the orthogonality relations 

r )I e· e· L J -- ~ij ___ - 6 .. .4') 

>ihere n .. is a constant matrix "hich can 12e interpreted in terms cf the 
-L~ •• 

frame components ef the metric tenser. Its inverse is denoted by ~~ 
and these constant matrices may ce used to raise and 101;er tetrad indices. 

Any vector may be represented in terms of its tetrad components thus 

____ (2.5) 

and similarly for any tensor 

T 
ItL..... . 

- frJn" ...... 

In this thesis the notation of Nel<man and Penrose (1962) is adopted. 

This has also been described cy Pirani (1964) and Carmeli (1977). In 

this notation, tetrad vectors are labelled separately as 

f" e· -t -
hI' 

J 
m/' 

} 

v/here {fL and n. r are real, future pointing null vectcrs. The vect cr m r' 
-p 

with its complex conjugate m are complex pseudo null vectors. They 

are also required to satisfy the relations 

= -1 ) 
(2. ~) 
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and thus 

0 0 0 

~ii 
JA I 0 0 0 

e~ e. jf" 
0 0 o -I 
0 o -I 0 

From this it follows that the metric tensor can be l'Iritten 

It is often convenient, when using the Ne,~an Penrose formalism, to 

adapt a null tetrad so as to align the tetrad vectors to given congruences 

at each event. A transformation "hich preserves the null LI'" direction 

(null rotation) is given by Pirani,(1964). 
I 

(A. = Y<. t~ 

is e 
(2.10) 

Where Rand S are real and T is complex. Using this it is possible to 

transform the nJh vector into any other null vector satisfying the 

orthogonality relations (2.8) 



§ 2.4 Spin Coeffioients 

The spin ccefficients are the tetrad components of the covariant 

derivatives of the tetrad vectors. They can conveniently be defined in 

the form 

~;y = (<f -+ ~)~,v -+ (C; -+ €) ~nv - ()(+~)(um)l - ~1"f3)~yY)." 

- &-~my + fPf-'mv - 7: mJ'" t.V k~Y1v + 

8 

- 7:' "?;-< .('" - kml"nv +;0 lij,...tnv +- er P1/" in V (2.11) 

+ Y m)"ty +7rhl,Pny A ~111" - //J1JAt0v 

t Y"??t y 
- - XM)"mv -/~mv +/1 fY?)"ny 

m,.f" = ytl"tv -+ 7T tjAtLv -jA ~""v - A ~,;;v 

- 7:nr {" - k~rzv -+ 11J)"/Y1v -+ er '?I-' IYJ", 

With this definition, some of the spin coeffieients have a simple 

geometic interpretation which will be discussed in section (2.5) 

§ 2.5 The Optical Scalars 

Equation (2.11) may be contracted to yield the instr;nsic derivative 

(2.1~) 

Comparing this with the equation (2.3) implies that the null congruence 

tangent to tl'" is geodesic iff Jc..: 0 Consequently k is referred to 

as the refraction since it mea~ures the deviation of the congruence from 



the geodesic. 

affine then 

In addition if the parameter along the congruence is 

Further, the RIl.I' ,};'I' and Icrl.define the contraction tJ,'ist and shear of 

the congruence for ",mall change in affine aprameter respectively and 

t argt5" define'" the shear axis. These quantities are often referred to 

as the Optical Scalars (Ehlers 8. Kundt, 1962) and are given explicitly 

for t~(E+E)=O as follOl;S 

expansion 

twist = 

( r" ~ :t)'''-

9 

shear = /0-/: i tY.iV) t ) - t {{. 51"1 
For the congruence tangent tonf4the spin coefficientsjP ,-A ,-Y,-y 
correspond to jJ , (J", I( , e respectively. 

S 2.6 Components of the curvature and Ricci tenscrs 

In the Newman Penrose formalism distinct labels are given to the tetrad 

components of various tensors. 

Corresponding to the ten real independent components of the Weyl tensor, 

there are five independent ccmplex tetrad components which are labelled 

as follovlS 

1:0 = 
C ('( ). (/' v 

K-)uY In /YI 

Y, = 
t( Atf" V - C)<).r y. It /11 

tJ.. C I!).( jJ'''' r- V; (2../~) = - J )c)..."... V .( r1 l 11. rntYJ 
;{ 

1:3 It A I"'_y 

= C le )..1"" Il t 11. "" 

't/;. C K A jA 
y 

:: lCAro-YIl ;;; I'l in 
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Szekeres (1965) has given a physical interpretaticn to these components 

as follO\'1S: ~ and 'j; (or ~ andJ?<; ) describe transverse and longitudinal 

gravi tational wave components in the nf(or C') direction respectively. 

1i denotes a coulomb component. 

The Ricci tensor may also be written in terms c~ the Ricci scalar and 

nine components of an Hermitian three by three square matrix 

which are the tetrad components of the trace free part of the Ricci 

tensor as follows: 

= 

= 

...... 
.2o~ :: 

2,z. = 

A ... 

I 

2 

I -4-

I « ~ " - 2-
Y''I n. Il 

I I<)"Y t~ V - Lo --2 
Ii -

I ~Y m/m = ;i;{o --2 

/' " :£ _ ..!.. ~)l1l t'YI = u 
2. 

R. -
2~ 

(2.Il,) 

For electromagnetic fields it is possible to use the gravitational field 

equations to put -

where thej?A are the tetrad components of the Electromagnetic Field 



tensor ~Y defined by 

(2.17) 

-£2. ::: 
§ 2.7 'Ine Ne,1!nan Penrose Formali sm 

We n01< introduce the Intrinsic derivative operators of Newman and 

Penrose. These are the covariant derivatives taken in the direction of 

the tetrad vectors and are definedby 

D( ) = ( );)A t/
A 

LH ) ( \t'n r 
= 

~( ) = ( )0/'" mr 

~( ) = ( ) -I" 
;jA IYI 

When operating on scalar functions ~(Xl')these operators are generally 

non commutative. A complete set of commutator relations are defined in 

the Newman Penrose formalism and are given by 

(SD-'])'l.) 1> = (~+j3-;r)1)tfo +KL.\ ~ -CT~9'> - y+€- E) at/> 

11 

(SLl-Ll ~)1> ': -y DC; of (T' - PC -j3)t.cp + >. s cl> + 0-~+)') ~4> 

(~~ - ~~)~ = (; 7rf)rp + ~"7 )A~ ~ fs-;Z)~4> + (~-P) bt 
, ___ (2./~) 
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Elf substituting the tetrad vectors into the Ricci identity 

it is possible to generate a series of complex scalar equations relating 

the intrinsic derivatives of the spin coefficients and the components of 

the Ricci and Weyl tensors. These are essentially the independent com

ponents of the Ricci identity and form the first set of the Ne.~an 

Penrcse identities. The second set consists of the Bianchi identities 

which are written in terms of the tetrad components of the Weyl and 

Ricci tensors, their intrinsic derivatives and the spin coefficients. 

The full set of identities may be obtained from the literature cited. 

In the Ne"ooan Penrose formalism Maxwell's equations for source free 

(electrovac) fields may be lITi tten in the form 

D.~~- 8~, = -A~o +~Trp, +0-1G)~2 

S!l,-/).~() = ~-l?f).fo +1r§, - 0-2; 

§ 2.8 The Polynomial Curvature Scalars 

In this thesis we are concerned with the description of regions of 

spacetime where certain types of plane waves collide and interact. It 

is an interesting consequence of these collisions that in some cases 

singularities can develop in the region of interaction. Furthermore, 

in many cases the singular structure which develops is coordinate 

independent and accordingly is interpreted as a physically real con

sequence cf the collision. 

In order to distinguish between those singularities which are real and 

those which occur as a result of coordinate choice, use may be made of 

the fourteen Polynomial Curvature Scalars (Kramer et al 1980) symbolized 

by 

) 
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These fall into three groups: the Pure Weyl Scalars, the Pure Ricci 

scalars and the Mixed scalars. In constructing a computer algorithm for 

the calculation of the Weyl and Ricci tensors, relative to a complex 

null tetrad, Campbell and Waimrright (1977) have she>:n that the NeHman 

Penrose formalism allol-Is a simplified representation of the Polynomial 

Curvature Scalars. In this representation, the scalars are expressed 

in terms of the tetrad components of various tensors. The Weyl scalars 

are given by 

The Ricci and Mixed scalars may all be obtained from the references 

cited. 
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3 PLANE WAVES 

Following Ehlers and Kundt (1962) and alsc Pirani (1964), algebraically 

special type N gravitational fields will be identified as plane fronted 

if they ha,ve vanishing h,ist, shear and expansion*. 

§ 3.1 The Planewave Spacetime Metric 

A suitable metric for the discussion of Planewaves, due originally to 

Brinkmann(1923) and described by Peres (1959) and T~~eno (1961), is 

given by 

Choosing a null .tetrad in the form 

(3.1) 

(3.2-) 

then the only non zero spin coefficient isV and thus the congruence 

tangent to I//\s not geodesic. The congruence tangent to {/J. which is 

'aligned with the field, however, has parallel rays etc. Consequently 

'"V' '. the field is identified as plane fronted with null coordinate ~ 

Choosing (X')X~:x~'X.4-)= (y)X.>~.>U) 
then the non zero ccm:ponents C'f the Ricci & Weyl tenscrs are given 

respectively by 

(3.4) 

* cf Bcndi, Pirani and Robinscn (1959) 



15 

It is sometimes convenient to >Iri te H in the ferm: 

(3.5) 

"here JCX,'';}) is an arbitrary solution of Laplaee's equation 

Comparison of (3.3),(3.4) and (3.5) implies that 

1:.. ~~ 
ix.x 

It is new clea.r that the rresence of the functions h(u..) andjJ(U.) in 

the metric define the type of wave which is rropagating. In particular 

if h(u) = 0, then the metric (3.1) describes a plane gravitational ,"ave 

and equation (3.5) may now be re-written in the more general form 

H(v..;x.)'j): ~(()...)(;x:2_y'Z.)+2h(v..)x.~ +C(v..):x +cl.(I.l)~ + e..(u.) 

____ (~. '1) 
A linear transformation 

1.1.: (1 
X = X + o«v..) 

J .:: Y ..,. t (lA) 

V = V + o<:'x .... 13' Y + )'(IA) 

where primes denote the differential coefficient with respect to u> 

puts the metric (3.1) in the ferm 

dsZ = zdlldV + dll[j(v.) (X:' y2-)+ ZbclA)XY] _ dXZ-d. y2.. 

___ . (3,,)) 
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providedoC;,8 and't satisfy 

11 

hp 0( + 90( + + £. 0 -2 

~1I :Jp + be>( + J. 0 ('3,10) -
~ 

Equation (3.9) is then the general metrio defining a plane gravitational 

wave. For reasons which we shall shortly give, it is appropriate to 

regard the function Jo(u) as a polarizaticn function for the ,",ave. It 

does net, ho;'ever, appeal" possible to set 10 = 0 Joy a further transf'orma

tion unless £ is censtant. 
g 

When this condition is satisfied, ho,,'ever, the cocrdinate rotation 

x XCos f) ~Sine 

y - :XSi.r\ G + ~ COS & 

where.. (): l tQJ1 -, o/!~ ) 
gives the metric 

When transformations of the form (3.11) are possible (i.e. 

constant) the wave has a constant polariz,ation. Otherwise 

variable polarization. 

h 
b. w en - 1.8 
g 

it has a 

( 3 .n) 

The pclarization of a gravitational wave may be interIreted in terms of 

the shearing of the congruence crlhogonal to the direction ef propagation 

of the wave. Essentially a ring of test particles in the x, y plane 

would begin, v,i th time to form into anellirse as the wave preragates 

perpendicularly threugh it. In the case of a wave with constant polar

ization, the x and y coordinates may be rotated into alignment with the 

major and minor axes by rotations of the type (3.11). Variably rolarizedwaves 

will have shear axes which rotate with time. 



In a similar way if )'Cu.'.f'XJIj>:Oin equation (3.5), then it is always 

possible to write 

In this case the metric (3.1) describes a pure electromagnetic planewave. 

3 3.2 The Metric in Rosen Form 

The metric, due to Rosen (1937) 

('3.11) 

where the B ij are functions of u or v only, is more convenient for the 

discussion of planewave collisions. 

Equation (3.9) may be transformed into the metric (3.13) by the 

transformation (Kramer et al 1980) 

I.L = IL 

'I(,:oO'X+,y 

:J = S X -#- rY 

V = V+ i (D<f>(.' + SS,)x-t + i (f8ft'+ 'r'~/)y~(pp(l+ 'r'S)XY 
where « ,~ ,'t and S are functions of u chosen to satisfy 

"," + 1'" -#- b$ ,,0 

(/' +9' ;. br " 0 ('J.1.5) 

yH_ 9¥ -4- h, = 0 
// 

S - 9S -4- b", = 0 

and the condition 



,The metric now takes the form 

In the case of constant polarization (3.14) transforms the metric 

into the simplified form of (3.16) with I = $ = h '= 01 

(3.12) 

where now (3.14) corresponds to the transformation of Khan and Penrose 

(1971). 

In the case of a pure electromagnetic wave where f(U.'JjCXJY>:::' 0 

the metric 

can be transformed into the form 

using the transformation 

"=Li. 
V = V + i (X:t+ y')",p(' 

x..",X 

where «. = It {(J.J , 04"= - h '" 
respect to u. 

S 3.3 Plane Wave Profiles 

and primes denote differentiation with 

Although the profile of a plane wave may be arbitrary, many of the 

solutions in the literature corresponding to plane wave collisions 

have generally been for reasons of relative simplicity, either impulsive 

or shock wave types. The imposition of these profiles is helpful in 
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the process of obtaining exact solutions from the otherwise very 

complicated field equations. However, whether these solutions are 

physically realistic is a matter which turns out to have SOme relevance. 

In equation (3.7), by setting 

!-D,. '111,"&ll'L ",a.vef 

fD" JltDdt wart,S 

the Brinkmann metric given by (3.12), for gravitational waves, under 

transformations of the type (3.14) yield the respective Rosen metrics 

(3,11) 

(3,19) 

for impulsive and shock waves respectively. 

are similarly described by setting' '= 0 
Electromagnetic shock waves 

.f. h= as,", lA (M) 
Transforming to Rosen form gives the corresponding metric as 

The metrics (3.18), (3.19) and (3.20) are singular on U; 'i'a. ,U=11/,za. 
and ":: 1I"'ha respectively. Hcwever, these are clearly ccordinate 

singularities since they can be removed by transforming back into the 

Brinkmann form which is regular everywhere. 
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4 THE COLLISION PROBLEM 

We now consider the spacetime containing two plane'>aves in collision. 

It is possible to make a Lorentz transformation to a frame 0" reference 

in whioh the two fields a~proaoh each other from exactly opposite spatial 

directions. A field of tetrads may now be introduced such that the (~ 
and n~ vectors are aligned with the propagation vectors of the two 

waves. Two null coordinates, u and v may also be chosen so that the 

wavefronts of the twc waves prior to the collision are represented by 

the hypersurfaces u : 0, V : O. 

The spacetime may be represented as in Fig 4.1 and the collision problem 

is set up by specifying the metrics in regions I, 11 and Ill. Region I 

is usually taken to be flat (H : 0) and regions 11 and III describe 

incoming planel;aves of various types. Possible metrics for these regions 

have been described in Chapter 3. In terms of the Petrov classification 

(Petrov 1954), the planewave metric (3.1) descrioes a type N gravitational 

field and consequently with appropriate choice of tetrad the gravitational 

waves in regions 11 and 11 are defined by the Weyl components~ and~ 
respectively. The Ricci comronentsTu and.1'. respectively represent 

plane electromagnetic waves in these regions (see Fig. 4.1). 

The problem now is to determine the field in region IV. This is to be 

done by solving the field equations in this region subjeot to the appro

priate Junction Conditions for the II/IV and Ill/IV boundaries. Prior 

to oollision, the spacetime is determined and thus a unique solution is 

expected in region IV. An ar'propriate uniqueness theorem has been 

obtained by Penrose (1980). 



21 

u v 

time 

ID 

I 



22 

It is appropriate to use the Rosen form for the metrics in regions 11 

and III rather than the Brinkmann alternative. This is because it is 

convenient to continue to use the same two null coordinates in region IV 

also. 

Suitable boundary conditions for joining solutions in the four regions 

are those of Lichnerowicz (1955), Darmois (1927) or those of O'Brien 

and Synge (1952). In fact the Lichnerowicz and Darmois conditions have 

been shown to be essentially equivalent (Bonnor and Vickers 1981). 
Many solutions published satisfy all of these but the conditions of 

Lichnerowicz and Darmois do not permit impulsive gravitational waveS. 

Appropriate conditions in this case are those of O'Brien and Synge (1952) 
(cf. Robson 1973). Bell and Szekeres (1974) have shown that, in the 

case of colliding electromagnetic waves the Lichnerowicz conditions 

cannot be satisfied and therefore in this case, these conditicns must 

be relaxed to those of O'Brien and Synge. The O'Brien Synge conditicns 

all~impulsive gravitational waves to be generated by the collision. 

Since similar forms of the metric are considered in all three regions 

and the wavefronts of the two waves are given by u ~ constant, 

v ~ constant, the fact that the O'Brien Synge junction conditions are 

not covariant does not restrict their imposition in--this case. 
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5 GEOMETRICAL CONSIDERATIONS 

In this thesis we are concerned I'd th sclutions \"hich descri re the 

interaction region IV for varieus colliding h'aves. It is rossible to 

establish a geometrical interpretation of these solutiens via the s;:in 

coefficient formalism and the optical scalars. 

§ 5.1 The Focussing ef Congruences 

Penrcse (1966) has sue::gested that null geodesics suffer a :"ocussing 

effect !;hen traversing regions ef spacetime rossessing Weyl and/or 

Ricci curvature. Moreover, he ha.s proresed that such "ocussing may re 

used as a measure of the total energy flux (matter rlus - gravitational) 

across the ray. Such focus sing ef null geodesics may be seen to be of 

relevance to the collision problem in a manner which will nO" be 

described. 

lP, 
The tetrad vector" lS first aligned with a null geodesic congruence 

and an affine paramawization is assumed O(-E+l.0). Furthermore, 

if the tetrad is chosen se that £=0 then under these conditions the 

first two equations of the Ne"wan-Penrose formalism are 

~ -",-'" -+ <r<1- .. :£00 
])~ = ftJ"'";;ntr + ~" 

, 1".1.) 

The above equations show that initially shear, twist and exransion 

free congruences (i.e~.lf'aO), \\'ill remain so, provided they extend 

through regions ef spacetime where .. ., 2'0. 0 . HO\;ever, 

if the congruence extends in to a region ;lhere"'.,>O (e.g. it meets 

an o.,posing electromagnetic >rave), it >rill, from (5.1) start to contract. 

This is inter;:reted as a pure focussing of the congruence since it 

remains shear free. It may be ncticed that since~o is necessarily 

positive for an electrcmagnetic wave,geodesio congruences meeting it must 

contract rather than expand or at least reduce their rate of expansion. 

In a similar way when the congruence enters a region where ~:J:O 
(e.g. it meets an ep1'0sing gravitational Kave) then in this region, :Crom 

(5.2), it will start to shear. This in turn, hc!·:ever, frcm (5.1) .'ill 

induce a corresponding contraction and effectively the congruence is 

astigmatically fccussed. Again the term'''' in (5.1) is necessarily 
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positive, so opposing geodesic congruences must contract. 

It turns out that where singularities OCCur in colliding planewave 

solutions, they do so on the hyrersurfaces on which congruences are 

focussed. HOl-1ever, in the case of the single ;lanewave metrics 

described by equations (3.18), (3.1S) and (3.20), the actual congruences 

which are focus sed by the fields they extend into, are not themselves 

defined by a physical field. The singularities in these metrics are 

therefore Coordinate Singularities. Furthermore, when calculated, the 

appropriate Polynomial Curvature Scalars are everyl.;here zero in the 

regions which these metrics describe. 

S 5.2 Tv£es of Collisions 

Since we are here concerned with plane 1,rave collisions it is assumed 

that both incoming 1Caves initially follow expansion free and shear free 

null geodesic congruences. This survey is also restricted to solutions 

descri bing collisions involving gravi tati cnal and electromagnetic 1,aves, 

we have therefore fcur possibilities. 

(i) Gravitational waves colliding 1,ith gravitational ,raves: 

If the gravitational waves are considered to follow null geodesics 

after the collision, then both congruences are induced to shear and 

hence contract. They may therefore be considered to mutually focus 

one another astigmatically. 

(ii) Electromagnetic waves colliding with electromagnetic waves: 

In this case, after the collision both congruences are induced to 

contract and hence are considered to mutually focus each other. However, 

in the Bell-Szekeres solution, the step electromagnetic lCaves develop 

impulsive gravitational waves due to the collision which lie on the 

II/IV, Ill/IV boundaries. These im,ulsive waves introduce shear into 

the interaction regicn and astigmatic focus sing results. This effect 

is not due to the nature of the initial conditions but turns out to be 

a necessary consequence of the field equations which ,rohibit rure fccus

sing for a collision of this kind (cf. S 9.1) 
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(iii) Electromagnetic waves colliding with gravitational waves: 

Here the congruences associated with both waves are induced to contract. 

Those which are defined by the gravitational wave remain shear free but 

those associated Id th the electromagnetic ,·;ave are induced to shear. (It 

is this shear •. 'hich essentially develops the contraction along these 

congruences). However, according to a theorem of Mariot (1954) and 

Robinson (1961), null electromagnetic fields necessarily rroragate 

along shear free null gecdesic congruences. Thus, in the interaction 

region, the electromagnetic f'ield is non null. The develo,ment er the 

shear induces a partial reflection er backscattering ef the ,,rave as it 

collides with the gravitational Nave. This can be seen from Max','ell's 

equations (8.2) (c) and (d) directly; extra Man;ell components are 

necessarily induced follo,,cing the develorment of shear terms ~or ~ 

respecti vely). 

(iv) Mixed electromagnetic-gravitational Nave collisions: 

Opposing congruences traverse regions containing both Weyl and Ricci 

curvature in the spacetime and. consequently contraction and shear 

develop along both sets of congruences. 

These qualitative features have all been confirmed by the exact solutions 

desoribed later and the focussing properties disoussed are found to be 

associated with the development ef singularities in the interaction 

region. In rarticular, Szekeres(1965) has given a theorem which requires 

that Vacuum soluticns for the regionlI'must necessarily develop a ~ 
Weyl comronent. The componen:hs which define the waves also continue 

into the interaction region and collectively these components become 

unbounded on the spacelike hypersurface on which the two waves are 

mutually fccussed. The appearance of the~~term ensures that certain 

Polynomial curvature scalars also become infinite on these hypersurfaoes 

and coordinate free singularities develor. The Rosen metrics in Regions 

II and III are also singular on the hypersurfaces on whioh the opposing 

oongruences focus. HmJever, only one of these cpposing ccngruences for 

each region, is defined physioally by a given field. Accordingcy no 

interaction terms are present in these regions and the singulari ties 

are thus coordinate related. 
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6 THE FIELD EQUATIONS 

The field equations for the interaction region are now derived and 

expressed in terms of the metric coefficients. The deri vaticn follo'cs 

that of' Szekeres (1912) and the generalizations 0:' Grif:'iths (1976) in 

crder to account for solutions involving Einstein-MaJCl<ell fields. 

It is possible in Regitn ,IV to choose two null vectors which are aligned 

with the propogation vectors of the two waves. Provided that the fields 

continueto follow tlvist free null geodesics these can be given by: 

where A and Bare arbitrary functions of the coordinates and the '!ave

frents of the two waves are given cy u = constant and v = ocnstant. 

Thus u and v are two null coordinates associated with the tl;Q waves. 

Choosing 

then 

The orthogonality relations 

the tetrad vectDrs are 

) 

(2.8) imply that general expressions for 

t"M =: (0, yR, y3, 8) 

n'":: ell I ><.1., x', 0) ((,,3) 

ml"":: (0, j~, 5') 0) 
l t L 

Where Y ,)( and §,(i = 2, 3) are functions of the coordinates to be , 
determined. The Jt are complex. 

We now follow Szekeres (1972) in the assumption that since the metrio 

in regions I, 11 and III has no dependence on the x and y ooordinates, 

no such dependence is expected in region IV. Accordingly, the assumption 

is made that the metric components and spin coefficients are functions 

of u and v only so that when applied to these quanti ties the intrinsic 

differential orerators become: 
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D 
v B2 - d .t = 

;}XV dV 
b. :: 1. nY = IIJ (b.4-) 

;JxY ~ 

~ = 2. m
ll - 0 -(};x.V 

The assumTticn abcve is justified in thet is successfully leads to 

exact solutions. 

The coordinates may nOW be related to the tetrad and spin coe~ficients 

by substituting the coordinates into the commutation relations of 

Ne,l1lan and Penrcse to g-ive the metric equations as follo,/S 

])fi = - (€+E)fI 

!:lB::: (0+1)8 '. 
LlY£'DxL= ('(+i")Yi. + (E.+E)X i -4o( §l_4;<gL 

• • 

D5 i: ~+ E- €,) j~ + er-~' 
10 .. ~~, 

~~L:;: _ Y + 'Y-'Y) f - A ~ 
.-- .- - - ..,-~ 

Ic=y=o ~/'=I'.J/A r" 1= I>( ~ -r~ TT::; ~ 

(~. 5") 

Szekeres introduces the redefined quantities which are invariant under 

scale transformations er the form (2.10) for T = S = O. These are 

The first two metric equations can be written 

(c+e) = - B (lc~ A)Jv 

6"+ y) = 11 { ~ 8),u. 
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Only scale invariant quanti ties will be used in future and ccnsequently it 

is nOw ccnvenient tc drop the invariance indicator (0). Writing eM.: A B, 
the metric and field equations may no", be >'ri tten as follows 

• • M. • 

YL XL --(. -") 
) lA - IV = - 4- e.2. P( S ..... ';;( § 

( ) 
~ -i.. 

= f+ t E § + 0- ~ 

~ ~.."t 

=-Cr-i.C)§'" - A ~ 

I'-- lA = -2.f.'1'" - ~;( - ¥" 

/-)V = 5o.?- + 4c<~ 4- ~II 

JA)LI.. = -,p-1. - >J. ? 11) u.. -:£.'4 

o;v = c:r(:y, -11~v+2i.£)+ To 
- _2 

~u. = -a-0 -2LC) -;>.A - 4-0< - Io3.., 

Cb.~) (a.) 

(b) 

}.,,, = ACt-'lLrE)+~,&-~4~+:t:w (j) 

A,v. = ->l2;-'- 4- M,v. + 2 L ~) - ~ (le) 

ri/v = 0< (~ -.f fV1,y - LE) + ~Cf -+ '£,0 (L) 

t><) u.. '" - IX (y. -+- h. f1,u. -t- i. C) - ;< A - £:2.1 (m) 

1 M)fl.v= -1 i (G,v - £;u..) + 120(0< -+,PJA - cr)..+zI" ~) 
). ~ 



:ii : ;p/" - ~t + 2i~ 

1) :: ~'" - 2 ~Z' r £.tt 

Using the method of Szekeres (1972) it is possible to choose 

~1 = e(U-VJ/1. { '/2. C.;sIt hi J'/~ e~ e 

~! = eCUi-VJ/tt '!~ CcoSh WJ".t eitP 

tadz 11 = Cos ($-~) where 

using the identity 

Then (6.9) can be written in the form 

Equations (6.8) (b) and (0) now give 
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(,,) 

(c..) 

El: -1 Vv SittltW, a fJ -:1, ~ s.iUd/, (b) 

t:r: .I. i Wv -.L Vv~.shJ/,J ,\.=1-i /J,,+f v>' c"oSh lJ ~) 
2. ~ 1, "" 

The expressions (6.11) may now be substituted into equations (6.8) 

(d) - (g), (i), (j) and (n) to give 
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ILIA-v = Uu Uv - ~ "';Z - 2 ftf (S,12) ("" 

,zUw= U; t W: + V: Ccsh'tW -lUvMv +- Ar£c 

2t,(uu: u: + W= -1" \{.1 CcshlW - 2Uu.Mu "" ~£:2. 

2WI4\": U", W'v + UvW", +2 V"Vv;ilthWeoJW+- gi(~!.",2) 

(z V"y - UI!. Vv - Uv V,,) Cosh W + ). (Vv ~ +' V" \Jv)s,rth W 

= S(oz.t+~t) +).(Zz +£1.C) 

.~. ',", 

(e) 

It should be noted here that equations (6.12) (d) and (e) are 

integrability conditions for the remaining equations. This means that 

if suitable expressions are obtained for V and W, satisfying these 

integrability conditions, then a function M exists satisfying the 

equations which remain. 

Equations (6.8) (k), (h), (0), (p) and (q) may be used to compute the 

curvature components as follows 

~ = -1 {VvVCcSh W~lVvWvf;J1kW- Vv(Ur~Mr)G1.JtWJ 

~1. {lJvv - Vv(llv-Mv)- Vv.zCcjhWJ~W} (~.13) 
1-

ii = flv« - ~(tWV- If.,CCj,Hv').,.;l'Oi (",1/f) 

~ = J..l1w- ,~~~ - ,l;.-i.(Vullv-U-~)",sltW 
.4 ~ 

__ __ a" 15') 
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~ = -1 [~U!5hW -t-2 Vu Wus.dzW-~(lIu-M")(cshWJ 

-1. f v"" -Wu(llu-Nu)- v: CcJhk!;-iJJhW 1 (6.£1) 
:4 

Szekeres' approach was tc notice that since in region I all spin 

coefficients are zero, then equations (6.8) (1) and (m) with~1 and£:f 

both zero imply ~ = 0 everywhere. Available transformations can then . , 
be used to put X' and Y' simultaneously zero. When this is the case 

the metric takes the Rosen form 

J.t=2e~"dJ/- e-~erc"hWdxZ+i~.shW~~-2f'l1kWcbJ~) l6.1i) 

With the metric in this form, the conditions of Lichnerowicz and Darmois 

are satisfied if U, V, Wand M are continuous and have continuous first 

partial derivatives acroSS the regional junctions. 

The O'Brien-Synge conditions differ, however, and when applied require 

continuity of U, V, Wand M along with a continuous first partial 

derivative of U only, across regional junctions (Robson 1973). 
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7 EXACT VACUUM SOLUTIONS 

In this thesis we are concerned h'i th reviewing the knom exact sclutions 

rather than with the techniques by ""hi ch they "ere derived. To this end, 

the knOh'Il solutions .!ill generally be considered in detail only h'i th 

regard to their structure in the interaction regicn fer which the Rosen 

metric coefficients will be given in each case. 

When dealing ,,'i th vacuum spacetimes l,e ncte the sim.lifying requirement 

§ 7.1 Colliding Gravi te,ticnal Waves with Colinear Polarization 

Comparing the metric (6.18) with (3.16) then 

sinh'vl :: "'~ +1(S ( 't.1) 
'fS -~o{ 

According to the discussion in Cha~ter 3, in the case ef constant 

polarization, it is always possible to put (7.1) identically equal to 

zero (i,e, ,-S-O) by the -uransformation (3.11). 

Colliding waves with constant colinear polarization are therefore also 

characteri zed by the fact that a sui table cocrdinate rotation can all-lays 

be made such that W = 0 in the wave regions 11 and III Simultaneously. 

Accordingly, in this case, since'W = 0 on the boundaries u = 0, V = 0 

then W must be zero throughout the interaction region also. 

The field equations then reduce to 

u = - L,~e (f,u> + '(tf») 

ZUUll-U! +WuMIl -= Vu.'" 

Z M»t + lluv -V~ Vv .0 

(e:.) 



where f(u) and g(v) are arbitrary functions and 7.2 (a) has been 

obtained by integrating equation (6.12) (a). 

The scale invariant curvature components become 
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~ - -f [VW - Vv(Uv-fl1v)] ('1, '3) (4) -
~ - -.1. Lv,," - v~ (Uu - fr{(,I.)J &J - .2. 

"f~ = fJ11w , ~ - .y; :0 (,,')(.1) -
§ 7.2 The Solution of Khan and Penrose 

The first solution of the vacuum equations(7.2) was given by Khan and 

Penrose (1971). It represents specifically the collision of two 

impulsive gravitational waves with profiles given by (cf. § 3.;) 

in .region 11 and 

in region III 

In Rosen form, the solution in the interaction region is given by 

e-I,( = 1. - u.,3; - V~ 

-v {( 1)'/: l( t 1/: 1 e = I-V -u. 1(/-") -V) 

{(I- Vz.j/~ + "Ha -u%/'.t+v J 

e" " (l_tb'J~(I_v%)f/,z["V +- (l_u:/,.t(I_vz.l~ f 
(1_ u:'- V.t)'IZ 

The scale invariant curvature components are given in the ,various 

regions as 

Region I: 
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Regions 11 and 111: all components are zero except on the boundaries. 

These are described by 

v~o ) u<o , :iio= 5(0 (':;,s) ,~, , 

«.~() , V"O : -:!"~ == $(u) (b, 
Region IV 

~=~ + 
f ~z 11::. (~G) (tt) -:Ju(J-LiL) _UY+(I_y1) (I-U,%.) J 

(I-U.:)'I:. (1- Uz_V.zP;(I- V2) 

~= $(""1+ 
{ 1ft I/~ J (1" 3v(l-v':) UY+(I-Y%) (I-Ll") 

V_VZ)V: (I_U~_V:I)'t(I-":t) 

(c.) 

It can be seen from the metric (3.18) describing the region 11 that 

a singularity is present on the null hypersurface u = 1 (a similar 

singularity occurs on v = 1 in region IIil This is clearly a coordinate 

singularity since, except for the boundaries, the spacetime is flat. 

Evaluation of the Weyl polynomial curvature invariants (§2.8 ) indicates 

that in region IV,these singularities on the null hypersurfaces u = 1, 

v = 1 are essential. This is in contradiction to a statement of 

Griffiths (1976). A further singularity, which is again essential, 

occurs on the spacelike hypersurface (see Fig. 7.1) 

and given by 

This is the hypersurface on which the two waves mutually focus each 

other. It may be noticed finally that the boundary conditions employed 

are those of O'Brien and Synge (cf. Chapter 4). 
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§ 7.3 The Particular Solution of Szekeres 

A solution describing the collision of Gravitational ·shock waves was 

later given by Szekeres (1970). Re~ions 11 and III are described by 

metrics of the form (3.19), with u replaced by v in region Ill. In 

the interaction region the solution takes the Rosen form 

e-U ::. 1. - u.,. - V~ 

v 
where 

f .::. f - u
if 

9 = f - V4'-
} 

(b' 

f1= 11.c9,r(l-uilJ(,-v~)1+ U + 3 t'a.nli1 r ul v%. 7 
I;- L j . 1 (;-UIf)'IJ.{I-v111j 

.• _. (J.) 

Substitution of the metric coefficients and appropriate derivatives into 

(7.3) gives the non vanishing curvature components in the regions as 

follows: 

Region I . All components zero . 

Region II ~= ,IID', 1_U.Jv.r :L ("1, f) Ut, 

Region lII: Jf,,= /G(f-V~)-Z (b) 

Region IV : ,Y~= 
j~ RN 4. 1p.-2. ~-~/z 

••• (I-Lt -V ) "-« ) (c.) 

Xo = 
.vi -z _1~ 
~,R.AI(I-u~-V~) (1- V, (cL) 

~:. :: ~ u.v[3 RZ_ z,,1.I(I-u.~J~(I-v+J~] f#) 

(1- "~- v"")::'(I-"·l~(I-V.r,.)~ 
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where 

On the boundaries we have 

for U. =0, V~O , re ::ii:o , y.". ~,/6 , 

for V= 0, (.«0 , Y4 = "f::..: 0 ~ ~=J" , 

¥o'S~=O 
-~ 

for u,= 0, V>O , , ~:: ,j6(;-Y"') , 

- ~ Y;;,A ~ ~rf2 for V=O, U>,O , y"" ::' ~ = 0, c:: b I-U , 

The solution in the interaction region is qualitatively similar to that 

of Khan and Penrose in that essential singularities occur on the null 

hypersurfaces u = 1, v = 1, and on the spacelike hypersurface 

The polynomial curvature scalars remain finite in the wave regions II 

and III as discussed in section (5.2) and consequently, the singularities 

on u = 1, v = 1 in region IV, do not extend back into these regions. 

The appearance of the coulomb component :2i in the interaction region 

for this solution and that of Khan and Penrose is not unexpected as 

indicated in section (5.2) also. Physically it is interpreted as a 

consequence of the scattering of the waves due to the collision. The 

various regions are represented by the diagram in Fig. 7.2. 

In this case, the boundary conditions of Lichnerowicz are satisfied. 
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§ 7.4 The Generalised Solution of Szekeres 

Szekeres (1972) later generalised the initial solution given by (7.7) 

as follows: 

With collinear polarization the field equations relevant are thcse of 

section (7.1) with 

The integrability equation (6.12) (e) can now be solved for some \I~ 
and to do this it is convenient to change the variables of V as follows 

treating V= \kf1~) 

Vu := ~\I oIF 
f{Ju. 

Vuv 

Vv:= 2Y.~ Jg ay 

~flifdj 
3f~9 cl" Liv 

Equation (6.12)(e) becomes using (7.9) (a), (b), and (c) 

The Euler-Darboux equation. 

(b) 

(1,10) 

Although this is essentially the approach adopted by Szekeres to obtain 

the particular solution (7.7), in this later work he gives a general 

solution of (7.10) as 

III 

VCf.9):. -(f+9fiJ f.!.r + 

(~,fl) 
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The starting functions Vt (fJ and \tic i) determine the waves up to the 

region of interaction. 

Unfortunately, as Szekeres has pointed out, it is very difficult to 

perform the integrations in (7.11). Instead he gives a solution 

obtained by trial and error but with the appropriate behaviour at f = 1. 
andd=i. This is given by: Z 

vT ' 

where now f = -1 - (a"ll G(tJ.) 

1 ::: f - (btt)f1
zBcv) 

and 

('1.ft) 

U is given directly from equation 6.12 (a), thereby allowing equations 

(6.12) (b) and (c) to be explicitly integrated giving* 

~/" M = [t - k,x,l. - ~("'-~1.).tJlc9il- a'\{I,- b~v tfz) 

+ /; l(7iD~e (1. _bff:Vtfz)'Iz.,.. f k;lo9c. (1- et' u.11')~ 

+1. )Oiz l"ge [(1111
• b flt.l.l' vrl~)'I1. .,.. (J -a'\l'1'1Yt- hf1z v t1t.)"z] 

,2 .~_ .. (,1-13) 

The general solution for the interaction region.in Rosen form can be 

expressed by the metric coefficients: 

* Using the relationship 
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e V= n 1- (bV)r1z/,1.+ (a.u.{"/:l tlltm_((f.U)l1f} Ift+ (bv)"sIZl kt/1. 
llf- (I"v)t1:jVz - (au) ,/z J. [{f-(auY'1 fZ - (b",jrli/l) 

.. _ _ _ (b., 

0( ~%. )l 'Ii 
e~:: [1_(a.u.)tl,_ (bVY"J[O- b'\/I1.).'(t_al1'Ll") ~] 

where .. - ---- ... 

~ considering the metric in region II (or III) the expressions 

simplify to functions of u only (or v only). Equation (6.12) (b) 

may be used to show that 

(c) 

It may be noticed also that for )e,~kl:r-2 ,n,= n,t='z' and 

wi th a= b= 1. , the solution reduces to that of Khan and Penrose for 

impulsive gravitational waves given in section (7.2). With 

k'r=~:z.:, -,/6 and f1"nz :: -1-, the solution reduces to the initial 

solution of Szekeres given in section (7.3) describing the collision 

of gravitational shockwaves. 

Although (7.12) is an explicit solution of (7.10), it only describes 

a particular class of collinear collisions for incoming waves, defined 

in region II by 

VU) = ~f Catth- f (f - f)t;~ 
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In the Brinkmann form (3.12), these have profiles t 

- (~.tG) 

and in order that the metric be appropriately behaved through regions 

I and 11, it turns out that f is not arbitrary. It is therefore not 

possible to choose an appropriate profile $(U') from which, in 

principle, f may be deduced*. Instead f is necessarily a continuously 

decreasing function from ;f(c)~Jf In a similar way g also decreases 

and the essential singularity which occurs on f+ 9 = 0 is inevitable. 

t Equation (7.16) does not reduce to the expression given by Halil 
(1979) which is incorrect. 

* Thus only specific forms Of$(u!) are included in this family 
of solutions. In particular the rectangular shock fronted profile 
described by the metric (3.19) is not inoluded in (7.16). 
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§ 7.5 The Solution of Nutku and Halil 

A solution,describing the collision of impulsive gravitational waves 

with non collinear, but constant polarization has been given by Nutku 

and Halil (1977). The technique used to generate this solution involves 

transforming the field equations into a form that is similar to those 

for axially symmetric gravitational fields. This similarity has also 

been pointed out by Fischer (1980). These equations are then solved 

using Ernst's (1968) technique before retransformation to the appropriate 

form for colliding plane waves. 

The solution takes the following Rosen form in the interaction region: 

where 

-ll Z l e == 1 - u. -v , 

-ff e = 

1. -7zX.L-7l) 
J.+ 'Z)(1. + 'i) 

- :%. 1. - Y.t 
(1-1P1)(J. - lA - V ) 
(1 - ~Y'.t., (J - VZ)~.t ' 

to(, I .t e u. .;(J-V ) + 

, -, -{(11-11. _ J 

t- 'Z"L 

and ("'-13) is a measure of the relative polarization. It may be noticed 

that from (7.17) withc(,::!S=O , (sinhW = 0) the solution reduces to 

that of Khan and Penrose (1971) for a collinear collision. 

Accordingly the solution is interpreted as the collision of two impulsive 

gravitational waves, initially with constant polarization but with polar-

ization vectors inclined at an angle Of(<<-P;) The polarization vec-

tors may be thought of as unit vectors directed along the major axes of 

the eiipsoids formed by shearing congruence bundles in regions II and III. 

c(andp are the angles which these vectors make with a coordinate system 

in the two space orthogonal to the direction of propogation of the waves. 

This solution has been further generalised by Halil as discussed in 



§ 7.6. The singularity structure can be deduced from the discussion 

given there. 

§ 7.6 The Solution ef Halil 

Utili~ing the same technique as in § 7.5 Halil has obtained solutions 

which generalize the results cf Szekeres (1972) to include constant 

relative polarization. The solution is given by (110.[.[ I(H~) 

lV = N+ ~il'LIJ< ... 10 _iLK) + N-(lilruK- tt/(+ qK) 
N+(,2.i/YLIK - ~I( ... ~U) + N- til11r·Hl.l( - fi'() 

where 

NZ = U ± I1V )11< 

p= u.11 g( u..) 

~= v"'g(V' 
a.nd 

,IX ( :t)V'l if ( :t)¥-t n=e p1-'j; +e.-1 1-p 

K'= 2- tin 

K relates the generalized solution above with the Szekeres olass 

through (7.15) bylK='<1 a.nd 2n=ni, 
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The expressiens generated ",hen these metric coefficients are substituted 

intc the field equations are exceedingly ccmplicated and the author of 

this thesis makes no claim to have been successful in verifying the 

result in this way. H01;ever, the solution clearly reduces to the 

apprepriatecollinearly pclarized results ef Khan and Penrose (1971), 

(i.e.~=~="J?z, K: n=l ) and Szekeres (1)72), (Le·lX= ~.::'1J'j.tK,rl=l)(Jl) 

This being the case, and until it can be shc'tl!l otherwise (using ccmputer 

techniques for example) we shall assume, for the lur;ose of ccntinuity, 

that the sclution satisfies the field equations. 

In the mere general case for "'= p::: 1Th/<. ,the solution can be 

;rritten in the reduced form 

e-U 
= 1- p;t_ C{-:t 

:k:' V;t -1\72 -1(~2 -11 e = (1- 1'11- q:.2) , (1- pt) , (1- q!) 
(i_p:l- Cf.1+:lp:t;..t-r 2P'l-JJ-p l Jl_~1.)/(.:L 

eY =flJ;:.t + elK /1-pl -+- )K 
\It _~4 - pJ /J - p1.. - '1-7 

= 0 
,,-hich is a Szekeres (1972) soluticn in ",hich n,,,,nt=;zn,'tZ1,,}(:t=2K 
and ",=6::1. 

further generalizaticns, ,..hich include relative rclarization 2nd fer 

,;hich ~1 ~ ~:1.' have not yet teen ::cund. 

The curvature ccmronents .i;,anc1.~giVen ty Halil, unfcrtunately do net 

reduce to the a,prerriate expressions given by Szekeres (1972) and are 

therefore incorrect. It is, hewever, understandable that such errors 

might arise in view ef the complexity ef the ca.lculations involved. 

Halil also claims that in addition tc the singule.rities ".-hich arise in 

the Szekeres (1972) solutions, further irregul'3.ri ties a.p;ear on the 

hypersur~aces 11J= 0 and 1.-1,]/': 0 "hieh dej:end on the relative 



polarization angle thus: 

''1.'= 0 

J.-'~I~ 0 

The minus sign on the right hand side of the first equaticn dces not 

ap:;:ear in the e.cocunt given by Halil (1979) en P. 125. 

§ 7.7 The Calli si on of Plane Gravi tati cnal Waves 'vi th Variable 

Polarization 
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Utilizing a method due to Gerooh, Panov (1980), has been able to 

construct neh' exact solutions describing variably polarized, colliding 

gravitational v'aves. Ho,",ever, vie have seen fit to express this result in 

the form of a theorem since it is sufficiently general as to profit 

from such a restatement. 

Theorem 

Given any V8.CUum solution describing an interaction ef collinear, 

constantly polarized gravitational waves, with metric ef the form (6.18) 

"here /1:/'1(iA,V) , V:V(u,v} ,W:.O and U= U(u,v, t then a new 

solution with metric 

(1,11 ) 

can be ccnstructed where the ne" functions 

, 
are defined by 

a': Lt 

-zV' z. -2V z e : X e +' OG siJl.Ztg 



, 
_f1 \/-A 

e = A e. 

I /1 V _t 
sitth W = e cc. X si.nZB 

where 9 is A. ~fUl:tut.t and 

47 

The non zero curvature components, which are not given by Panov (1980) 

are defined by: 

...ee."i'c
l 
=.L I [Pc +cdt1 l-l{Tvv+ ;;(Vv-Uv+f1v -Tv)1 
,~h.W i J 

+ Sirl;ZW'{ Yw _2 ( Vv - Tv - r iatt!t~VI) Yv 

- ( Y" Tv + fi.[U.-;11']J+l.vJ.'J/ r/ ] (~1'3) 

I#l:l: ~ -} faJllP'i,,_ Yvv_ Yv~d,t\l' 

fAv(Uv-f'lv)- TvYv 
2. 

i'CDsh.1.W' (Vv-Yvkl1:(JJ~ Tv)] (~1~) 
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+ 5fw'fYIU4 .... .t(K-~_ YufartJlWJ~ 

- (tTu + fl.f/L.-Mu7Jj ... y;t:..ItW] ("%5) 

..z;;~' = -f f..zAw'{ 1. ~ - Y ... - rv'saIt'l/ 

.j. 11. (u. -11. L ?; x. + u.wW' (V.-kltlJ.'y' -7.)7 ( •. U) 

R.~ '¥It . =: li - .L i;v (7,,t~) 
2-

.z;. $.' = -Si WTY,(v. -T..) - yJv, -Tv)] (w) 

wftvt. 
T: ~e-X , 

Y: 4+V , 

A = I"jL ~ J 

x-
l· [.,jL '" , 

It may be net iced that when the polarization parameter ~ is chesen to 
be Zero then: 

and consequently the curvature cemr onents reduce to 

"e Y; = to J Itn -p;, • 0 

~ 'T: = ill- , Itt1r~ = 0 



A coordinate transformation of the form (3.11), when arplied to the 

metric (7.21) in region 11, yields the new metric coefficient 

[ 
/ V-li 

ldXd.Y 5In~"'5~~ 

:t 1 -t V-LA )] + (CCS 9S - Sin s6X X ,e , IX 5"'1.B 
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It is not possible to choose ~ such that this coefficient is zero for 

all u. Hence, the gravitational >rave in region II must have variable 

polarization. 

Clearly in this solution, singularities qualitatively similar tc those 

found in the generalized Szekeres family ef solutions appear. In par

ticular, there is the real singularity occurring en the spacelike 

.hypersurface 

confirming the qualitative results of Sbytov (1976), which rredict its 

presence in spite of arbitrary wave polarizations. Coordinate singu

lari ties are again identified in the '.ave regions II and III where 

f=-j ,g=- f respectively. (cf. ~ 7.2, § 7.3 and § 7.4). 

No other particular or general solutions corresponding to variably 

polarized, colliding ;raves have yet been found, 

§ 7.8 The Collision of Plane Gravitational Waves without Singularities: 

An Incorrect Solution 

Stoyanov (1979) has asserted that singularity free planewave collisions 

are possible and in order to demonstrate this he gives the following 
,/ 

singulari ty free "solution". 

, 
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1'Ihere , 
and a. is a constant. However, it has been r,ointed out by Nutku (1981) 

that this metrio, in the interaction region is in fact a Kasner solution 

(Kasner 1921) in a different ccordinate system. He has also stated the 

required coordinate transformation demcnstrating this equivalence. 

More seriously Nutku (1981) has also pointed out that the matter tensor 

must be non zero on the bcundaries of the interaction region so that 

Stoyancv's "solution" is not a solution of the vaoull.'ll field equations. 

This oriticism has also been discussed by Tirler (1980). Stoyancv's 

"solution" satisfies neither the Lichnerowioz conditions nor the 

O'Irien-Synge conditions. 

In fact it oan be seen that 

LLI4.: - 8((J.) (f of. V. e~ + V BMrl 
-1 

Uv - - ~(v) ( 1-!- (). eM + V BM) -
and 

zlZ1- - - S(Ll' - -Rtf - -

(The negative signs in the last equations have been omitted by Nutku (1981 )). 

The Stoyanov "solution" thus requires null matter with negative energy 

density to be generated by the oollision. In fact it is the presence 

of this negative energy matter ,.hioh prevents the occurrenoe of a 

singularity, since it induces congruences crossing it to expand rather 

than contract (see Charter 5). This "solution" must therefore be dis

missed as unphysical. 

§ 7.9 The Generation of Ne1'l Exact Solutions: An Incorrect Theorem 

Techniques for generating new exact solutions from those already existing 

have been given from time to time. Some of these, where relevant, are 
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included in this work (Panov, 1979 and 1980, Nutku and Halil, 1977). 

However, Ray (1980) has given an incorrect theorem for the generation of 

new solutions describing the collision of gravitational waves with a 

relative polarization. 

These are derived, acoording to Ray, by use of either a Szekeres (1972) 

or Stcyanov (1979) metric. The theorem may be stated thus: 

To any oolliding planewave metric defined by 

there is associated a new solution with W= \v'lV) I 0 

- 2SiMWd~ (1-33) 

where 

J dIJ , - .±.V 
,csh\J(A"'ecsht\J-l) ~~ -

('M+) 

J ACDIh W'd \J = + VI -( AZeosh2W_l)"Z 

Thus given a solution of the type (7,3Z)then apparently with fr1=ff; l1=U' 

and using 

tMhV = cos~tMh VI 
t4M hi = iatt" sirth V 

where Cos/)(= ~r! then a new soluticn with W#O is 

are obtained by integration of (1,3~) 

(1,15) 

generated; (7.35) 

However, this is not the case and as pointed out by Halilsoy (1981), 

(7.35) are just the conditions required for a coordinate rotation of 
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the form (3.11) with &=! to diagonalize the metric every,vhere. The 

solution is thus not new but a constant collinear solution disguised by 

rctated space Coordinates defined by the single parameter ~ 

(cf. § 7.1). In the case of' ncn-{>ollinear but constant polarization it 

is not possible to diagonalize the metric in all the regions simultan

eously by rotations defined in this way. Instead, incoming waves are 

described by metrics "hich may be diagonalized separately by rotations 

defined by different parameters in regions II and III. It is this 

feature which distinguishes a ncn-trivial solution of the type (7.33) 
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8 EXACT EINSTEIN MAXWELL SOLUTIONS 

We consider first the case ef the collision 0" tKO null electrome,gnetic 

plane waves. In terms of fig. 4.1 8, ,:ave in region III 1dth rre'pogetion 

vectcr {f' is de:"ined, in terms ef the Ne,r.nan Penrose i'ormalism by the 

scale 'invariant Max;rell component ~D. A similA,r wave in region II, 
f' -() 

with J;rcy-ogation vectcr It 1<ill be def'ined by 11;:. . Using the cellec-

tive relations (6.6), the Max1;ell sca:'e invariant components may be 

defined as follows: 

Since we will use scale invariant quantities only, .e again drop the 

invariance indicator. Maxwell's equations (2.19) reduce to 

Equations (8.2) (a) and (b) imply thet §, is zero in region R since 

(8.1) 

it is zero in all the other regions. The Ricci comrconents,if" and £:zJ 
are ccnsequently zero everYVlhere and it fellows from the field equations 

(6.8) (1) and (m) that again ""= 0 throughout the sracetime. 

With the above condi,ticns, the metric fer the regicn IV will again be of 

the form (6.18) and the relevant field equations are those given by 

(6.12) (a) to (f) in conjunctien with the Maxwell equations (8.~) (c) 



and (d) which beceme 

§ 8.1 The Soluticn o~ Bell and Szekeres 

An exa.ct solution, sa.tisfying the field equations discussed above has 

been given by Bell and Szekeres (1974) and in the interaction region 

the metric takes the Resen (6.18) form 

e-ll = COJ (a.u. - bV"c,.Cj(cuL-I-bV' 

eV :: Cc5(£Ut-bv) 
CCS(ClU+ bY) 

where 

This solution describes the cellision of a pair of electromagnetic 

shock l'/aves in regions Il and III described by metrics of the ferm 

(3.20) (with suitable ohcice of coordinate for the argument ef the 

< cosine term). 

The only non-zerO components ef the Weyl curvature tensor are 

= - s (V) fhu) b fcut a.u. } 

'flj. = - 8(u.l g(v) a fattbv 
The metric is thus conformally flat in the interiors of all regicns 

but there are S - function discontinui ties in the curvature tenser on 

the II - IV and III - IV boundaries. These may be interpreted as 

imrulsi ve gravitational "a>ves generated by the ccllision. The 
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discontinuities are permitted by USe of the O'Brien and Synge junction 

conditions (cf. ChaFter 4). Bell and Szekeres have shown that these 

discontinuities necessarily arise so that the Liohnercwicz ccnditions 
cannot be satisfied in this case. 

In region IV both contraction and shear develop and it is reasonable 

to suppose that the shear is induced by the im;ulsive gravitational 

wave and the contraction by both the electromagnetiC field and the 

shear. It might thus be argued that solutions desoribing colliding 

electromagnetic waves "i th mOre general profiles 1<ould, due to the 

absence of impulsive gravitaticnal 1<aves,remain shear free. HO>Jever, 

this tumsout not to be the case as 1<e have argued in Chapter 9 and it 

seems that pure focussing is prohibited in these collisions as a con

sequence of the field equations rather than 1<ave profile. Curvature 

components thus necessarily develop at least on the boundary ef the 
int eracti on regi on if not wi thin it. 

The solution (8.4) is singular on 

t Ca" + by) = 17/1 

However, except ior the imFulsi ve waves on "= 0 ,V= 0 the curvature 
a.re components are zero and the Maxwell field componentsAeverywhere finite on 

these hypersurfaces. These singularities are thus coordinate singulari

ties and a coordinate transformation 'ihich removes them is given by Bell 

and Szekeres. (Cf. Fig. 8.1) 

The solution in the interaction region IV is there~ore a conformally 

flat~ non null Einstein-Max>Jell field. Thus acccrding to a theorem of 

Tariq and Tupper (1974) it must be transformable to the solution ef 

Bertotti and Robinson (Bertotti 1959, Robinson 1959). 

A further solution may be obtained trivially frem th2t o~ Bell and 

Szekeres by assuming Y=O and "/:FC region IV in 1<hich case equation 

(6.12) (d) is identical in form to that of (6.12) (e). Hence 1<ith.i"" 

real and £i. imaginary the solution region IV is 

_u 
e = Cos(a.lA-bv),Ccs(au. +bv) 
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w 
e. = 

In this case, incoming waves are perpendicularly rclarized and the 

polarization of the induced imrulsive gravitational ;]aves is also dif

ferent. This again will be transformable to the Bertctti-Robinson 

solution. Indeed it seems likely that for the gecmet~ of the inter

action region to deviate from that o~ Bertotti and Robinson at all,then 

solutions describing collid.ing electromagnetic waves with more general 

profiles must be found. No such generalizations have yet apr:eared in 
the literature. 

This lack of available solutions is unfortunate since the Bell-Szekeres 

result is the only examrle of a singularity-free planelvave collision. 
(Hmvever, cf. Chapter 9). 
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§ 8.2 The Gurses-Halilsoy Extension 

An extension of the Bell-Szekeres solution vTi th seme interesting 

features has been given by Gurses and Halilsoy (1982). Here a number of 

Bell-Szekeres type shcck waves are surerposed in a manner ",hich allo'''s 

the essentially ccn~ormal structure of the Bell-Szekeres solution to be 

retained. Imrulsive gravitational waves are Similarly generated by the 

collision(s) and these divide the interaction region into a number of 

subregions with confcrmally flat interiors. More preoisely, if in 

region II there is an electromagnetic wave described by the metric (3.5) 

wi th !' = 0 and 

M 

h(u.)= r Ai S(U.-u.{), 

i = 1 

then, after appropriate trans"'ormation to Rosen form, the metric may be 

wri tten as in equaticn (3.17) with 0< = )' = COS P 

where 

~ 

p= r a.i(U-Ui)6I(U-W) 
i:f 

such a solution is rossible iff 

Ui > Uj • 
t 

!I, = 1 at ~ il; - at 
;=/ 

r ai ( 11; - liJ ::: mjtT' 
L <.j 



A similar argument applies to region III where the quantities 

Si , bi , Q andN correspond to Ri , ai ' P and,A1 of region II 

respectively. ~ is given by 

-- t 
t=1. 
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These sets of constraints oan then be used to show that in region IV 

the following solution satisfies the Einstein-Maxwell field equations: 

e,V := CoS(P+Q) 
Cos (P-Q) 

ft1=W'=o 
~ 

ft.2 - E Ih9(LL-u:.) - , 
t=1 

N 
Ice - Z BL6'(V- Vi) -

i = 1. 

The non zero Weyl components are given by 

('$, '1) 
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~ -- -
frt 

E ai f,t..L-£u) tan Q 
/.:1 

(i.i) t h,' SCv-v,) fl1J1 P ¥o = -
ill. 

The somewhat idealized solution of Bell and Szekeres has been disoussed 

in the previous seotion and in oonneotion with singular behaviour it is 

further disoussed in Chapter 9. In addition to each subregion being 

isometric with the Bell-Szekeres solution, this extension suggests that 

curious imrulsive gravitational wave behaviour can OCcur when sandwich 

wave collisions are considered. However, the discussion given in 

Chapter 9 would suggest that such behaviour is unlikely to occur in a 

collision involving quaSi-rectangular waves with smcoth leading and 

trailing edges. The extension is thus a novel theoretical development 

but yields no new insight into the electromagnetic oollision rroblem. 

§ 8.3 Mixed Field Collisions 

Utilizing a method due to Enss (1967), whioh enables new Einstein

Maxwell solutions to be constructed from existing vaouum solutions, 

Panov (1979 a and b) has obtained new solutions for colliding l<aves. 

These are interpreted as collisions behmen fields with both gravitational 

and electromagnetic components. In his first parer (1979 a) he general

izes the Khan and Penrose solution and in the second (1979 b) he general

izes the Szekeres class described in § 7.4. However, in both of these 

papers the same general solution is used and in keeping with the comments 

made in S 7.7, which also apply here, it is more appropriate to restate 

the results of Panov in the theorem below. 

Theorem: 

Given any vacuum solution describing an interacticn ofcollinear, 

constantly [olarized gravitational 1;aves with metrio of the form (6.18) 
where 



then a new Einstein-Maxwell solution, given by 

can be ccnstructed in terms of the new functicns 

with MaxTdell components given by 

The curvature comronents, not given explicitly by Panov are de·~ined by 

10
1 

= L (1- 2. y)+ ff Wvr+Uv(Vv+ttv)~(Uv+Vv)h~-2)J 

1t. =y~(1- 2 ~)+ ~[U~Il" U~(K +I1J+(U,,+V.Y(·3~-2)] 

f; = 1£ + 5 [VJ4VV- VI4V + §( u~ ~V~)(Uv+ VI,)] 
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This solution describes focussing electromagnetic-gravitational Haves. 

The presence cf the electromagnetic field does not destroy the singularity 

on the hypersurface f + g = 0 which is present in the vacuum solutions, 

but su):plements it. It may be noted that in the limiting case of G:: 0 
the solution reduces to the appropriate vaCuum metric. The curvature 

components we have given above also reduce accordin~ly. The solution 

does not reduce to that of Bell and Szekeres. Al though there appears to 

be little to distinguish the twc papers cited in terms of fundamental 

content there are di-:f'erences 0: em;hasis. In particular Panov (1979 a) 

obtains a generalized solution by appropriate substitution of the Khan 

and Penrose (1971) (unrrimed) metric coef~icients in the stated (primed) 

solution (8.9). He has interpreted this as the collision and interaction 

of a pair of plane waves consisting of gravitational-electromagnetic 

pulses on "=0, V<O and V=O, "<0 along ;.rith plane gravitational 

radiation onO<UI,J I V<C andC<V't, "'0. Furthermore, from this he 

evaluates asymptotic expressions for the curvature tenscr in order to 

demonstrate the presence of the singularity mentioned above. We might 

point out that this may be inferred directly from the curvature components 

we hB.ve calculated sinoe oombined products of these 'Iill ahlays oontain 

unprimed products of comronents which are known to become infinite 

on the relevant hypersurfaces. 

~ 8.4. Colliding Electromagnetic and Gravitational Waves 

Exact solutions for the collision of a gravitational ;.rave "ith an 

electromagnetic wave have been given by Griffiths. These have recently 

been encomrassed in a generalization, also due to Griffi ths, which is 

discussed in § 8.0. 

In terms of Figure 4.1 and the Ne"~an Penrose formalism, the colliding 

Haves are defined by the scalar ccmronents ~ and Z in regions 11 

and 11 respectively. In rarticular the collision betHeen an impulsive 

gravi tational wave and a shook electromagnetio "Iave can be described by 

the Rosen metric (Griffiths 1975) 

Zb :z. %. COS V - a. u 
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;\1 
e = 

(:'1 .t .t ) yz 
Cos ~v - a Lt. 

The waves are described in regions II and III by metrics (3.18) and 

(3.20) respectively. The solution illustrates the geometrical properties 

remarked upon in Chapter 5. 

After the collision the spin coeffioients~,;u and;O become non zero 

and the null congruenoes associated ,;i th both Naves experience ocntraotion. 

In addition the electromagnetic 'Tave shears (,\FO). The field equations 

(8.2) (c) and (6.8) (p), ;;ith;'F Oand.\F 0 imply that JiandZi,are non 

zerc in region IV. Furthermcre, since V= ~,,) ;;e have from equation 

(6.13) that Te is zerO every"here. 

The presenoe of the ~ te~m in the interaction region indioates a 

partial refleotion or scattering ef the inoeming eleotrcmegnetio \"ave. 

This feature oan be predicted frcm the M~riot Rcbinson theorem as dis

oussed in Chapter 5. (See also Penrose 1972). 
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The remaining curvature comronents are given by 

'1i= - a%t.LB(u,~v' S{'1t{BMbv)coS(~Mbv) 
(cos,z(GMlw)- a,.Zuh9(",)Z 

The Maxwell components and the curvature comronents above, when substi

tuted into the Polynomial Curvature Scalars, define real singularities 

in the intere-ction regicn en the null hnersur-cace 1/.= ftt and the 

sracelike hnersurface CD5"'bv_cl'u.Z#o (See Fig. 8.?). The bcunda,ry 

conditions satisfied are those of O'Brien and Synge. 
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A r articular solution '"hich may be verified by direct substi tuticn 

into the field equations and describing the collision of electromegnetic 

and gravitational waves "hen bcth have shock ;rcfiles has the ]losen form 

(Griffiths 19'16) 

-I( e 

--

-- (S,I5) 

The metric in regions II and III is de.~ined by (3. '9) end (3.20) 

respectively a.nd these regions are joined to region IV via the Lichnerowicz 

conditions. The scluticn (8.13) is que.ntitively similar to the rrevious 

soluticn (8.11) in that real curvature singulerities occur in region IV 

on u=-raa.nd on the sr e.celike hyrersurface 



The non zero curvature components (omitted by GriPPiths (1576) ) are 
given by 
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( g.tlt-) 

i\rhere 

~ = Cc~ (a«Gu.»$<Ah(aJ4Btu,) - CcS~ (au61tu»)Stil( &laStu) 

CD.s(4LtAu,)U:!SI1(AU&tLll - siJ(bv8(..-J) 

In conjunction Idth the ManJell components given in the solution, the 

Polynomial Curvature SCAlars indicate thA,t both singulari ties in the 
interaction region are essential. 

§ 8. A General Solution for the Collision of Electroma netic and 
Gravitational Waves 

A general solution (Griffiths ' 983) f"or the collision beh'een arH trary 

gravitational and electromagnetio '-'aves is now available. In order to 

com;-ly I,ith the previous perticula,r solutions it is use~ul to assume 

thet the gravitational "ave lies in region II and the eleotromagnetic 

;,"ave in the region Ilr. In this 'tJay the fields 8,re aga,in described by 

those Nm-:man Penrose scala,r com:'cnents discussed in § 8.4. It is 
assumed that, in region IV, 

(S.1S) 
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Although this procedure leads to exact solutions, the a.ssumption is 

not unqualified. The congruences to which the tetrad vector field n}4 

is tangent ;rill both contract and shear \Vi th increasing u-coordinate 

(of. Fig. 4.1) i. e.jAM:l:O , .\'''':;'0 and hence in region II ;re have the 

functional forms for V andlJ indicated by the relation (8.15) a1:cve. 

In contrast, the congruence to "hich t ''"is tangent, although developing 

contraction, remains shear free. The spacetime in regicn IV is uniquely 

determined and the assumpticn that V and Iv'reta.in the same funotional 

(v-independent) form in the interaction region is then reasonable. 

The soluticn may be >7!'i tten, 

Lt -e = ~~) .. gM 

e-11 ~.t 

= lv, (t +f) 

(1 -1)~(f+ gyt ( ,.1') 

Vend Ware chosen tc satisfy the (field) equaticn 

a.nd B is a function c.f u only, that must satisf'y the equation 



The electromagnetic field is then determined in terms of the known 

functionsup to an arbitrary constant phase. 

The non-vanishing scale invariant components of the Weyl tensor in the 

region IV are 

~ = -.£ f<4.9v. ..L 
~ (f+g)~ 

The solution may be interpreted as follows: prior to the collision 

the incoming gravitational wave is specified by the functions ,r(u) , 

Vlu) and W'll4) whilst in region III the electromagnetic wave is specified 

by the function ~(V). After the collision the electromagnetic wave, 

described by the~component, continues thrcugh into region IV where 

the field is additionally described by a~~component. This develops 

as a result of the partial refleotion of the eleotromagnetio wave cff 

the gravitational wave. This effect waS discussed in Chapter 5. The 

gravitational wave also oontinues into the interaction region where the 

spacetime is additionally described by the development of a~component. 
The Polynomial curvature scalars indioate that the singularity which 

develops on the hypersurface 

f + g = 0 

is an essential ourvature singularity. As remarked upon earlier, the 

previous particular solutions for this class of oollision are included 

in this generalization when appropriate formsfor jlJ.4) ,V£U) ,Wu..) and 

$(v)are chosen. 
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9 DISCUSSION 

Following the examination of relevant theoretical details and a 

discussion of the congruence geometry of null rays, a number of exact 

vacuum and electrovac solutions have been reviewed. These correspond 

to the collision and subsequent interaction of various plane waves on 

a flat background. 

The interpretation of these solutions in terms of the focussing effect 

on the ray congruences in the interaction region and analysis of the 

Polynomial Curvature Scalars there, indicate that in all cases except 

that of Bell and Szekeres (cf. § 8.2) and the unph¥sical solution of 

Stoyanov, a real curvature singularity is induced by the collision. 

This occurs on the spacelike hypersurface on which the waves mutually 

focus each other. Colliding electromagnetic waves, as described by 

the solution of Bell and Szekeres thus provide the only available 

example of a singularity free plane wave collision in a non-expanding 

background. 

A number of workers have attempted to isolate those factors which lead 

to irregularities in the other solutions. For example, Stoyanov (1979) 

has argued that incoming waves with non smooth wavefronts lead to the 

development of the characteristic singularity. However, since we have 

shown in § 7.7 that the solution given by him in support of this con

jecture is incorrect, we reject this possibility. In any case, a 

theorem due to Tipler, which we will give in the next section points to 

the plane symmetry of the solutions as the factor responsible for the 

development of the singularities. Unfortunately, it is just this feature 

which simplifies the field equations such that solutions can be obtained 

at all. Furthermore, there is no proof, as yet, which suggests that non 

planar wave collisions will develop singularities and it has been 

suggested that they may not (Khan and Penrose 1971, Sbytov 1976). 

§ 9.{ Singularities and Tipler's Theorem 

For the purpose of this work it is necessary only to assume the minimum 

condition for a singularity free spacetime (Hawking, S. Wand 

Ellis, G. F. R. 1973). In this way if a spacetime is timelike or null 

geodesically incomplete, it will be assumed to possess a singularity. 

A manifold is geodesically complete if all geodesics on the manifold are 



complete and a complete geodesic is one which has an affine parameter 

f such that r takes all values. 

Theorem (Tipler 1980) 
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Let (M,~) be a spacetime Withj at leastC1- and suppos·e (JtJ9) has two 

globally defined commuting space like killing vector fields Sf" and S,:." 
which together generate plane symmetry. If (1) the null convergence 

condition holdsj(2) at least one of the six Newman-Penrose quantities 

;i:, , :f~ ,1:." ,£#' (!J", .\ is non zero at some pOint" in (M'9) j and 

(3) through the point}' there is a spacelike p~rtial Cauchy surface S, 

which is everywhere tangent to SfIK and Sz.'" and S is noncompact in the 

spacelike direction normal to5i andsf j then (II}!) is null incomplete. 

Accordingly, it should be expected that any colliding plane-fronted 

waves, satisfying the condition of the theorem, will necessarily develop 

singularities either in the past or the future of the collision. It is, 

however, interesting to note that singularities still occur in the solu-

tions given when in some cases the metric coefficients violate the 

requirement. It may be that in some sense this requirement is too 

restrictive. However, the shock waves in the Bell-Szekeres type 

solution(s) are directly responsible for the fact that no curvature 

components develop within region IV and hence it remains singularity 

free (Note also thatZ = ;f: (U"tl"-Vu,Vv)=oeverywhere). 

Unfortunately no exact solutions corresponding to colliding electro

magnetic waves, with smooth wavefronts is available at present (we 

Cz 

have not yet been successful at finding one either) but it seems likely 

that they too will develop the irregularities predicted by Tipler's 

theorem. They will at least develop Weyl curvature which may be seen 

by first assuming that two such smooth fronted waves collide. 

(6.8)(d), (g), (i), (j) (h), (k) and (p) become: 

Equations 

-. £1,) 



u 

]I 

p=o 
er = 0 
fA ~ 0 

I 

IJ= 0 
'11.= 0 
p*o 
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v 

]I 
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-
~ '" :; - C'"~-l'C)"7' 1. - £c.t. (c) 

'\,V III ,\ (1'- t(£)+~;' + £w (J.) 

"Jv :: ).~(;'+(£) + 'iic (e) 

~'" =-1:\'~.,.i4)- ~ (f) 

j/.t = ~/,"-l?A. (1) 
The collision may be described using Fig. 9.1. The congruence A is not 

defined physically by a field and consequently when it extends into 

region III, from equation (9.1)(a), it contracts but does not develop 

shear. Note that equation (9.1)(e) implies that~t'= 1.~{1'+ iE )and 

hence by uniqueness~=" in region III also. However, in region IV, 

~ and~~ are non zero and thus from equation (9.1) (a), (d), (b) and (c) 

we have that;") ;l))'and .r become non zerO. Therefore congruence B 

experiences both contraction and shear as it extends into region IV. 

This necessarily requires the emergence of Weyl curvature, 2 and ~, 
otherwise equation (9.1) (e) and (f) would again give 0-= ;\'=0 
in region IV, contradicting their development described previously. 

Furthermore equation (9.1) (g) suggests that in general a coulomb 

component will also arise. 

There is thus legitimate reason to suppose that smooth profile solutions 

will possess curvature which is potentially unbounded in region IV. In 

the absence of exact solutions we are therefore inclined to accept 

Tipler's theorem and the associated assertion that plane symmetry is the 

significant factor in the emergence of singularities. 

The fact that the singularities encountered in this theSis occur only 

in the future is related to the background. (cf. § 9.2). Their time 

inverse, however, can be interpreted in terms of plane waves emerging 

from a past singularity. 

§ 9.2 other Related Solutions 

A number of other planewave collisions have also been considered. For 

example Griffiths (1976) has obtained collineary polarized solutions for 

both colliding neutrino fields and colliding neutrino and electromagnetic 



waves. Exact solutions describing the collision of neutrino and 

gravitational waves have not yet been found. Scalar waves have been 

considered by Wu (1982). 

The singularity behaviour and causal structure of expanding vacuum, 

plane symmetric backgrounds containing gravitational waves have been 

discussed by Centrella and Matzner (1982). Here oncoming waves 
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propogate along null congruences which share in the expansion of the 

spacetime and the singularity required by Tipler's theorem occurs in the 

past of the collision. When the waves interact, the induced shear in 

turn reduces this expansion which, however, remains essentially positive. 

In this way focussing is avoided and the induced curvature in the inter

action region dies off. This is in contrast to the initially flat 

space-time arenas of the collisions we have cited. These have null 

rays with initially vanishing expansion and shear. Any convergence 

following the development of shear, due to the interaction leads to 

singularities in the future (unless the interaction region is conform

ally flat in its interior). 

§ 9.3 Summary of Present Knowledge and Further Work To Be Done 

The diagram in Fig. 9.2 provides an overview of the current state of 

knowledge for exact solutions of colliding planewaves. Solutions which 

appear higher up in the diagram are more general. Arrows indicate 

where one solution reduces to another and broken arrows where a solution 

reduces to only the restricted clas's of another. 

Clearly any new solutions corresponding to colliding electromagnetic 

waves, not transformable to the solution of Bell and Szekeres would be 

of great importance in clarifying the theory at this stage, especially 

with regard to Tipler's theorem. Unfortunately, to do this the field 

equations (6.12e), (8.3a) and(8.3b) must be solved Simultaneously 

subject to the appropriate boundary conditions. We have not yet been 

successful in obtaining any solutions of these by trial and error 

methods and it is likely that other techniques from the theory of 

differential equations may be more appropriate here or, alternatively, 

a reformulation, perhaps on the lines developed by Fischer (1980). 

Collisions of plane gravitational with plane electromagnetic waves are 

now completely generalized. Still required, however, are more solutions 
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for colliding constant and variably polarized waves and in particular 

solutions with more realistic wavefronts. Ideally these solutions 

would reduce, in the appropriate limit to the more general solution of 

Szekeres (1972) (and include solutions for whiCh,f, 1:. k,t ). 

More ambitious projects could be to include collisions in fluid filled, 

electromagnetic or expanding backgrounds. Such work has already been 

initiated (cf. § 9.2). Wainwright (1979) has constructed a gravitational 

wave pulse in a fluid filled, spatially homogeneous background but no 

solutions describing collisions of these pulses have been obtained. 



EINSTEIN/MAXWELL SOLUTIONS VACUUM SOLUTIONS , 
(.-

GRIFFITHS 198~ 
general 
electromagnetic/ 
gravitational 
waves 

PANOV 1979 
mixed gravitational 
and electromagnetic 
waves 

PANOV 1980 
variably 
polarized 
gravitational 
waves 

EINSTEIN!MAXWELL SOLUTIONS VACUUM SOLUTIONS 

GRIFFITHS 1975 
impulsive 
gravitation/ahock 
electromagnetic 
waves 

GRIP'!'ITHS 1976 
shock gravitational/ 
shock electromagnetic 
_Tes 

Fig. 9.2 
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BELL and SZFXERES 1974 
shock electromagnetic 
waves 

SZ:EXERES 1970 
shock 
gravitational 
waves 

SZEKERES 1972 
general 
solution 

/ 

SZEKERES 1972 
restricted 
class 

HALIL 1979 
non collinear 
constant 
polarization 

/ 
/ .---_..1-----, 

NUTKU and HALIL 1977 
constantly 
polarized 
impulsive 
gravitational waves 

KHAN and PENROSE 1971 
impulsive 
gravitational waves 
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In classical electromagnetic field theory, planewaves illustrate all 

the properties of realistic wave collisions. However, in the General 

Theory of Relativity, plane symmetry can give rise to misleading ideas 

about the structure of the interaction zone following a collision of 

waves. In particular, the Singular structure which develops is unlikely 

to occur in real collisions where this high degree of symmetry is 

absent. This inevitably must lead to a search for solutions in which 

the imposed plane symmetry is relaxed. However, this will require a 

reformulation of the field equations significantly different than that 

given in Chapter 6. 
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