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SYNOPSIS

The thesis describes the general concepts of interfacing
the geometrical description of a car‘body and the internal struc-
ture with the corresponding finite element model. The work was
carried out én coilaboration with the Austin Rover Group (ARG),
Cowley, and a three month period was spent with theﬂcdmpahy to
gain understanding of the underlying problem.

In the first half of the thesis, the concepts of CAD/CAM
are introduced, and reference is made to their applications inr
a number of industrial environments. The finite element method
(FEM) is also introduced, with an explanation of the fundamental
theory and its application to structural problems. The link
between‘the engineering>approach to FEM and the mathematical
approdch is demonstrated by simplé examples. |

Chapter 4 represents the main achievement of this work and
describes the frame work of a solutioﬁ to the interfacing problems -
between the CAD geometry and the finite elemenf model. It
introduces the concept of a Structural Data Base (SDB) which
contains the CAD geometrical description 'of the car sppplemented
by structural data including maferial properties, build informa-
tion ete. In effect the SDB is a total_numerical description
of the structure and contains all the necessary information to
construct the finite element model, The implementation problems
are clearly identified, and particular consideration is given to
mesh generation. A discussion and assessment of existing pro-
grams is undertaken in chapter 5. _

Finally, suggestions for further work are offered, together

with some concluding remarks.
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1  INTRODUCTION

1.1 Integrated CAD/CAM

In mechanical engineering design, as indeed in many
other branches of design, geometry plays a fundamental !

role; the shape of an object is crucial whether for

P

fu@ctional or aesgg?ticHrg§§9ns. The use of computer
sys?ems in the engineering industry is widespread for
both_fhe‘design-and manufacture of componénts, because
the time of.manufacture and design can be reduced. The

fields of manufacture and design are invariably separate,. 1

but. it is a natural step to close the gap, so that the
amount of effect required to proceed from design to manu-
facture is reduced. If'designs are produced in a compu-
terised form, this data should berrepresented to the'maﬁ—_
ufacturing_departmeﬁt insiead of, or with, the drawings.

Advisory Council for Applied Researéh and Development
[19803 has published a report that aims to understand the
meanings qf CAD and CAM and to concentrate on the use of
computers in the design and manufacture of discrete pro-
ducts. They have produced working definitions such as
CAD'(Computer-Aided Design), which uses a compﬁter based ’
system to assist in translating a requirément or concept i
into an engineered design, utilizing a data bank of desigﬁ
principles and information (which maylbe in the form of
drawings) for manufacfure. Sﬁch designs may include
'simulation’ which is the modelling of a design and cal-
culation of performance. l

CAM (Computer-Aided Manufacture) is the use of inform-

ation for CAD and‘Draughting as a direct input to control



manufacturing plant (such as numerically controlled
machine tools) or inspéction and test equipment.
Integrated CAD/CAM involves the linking of design n
and manufacturing ;oftware via a common data base and
could also be extended to encompass marketing, buying,
production planning and control activities. The CAD

part enables different legal requirements to be easily

incorporated into a product reducing the penalty that |

non-standardisation brings, while the CAM part enables .

the variants'to be more economically manufactured. -
" Among the benefits of an integrated CAD/CAM system
are increased productiqity,-a significant reduction of
errors in communication between design and manufacturingf
-and better cost control. By shofféning the time taken E
in manufacture, capital requirements for both machinery f
and stock can be decreased. Identical parts can be |
reproduced at any time if the manufacturing instructions
are retained and stocks of spafes may thus be reduced.
The inspection of manufactured products is also easier,
since if the characteristics of a product are defined in
the. computer, automatic gauging and testing can be empldyed
to check that it is to specification. ;
| The Boeing Aerospace Company - [wnEss ;_".1-!.981:[65113.3 partially
integrated CAD/CAM, because of the potential for improved
profits from its use. There was an awareness at top
levels of the company that the proper application of com-
puters to design aﬁd manﬁfacturing processes could reduce

production cost, thereby increasing profits and enhancing

the. company's competitive position.



1.2

Lipchin and Litter [1982] have described the method-
ology for overall manufacturing performance improvement
through the allocation of proper CAD/CAM technology in

pay-off areas with managerial, organizational, planning

- and economic implications. It gave an overall planning

procedure for CAD/CAM implementation which consists of

the following interrelated steps:-

(1) Determine the proper level and scﬁedule of invest-
mént in CAD/CAM.. |

(2) Tailor the appropriate CAD/CAM technology to the
company's needs.

(3) Structure and develop the CAD/CAM organisation and

on-going management programme,

They reported the success experienced with companiesl
such as Pratt & Whitney, General Electric and Structural
Dynamic Research Corporation, proviﬁg that.achieving maxi-
mum benefits from CAD/CAM requires a company-wide imple-
mentation effort accompanied by company-wide blanning.

Many companies are not recognising the imﬁortance of
linking their CAﬁ/CAM software packages. The project in
collaboration with the Austin Rover Group is concerned with
the linking of surface modelling and finite element analy-
sis.

CAD in the Austin Rover Group

Emmerson [1976] has described the computer-aided
design and the numerical control manufacture in Leyland
cars and a number of applications. The traditional methods
in producing the.scale design of the exterior skin shape

from a stylist's full-size clay model into two~dimensional
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engineering drawing Waslboth time-consumingzand tedious.
Upon completion of this skin line drawing, inﬁormation is
'conxerted onto the exterior templabes for application.to
the full-size clay model and using these as the basis of
the body description. The method was prone to error and
many problems were experienced in fhe drawing office in
aligning the templates to a common datum, which was des-
cribed in detail in Giles [1971].

To ovefcome the problems described above, various
improved techniques have been used for obtaining a satis-
factory surface description. The method involved using
an automatic measuring machine to reco:d a set of three-
dimensional coordinates on punched tapes. This unrefined
information is fed into the computer and the structure
into a data-base, so that any area may bg easily accessed.

The lines ére then faired individually using a grapﬁic
display manipulation and a large draughting machine, since
:accurate evaluation of the quality of the lines is not
possible by direct inspection on the screen owing fo_the
limitations in size and accuracy. Davy Efé?Z] has
explained that thq problem can be overcome by displaying
a graph of variation in radius of curvature along the-
length of the curve. Experience is essential to make
Jjudgements on the ‘'smoothness' of the drawing. Wifh
these restrictions, the company mainly uses those personnei
experienced in-design and manufacturing with specialist
knowledge of the application, with the assistancé from the.
Computer~Aided Engineering (CAE) Department.

Many of the tests necessary to ensure that a new
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vehicle satisfies the various safety regulations are des-.
tructive in natﬁre, and therefore each new requirement can
seriously affect the development lead time and cost. The-
most severe of these tests are the front, rear, and side
impacts. The tests either propel the fully laden vehicle'
into an immovable barrier or iﬁpéct the stationary vehicle
by a moving'barrier. In each case the most important con-
sideration is that the occupahts‘should survive the impact.
A number of simulation models Lave been developed to
coéer all the barrier impact tests, and to assess vehicle-
to~vehicle impacts as described by Emmerson and Fowlec .
[1974]. Programs have .also been develqped by tpe_Calspane
Corporation in America (described by Bartz [1971]), to sim-
ulate the crash viectim as a complex three~dimensional model
for the analysis of an impact between a victim and ajsét 
of vehicle contact surfaces and restraint systems.
Recently, Austin Rover have implemented a new inter-
active computer package-CATIA to produce the external and
the internal geometrical description of the car bodies,
All this data is stored into the Geometrical Data Base
(GDB).

Shape Representation in CAD

We have already remarked that shape 1s one of the most

 important variables in engineering design. The accurate

representation of shape is correspondingly important to
CAD/CAM. There are many mathematical techniques which
have been employed in the representation of shape informa-

tion.



Most CAD systems use the parametric method for shape
representation, except, notably, the Autokon system (des-
cribed by Bates [1972]). Surfaces are presented by vector

valued functions of parameters u and V)
P(u,v) = E{(u v) y(u,v) z(u, v)j Ogs{(u,v)gl.

Some of the advantage®of parametric representation as

pointed out by Sabin [1971] are as follows:~-

(1) The vector/tensor notation appropriate can éxpress
geometribal relationships very tersely, and that the
vector manipulation operatipns have direct‘geometrical

“.parallels.

(2) Geometric properties set up in vector terms are
usually independent of the doordi;ate'axes used and
are thus invariant under fotation and other affine
transformations.

(3) The‘compﬁtation of cutter offsets and similar related
curves for numerical coﬁtrol-purposes can be much sim-
pler, i.e. offsets of skin thickness or machinery‘cuf-
ter compensation can be handly.exactly.

(4) Points on curves or surfaces are readily computed
-sequentially along the curve or .along parametrics

lines in the surface for display purpose,

Forrest [}973] has classified four basic ways in which
surfaces can be constructed as a bivariate function of
either zero~variate or univariate data or scme mixture 6f

both as shown in Figure (1.3.1)
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Figure (1.3.1). Sequence of surface definition techniques

At the top of the sequence comes the total definition of
surface e.g. by specifying that it shall be alcylihder or

a hemisphere, Then cdmes the generalized Coons method,
Coons [1967], Forrest [1970}, and Gordon [1971], which
formulates the surface in terms of patches defined by their
boundary functions. That is to say that four boundary
curveé of a surface patchare definéd, i.e. in terms of two

compatible families of univariate functions i.e, curves.
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The surface patches are then ésembled to form larger sur-
faces. An example is POLYSURF, Flutter & Rolph [1976].

Next we have Lofting, which corresponds most closely
to the manual process, Liming [?944]. It is-usually
applied to parallel plane cross-sections at a number of
longitudinal stations. Examples of the approach are the
method of CONSURF, Ball [}974, 1975, 1977] and DUCT,
Welbourn [_'19_81]. _

The fourth method is the tensof—product definition.
The method basically defines a surface in terms of zero-
variate data, i.e. point vectors or derivative vectors.
This is probably the most popular approach. = Some notable
examples are F-surfaces,Ferguson 9964], NMG,Sabin [1972) and
UNISURF, Bezier [1968]. | .

‘Finite Element Analysis of Structures

Finite element method is a numerical analysis technigue
Sthabion € . )
for obtaining approximat%:?;bblems such as heat flow, solid
mechanics, fluid flow, magnetic field calculations, etc.

The need for numerical methods arises from the_fact that

- for most practical engineering problems, analytical solutions

do not exist. To obtain a solution the engineers must make
simplifying assumptions, reducing the problem to one that can
bg solved. Otherwise numerical procedures must be used.

In the finite element method, thé region of interest‘is
divided into numerous connected subregions, or elements,
within which approximate functions are used to represent the
unknown quantity.,' The physical cohcept, on which the
finite elément method is based, has its origins in the theory

of structures. The finite element method is a general



numeriCai procedure for the approximate analysis of arbi-
trary structures and structural systems. . During its ori-
ginal development in the aircraft industry, it was éonsidered
merely as a generalization of the well-known displacement
method of structural analysis, which has been used exten-
sively for the analysis of frame structures such as bridges,
ships hglls and aircraft fuselages.

Since the finite element mefhbd is one of the most
powerful mefﬁods for the approximate solution, it has
attracted the attention of mathematicianslto establish the
fundamental theory. It is, in essence, a variational
approximation, employing the Rayleigh-Ritz-Galerkin approach.
A given region is represented as a collection of a number
of geometrically simpler regions (finite élements) connected
together at nodal point; Simple mathematical functions,
generally polynomials, .are chosen for each element, and the .
solution over the entire region is obtained by fitting
together the individual elements. The isoparametric ‘quade
ratic' element described by Zienkiewicz [1971] .1s probably
the most common type element models.

There ére other interpolating methods for meshing
structures, such as (1) the Laplacian method, which is
described in Buell & Bush [1973] and Herrmann [1971] and
(2) the transfinite mapping methods developed by Gordon
and Hall [1973].

In structural analysis, -the unknown field wvariables of
displacements or stresses are defined in terms of values at
the node points} which are the unknowns of the problem,

However, the accuracy of the solution depend not only on
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the number and the size of the finite elements used but
also on the interpolation functions selected for the
elements.

Using these functions, a number of approaches can be
used to formulate the element properties (stiffness and
stress matrices). The first of these is the 'direct
approach', where physical reasoning is used to establish
the element equations in matrix form, which are then com-
bined to fofm the governing equations for the entire
préblem. The other approach is ﬁore advanced and versa-
tile in the application of the method when extended to
other fields. Here, the calculus of variations is used
to derive various energy principles which are then employed
in deriving fhe element formulation. |

In structural mechanics problems, the element functions
are usually chosen to represent displacements within the
element (commonly called the displacement method). They
could also be chosen to represent stresses (forde or equil~
ibrium method), or a combination of displacements and
stresses (the hybrid method), which was introduced by Pian '
[}964]? For mbst problems, the displacement method is the
simplest to apply; and is consequently the most widely
used,

Usually, a struétuie such as a car body is manually
inputted or digitizeq into the computer for the construc-
tion of finite element quéls, but these techniques only
provide a skeleton model. However, we can now have an
accurate geometrical description of the structure using

the facilities of CAD,
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An automatic mesh geﬁeration program will fulfilil the
task of meshing the complex structures as well as overcom-
ing all the difficulties mentioned above and minimising the
errors caused by the user. However, so fﬁr, there is no
such program that can fully mesh complex structures aufo—
matically without user interruptions during the process,
(see Chapter 4 for details).

The finite element procedure is often implemented with
large generaiupurpose programs, perhaps the most widely used

at this time is the NASTRAN program developed by NASA, which

is described by MacNeal [1976].

Finite Element Method Used In Automobile Design

Before the development'of numerical techniques, the .

complexity of automobile components made analytical predic-

‘tion of structural behaviours difficult, and in many cases,

even impossible. ~Automobile désign, therefore, from the
beginning of the industry, relied mainly on the test results
and field data evaluations.  Although testing has resulted
in many new deslgn innovations and a number of improved
products, it remains a time-consuming and costly procesé.

The requirement for improved performance in vehicle design

has led to increased complexity and costs.

Finite element techniques can fulfil the tasks of

1

reducing costs as well as Seving time~- - -..:.35.  The

iy

method has already been widely used in many automobile
companies such as Ford, British Leyland, etec. The appli-
cation of the finite element analysis can-reduce the number
of prototype parts needed to be built and tested. The

finite element method is combined with computer facilities

.to analyse the behaviour of the car body. The types of
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analysis carried out are usually static testings, which is
mainly concerned with the response of a structure to single
load input, and dynamic testings, which 1is concerned with
the physical or audio responses of a structupe to an infin-
ite number ot inputs.

CAD/FEM Interface

CAD and FEM are separate eétablished technologies.
There is an increasing-requ;rement-to link the software in
these two technologles. Butlin [1983] reports that there
is no company providing a whole system which iﬁcludes a
comprehensive CAD system as well as a comprehensive FEM

system. . Cansequently, passing data between these systems

is, at least, a loose linkage and, at worst, an uncomfortable,

tedious andierror—prone process. -

However, it would be é considerable advantage to be
able to use a CAD system in the data generation for FEM.
In particulaf it would enable the physical shapes of the
complex structure to be accurately repreéented mathemati-
cally in the computer.

The aim of this project is to write an automatic mesh
generation brogram that can use the geometrical data’of a
car body, which is created in Austin Rover, using CATIA
and CADAM, The FEM mesh generator must therefore be

capable of receiving and utilising this geometry.
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APPROACHES TO FINITE ELEMENT ANALYSIS

History of The Finite Element Method With an Outline of

Chapter Contents

The finite element method first.appeared in the 1950's
as a technique for handling structural engineering prob~-
lems. It was an outgrowth of the so-~called matrix method
of structural analysis. For,about ten years, there were
two competing‘matrix ﬁethods; one with tﬁe unknown boundary'
or nodal fofées as variables, which was ‘known as the flexi-
bility (force) method, and the other based on unknown dis~
placements as variables,‘known as the displacement (stift-
ness) method. These two methods are described in section
2.2, Much of the theory was introduced by Argyris [1960]

- in a series of papers on energy theorems and matrix methods.
In 1956, Turner et al, published a paper on the stiffness
‘method for -aircraft structure;. The book by Premieniecki
[L968] presented the matrix methods as applied ﬁo the solu-
tion of stress analysis problems.

The name ‘'finite element method' was coined by Clough
[}QGQ] in a paper describing applications in plane elasti-~
city. He showed that the method is based on the principle
of minimum total potential energy in terms of prescribed
displacement field (see section 2.3.1). The process is
equivalent to the Rayleigh-Ritz method.
| Although originally derived for structural problems,
finite element methods have expanded into such fields as
heat transfer, fluid flows etc. The book by Zienkiewicz
L& Cheuﬁg 1967] presented the broad application of the
method., Later, Szabo & Lee‘[196Q] showed that the element
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equations could also be derived by ﬁsing a weighted.resi-
dual method such as Galerkin's or least-squares (see section
2.3.2). This led to a widespread interest amqﬁg applied -
mathematicians in applyihg the finite element method for

thg éolution of linear and non-linear differential equa-
tions. With this progress, today fhe finite element.
me;hod is a well established and gonveﬁient analysis tool

used by engineers and applied scientists.

Structural Analysis by Matrix Methods

In the matrix methods of structural analyéis, there.
are- two basic approaches uéed. These approaches are known
as the displagement.(stiffness),method and the flexibilityl
method. These methods correspond to alternative forms_of
energy principles,-and we shall find it advantageous to
develop‘the methods from an ene:gyrstandpbiﬂt (see section
2.3). ' . _

In the displacement method, the displacements of the
nodes are unknown and are determined b§ the equations of
equilibrium. It is probably best to illustrate the method
by a simple ekample. Consider a cantilever beam loaded

as shown in Figure 2.2.1,
{ ;

— - 18

3590 8 8 &

Figure 2.2.1
We use the slope-deflection equations and the notation

shown in Figure 2.2.2,
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A

o

Figure,2.2.2'.

Let M be the bending moment about B.

Take

M= FpoX- Tq.

W

R

Eh_

Then, comparing with the differential equation of flexﬁre.'

d2
M==..EI’.——1

'dxz

where I is the moment of inertia and E is the Young's

modulus. Then

o dy |
EI dx2 = lex-- Tyl

integrating once,

dy .1 2 .7 |
EI 5 Fpp X = TX+ C

dx zl

at x =0, dy = ey11 and therefore

- C=EI @

yl

at x = L, %% = eyz

(2.2.3) .
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= 4 2 .
EI eyz 5 le L= - Tyl L + EI'eyl-
_ T 2 E1I © 2 El. 8
Fa1 =2 1 o L oA (2.2.4)
L - LT :
From 2.2.3 and 2.2.4, we have
d 2 - 2
EI &£ =T x 1-x | 2
ax vl (L— - x| + EI eyl =5 + EI Byz _}12_
o : L L
" Integrating again
3 2 w3 3
o x° _ x7 X - X x~
At x =1L, y = Vo
kl I ’ 2 | -!- .
EI Vo Tyl L® + 2EIL6yl + 3 LEIey2_+ Ele
8 3. ‘
E 2E 6E
or T = 4 Iey1;+ Ieyz . le.- GEIwzl
"yl . L L | L2. 12
_{eEr 2EI 6E1 4EI| o.
simi.’L_a.r Tyz = ‘_Lz ) WI + ¥ ) eyl -I-‘-g-) Vo + (—I-:-) 9342

For equilibrium, Im about B = O

Tyl - le L + Ty2 =0
. . T,1*T o .
zl L z2

12EI 6EI 12EI . {BEI
=" —F7—] W, = =—=]06 H=—F W, = |—5] B
( L3 ) 1 ( LZ) yl ( L3 ) 2 L%) y2
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These equations may be written in matrix form as

follows: e ; e

' ] ' oo =]

a1 12 w1
T&l | 6L 4L2: Symmetric eyl

\ » = EL ¢ > (2.2.5)
Fr2 1® |22 -eL 12 - 2

Ty2 | o or2 - 6L  4L2 Ovo

ALY ‘ # . . : - . /

and summarised as

{F°} = [kel {6%}
Wﬁere-[Ke] is the stiffness matrix,{ée} is the vector of
displacements andf{Fe} is the vector of forces. |

In the flexibility method, the forces are the unknown

quantities,and are determined by the equations of equili-

" brium relating the internal forces in the elements, the

external applied forces at the nodéé'and/or the unknown
reactions at the supports. Basically, the flexibility
method is dual to the displacement method as shown by the
force-displacement relationship.

To i1llustrate the method, we consider the cantilever
beam with two loadings as shown in Figure (2.2.6) and use

the notation in Figure (2.2.7).

b WL, W

Ry Ry Ry Rz
l l @i l Qb ,
s 1) , /;
o ,,/ R’ II ) - a’ b 3 Jki
R - L '
- A— Qs Qb
L v ke

k3

Figure (2.2,6). -~ .- .  Figure (2.2.7)
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the total set of member force

the total applied load-

~the force transformation matrix

8

Q

b
J

J

bR
By By B3
[ L, =(Ly+Ly) -1
o . L, B
0 -L2 -1
0 0 1

-

R

3

o

the indi#idﬁﬁl member flexibility matrices are

.fa.

F

I

1

6EI

<
6E

b"fb

-

~L

2L

2L
1 1l fb _ 1 2 ‘
R 6EL | _,- -
-L1 2L1 . ---L2 2L2
2L -L .
1 1 0
0 2L2 -Lz
-L2 2L2 J
3 2 2
L13 2L ”+3L1 L2 Ll
3EI 6EI1 2E1
2 2 3 2
2Ll +3Ll L2 (Ll+%2) (L1+L2)
6EI 3E1 2E1
2 2 '
Ly (Ly+Ly) Ly*Ly
2E 2E1 EI

-Ly
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In general, the flexibility method is not as convenient’
for computing as the displacement method. One of the reasons
is that the equations of equilibrium for a flexibility matrix
are unsymmetric and less sparsely populated than the dis-
piacement matrix. Therefore, it will be necessary to store:
511 the coefficients and this wili make very large demands
on the storﬁge requirements of a computer.. Aléo, it 1is
much simpler ﬁhen assembling all the local stiffness matricés
to form the.global stiffness matrix. In the displacemeht
~method, the constrained structure is determined in a very
definite way, whereas in the flexibility methodh'there are
many choices for the released structure. Firally, it is
much easier to form thefdisplacemeﬁt transformation matrix
than thelforce trénsformafion matrix, since the effects of
displacements are offen localized. |

For the cantilever problem above, we can form the
analytical solution and use it for comparing results with
the above methods. | First, return to the differential

equation of bending,

2

M=EI d7y
dx?
or . M= EIv" ‘ (2.2.9)
Then,. M= -w2|l-x
[
or EIV" = -w& (1—5)
L

Integrating once,

- - _x?
EIv' = - w4 x%)m (2.2.10)
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Where A is a constant of integration,.

Integrating again, we have

Elv = -wi ;‘—2"3{;—35 +AX+B (2.2.11)
Now, applying all the necessary conditions in (2.2.10)
and (2.2.11), where x = 0O, the slope_ﬁ' = 0 (since the
beam must be securely built). Hence A = B = 0.

Therefore, for maximum deflection,.where X = L,

L7

v =
max - 3EI

(2.2.12)
The .equations (2.2.5), (2.2.8) and (2.2.12) will be demon~-
started with numerical section (2.4).

2.3 Variational Calculus

2.3.1 DPrinciple of minimum total potential energy

In the previous sections, we have considered'the dis-
placement and fdrce methods for structures in the form
[??]{5¢} = {F®}., In this section, we will adopt an alter-
native method.. The method is based on the 'variational
principle' in which the total potential energy is defined

as a functional, w, of the form

T = [ Flu, 3w ~----) 3@ +f E(u, du,----)3T (2.3.1)
. —_— : —— .
f oX T IX

where @ is the surface of each element and I' its part of
boundary u is the unknown function such that it satisfies

a certain equation set Q and T. The function sought may be
a scale quantity or may represent a vector of several vari-
able, F and E _denote known functions, of a function u,

which make, 7, stationary w.r.t. to small changes,

7
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i.e. v = Q. The unknown functioﬁ u can be approximated

by the Rayleigh-Ritz method, i.e.:

w=d=1N 2% a2

i
where [Fi] are shape functions denoting functions of posi-
tion and ai represents a listing of nodal displacements for
"a particular element. By substituting this approximation
into the expression for fhe.functional, m, (2.3.1) and on
differentation w.r.t. to &, a system of equations for the

solution of the p:oblem is

Kla+£f=0 - (2.3.2)

o:lw
2|2

where [K] is a system matrix and £ is a vector force.

We have so far dealt with the general approaéh to the
apprbximate‘solution.of the continuum problem. We can
now apply the above approach to elasticity problems,‘

Generally, we can express the general form of (2.3.1) as
T=U+W - (2.3.3)

where U is the strain energy of the deformed structure and
.W is the potential energy of the external force. With
reference to general finite element metﬁod textbhooks for
structural problems, viz Zienkiewicz [1979]; we can directly
obtain the expression for U and W using the following rela-

tions:-

{e} = [B] {g} - (2.3.4)

and

o}

D] {e}  (2.3.5)
where {ec} is the strain vector, [B] is the strain matrix,

[D] is the elastic matrix {8} is the stress vector and {g}
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are the nodal'displacements. Using (2.3.4) and (2.3.5),

we obtain
03/ @Te) av =3 [ @ BITP]E] (@t ey (2.3.0)

and  w=- | (@ 7{q} av . (2.3.7)
v t ) .

where {g}T is the nodal forces.

Using the equatién (2.3.7), we have that
0= %j_ {g)*[B)* [D] [B]{q} -dv -£ {Q}*{q} av

- ‘
To minimise the total potential energy, m, we must
differentiate w.r.t. to each nodal degree of freedom,
and solve the resultant system of equations.

- This gives

[ BI*[D][B] av {a} = [ 1Q}%{q} av (2.3.8)

v _ v - '
which can be-expfessed as

[Ke] {g} = {2} . - (2.3.9)
where [Ke] is the element stiffness matrix.

To illustrate the construction of {ké] again we con-

sider the cantilever example shown in Figure 2.2.1. The

differential equation of strain energy in bending is
2
y=EL ¢ (9-%) dx (2.3.10)
- 3x°/

where the equation for the beam shape is assumed of the form

+ azx + a3x2 + a X3'

V=oa 4

1

where a's are arbitrary comstants. The boundary éonditions

are given by
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V = wy, and dv = -0 at x =0
V=w, and dv = =8 at x =L

Now we solve for thg'arbitrary constants 2, to a, as
“0y1, 2 = 3(wy-wy) /Lo L (289, +ey,)

and | |

54 = (2(w1-w2)—L(ey1-ey2))/L3

Substituting'for a4 to a, in terms of the end displaceﬁents

of the element, V can be expressed as

v =.N1w1 + N29y3+N3W2+N4ey2

N, and N, are the shape functions, By expressing a, to a,
in terms of the W's and 6's, we can obtain all the shape

functions Ni's,_i=1(1)4,

as

N, o= (1-3x %pex %) '

N, = L(x1—2x1é+x13)

N3 = (lez-éxls)

N, = L-x2x,%), x =¥ (2.3.11)
Therefore,
dzg - dzgl W, o+ 9-%2 8., * ang o L9y o (2.3.19)
dx dx™q dx™y y _dx21 2 dx21 y2

The loss of potential energy of external loads is given by

W=F + T 8 + T

zl "1 7 “yl Vya y2

Differentiating U and W partially with réspect to Wy, we

have



2 f.2 L 2. 2
AL pr &y YAl gx -pr [ AT AT ax  (2.3.13)
Wy ax2 1 lYax? (- 0 dx® dx
Therefore,

L. .2 2 '
Fo,=E [ £F% &0 ax (2. 3.14)
0 dx _

Substituting (2.3.11) and (2.3.12) into (2.3.14), therefore

poowr e a?y, a®n, \fa®n, dx
Wo + 4+ e h—— 2. . 5

dx
where '

_ xR x\3
Nl—l-s(L)2+2(-ﬂ)\=

le‘ _ ’9% + 6x2
dx L L3
2
d“N . . . ‘
l =5 +
5= iy A2 (2.3.16)
dx L . _

Substituting'(2.3.16) into (2.3:153; we get thé first term

as

dx2 dx2 L

;"(

2 2: e
d" Ny "’1) (_.._d N]) dx = %EW\ (2.3.17)

Similarly, partially differentiating U and W with respect

to eyl, W2 and Byz leads to the following equations,
L 2 2
T,=E [ ¥ 32 ax
y 0 dx” dx

]
N
(V]
n
4
L)
—
o7 =N
4
“
lﬂ-
boj =4
)
o
]
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Exf a%v a%x; o . lfa%wy ain; o La%mo aw, . La®Ng d%N, w
o o dx =t (=5l =5l w32~ e =55 =i
‘ dx dx™ dx dx dx

5 2
dx” dx : 0O \dx

2 2
Y- P P

dx i =1 (1) 4
dx dxz Ya i ' -

This integral can be evaluated using the shape functions
in (2.3.11) and can be shown to be a similar procedqre gs in
(2.3.17). Therefore, we can expréss the integral
e d"v 4d°N : 12 ~12 +6 .
[K] = Us E1f i dxst w, +6 6_."=2w32- ¢ _|for i =1
: 0 ax® ax? |18 1z V13T v

for i = 2

for i = 3

o
m
o
——
NI (03}
4
[

+
([ M
@
|
S
)

+
|
D
]
—d
My
o
H
[N
]

S

This resulting stiffness matrix is the sﬁme as the exact
one derived in (2.2.5).

2.3.2 Weighted residual (Galerkin's Method)

- The finite element method may be also regarded as a
form of the Galerkin's Method [1915].‘ This method constructs
an approximate solution to a differential equation, by
requiring that the error between the appfoximate solution
and the trﬁe solution be orthogonal to the function used

in the approximétion.
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The application of Galerkin's Method yields the equa-
tion |

fNB L(¢) dR "B =1, 3, k.
R

where ¢ is the unknown parameter and is approximated by

b = E\ri, Nj,lNk] {cia'"} ‘
and L (%) is the differential equation governing ¢. The
term is known as the 'weighted value of residual'.
The method can be illustrated by the same example used

in the previous section, in which we can start with the

differential equation for a bending beam element, i.e.
M=EI — = O

Let an approximate solution be given by

+ N, V, + N

V=N y1 t N3 Vo + Ny 65

V, + N

1 vy + Ny 0

where the N,'s are as in section (2.3.1). Therefore, we

i
have

L[4
M=EI [ (9-‘1) N, dx =0 i=1(1) 4
° (2.3.18)
The above condition refers tb the.points in the regions
and in order to bring in the boundary forces, we use inte-

gration by parts. Ihtegrating by parts,

L ,
L d4v _ d3v L dsv dN4
[ = Ny dx=N —=| -] g+
0 dx dx 0 0O dx
L L
N 2 L ,2 2
j d'v .g..g.i dx = de_ d”v l - f .g.'_Y. Mi dx
o dx° U [ Eca- b 0 ax® ax®



27

substituting the above expressions into (2.3.18), we have

thaﬁ
L BN : L .2 2,
i (EI 9-%) Nydx = Er [ S£% 4Mi gy
0 dx 0 dx dx
L
: 3 2
+‘EI-d—‘}3—'Ni-%§-ig—% ] = 0 (2.3.19)
. dx dx
0
The end conditions are d°v = d9 = 0 at (0, L)
dx2 dx3
1
Therefore, (2.3.19) becomes
- S L 2. .2 : :
ko] e p &y 4 4 (2.3.20)
2 .2
0 dx dx

which is in the same form as in section (2.3.1). This
means the stiffness matrix is exactly the same as in
section (2.3.1). |

This shows that both approaches lead to identical
stiffness matrices, so long as the same functions are

used, There are other methods, beside these two, such as

" the least square method, Lagrange multipliers, etc.,

which can be found in 'The Finite Element Method',
Zienkiewicz [1979], 3rd Edition.

Examples and Results

At Loughborough- University, a gomputer package PAFEC 75
(Prpgram for Automatic Finife Element Calculations) has been
implemented. The package is written based on the finite
element method and is used for solving structural problems.
PAFEC 75 data is inputted in a modular form. Each module
begins with a header or 'module card' giving the headings

for the columns which form the remainder of the module.
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This card is called the 'contents card'.

We can use the PAFEC to find the displacement value
of the example beam as shown in figure (2.2.1) with which
we can compare the man;al calculations from the previous
sections. To construct the input data file, we assume a
cantilever beam 3 metre long and a loading of 32 kN in the
negative y-direction, as sﬁown in figure (2.4.1). It is
restrained at node 1, in the x~ and y- directionms. The

listing of the input data file with the computer result

is shown in table (2.4.,5).

"

4
- 3m -
1 -
: .
L z] X
A
y 32KN
L
b
- Figure (2.4.1) "«

[ER RN
o

The solutions‘calculated below use the equatioqs fofmulated
in previéus sections. . |
(1) To calculate the analytical solution, we are required %o
use (2.2.12) and the following conditions:- -

A cantilever beam 3m long with cross-section 500mm
deep, carries a load of 32KN, 'Thickness = 4,896 x 1072 n.
E=209 x 107N/mZ. |

Therefore, we are required to find the moment of inertia.

i.e.

3 -2 3
; = bd® _ (4.896x1102 )€0.5)% . (5.1x10~%

22

)m4

‘Torsional constant, y = 8,644 x 1077 m?

Area, A = 2,448 x 1072 7%
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Therefore, from (2.2.12), we have

3 2
1 wi® 1 (32000)x3 s
Vmax =5 “EI 3 (209%103) (5, TxT0 1)~ 2.0027019 m
3

Bending moment, m=-wL = - (96 x 10 Nkm)
Shear force, Qx = -w = ~32 kN | ‘
{2) In the displacement method, we are required to use 2ll

the equations from which the stiffness matrix in (2.2.5)

was derived.  From (2.2.5), the stiffnesé matrix is
12/2 1

_ : &/L 4 . : eyl

v _EZ -12/L° . -6/L  12/1% | Wy

6/L 2 -B/D 4 eyz

4 3

121/1% = 6.8 x 10™ 4I = 2.04 x 10™

6I/L = 1,02 x 107°

However, since one side is restrained, the stiffness matrix

becomes _ _
-32 x 10° =_%} 6.8 x 10°4 1.02 x 10°3 ‘wl
-3 -3
0 1.02 x 10 2.04 x 10 6
. vl
E (wi(6.8x107™%) +1.02x10°2% 6 _)=-32x%10"° (2.4.2)
L 1l vyl
E-((l 02 x 10‘3) w,. + 2,04 x 10"3 8..) =0 (2.4.3)
L L ] 1 . > g l y 1 - -

CL(2.4.2) 5 (2.4.3)

E -4 -
T (3.4 x 107" w;) = -64000

w, = -2,701942 x 10~3n.

and -
eyl 191999,9985

. « The maximum deflection, w, = -2.70194 x 10—3m
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(3) In the flexibility method, welare required to use all
the equations used in the derivation of the matrix in (2.2.8).
All the boundary cond;tions and the initial values are as
before. |

From (2.2.0), we have

3 3, .2 e .2
r, = R, LY , R, (2L] + 3L7L,) + R,LI
3ET 6ET ~ZEL
3 2 3 .2
r, = R, (2L1 +t3L1L2) + Ry (Ly + Ly)" + Ry (Lg + L2)
| BET : —8ET —3ET
" R12 R, (L. +1.2 + R (L +L)
rg= 171+ 72 1 2 3 (L) + 4y

T2EI — 2EI T EI
When we solve for the values.ri,.we have to apply all the
necessary conditions, which are as follows§7 

B
Referring to figure (2.2.1),

= R3 = O and R2 =W

therefore, we obtain

3 3
Ry (Ly + L)Y | ow(ly + L)
T2 T 3EXT T 3EI

3 .3
=32 x10 x3 = -0.0027019 m

5 x 209 x 10° x 3.1 x 1072

To

which is the resulting vertical deflection: of jhe end of

the beam. The resulting rotation of the end of the beam is ,
2 2
ry = R2 (pl + L2) = w(L1 + Lz)
2EI 2E1
3 2
_ =32 x 10" x 3 - -3
Ty = 5 v 1.35097-3 10 p

2 x 209 x 10° x 5.1 x 10°
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From these fesults, and the computer result in table
(2.4.4), where the maximum deflection at node (2)=-0.0027018m
we have shown that the modules are correctly defined and

the matrices in sections (2.2) and (2.3) are correctly set

up.
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FINITE ELEMENTS AND ASSEMBLY PROCEDURE

Introduction

In the finite element method, any continium quantity
can be approximated by a set of piecewise continuous func-

tions defined over a region. In this Chapter, we construct.

‘examples of various types of elements which are used for

modelling, We also consider the procedure of assembling
the element matrices and vectors to construct the overall
system.

Plane-stress Elements

- (I) Plane-stress triangular element
We can obtain the stiffneés matrix for the plang-stress
triangular element based on the assumed displacement fields
and the potentiallenergy integral. The displacements |
within an element have to be uniquely defined by six values

as shown in figure (3.2.2), i.e. two linear polynomials.

U=qa, +ayx + agy

(3.2.1)
V= a4 + g§x + a6y
.y‘
Xi
> X

- Figure (3.2.2)
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We can find the o's in terms of the nodal displacement

u's and v's from (3.2.1) and obtain finally

-1 - \ -
U= 5h [(ai ix+ciY)Ui+(aj+bjx+cjy)Uj+(am+bmx+cﬁoum)]

where the determinant, A, is given by

| 1 xi Yi
1 .
= o= 1 X
A=z i Y
1 xm ym

and Qi = leym -xmyj, bi =_yj—ym, Ci =x - xj
Similarly; we also have for v, therefore

t

RN I VO LY - 4
U=(yp=Na : [INi IN, INm] 2°
and '
N .= == [a,+b,x4C ete
17 2% I:i ¢! iy]

where Ni are shape functions and a are nodal displace-
ments. With reference to Zienkiewicz [1979] and the egqua-

tions shown in section (2.3.1), we can construct the stiff-

e

ness matrix. Thus, assuming thickness t is cénsfant,

e - fBitDBjt dxdy i=3=1, 2,3
_1 b, o _ _E 1 v 0
where Bi oA i. and D = TT‘:_QTT
0 C. v 1 0
i
0 0 3(1-v)
c b. '
i i '
. e _ Et b.b. + 3c.(1-v)c. b.ve. + 3c.(1-v)b.
- K= mprasn +J * J ¥y T e (ImvIby

Vb, + (1~ . - -
clvbJ ibl(l v)c‘:i cicj + &bi(l v)b‘j
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II Plane-stress rectangular element

2
. 1V4 ‘ N7
| Ys ‘,qﬁ _
Z 3] T ‘U3
L -{- ]
) o5l a * Ex)
fe | [ f 7 = —u
-, *- '
= - * Vz
L ] i
.. X, &

Figure (3.2.3)
In figure (3.2.3), O and C are origins of x, y and &, 7
co-ordinate systems respectively. Conversion from one

co-ordinate system to the other is achieved by the rela-

tionships

(x-x.) and . (y-y,)
£ = a n = 5

It is convenient to use the same ‘origin' for the %, y and
£, n coordinate systems, thus reducing X, and Ve to zero

become

x -
=% and n=% (3.2.4)
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With reference to Zienkiewicz [1979] and the equation

(2.3.4) and (2.3.5), where we have:the strain matrix,

.

is given by
te} = susox = [Bl{g} , where [BJ,="%1\T_£ o |
“av/ay .; . i AN«
au, oy W
9y 90X | ‘
I J %gi %gi

To obtain the matrix [B], we are required to differentiate
the 3N's expressions with respect to the curvilinear

coordinates such as

N 3x 2Y oN} 3N
I3 ' 9tk on 9X X
= = [J] (3.2.5)
oN| | 3x 3y N 2N
mn an on { | 9y 3y

in which [J] is the Jacobian matrix and can be easily

evaluated. We can now obtain 3N /3x and 3N/3y by

| (e
Xt = [s] )25  (3.2.6)
aN 3N | |
3y oy

Therefore, the matrix [B] becomes

oNs~ b 8N4

[B] = T%T (a 53 T ©
‘ | 0 (dﬁi"cﬁﬂ

on ]

(d 3Ny - C 3N} (a 3N, -b 3N

on g ¢ e 35.5J
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oY . . 3N aN.
Where a =% y, =), b= y, =i, ¢c=2 x; =]
3=1 J an’ i=1 i 98¢ jfl J oan
m
and 4= I % 33t
i=1
The stiffness matrix [K°] becomes
D 1 1 T
[?] = /7 1 [81"[D)IB] det |d]ag an
-1 -1 - : .
T T o - r -
(B] [p][B] = |a3Nj a7 [D; D, O 3N
= O 5t 1“2 §§J 0
D3 D4 0
N3 3Nj oN
° F & | |0 o n|° W
- L - By X
where .
D.=D =. E D.=D, = \)E D. = E
1 74 (T=-v%) » "2773 (I-v%)* “5 (T-v5H(1-v) /2
Therefore, |

T
B'DB = |oN; D, 3Ny oN;  aNy 23Ny 3N N
13=- L sxdteys Dssyd 3w D2 dyitexl Dsnyd

N oN. 8Ni D, aNj 3Nji aN 4, 0Ny aN

AL | LNl a3y e AR L SNj

5y U5 3x9tax 2 3y. 5y P4 3y e D5 ax}

It is difficult to evaluate the stiffness matrix [Kp]
without using numerical techniques such as Gauss Quadrature

Method, which gives the stiffness matrix [KP] as follows:-

m n
Pl = L Loy s an=z & ww, £(&,n,)
14 | j=14=1 13 71T

Yhere m and n can be equal or different

[p] m m
E|{= Z. & W W K K
p=1 g=1 P @ 11 12

K K

21 22"
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K L (a3N; baN; }D, (a3Ny-b3N;)+(ddN;-c3N; ) D (ddNy~c D,
117 aslan l_é‘éj’ﬁ:' FrRl Ldi T

T

SRS -((aaNi“baNi) z(dm;]" AN;)+(23N-b3Ny , Dy (daN -baNJ))

E T ¥ A 3E aE an Bn

d__i-caNl D,(d3 -c 23Ni~baNy: D"ggﬂi;bggi'ﬁ"
2251‘( o) 4 —J —J) (ag an)s(_ag TR

3.3 isoparametr;c Elements

Problems involving curved boundaries cannot be modelled
satisfactorily by using straight-sided elements. A new gen-
eratioh of powerful elements, known as 'isoparamatric ele-
ments' has béen developed for this purpose. The isopara-
matric elements were introduced by Irons [1966] and was well
documented by Zienkiewicz [1979].

The isoparamatric concept allows any arbitrary geﬁmetry
to be closeﬁiapproximated, thereby minimising any error
associﬁted with mbdelling the geometry and without resorting
to the use of the fine mesh.  This is because the geometry
of the edges of an element will vary in the same way as the
displacement of shape function. To derive the 1soparamatric
element equations, we first introduce a local or natural
coordinate system for each element shape. Then, the shape.
functions will have to be expressed.in terms of the local -
coordinates.  The representation of geometry in terms of
shape functions can be considered as a mapping procedure
which transforms a regular shape, liké a straight-éided
triangle or rectangle in local coordinates system, into a
distorted shape like a curved-sided triangle or rectangle
in the glébal cartesian coordinate system. Lagrange
polynomials are often used for the construction of shape

function of elements. The basic form of the Lagrange
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polynomial in a single coordinate system with n nodes is

n
_ I n
If(_X) = 'i=l. .Q.i (X) fi.
n
where zi(X) is called the Lagrange multiplier function and

is given by

22 (x) = (x=X4) (x-X) )m=m=(X-% ) (3.3.1)
(xi-X6)(xi-x1)——(xi-xn)

It is obvious thatf.?(x)'possesses that properties of

O k+#i
) = 1 g -y
and thus f£its in with the definition of shape function.
To formulate rectangular 'isoparamatric' element
as shown in figure (Bféﬁé);.it is usually most convenienén
to make thé function dependent on nodal values placed on
the element boundar&, wbich is called the 'Serendipty
family'. Therefore, to construct a shape function for
the isoparamatric element (see figure (3.3.7)), it is
necessary to shift the coordinate origins from the left
end to the centre and to change the variable from x/%
to (1+£)/2. So, for the linear element, which has 4-
corner nodes, apply the Lagrange polynomial (3.?:1) as

N = 2?(&)2 %(n) with reference to figure (3.3.7), then

J
(1) at node i, Ei = =1 n; = -1

the shape function

=1 1
(2) at node j, Ej =1, nj= -1
Ny = % (1+E£)(1-n) (3.3.3)



(3) at node k,

=
N
L L

(1+£)(1+4n) (3.3.4)

(4) at node &, Eg = -], n, = -1

=
]

. 3 (1-£)(1+n) (3.3.5)

or using i as the(general subscript for all nodes,

1
N, =7 (3+8 &) (1+n ny)

in which Eiand n; are the coordinate values of node 1i.

By letting £ = & &; and n_ TNy
then we can have
N, = & (146 )(1+n )
i 4 o o]

With these values of equations (3.3.2) to (3.3.5), we

can find the general coordinates in'terms of (x,y) i.e.

-
xj = igl Ni (E) TI) xi
and -
: 4 ( ;
y; = I N E,n) y : (3.3.6)
i {=1 * i
'}
. L i k
-1 o 1 —— g
¢ y J

- . Figure (3.3.7)
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Similarly, we can formulate the shape function for the
quadratic 'rectangular' elements with 8-nodes, where it
has three nodes along one edge.

(i) Corner ncdes

1
N,=3 (1+Eo)(1+no)(E°+no)

(ii) Mid-side nodes

£E. =0 N, = 1 (1-£2) (14n.)

10 Ny=zU- No)
B 2

n=0 N =3 sE )

We can now formulate triangular 'isoparamatric' elements
by constructing appropriate shape functions. For the

three-noded triangular element as shown in figure (3.3.8)

A
- B/13

(1,0}

~
"

(3%;@4)L”’,M Figure (3.3.8)

Z

the shape functions in terms of the local coordinates are

N (E,n) = 3 (1+28)
No(E,n) = & (1~E~v3n)
Ng(E,n) = 5 (1-£+/3n) O (3.3.9)

With these values of equations (3.3.95, we can find the

general coordinates in terms of (x;y), i.e.

3
X R Ni(g,n) e

i=1
3

. &
y = i=1 Ni(Ean) Yi
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Similarly, for the quadratic ‘'triangular’ elements with
‘6—nodes, where it has 3-nodes along one edge. The shape
functions in terms of the local coordinates are:-

(i) Corner nodés B

N =(2L -1) L, ete

(ii) Mid-side nodes

N4 = 4 L3 L5 etc

where L,, Lé"and L are defined by the area coordinates
such as

L, (g,n) = 3 (1+2£)

L, (E;n) =

Wi Wi Wl
o
=t
1
o
éﬂ
3
-

Ly (£,n) = 5 (1-£+/3n)

3.4 Plate-bending Elements

Figure (3.4.1)

The plate-bending element has three degrees of freedom
at each node ex’ ey and w respectively as shown in figure
(3.4.1). The thickness of the plate is assumed to be
small compared to its other dimensions and the deflection
of the plate under load is assumed to be small compaied
to its thickness. The state of displacement at any point

within the element may be represented by three components.
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Ny
o -zN,
o 0

]
6

W,
1
vi
xi]  (8.4.2)

where the shape functions Ni are small as plane-stress

‘elements and coordinate 2 originates at the mid-surface.

There is no need for isoparamatric coordinate.{, becausé"

Z andi have identical directions.

The strain-displace-

ment matrix [B] is similar to previous section (3.2 ),

' 3ujaz+aw/ax‘J

ou/ex
av/3y
du/oy+9v/ox
ov/oz+ow/dy

(3.4.3) .



( 3u/a¢e)

du/dz
3v/3E
{ av/am
v/ oz
aw/3E

awW/an

au/on

dw/3z;
- /
Therefore

du  u
3x ’ 3y

s s 0t ey
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3&{35

aN,/3n

W
oz

Z 3N 0
3
Z 3Nj 0
an
N, 0
0 ALY
0 ~Z3N, /30
0 N
0 o
0 0
0 0
1
517! o o -
-1 u’
0 117" o 9E’
0 o [317%

(3.4.4)

u 3w
an’ -0z

(3.4.5)
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Where [J] = | 3x 3y O
3 o9&
x 3y O
on  on
0 o 1
e - ]
and det [J]= px 3y -3y 8x _ g ANy . 7 Mo
5c on & an 4136 M1 Loam i
m. . . m
I S YL oz BN
i=1 i=1
The inverse [J]—l matrix is
i o !
-1 _ 1 3y -3y -
[J] TEE] | I 3 °
| -3xX 39X .0 Fol
an  3¢& _ (3.4.6)
-0 0 (3x 2y - 3y 23x)
Bg n 8 9n

To find the matrix [B], we have to use [J]7%
With equation (3.4.3), (3.4.,4) and (3.4.5). We can yield

(g} = [Ejl{g}_ .

-« ’

. . -
1.e. |84 0O 0 0 0 Za; © )
E N (W ]
y 0 0 O 0 o -z8, i
m
Yoo O = _ .
J xy 151 0 0 0|+ [0 28 -Za 0oy ¢
Yyz 8, 0 -N, 0O 0 o
a, N; O o 0 © (%1
thx‘ it J
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Let,
-1 3Ny -1 3N,
a, = J - =t +J =1
179, %€ 12
_1fm® ";’ g ANy 7 ooy ﬂi - ;E(a Wy b .aﬁl)
ﬁTi 1yge1 71 EL TR T- on [ [F[\ 3E g
., 1N 1N | |
By = Jo3. agi *Jd2 T | |
",
S Lfmogmo AN AN mo AN AN 1 3Ni‘°§§)
> 19 = (z *1"%E T *i%n B€ | T4 an g
i=1 \i=1 i=1 ‘

The entire matrix [B] may be split into a part [Bo]
independent of Z and a part Z [Bl] linear in Z as in equa-

tion (3.4.7). The stiffness matrix is therefore given by

[KTZ] = [ l[B]T[D] [B] dx dy dz

.vo

| T
[ B0+ 21 D][Bg + 28] dx dy dz

Integration ﬁith respect to z is between the limits + t/2,
because of the distribution of zeros in [By], [B;] and [p],
products Z[BO]T[D][Bl] and Z[BIIT[D][BO] vanish, [BO]T[D][B0]
involves only the 'transverse shear' portion of [D]. There-

fore,

{xee] =/ 17 0]Islax ay = [ [8]7[0] [s]cet 4] ag an

area

Where the matrix [D] is
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[p] = [0 D, 0 0 0
Dy D, 0 0 0]
o 0 Dy © 0
0 0 0 Dy O
0 0 0 0 D,
Et3 ] Evt3
Yhere D, = D, = : D, =D, = 2
3 i
Dy = _Et> , Dy = D, = {IWEL
2(1+v) 2K(1-v?)
So we have
[€°] = [ BT DB det [3] at dn
. Where
T [ | ‘ :
B'DB = |B, D By+a Dy, oy Dy Ny fBi-Da Ny
ayDyoy + B;DgB;+N,D,N,  -B;Dga,-N,D,N,
Symmetry
~84Dy8y%0;Dg0; =Ny DNy

L ' .
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Shell-type Elements

The first application of the finite element methbd,to‘
shell structures was made by representing the curved surface
of the shell by flat elements, either trianéular or quad-
rilateral in shape, and superimposing the plane-~stress and
bending stiffness matrices disregarding the coﬁpling effept
within each elemeﬁt. This approach was first presented

by Zienkiewicz and Cheung [1965] and Clough and Tocher [1965]

by using displacement fype flat element. -

= . . - ) --‘
0 0 o) )

Krs 0] 0 C o)

K]=10 o (3.5.1)

0" 0O o o0 o© o

~ ’ —

A

s

where [Kgs] is a submatrix of in-plane action and [ﬁ?sl
is;a submatrix of bending action, | |

The stiffness matrix shown inl(3.5.1) used a system of
local coordinates as the in;plane, and bending components.
The formulation of the shell—tyfe elements is well docdmenfed
in Zienkiewicz [1979] The shell-type elements have been

used commonly at Austin Rover for constructing car bodies.

Datym . Tronsforakion> and Assemblage of Element Equations

The various methods of deriving element characteristic
matrices and vectors have been described in the above sec- 
tions. ‘Before proceeding to consider how these eleﬁent
matrices and vectors are assembled to obtain the charac~

teristics of the entire system of elements, we need to
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derive a technigque to enable us to transform the local
coordinates to a common global system.

The element characteristics are computed in local
coordinate systems suitably oriented for minimising the
computational effort. The local coordinate system may be
different for different elements. When a local coordinate
system is used, the directions bf thefﬁodal'dégfees of
freedom will also be taken?in a donvenient manner, There-
fore, béforé‘the element equations can be assembled, it is
necessary to t;ansform the element eqﬁations derived into
local coordinate so that all the element: ‘equations are
referred to a common global coordinate system.

If gi.and g? represent the vectors of local and glébal
displacements, then the transformation between the two may

be written as

where [L] is a 6x6 matrix comprised of two 3x3 matrices

denoted by [a]

as L] =

The matrix [A] is formed of direction cosines of the angles

formed between the two sets of axes:-

D] = | '

AxLx ley" AxLz

A A A
YLX yLY yLZ

'AZLX AZLy . AZLZ
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where AxLx is the cosine of the angle between the Xg and
A-axis, etce.. The same transformation holds for nodal

forces, and for a complete element may write

8 = 1] 8% ~ (3.6.1)
and |
B meE  3.62)

The local coordinate system of the element equation can
be expressed in the standard form

[Ke] s = [F°] ’ (3.6.3)

by substituting (3.6.1) and (3.6.2) into (3.6.3), we

obtain _ :
EKe].ET?] §° = [Te] 8 (3.6.4)

'ﬁremultiplying this equation tﬁroughout by [Te]_l yields
(] = [r*17[xg] [r°]

Once the element characteristics, namely the element
‘matrices and element vectors are found in a common global
coordinate system, the next step is to assemble all the'
‘element matrices to obtain a master stiffness matrix and a
total applied vector. The procedure of assembling the
element matrices and vectors is based on the requirement of
'compatibility' at the element nodes. This means that at
the nodes where-elements are connected, the values of the
unknown nodal degrees of freedom are the same for all the
elements joining at the node. The assembling procedure

is the same regardless of the type of problem and the number
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and the type of elements used.

In structural problems, the nodal variables are
usually generalised displacements which can be transla-
tions, rotations, curvature or other spatial derivatives of
translations. When the generalised displacements are
matched at a common node, the nodal stiffness and nodal
loads of each of the elements sharing the node are added
to obfain the net stiffness and the ﬁet load at that node.

In manf practical problems, the element matrix [k°]
and the master matrix [K] are symmetrical and we therefore
only have to assemble the lower (or the upper) triangle of
[K] using the lower (or upper) triangle of [k].

From the result in (2.4) of the cantilever beam, we,v 
can éasily calculate the analyticél solutions and make éom—
parison with computational results to confirm the accuracy.
However, if the structure is more complicated, i.e. a car .
body, then the problem becomes.more difficult to solve.

In the case of symmetrical structure, it is possibly
the analysis by modelling the one half of the structure and
applied appropriate constraints at the plane of symmetry.
For example, take a symmetrical beam elemeﬁt, where 'f:he
non-symmetrical loadings are applied as shown in (3.6.5)

IL! le '
A ; A Ly # L,
(Lis L2}/,

(Li+L2ys

A (symmetrical loading)

(Li-L2)p (Li=L2);

3, (antf—symmetrical
loading)

>
AT T TS b
At Ay ny,

Figure (3.6.5)
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In this case, we have to apply two different loadings at
half of the stru@ture separately with the appropriate
constraints. IThe fwo different loadings are symmetrical
and anti-symmetrical. The results of fhese two ioadings
are added together to give the equivalent result of the
half-sized structure. _

The car body, as we know, is non—symmetrical,.tbubﬂ
the capacity of the computer storage is not adequéte to
cope with the full-sized model. Generally, we are restric-
ted to carry out the finite elément on one-half of the car
body. |

The substructure or supereleménf method is the tech-~
niqqe that enables the problem to be reduced to a more
manageable size.  Basically, the methéd is based on sub-
dividing the large stiucture into smaller'parts which are .
analyzed séparately to obtain relationsﬁips between forces
and displacements. Technically, the superelement method
is expressed by the generalized coordinates associated with
the nodes in the interior of each substructure on its
boundaries, so that reduced matrices associated only with
the generalized coordinaées of the boundary.nodes can be
developed. This procedure is called static condensation.
The advantage of the superelement method is that it enables
the division of the entire structure under consideration
into several parts which are connected to each other by a
finite number of nodes and the interelement boundaries between
these nodes,  Each part may itself have many-eiements. The

element matrices of each part are assembled into a submaster
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matrix for the part. These submaster matrices for each
part are just like the element matrices for an element;
each part can thus be viewed as a superelement, (for
more details, see chapter 4), Several finite element
programs such as NASTRAN [1976], ASKA [1971], SESAM-69

[1974], GIFTs [1973] all adopt the above method.
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INTERFACE PROBLEMS

Introduction

Many automatic mesh generation techniques have been
developed to generate finite element models, (see chapter 5
for.details), but none appear suitable for a complicated
structure like a car body. The manual preparation of an
input data'file for- the finite element analysis of a struc-
ture can be extremely time-consuming in all but simple
examples., It has only been possible to construct a crude
model in sﬁch a2 way, because the user could not handle the
amoﬁnt of data required. An interactive data-handling
system using a digitizer via a graphics facility has proved
capaﬁle of handling large amounts of data and saved 1abou£
and cost, bﬁt it still only provides a crude geometrical

description of the structure.

The purpose of this chapter is to give the general
concepts of this project, and an overvieﬁ,is given in
Figure (4.2). At present, the Autin Rover group (ARG)
is able to hold a detailed geometric description of a car
body and its internal structures in a Gemometric Data Base
(GDB). The aim of this project is to develop an auto-
matic mesh generation program which will use the geometric
data, together with supplementary structure data, to gennA
erate.a fihite element model, As an intermediate stage,
therefore, it is proposed to create a new file, namely the
Structural Data Base (SDB). |

It is difficult to mesh a vehicle in detaillwithout
breaking down the model into a number of components. Also,

it is inefficient to re-run an entire model for analysis
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when changes in only a small portion are to be investi-

gated. Therefore, substructuring the vehicle wouid be

the way to identify and describe various portioms of the
model. |

Before the automatic mesh generation prbgram can be
used, we have.to supply an algorithm to ensure all the
data in SDB are correctly defined,. The algorithm con-
sists of checking that the substructures are geometrically
compatible and fit together .with no gaps between them. We
must also ensure that the boundaries of the substructures
are continuous after introducing thickness into the struc-
ture (see éection 4.4). _

NASTRAN (NAsa STRuctural ANalysis) is thé finite ele-
ment program used by fhe Austin_ﬁover Group to analﬁse the
finite element model. The program ailows the construction
of ‘superelements{ which store all the substructures by redu~
cing all the internal nodes data to boundafy nodes data. In
this way, we can overcome the problem‘of compufer storage and
allow the model to be meshed with great accuracy.

The ARG uses only_isoparametﬁic‘elements and we there-
fore restrict ourselves to the use of these elements in the
automatic ﬁesh genefation program, In addition, shell-
type elements are preferred, since it is found to be a more
predictable-tool in the analysis of a car structure. . |

Finally, we have to implement the automatic mesh genera-
tion program to mesh individual panels and assemble them into
relevant substructures. Al}*data will be stored in a uni-
versal format since this is the way to input all the data
to NASTRAN for analysis (see section 4.6.2), Sincerthe caf

model will be accurately represented by the superelement
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technique, accurate analysis will be possible.

After the mesh generation program has completely
meshed the structure, we are required to build in an
editing routine that allows the usér the options of

changing data in the SDB.

Overview Flowchart

Geometric Data
Base

Y.

Create User Inputs
Substructures Material Names
' and Thickness

¥
Assemble User Inputs -
Structural - Structural
Data Base Connectivity Data
Y

Check Structural Consistency

!

Create User specifies
Finite Static or Dynamic
Element

Model

Figure (4.2)
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4.3 Geometry Definition

4.3.1 Geometric data base

In the past, there have beeﬁ difficulties in obtaining
accurate geometrical descriptions of the car model, because
the computer facility and the mathematical techniques have
not.béen capable of giving accurate descriptions of the car
body. In this case, manual involvement has played a large
part in the.prdcess of obtaining geometridal descriptidn of
the model. Therefore, the initial stage is to havg an
automatic generation of input data of the car structure by
the computer with minimal human involvement. Presently,
the Austin Rover Group are able to hold within the computer
a geometrical description of the shape of the car and its
internal structure. The data is subsequently used to éid
va;ious design and manufacturing processés. " The company
uées.‘CONSURF' very .successfully for the geometrical des-
cription of the external body shape. Now, they are apply-
ing similar techniques with the aid of interactive graphic
facilities.such as CATIA and CADAM to construct the geomet-
rical description of the internal structures. The whole
structure is broken down into many panels and'mathematically
described by polynomials stored in the Geométrical Data
Base (GDB).

4,3.2 Structuring the car body

It is difficult to construct in detail a finite element
model of the car body, without breaking down the model into
a number of components and it is inefficient to re-rumn an

entire model for analysis when changes in only a small por-

tion are to be investigated. A car model is substructured



4.4

58

to provide a natural way to identify and describe various
portions of the vehiclef These substructures are used

in the fabrication and assembly processes,‘and'the concep-
tual and mathematical models of each substructure can then
be checked inagpendently of-the others. This means than
an engineer can analyse his own particular substrpcture,
while also contributing to the overall model.

All the geometrical data is described in terms of
panels, but-the substructures may-be defined by more than
one panel. Therefore, we require the user to input the
names of each substructure and collect all the releﬁant
panels to it. :

Assembly of the structural data base

The general idea of this project is t6 make use of
the geometrical data for the construction of a finite ele-
ment model.. Also, if the physical properties of the finite
element model,'such as the thickness and material names ére
known, we can analyse the behaviour of the model. There-
fore, we require the user to specify these physical proper--
ties and also the connedtivity of the different substructures.
In addition we may require the user to input all the discrete
loading positions, since the positions can be defined in
advance;

The Structural Data Base (SDB) ié used to store all the
geometrical data and the additional information, because the
geometrical data in the GDB is not to be manipulated and

changed.
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Checking of structural consistency

Before the automatic mesh generation program can be
used, we have to introduce an algorithm to ensure that all
the information in the SDB is correctly defined. The
algorithm consists of checking that the éonnectivities of
substructures are geometrically compatible, by ensuring
there are no gaps between substfucturés and that they are
connected correctly. One difficulty arises when it is
used to check for consistency between boundaries of panels
within a substructure during assembly. The reﬁsbn'is that
the.geometrical data is an assembly of-surfaces which have
no physical properties. When we iﬁclude these properties,'
such as the thickness, into the finite element model, it'
can result in fhe cross~sections §f the substructures
taking a varijety of irregular fofms.' These include open
multiple flange and single and double-celled closed cross-
sections. These sections are generally made of folded
parts of uniform thickness,'joined at tails. However,
each'part may have a different thickness, so the algorithm
is required to ensure that varying thicknesses of different
parts do not affect the smoothness of the boundaries wheﬁ
they are assembled together.

Creation of Finite Element Model

4,6,1 Preliminary considerations

The objective of this project is to develop a mesh
generation systen which automatically generates a finite
element model based on the structure's geometric properties.

We know the internal structure contains many complicated
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shapes." Therefore, it will make computation simpler by
breaking down each substructure into many regions for mesh-
ing. The technique will be described in ‘section (4.6.2).

Although the process is autdmatic,'the user should
have the option to overfule at various input stages. At
this stage, we require thé user to specify the type and
the number of elements on each panel. The reason is that
there are di;ficulties in determining the optimum number
of elements on each panel and to provide the analytical
solution. of the model. Therefore, we are aiming to mesh
each panel with the minimuh number of elemgnts; Td
~achieve thds objective, we may require the user to input
this information to the SDB. In order to do this, we are
assuming the user-has-the experience of usiﬁg.the finite
element techniQué on similar sfructures. ‘ Wé-can‘take
advantage of their experience to decide on the: type and
the number of elements on each panel.

There will be difficulties in deciding how'many ele-
ments are required to model fhe stiffness of a partiéuiar
structure, In general, the greater the density of_elements
in a model, the better the numerical approximation to the
true solution. The actual number of finite elements néceé—
sary to model a given structure is a compromise depending
on the nature of the structure, its loading and supports,
the type of elements used, and the purpose for which the‘
results of the analysis are to be used. We can use the
number of elements based on the previous models as a guide-’
line which can then be built into the program to give a

warning fo the user. Most of the'internal structures are
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governed by the geometry and the boundary conditioné. In
addition, these restrictions can alsc be used to decide on
the number of elements on each panel.

There will be difficulties in ensuring that the number
of elements specified by the user are meshed exactly onto
the panels. Unlike the external panels, which are gener-
ally smooth, the inner panels contain numerical cutouts,
bosses and ribs. Additiqnal modelling cbmplicatibns are
encountered in the cases where the inner and oﬁter panels
are adhesively bonded to form a sandwich-like structure.
Therefore, complications will arise in dividing the surfaces
infb *smooth' areas for meshing,. !If the panels are meshed
‘with more elements:than requiéed, we may introduce computa-
tional‘errors which will result in a loss of'accurady,‘

4,6.2 'NASTRAN' modelling technigues

NASTRAN is the general purpose finite element program
used at the Austin Rover Group for analysis of the finite
element model. The program is based on the displacement
method of finite element analysis and it has the facility
‘to collect many of the elements and reconstruct them into
a ‘'superelement' by condensing 711 the inteérnal nodes into
boundary nodes. The condensafion technique. is introduced
by Guyan [1965], and is called the Guyan Reduction in the
NASTRAN computer progran. The technique enables us to
mesh each panel in deﬁail and represent it by a super-
element. These panels are then assembled into sub-struc-
tures. Each substructufe can also be formed into a super-
element such as superelement-within-supe:element.‘ In this
way, we can have the ‘entire fldﬁr of the vehicle represented

as one superelement whose mass and stiffness properties can
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be defined in terms of displacements at the periphery of
the floor. This descriptioﬁ would be combiﬁed with simi--
lar supérelement models-of the roof, wheel wells, fenders
etec., in the same way that finite elements are coﬁbiﬁéd to
model the floor itself. By asSembling the model according
to increasing levels of complexity, we are still able to
change portibns of the structure without effecting the con-
necting substructure models. ,-Also.this technique is
attractive since it parallels the design process where major
structural components, or substructures, are often designed
by different engin;ering groups or at different times. It
is desirablé, therefore,cto use a substructure approach so
that such designs and modifications'may.proceedias independ~
ently as possib;e,.with due'considerétions being givenrfo
the coupling of substructures to form the complefe structuée.
In the past, the finite element model of the car has
been constructed in halves, rather than in full-sized models.
The car body could be represented symmetrically, because the
components which make a car structure non-symmetric, such
as the steering-gear, air—conditiohing equipments, trans-
versely mounted engine, spare-type, and other cargo, could
be easily identified. The influence of these non-symmetric
components may be economically studied by makiﬁg mass and
stiffness modifications to the base system represented by
its éymmetric and anti-symmetric modes. The reason is that
the storage capacities of the computer can be exceeded.if
the fuil size finite element structure of the car body is
used for analysis, as the total number of degrees of freedom
or the size of the stiffness matrices required becomes

larger. Now, we can construct a full size finite element
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model, since the superelement provided by NASTRAN could
reduce the size of the model to be stored in the computer
memory.

4.6.3 To mesh the structure using isoparametric elements

The Austin Rover Group have been using the isopar-
metric family 6f elements to mesh structures. The reason
is that these élements have shown gréat acéurgcy in approx-
‘imating any_afbitrary geometry closely, thereby minimizing
any errors associated with modelling the ge;metry without
resorting to.the use of a fine mesh along the boundaries.
This has proved particularly useful for meshing internal
structures. The progrém must be based on the isopafa-
metric elements and it must closely fit the surfaces des-
cribed by the polypomiais from the GDB. There will, how-
ever be problemé in fitting the isoparametric elements to

' the surfaces, due to the polynomials of the isoparametrié
elements being usually up to third order. Whereas the
polynomials used to describe the surfaces can be higher
than third order. Also, we need to consider the minimum
.size of elements to be meshed, such as the rectangular
elements, which are unable to cope with long thin elements.
The best results are obtained if the aspect ratio is less
than 5:1.

In the past, areas which are complicat;d héve been
simplified or modelled by beam eleﬁénts, because it is
ﬁery difficult and time-consuming to mesh the complicatéd
area in detail. Also, if the inférnal structure is meshed
by fine grids, it will cause the computer storage to over-

flow. Thus, due to their geometrical simplicity, beam
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elements are the most popular to be used in pomplication
areas (e.g. pillars, side~crossmembers etc). However,

beam elements have drawbacks for use in design. First
they are not a fully predictable tool, since we are required
td calculate the second-moment of ﬁreas. Secondly, beém
models cannot account for sectional distortions under loads,
since it is assumed that their cross-sectional shape is.
fixed. In'additioﬁl it is difficult to model some members
of a frame,lsuch as spring seats and attachment brackets,
which are not beamlike, or to model large hdles. Also,

it is not convenient to incorﬁorﬁte design changes (e.g.
gauge modifiCafions,‘welding, bblt pattern changes and
shape changes) into beam finite element models. Lastly, -
beam modelé are not very piCtorial; and even graphic disf
plays d; not permit detection of any input daté'errors.

Computational routine

When the automatic mesh generation program is used to
mesh the panels we have to take into account all the boundary
conditions, such as the joint positioné and the_number of
nodes used for assembly, to be represented adequately at
the boundaries. | |

Finally, we have to provide an algorithm to ensure that
all the panéls are filled in with the number'of reqﬁired
elements. To do this, we have to check that no nodes or
elements are lying outside the boundaries. Thus, we have
to make sure that all the spaces are meshed.

All these data will be stored in a standard format,
called 'universal', which is commonly used by engineers in

this field and it is recognised by the Structural Dynamics
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Research Corporation. Also, this is the way that we can
input the generated finite element model to NASTRAN for
finite element.ﬁnalysis. Actually, we output all the data
into the finite element package called 'SUPERTAB', which

can be then translated into the NASTRAN format. The advan-
tages of using SUPERTAB is that it'provides graphic display

facility and checking routines, such as distortion check,

minimising bandwidth and.renuﬁberiug.

Both static and dynamic analysis are carried out in
the finite element struétures. It is not uncommon to see
static analysis beiﬁg performed oh-the_structures having
many thousands of degrees of freedom. It is, however,

rare that dynamic analysis be performed on the structurés

of the same order of complexity, because the cost of such

an analyéis is so much greater than its counterpart.; This
actually need not be the éase, for often one does not need
the same level of discretization for dynamic analysis that
is required for static analysis, Thué; it would be des-
irable to be able to transform a ‘*large degrees-of~freedom' .
problem to a more manageable, smaller size one for dynamic
analysis, to be performed using the superelement techihique.
Since a finite number of nodes are used to construct a model,
the application of loads and constraints can only be an
approximation to the actual distribution. Therefore, the
appiication of an equivalently distributed load is required.

Editing routine

After we have completely modelled the structure and -

analysed it, using NASTRAN, the user may be required to

change the geometrical data or any geometrical properties.
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"In this case, we have to implement an editing routine
which enables the user to have access to the SDB to make

any hecessary changes.
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AUTOMATIC MESH GENERATION TECHNIQUES

Introduction.

Many mesh generation techniques have been derived to

the modelling of structures. The reason is that the manual

preparation of finite element meshes proves to be cumbersome,

costly and prone to errors if the structure is falrly large
or geometrically complex. In general the purpose of mesh
generation is to produce an accurate representation of the
structure with minimum manual involvement.

Applying an aﬁtomatic mesh generation algorithm to
any. complicated structure involves many considerations,
such as the geometric description of the structure, the
type and the number of elements and boundary conditions.
It is straight-forward to mesh a simple region. For_"
example, a rectangular region with straight-sided boundaries

and mesh with 3x4 elements (say) as.shown in Figure (5.1la).
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Figure (5.1z2) Figure (5.1b)

The simplest type of elementeused is the linear
'rectangular' element with 4 hodai points at the corners.
Since, we are required to mesh with 3x4 elements on the
above fegion. We need to have 5 nodal-pointe on the

boundaries in the x-direcéion and 4 nodal points in the
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y—direction. - The simplest method, and one steﬁ above that

of specifying the coordinates of every node is the 'straight-
line. interpolation’. The technique involves specifying the
end-point coordinates and node numbers for a straight line;
suc§ as Xg = b.O,jy6'= 1.0 for node 6 and X0 = 5.0, Yi0 = 1.0
for node 10. The difference of the nodal point numbers
determines the number of divisions on the line. The differ-.
ence of the coordinates gives the length of the line. The'f
length divided by the number of divisions determines the
equal increments of the straight line. These nodal points
must then be connected to: form elements, aﬁd the assemblage
of the elements forms the continuous structure. We are

. requireﬁ to input the topologﬁ.of éach element. For'ékaﬁﬁieﬂ
for element 1 it is node 1, node 2, node 6 and node 7 and °
so_oﬁ. Tﬁe program will automatically connect all these

topologies to form elements as shown in Figure (5.1b).

1

"______4-—""'—-.

Figure (5.2a) Figure (5.2b)

We can apply the same routine as described above to
generate elements on the region as shéwn in Figure (5.2a).
The pattern of elements formed in Figure (5.2b) is similar
to Figure (5.1b), excepp that the area of all the elements

are not the same as in Figure (5.2b).
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Alternatively, we can apply the isoparametric mapping
method, which is described by Zienkiewicz [1967], to mesh
| the'rggion in Figure (5.2a). The advantage of‘thiglnethod
is that it is capable of coping with curved boundaries as
shown in Figure (5.3a) as well as generating elements on

it as shown in Figure (5.3b).

\

—

|

Figure (5.3a) Figure (5.3b)

|
WA

" The isoparametric mapping method is based on poly-
nomial interpolation functions.(shape functioﬁé)fo provide
a unique mapping between curvilinear coordihates, (&g,n) and
the cartesian coordinates (x,y) (see chapter 3). The
method is not only able to mesh the region in a 2-dimensional
plane, but also able hesh region in 3-dimensional space. |
The method is similar to 2-D by mépping_betweeﬁ the cartesian
coordinateé (x,y,z) and the curvilinear doordinates (g,n)

as shown in Figure (5.4)
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Figure (5.4)

However, the method is unable to directly mesh a
region which has an irregular shape as shown in

Figure (5.5).

Figure (5.5)

The technique manually subdivides the region into two sub-
regions as shown in Figure (5.6a), then mesh with 3x4 linear
elements for the large subregion and 2x2 for the smaller sub-

region as shown in Figure (5.6b)



71

 MESH

Figure (5.6a) Figure (5.6b)

Alternatively, we can use the random node generation
techniqué to generate nodes on the irregular region, a
technique which was originally developed by Suhara & Fukuda
ﬁ97g]. Finally, we can assemble the fﬁb suﬁregions
together to restore to the original shébe as shown in

Figure (5.7)..

Figure (5.7)

5.2 Considerafions for a mesh generation algorithm

The essential feature of the automatic mesh generation
program is to mesh the structure accurately. If the struc-
ture is a simple region as shown ih Figure (5.1); we have
no difficulty in generating elements in:ggreguiar pattern.

However, if the region is an irregular shape as shown in
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Figure (5.5), we are required to subdivide the region
--into subregion so as to enable meshing without causing any
computational errors.

Generally, pﬁblished papers on automatic mesh genera-
tion technigques assume that the region is regular. Any
irregular shapés are manually subdivided by the user to
ensure that the region can be meshed as shown in‘Figure
(5.6). - | |

Ideally, it is best to allow the automatic mesh gen-
eration program to choose the type of element and the
‘optimum' number of elements on each région to be meshed.
However, one problem is the difficulty of knowing the ana-
lytical solution ovér a complex'region. This implies.
that it is difficult to obtain the ‘'optimum' number of
elements on each region and to decide on the type of element
to be used, It is possible to find the analytical solution
for a simple region such as a square plate. So far, there
are no algorithms which have been devised'to decide on the
type and the toptimum' number of elements on the complex
region to be meshed. We.require the user to input the
type.and the appropriate number of elements and this will
depend upon their experiencé and Judgement. ‘

Zienkiewicz & Phillips [1971] have developed an auto-
matic mesh generation scheme for plane and curved surfaces
by isoparametric coordinates. The scheme basically-requires
the user to subdivide the region into quadrilateral zones.
Then, the user has to define the number of elements on each
zone and the scheme will mesh each zone with 3-nodal triang-

ular element. Durocher & Gasper [}979] have published a
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a fortran program based on the isoparametric mapping con-
cepts introduced by Zienkiewic [1971]. The program requires
the user to subdivide the region into quadrilateral zones
(superelements) with eight sets of nodal coordinates, and

to specify the’type and the nuﬁber of elements on each
superelement. The program was Written based on five

cbmmonly used two-dimensional elemepts,‘S-noded triangles,

6-noded straight-sided triangles, 6-noded isoparametrié

‘triangles, 4-noded or 8-noded isoparametric quadrilaterals.

Fujii & Yuki [1973], Imafuku et al [1980], Ghassemi [1982]
and’ Stefanou -[1980] have used a similar technique that
required the user to perform a roughrdivisioﬁ of the con-~
sidered region into quadrilateral or triangular zones

which are further subdivided into triangular or rectangular

elements.

Node generation

Generating podes on each region is one of the important
routines in the mesh generation.ﬁrogram. The number of
nodes on each region is dependent on the specific number of
elements and the type of elements which have been specified
at the earlier stage. | |

The initial stage is to have adequate external nodes
to describe the boundaries of a region. The external
nodes will be used for defining the grid spacing and the
pattern of meshes inside the region. For a simple region
with straight-sided boundaries as shown in figure (5.1=2),
it is straight-fofward to describe the boundaries with

four external nodes at the corners. The program will
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automatiqally generate the rest of the required thernal
nodes, With these boundary nodes, we have no difficulty
in generating interior nodes (see Durocher & Gasper [197@]).
Various node and element generation techniques have been
reviewed in Buell & Bush [;97%] to generate interior nodes
and connect these nodes to form elements. The techniqueé
described in the paper assume that the region is smooth
and that it is possible to construct elements in a regular
pattern. Thacker [1980] has presented an updated survey
of the automatic mesh generation techniques with additional
information, such as smoothing techniques and recognition
of neighbouring points, for modelling irregular region.
There is no difficulty in generating interior nodes
on the régulaf regidn'if 2all the nodes lie on the straight-
lines as shown in Figure (5.1b). However, this can make‘
it difficult to vary element sizes in an'qconomical’way,
because the number of nodes on each side are restricted to
the same number as those on the opposite side. It.also
creates problem in connecting different region together,
because the numberlof external nodes on common boundary

may be different as shown in Figure (5.8).

Figure (5.8)
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To overcome the problem, we can either manually
ensure that the number of external nodes on the connected
regions are the same, or insist that the automatic mesh
generation program has a routine to connect the region with
the different number of nodes on their boundariés (see
Ghassemi [}982]).

Sometimes, we are required to analyse a pariicular
part of the region which may need to have a denser meshing
than other parts. One way is to allow the user to intro-
duce weighting factors to enable grading of the‘mesh, (see
Zienkiewicz & Phillips (19717 and Durocher & Gasper [1979]).-

It is obvious that the shape of the grid will depend
on the shape of the boundaries'and the portion of the exter-
pal points. The grid on a region;is not always-:ggular,
because the external points on.the bouﬁdaries may not -
be equal oﬁ-opposité.sides. Also, the grid is dependent
on the shape of element used and too much irregularity
can effect the accuracy of the computation for which the
grid is intended. In this case, for best results, the
triangular element must be as equilateral as possible,
for acute angies can result in computational instability.
Similarly, quadrilateral elements should be as square as
possible. Therefore, a checking routine mpst be provided
to ensure that all the elements are not too irregular (see
Frederick et al [1974], Lewis & Robinson [}973]).

If the geometry of a region involves curved boundaries
as shown in Figure (5.3a), we require a technique to closely .

fit the external nodes onto the boundaries. Since we are



76

interfacing CAD/FEM, as pointed out in Chapter 1, the exter-
nal nodes can be automatically generated on the boundaries.
The reaéon is that both functions are pdlynomials. Alter-
nétively, we can manually input all the required external
nodes on the boundaries. . Zienkiewicz & Phillips [1971]
fequires the user to specify the boundary nodes, if curved
bougdaries are involved, and the number of subdivisions in'é
andfn'diréCtiOns. The user can input the weighting factors
to grade the mesh, Durocher & Gasper [1979] have developed
a program based on SOme'bf-thefsuggestions above, such as
alléwing the program to calculate the interior nodes, if
the region is strgight491ded; Alternatively, the program
allows the usef to havé:the option of inputting the_inferior
nodal coordinates in order to gradé_thé mesh within the
given region. One of the limitations of the Durocher's
program is that it cannot be efficiently used for triangular
region, Wu [1980]has tested the program with some correc-
tions for constructing triangular elements. Ghassemi [1982}
has provided a similar method as mentioned above with a
Fortran program, except that it is resfricted to be used on
3~-noded or 6-noded triangular 'isoparametric' elements.
The program generates the interior nodes by assuming uniform
subdivisions -in the plane triangle, The program also con-
tains a ‘'merge' algorithm to connect different triangular
regions together. It allows the user to number different
zones in any order,.

.The isop#rametric mapping method is the most popular

method used for automatric mesh generation. There are
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othe; methods used for generating nodes and connecting

nodes to form elements. The transfinite mapping method has
been used in papers, such as Jones |:1_974_'[ a.'nd Haber et al
DQBZ] for‘ﬁésh' ééneration. The method was originally
developed by Gordon & Hall [1973] té calculate the nodal
coordinates for approximation volumes and surfaces. The
method is based on the.bivariate blending-function inter-
ﬁolation for producing well-behaved maps from canonical
regions such as the unite square to simply connected

domain,

Jones [1974] has written a two-dimensional mesh gené
eration program 'Qmesh' based on the scheme developed by
Gordon & Hall [1973] to produce quadrilateral elements.

A smoothing technique'was introduced to produce improved.
meshes without user interactipn. The technique is based
on the Laplacian method and is easy to implement on the
region, which is convex or nearly’sb. If a region is
non-convex, the method may perform disastrously, because
when locating interior nodes, the Laplacian methqd is

- unable to significantly utilize boundary curvature inform-
atioﬁ and boundary nodal point spacing_information. Neverf
theless, Herrmann [1976] has developed a modification of
the technique, by introducing an additional value,'usually
denoted by w to produce a family of schemes called the
Laplacian-Isopérametric schemes, whereO<w<1. The isopara-
metric scheme.introduced here is different to the scheme
introduced by Zienkiewicz & Phillips [1971]. The applica-

bility is restricted to four-sided regions or subregions

L
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that are represented by element layout which is transformable
to rectangular meshes. This smoothing technique may be use-.
ful for modifying the regular grids after it is completely
meshed. | |

Element Generation Teéhniques.

All the nodal points of the structure found by any of
the methods must then be connected to form elements, and
the assemblage of the elements forms the continuous stfuc-
ture. The connectivity of the nodes that is required to
form an element depends on the type 6f finite element spéci—
fied before. For the best results, the shape of the ele-
ment should be as regular‘as possible and the number of
cdﬁnections at interior nodes within a region should be
as uniform as possible. . That'ié; each node should have
approximately the same number of element connections. We
are aiso required to ensure that the boundary nodes and

the interior nodes are properly connected for the specifice

type and number of elements.

Connecting nodes to form elements is a straight
forward routine for a regular region, because all the nodal
points lie in a straight line. We are reQuired to record
all the nodal points into the program, then collect all the

necessary nodes for each element as shown in Figure (5.9).
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The whole procedure has been fully described in Chenng

& Yeo [1979], and also in the review by Bush & Bell [1973], .
where the method is known as the 'I-J' transformation.
However, there are problems involved in connecting nodes to
fbrm irregular mgfhes. The problem is to ensure that all
the nodes are properly connected, and that the elements
used for finite elements analysis are not too irregular.
Frederick, Wong & Edge [1970] have presented a paper to
overcome'this problem. A spgcial scheme using 'Ghost'
points, which are points beyond the region bbundary; has
been created, eliminates the need to identify external
boundary nodes. The technique is used. for generating
triangular elements. Lewis & Robinson [1978] described -

a technique of dividing the original data'space iﬁto |
disjdinted segments. These subsegments are further divided
into triangles with no interior nodes, thus forming the
elements of triangulation. Denayer [1978] has presented
an automatic technique for generating element conﬁectivity._
The method involves mapping between an imaginary region,
defined by an idealized grid composéd entirely of regular
regions, and the actual regions to be meshed. The idealized

grid is constructed from the boundary curve information,

including the number of elements connected to each boundary

node.

Generation of Three-Dimensional Elements

Some of the 2-D mesh generation techniques discussed
above, such as Zienkiewicz & Phillips [1971], Gordon & Hall
[1973] and Ghessemi [1980], can be extended to three-dimen-

\

sional problems.
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There are papers published which look purely at three-
dimensional solid problems. Cook [1974] has described a
method involving two fypes of mesh generators: the surfacé‘
generator and the volume generator. The method is similar
to the transfinite method of Gordon & Hall [1973], which is
based on the linearly-blended interpolation formula of
Coons [1967] for generating nodal points for general surfaces.
The method similarly restricts these éurvilinear coordinates
(g,n) for the surface, generator and (EZ)n,vy) for the volume
generator between O and 1. The user is required to sﬁpply
the geometry information from the structure.  The method |
generates interior nodal points‘inside the surface of volume,
However, if it is a surface with many vériations of geometry,
then input of the nodal points joiﬁing'each region'is.
required. Also, if there are discontinuous portions of the
bodyh the body is divided into several.regions beéore mesh~-
_ing. However, this method does not give information about
connecting nodes to form elements.  Frey, Hall & Porching
[1979] have introduced an interactive computer‘program
'PLANITt in which the intersections of a sequence of planes
with the concaternation of 20-node brick elements are inter-
actively constructed. The transfinite interpolation method
has been uged in coordinate transformation. The method is
basically'fheéeometrical verification of the three-dimen-
sional finite element mesh. Nguyen-v-Phai [1982] has
presentéd a mesh generation scheme for fetrahedral elements.
The technique, in forming tetrahedral elements is similar
to the two-dimensional triangular elements introduced Py

Frederick et al [1970], which all the connecting lines
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between two nodal points within the 3-D domain are surrounded
in order to form elements, An automatic mesh refinement
technigque has also been implemented by dividing each origi-
nal tetrahedral elements into eight smaller_elemehté.

Using Computer Packages for Finite Element Analysis '

Lewis & Cross [1979], Lorensen [1975] and Hoffman t1978]_
have introduced interactive graphics finite element systems:
IFECS, IGFES and IMPRESS respectively. IFECS is based on
the technique developed to constfuct triangular elements,
and it is used 4s an interactive means of interrogating
the program output. IGFES is a twb dimensional grid gen-
eration and it supports all 'NASTRAN' triangular and quad- .
rilateral elements. IMPRESS is a general fhree-dimeqsional

modelling System in which specific'attention is paid to the.

" modelling, using interactive graphics. = Fousek [1979] has

described an interactive computer graphics system, FAST-~
DRAW/3 for generation, modification, and display of the
finite element models. The technique adopted in this
system is based on the 'blending'interpolafion' egquations
which were derived by Coons [1967], and utilized by Cook
[1974]. |

Prasad [1979] presented aﬁ interface software system,
IPAC, which allows a user to have access to other finite
element programs. The system is built around 'GIFTS',
a modular and interactive graphics oriented finite element
program. Three~dimensional isoparametric element genera-
tion capability has been introduced for bodies of révolu-
tion, such as wheels, torus, rings or similar bodies of

irregular cross-sectional features.,
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.Mesh Generation Algorithms Applied to Other Areas

There are other areas that require the uée of the
finite element method with mesh generation techniques.

Leick & Potvin [1978] have used mesh generation techniques

_for tubular joint'streés analysis. Kalkani [1975].has it

used for the 'highway excavation cut"and the method is
based on the straight~line interpoiation method for node
generation and the simple increment method for tﬁe element -
geﬁeration. Hakim & King [1978] have applied the-method

to create a three-dimensional model of the vertebra. The

- mesh is composed of regularly shaped elements and it avoids

‘extremely skewed elements. Melkes [1978] has also used

the teéhnique in magnetic field calculations. This paper
is limited only to triangular meshés. Kleinstreur [1980]83-
has introduced interactive mesh generator to simulate flow
systems and structural elements. The basic equation uses
Galerkin method with weighted residuals. The element gen-
erated are triangular for two-dimensional pfoblems;

There are many more interactive graphics finite element

systems; many of which can be found in Fredrikson and

Mackerle [1980] and Norrie and de Vries [1976].
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CONCLUSION

. The work presented in this thesis has been devoted to the
problem of interfacing the surface description of a car body
with the finite element model. = It is in the cohtext of working
practices at Austin Rover. = At the moment, the surface modelling
aﬁd the finite element modelling are carried out separately which
is wasteful of time and money, because two different versions of
the geometrical descriptions are produced. Our aim, therefore,
has been to cut out the duplication.

The finite element method (FEM) and the shape representation
techniqués used in CAD have been developed separately but can be
unified within the concept of the isoparametric element. Essen~ -
tially, the element allows any arbltrary geometry to be closely
approximated and higher order'eiements can be used to copé'with
curved boundaries.

At present, Austin Rover is wanting to deveiop an integrated
system, so that components caﬁ be analysed early in the design
process. The system will be linked through the '‘data~bases',
which will contain design, test and analysis information.

The Geometrical Data Base (GDB) which contains the geomefry
of the car body, is regarded as the master data-base for general .
purposes. However, we have proposed that the GDB be enhanced
to include structural information sufficient to construct the
finite element models. A structural Data Base (SDB) has been
suggested to include all the geometrical information supplemented
by the material properties, including thickness and build infor-
mation.' In addition, a structural consistency check is pro-

posed to ensure that the information in the SDB is correctly
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defined. It is considered an impossible task to fully automate
the checking. Consequently, manual checking, via interactive
graphics, has been proposed.

The remaining step is to interpret all the data in the SDB
for finite element modelling, which éssentially involves meshing
individuallpanels. To mesh, we have to know the type and the
number of elements on each panel. But, it is difficult to
determine the ‘optimum* number of elements and no algorithms
have yet been proposed to solve the problem. Generally, programs
are very much dependent upon the user's experience and judgement.

The fundamental requirements of automatic mesh generation
are an accurate geometry and a mesh control capability. The -
algorithm must be able to generate elements compatible with
adjacent elements and have the appropriate number of nodes -
according to division parameters, spacing them according tq
bias parameters.

Basically, the function of the mesh generation algorithm is
to generate nodes and form them into elements. It is straigﬁt—
forward to mesh a smooth and regular panel by the simple incre-
mental or 'straight-line' interpolation technique. But the
method is inappropriate to irregular shapéd panels as arise
" commonly in internal car structures. We have proposed manual
subdivision to overcome the difficulfies of automatic meshing.
There is no difficulty in implementing manual interfaéing as
interactive graphic display are commonly available. However,
more work is required to find a suitable way of generating nodes

on irregular panels.
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Usually, the number of elements used for a panel is greater
than requifed. The reason is that the meshing is based on con-
servative rules of thumb, for example, restrictions on the aspect
ratio. However, there are circumstances where long thin ele-
_ments will not give poor results, Further research is required
to resolve the problem.

In future, more work will be necessary to find a way to opti-
mise the choice of element typé and the arrangement of elements
on each panel, “According to theory, the higher the order of the
elements and the greater the number the more accurate the solu~
tion. However, it will cost more in terms of computer time and
storage. - Therefore, we have to balance the costs and the accur-
acy for each individual Jjob. |

When assembling all the panels together, we héve to eﬁsure;
that all the connecting boundaries are smooth and without any
gaps. One problem is that panels may have various thicknesses,
which means that all_the 'common' nodes are at different posi-
tions. If this occurs, adjustment is needed to ensure that all
the boundary nodes are at the sam; positions.-

So far, we have discussed various problems which will cause
difficulties in automatic meshing. However, these problems can
all be overcdme by allowing the user to make the decisions,
(probably at a interactive graphic terminal). Even with a large
user involvement, tlere.would still be a significant reduction iﬁ
the time needed to create a finite element model.

In the thesis, we have confined our proposal to'the system
used at Austin Rover. However, the interfacing of the surface

description with the finite element model is a general problem.
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Our work indicates the general way forward. It will be necessary
to enhance standard formats for the geometry, for example,'IGES
(Initial Graphics Exchange Specification), which is recognised by.
the National Bureau of Standards, NBSIR, to include structural
information sufficient to construct a finite element model speci-
fied to a standard format; for sexample, the 'Universal' format,

which is recognised hy SDRC,
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