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Abstract

The main object of study of the thesis is the second Painlevé hierarchy, which
appears as a reduction of the modified Korteweg- de Vries hierarchy.
In the first part we derive some explicit formulas for the corresponding Hamil-
tonians building on an earlier work by Mazzocco and Mo.
In the second part we derive the sigma form of the second Painlevé hierarchy,
which is the main result of the thesis.
These results are applied to the study of the Bäcklund transformations and
special solutions of this hierarchy.
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1 Introduction

The history of the Painlevé equations goes back to the late nineteenth century
when Emile Picard [20], proposed the classification problem of finding all
second order differential equation of the type

d2w

dz2
= R

(
z, w,

dw

dz

)
,

where the function R is rational in dw
dz

and meromorphic in z and w, such that
the general solution w(z, c1, c2) satisfies the following two properties ([22]):

Painlevé-Kowalevski property: The solution w(z, c1, c2) has no movable
critical points, i.e. singular points other than poles which depend on the
initial conditions.

Irreducibility: For generic values of the of the integration constants c1, c2
and of the parameters, the solution cannot be expressed in terms of elemen-
tary functions or classical transcendental functions.

All second order differential equations of this type (up to Möbius trans-
formations of z and w) that satisfy the Painlevé-Kowalevski property were
classified by Painevé and Gambier (see [22] and [5]). Only six of these equa-
tions, which are given in the so-called Painlevé-Gambier list1, satisfy the
irreducibility condition:

PI : w′′ = 6w2 + z; (1.1)

PII : w′′ = 2w3 + zw + α; (1.2)

PIII : w′′ =
1

zw

[
z(w′)2 − ww′ + δz + βw + αw3 + γzw4.

]
(1.3)

1The last example is actually due to Richard Fuchs (son of the famous mathematician
Lazarus Fuchs) who discovered what is nowadays called sixth Painlevé equation [4].
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PIV : w′′ =
1

w

[
1

2
(w′)2 + β + 2(z2 − α)w2 + 4zw3 +

3

2
w4

]
(1.4)

PV : w′′ =

(
1

zw
+

1

w − 1

)
(w′)2−1

z
w′+

(w − 1)2

z2

(
αw +

β

w

)
+γ

w

z
+δ

w(w + 1)

w − 1
(1.5)

PV I : w′′ =
1

2

(
1

w
+

1

w − 1
+

1

w − z

)
(w′)2 −

(
1

z
+

1

z − 1
+

1

w − z

)
w′

(1.6)

+
w(w − 1)(w − z)

z2(z − 1)2

(
α + β

z

w2
+ γ

z − 1

(w − 1)2
+ δ

z(z − 1)

(w − z)2

)
.

In the above α, β, γ and δ are parameters taking values in the complex
domain. Despite its beauty, this area of mathematics was then forgotten until
1970s when solutions to these equations appeared in several applications: non
linear optics, PII , [23]; Hele-Shaw geometry, PII , [25]; random matrix theory,
PI , . . . , PV I , [7]; solutions of Einstein vacuum fields, PII , PV , [2]; SU(2)-Toda
field equations, PIII , [26]; Einstein-Maxwell fields, PV , [13]; twistor theory,
PV I , [16].

Owing to the proliferation of applications of the Painlevé equations, nowa-
days their solutions, which are called Painlevé transcendents, play the role
of non linear special functions. They are so famous that a chapter has been
dedicated to them in the Digital Library Project [3, 19] (replacement edition
of the famous handbook of special functions by Abramowitz and Stegun).

It is interesting to observe that in most applications to date, the Painlevé
equations do not appear in the original forms (1.1) to (1.6) but in the so called
sigma forms here below, (1.14) to (1.19). The sigma forms where introduced
in the eighties in the seminal papers by Jimbo, Miwa and Ueno ([11]) as the
equations satisfied by the Hamiltonians of the Painlevé equations evaluated
on the orbits. After that Okamoto systematically studied the Hamiltonian
structure of the Painlevé equations and proved that all the Painlevé equations
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are related to the famous Toda equation through the sigma form ([18], [17],
[8], [9]).

This is the reason why it is the sigma forms that appear in the physics
literature. Indeed the main object of interest there are the correlation func-
tions of certain system which usually consist of an algebra of operators acting
on a function space. In order to be able to find the correlation functions one
needs to equip the algebra of operators with some symmetries called Virasoro
constraints. Loosely speaking, when there are combinations of the Virasoro
constraints which annihilate the Toda equation, the problem of finding the
correlation functions can be simplified. In these cases, often the problem sim-
plifies to finding special solutions of the Toda equation, which then reduces
to the sigma form of one of the Painlevé equations.

In order to explain the sigma forms of the Painlevé equations, we re-
call here the Hamiltonian formulation for all the Painlevé equations: using
Hamiltonian notation, let us denote the solution to each Painlevé equation
by q(z), i.e. w(z) = q(z). The Hamiltonian equations have the following
form

δkq =
∂Hk

∂p(z)
, δkp = − ∂Hk

∂q(z)
, k = I, II, III, IV, V, V I

where δk has different meaning according to which Painlevé equation we
consider:

δk =


∂
∂z

for k = I, II, IV,

z ∂
∂z

for k = III, V,

z(z − 1) ∂
∂z

for k = V I,

and
HI :

1

2
p2 − 2q2 − qz (1.7)

HII :
1

2
p2 − (q2 − z/2)p− (α− 1/2)q (1.8)
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HIII :
1

2
[p2q2 − (2η0zq

2 + (2θ0 + 1)q − 2η0z)p+ 2η∞(θ∞ − θ0)zq] (1.9)

HIV : 2qp2 − [q2 + 2zq + 2θ0]p+ θ∞q (1.10)

HV :
1

2
[q(q − 1)2p2 − [θ0(q − 1)2 + θ1]q(q − 1)− η1zq]p (1.11)

+
1

4
[(θ0 + θ1)

2 − θ2∞](q − 1)

HV I :
1

z(z − 1)
[q(q−1)(q−z)p2−(θ0(q−1)(q−z)+θ1q(q−z)+(θ1−1)q(q−1))p

(1.12)

+
1

4
((θ0 + θ1 + θt − 1)2 − θ2∞)(q − t)].

Here the new parameters θ0, θ1, θt, θ∞ are defined in terms of the one appear-
ing in the Painlevé equations as follows: the parameters present and those
in the original equation:

PIII : α = 4θ0, β = 4(1− θ∞) γ = 4, δ = −4

PIV : α = 2θ∞ − 1, β = −8θ20,

PV : α =
1

2

(
θ0 − θ1 + θ∞

2

)2

, β =
1

2

(
θ0 − θ1 − θ∞

2

)2

, γ = 1−θ0−θ1, δ = 1/2

PV I : α =
1

2
(θ∞ − 1)2, β =

−1

2
θ20, γ =

1

2
θ21, δ =

1

2
(1− θ2t )

We are now ready to explain the sigma form. For each Painlevé equation,
define the following function:

σk(z) := Hk(p(z), q(z), z), k = I, II, III, IV, V, V I,

then σk(z) satisfies the following second order ODEs (we drop the index k
for ease of reading):

P σ
I : (σ′′)2 + 4(σ′)3 + 2zσ′ − 2σ = 0 (1.13)
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P σ
II : (σ′′)2 + 4(σ′)3 + 2zσ′2 − 2σσ′ − (α− 1/2)2

4
= 0 (1.14)

P σ
III : (zσ′′ − σ′)2 = 4(2σ − zσ′)((σ′)2 − 4z2)− 16θ0θ∞2σ′ (1.15)

+2(θ20 + θ2∞)((σ′)2 + 4z2)

P σ
IV : (σ′′)2 = 4(zσ′ − σ)2 − 4(σ′ + ν0)(σ

′ + ν1)(σ
′ + ν2) (1.16)

P σ
V : (zσ′′)2 = (σ − zσ′ + z(σ′)2 + (ν0 + ν1 + ν2 + ν3)σ

′)2 (1.17)

−4(ν0 + σ′)(ν1 + σ′)(ν2 + σ′)(ν3 + σ′)

P σ
V I : σ′(z(z − 1)σ′′)2 + [zσ′(zσ′ − σ)− (σ′)2 − ν1ν2ν3ν4]2 (1.18)

= (σ′ + ν21)(σ′ + ν22)(σ′ + ν23)(σ′ + ν24),

where the new parameters ν1, ν2, ν3, ν4 appearing in these equations are re-
lated to θ0, θ1, θt, θ∞ as follows:

PIV : ν1 = 4θ0, ν2 = 2(θ∞ + θ0)

PV : ν1 =
−θ0 − θ1 + θ∞

2
, ν2 = −θ0, ν3 =

−θ0 + θ1 + θ∞
2

PV I : ν1 =
θ1 + θ∞

2
, ν2 =

θt − θ∞
2

, ν3 = −θ0 + θ1
2

, ν4 =
θ1 − θ0

2
.

In recent years many higher order analogues for the Painlevé equations
have been discovered. In this dissertation we study the second Painlevé hier-
archy [6, 1], an infinite sequence of nonlinear ordinary differential equations
containing

P
(1)
II : wzz − 2w3 = zw + α

as its simplest equation. The n-th element of the hierarchy is of order 2n,
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depending on n parameters denoted by t1, . . . , tn−1 and αn:

P
(n)
II : (

d

dz
+ 2w)Ln[wz − w2] +

n−1∑
k=1

tn−k(
d

dz
+ 2w)Ln−k[wz − w2] = zw + αn,

(1.19)
where Lk is the differential polynomial defined by the Lenard recursion

d

dx
Lk+1[f ] =

(
d3

dx3
+ 4f

d

dx
+ 2f ′

)
Lk[f ], k > 0, (1.20)

commencing with L0[f ] = 1
2
.

Our main result is the explicit computation of the sigma form for this
hierarchy:

Theorem 1.1. For positive integer n, the sigma form is given by

−22n

∫
pn

(
d

dz

[
Ln+1 +

n∑
k=1

tn−kLn−k+1 − zσ′(z)− σ(z)

])
dz+α−α2+θ = 0

(1.21)
with Lk denoting the k-th Lenard polynomial of argument σ′(z)− tn−1

2
and pn

is a differential polynomial of σ(z) given as

pn =
1

22n−1

[
Ln +

n−1∑
k=1

tn−kLn−k −
z

2

]
.

One considers t0 = −z and the constant θ has a value 1/4 in the case n = 1

and zero otherwise.

Observe that while the appearance of an integral in the above expression
may lead one to conclude that the higher sigma forms are integral, as opposed
to differential, equations we shall show that the integrand is in fact an exact
differential.
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For example in the case n=1 one has the following∫
(σ′′)[σ(3) + 3(σ′)2 + 2zσ′ − σ]dz − (α− 1/2)2 = 0.

This can be integrated exactly to give

1

2
(σ′′)2 + (σ′)3 + z(σ′)2 − σσ′ + (α− 1/2)2 = 0.

This differs from the Okamoto form of P (σ)
II only by a choice of normalisation.

Moreover in the case n = 2 integration by part on the above formula leads
to one considering

∫
g(z)dz =

∫
d

dz
pn

(
Ln+1 +

n−1∑
k=1

tn−kLn−k+1 − zσ′(z)− σ(z) + tn−1z

)
dz.

Expanding the terms one then finds

128

∫
g(z)dz = −4z2t1 + 4zt31 − 368t1(σ

′)4 + 192(σ′)5 + 16t1σ
′′ + 8z(σ′′)2

+28t21(σ
′′)2 + 4σ(2z − t21 + 8t1σ

′ − 12(σ′)2 − 4σ(3)) + 16zt1σ
(3)

−8t31σ
(3) − 16(σ′′)2σ(3) − 16t1(σ

(3))2 + (σ′)3(272t21 − 32z + 160σ(3))

+16(σ′)2(15(σ′′)2 − 2t1(3t
2
1 − 2z + 6σ(3)))− 8σ(4) − 32t1σ

′′σ(4) + 8(σ(4))2

−8σ′(20t1(σ
′′)2 + (2z − t21 − 4σ(3))(2t21 + σ(3)) + σ′′(6− 12σ(4))).

In particular one can clearly see in the final term that the resulting differ-
ential equation is of the forth order (as to be expected). The two above
integrals gave concrete examples that the integral sign in theorem (1.1) is an
artefact of its construction; the integrand is an exact differential for all n.

In order to find this sigma form we first prove a result about the Hamil-

13



tonians of the second Painlevé hierarchy. The canonical coordinates and
Hamiltonians for the second Painlevé hierarchy were found by Mazzocco and
Mo [15]. As we shall see in Section 3, their formula for the Hamiltonians in
terms of the canonical coordinates was rather complicated and involves gen-
erating functions. In this dissertation we provide a simpler explicit formula
which does not involve generating functions nor recursion:

Theorem 1.2. The Hamiltonian for P (n)
II is given in terms of the Mazzocco-

Mo canonical coordinates by the following formula:

H(n) = 22n
∑

∑
k.mk=n+1

(−1)
∑
mk

( ∑
mk

m1, . . . ,mn

) n∏
k=1

pmk
k + 2p1z

−
n∑
k=1

pk
∑

r+s=n+k, r,s 6=n

qrqs
22n
−
∑
r+s=n

qrqs
22n
− pnq

2
n

22n
+

(1− 2α)qn
22n

+
n−1∑
j=1

tj
∑

∑
r.mr=j+1

22j+1(−1)
∑
mr

( ∑
mr

m1, . . . ,mn

) n∏
r=1

pmr
r

+
n−1∑

j=[n/2+1]

t2j
∑

∑
r.mr=2j−n+1

22(2j−n)(−1)
∑
mr

( ∑
mr

m1, . . . ,mn

) n∏
r=1

pmr
r

+
n−1∑
s=1

ta

n−1∑
b=n−a,a 6=b

tb
∑

∑
r.mr=a+b−n+1

2(a+b−n)+1(−1)
∑
mr

( ∑
mr

m1, . . . ,mn

) n∏
r=1

pmr
r ,

where the summation over
∑
k.mk = n+ 1, indicates that one sums over all

choices of integers m1,m2, . . . ,mn such that the sum of the products k.mk is
equal to n+ 1.
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2 Background

In this section we review the derivation of the P (n)
II hierarchy and its Hamil-

tonian structure. Of particular importance is the choice of canonical coor-
dinates made by the authors of [15]. The formulas, given in terms of the
solution of P (n)

II , are critical for the derivation of the sigma form. We shall
end with a synopsis of the Bäcklund transformations for this hierarchy. We
will need there to derive some simple applications of our new sigma form.
All material in this section is taken from [15] and [21].

2.1 Derivation of the PII hierarchy

The second Painlevé hierarchy is obtained from the modified Korteweg-de
Vries hierarchy (mKdV) by a self similarity reduction ([14], [21]):

∂

∂Tl+1

v +
∂

∂x

(
∂

∂x
+ 2v

)
Ll[vx − v2] = 0 (2.1)

for positive integer, n, and Lk is the kth Lenard polynomial defined by equa-
tion (1.20). The integrability of this recursion, beyond the first two iterations
is non obvious and is due to Lax ([12]).

Example 2.1. Here we show the first three Lenard differential polynomials:

L1[f ] = f,

L2[f ] = f ′′ + 3f 2,

L3[f ] = f (4) + 10ff ′′ + 5(f ′)2 + 10f 3.

The n-th member of the second Painlevé hierarchy is obtained as the
equation satisfied for the solutions of the n-th element of the mKdV hierarchy
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which are stationary under the Virasoro symmetry generator

n∑
l=0

(2l + 1)Tl+1
∂

∂Tl+1

,

namely solutions of the equation

n∑
l=0

(2l + 1)Tl+1
∂

∂x

(
∂

∂x
+ 2v

)
Ll[vx − v2] = 0.

One can clearly take a first integral of such a solution to obtain

n∑
l=0

(2l + 1)Tl+1

(
∂

∂x
+ 2v

)
Ll[vx − v2] = α. (2.2)

Observe that the case n = 1 in (2.1) allows one to deduce that T1 = −x.
Thus (2.2) is an ordinary differential equation in x with n + 1 parameters
α, T2, . . . , Tn+1. Then if one makes the change of variables

v(x, Tn+1) =
w(z)

((2n+ 1)Tn+1)(2n+1)−1 , z =
x

((2n+ 1)Tn+1)(2n+1)−1 ,

Lk[vx − v2] =
Lk[wz − w2]

((2n+ 1)Tn+1)2k(2n+1)−1 ,

t0 = −z, tk =
(2k + 1)Tk+1

((2n+ 1)Tn+1)(2k+1)(2n+1)−1 ,

brings (2.2) to (1.19), which of course is P (n)
II .

2.2 Hamiltonian of P (n)
II

The Hamiltonian for P (n)
II is constructed by first considering the isomon-

odromic deformation given in [15], [14] and [10]. This is given by the com-
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patibility of the following system :

∂Φ

∂z
= BΦ =

(
−λ w

w λ

)
Φ

∂Φ

∂λ
= A(n)Φ =

1

λ

[(
−λz −α
−α λz

)
+ M(n) +

n−1∑
l=1

tn−lM
(n−l)

]
Φ

with

M(n) =

( ∑2l+1
j=1 A

(l)
j λ

j
∑2l

j=1B
(l)
j λ

j∑2l
j=1C

(l)
j −

∑(n)
j=1A

(l)
j λ

j

)
and the entries are given by

A
(l)
2l+1 = 4l, A2k = 0, ∀k = 0, . . . , l

A
(l)
2k+1 = 22k+1

[
Ll−k[wz − w2]− d

dz

(
d

dz
+ 2w

)
Ll−k−1[wz − w2]

]
, k = 0, . . . , l−1

B
(l)
2k+1 = 22k+1 d

dz

(
d

dz
+ 2w

)
Ll−k−1[wz − w2], k = 0, . . . , l − 1

B
(l)
2k = −4k

(
d

dz
+ 2w

)
Ll−k[wz − w2], k = 1, . . . , l

C
(l)
k = (−1)kB

(l)
k .

The compatibility equation is

∂A(n)

∂z
− ∂B

∂λ
= [B,A(n)], (2.3)

which is satisfied if and only if w(z) solves P (n)
II (see [14]). It is convenient to

rewrite the matrix A(n) in the following way:

A(n) =

( ∑n
k=0 a

(n)
2k+1λ

2k
∑n

k=0 b
(n)
2k λ

2k−1 +
∑n−1

k=0 b
(n)
2k+1λ

2k∑n
k=0 b

(n)
2k λ

2k−1 −
∑n−1

k=0 b
(n)
2k+1λ

2k −
∑n

k=0 a
(n)
2k+1λ

2k

)
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with its entries given by

a
(n)
2k+1 =

n∑
l=1

tlA
(l)
2k+1, k = 1, . . . , n, a

(n)
1 =

(n)∑
l=1

tlA
(l)
1 − z (2.4)

b
(n)
2k+1 =

n∑
l=1

tlB
(l)
2k+1, k = 0, . . . , n− 1 (2.5)

b
(n)
2k =

n∑
l=1

tlB
(l)
2k , k = 1, . . . , n, b

(n)
0 = −α (2.6)

where we take tn = 1.

To compute the Hamiltonian, one uses the Kostant-Kirillov Poisson struc-
ture on the coadjoint orbit of this twisted loop algebra. This is possible as
every element in a Lie algebra (which our loop algebra is) defines a linear
function on its dual. Indeed this allows one to than identify the dual of the
dual of this Lie algebra with the Lie algebra itself. To use this to compute
the Poisson bracket of two functions, say F and H on this dual space recall
that the Poisson bracket of two functions is itself a function. This is required
to be able to specify how this acts on elements of the dual, say x. The dif-
ferential of these functions, dF and dH, exist in the dual to the dual, which
we have already identified with the initial Lie algebra. In this we have the
Lie bracket as a natural operation. Thus one can then write

{F,H}(x) = 〈x, [dF, dH]〉,

with 〈x, dF 〉 being the action of linear functions on the Lie algebra on the
elements of the dual.
Mazzocco and Mo then showed that the vector field defined by (2.3), is in
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fact Hamiltonian with Hamiltonian function given by

H(n) :=
1

22n+1
Tr[Resλ(λ

1−2n(A(n))2)].

By residue we mean the coefficient of 1/λ. Writing this in terms of the coef-
ficients of A(n), and making a slight modification to account for the explicit
dependance of pn upon z, one arrives at

H(n) =
−1

4n

[
n−1∑
l=0

a
(n)
2l+1a

(n)
2(n−l)−1 −

n−1∑
l=0

b
(n)
2l+1b

(n)
2(n−l)−1 +

n∑
l=0

b
(n)
2l b

(n)
2(n−l)

]
+
qn
4n
.

(2.7)
The authors in [15] gave an expression for the canonical coordinates in terms
of the entries of the matrix A(n).

2.3 Coadjoint orbit interpretation of the isomonodromic

problem for P (n)
II

Now we shall present a detailed exposition of work undertaken by Mazzocco
and Mo in [15]. This pertains to the use of the isomonodromic problem for
the second Painlevé hierarchy to derive the Hamiltonians for this equation,
and the choice of canonical coordinates for these systems.

2.3.1 Isomonodromic compatibility and coadjoint orbits

Following [15], we need to introduce some notation. Let f = f [w] be a
function of w(z) and its derivatives, z and λ. Then

∂zf =
∂f

∂z
+
∂f

∂w
wz +

∂f

∂wz
wzz + . . . .

Now we introduce the derivative of f with respect to z, while keeping w fixed
i.e.

∂wz f :=
∂f

∂z
.
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So defined, we now turn to the isomonodromy problem defined initially in
section (2). With the matrices A(n) and B as defined one has the equality

∂wz A
(n) =

∂B

∂λ
.

Consequently, the compatibility equation (2.3) can be written as

(∂z − ∂wz )A(n) = [B,A(n)]. (2.8)

The evolution along (∂z − ∂(w)z ) is what we shall interpret as a vector field.
Of course this requires an appropriate algebra.
Let LG be the group of smooth maps f from S1 to SL(2,C) such that

f(λ)σ1(f(−λ))−1 = I, σ1 =

(
0 1

1 0

)
.

Note that the presence of σ above is used to preserve standard notation for
Pauli matrices and should not be confused with the sigma form. Now consider
L2n+2G, the subgroup comprised of maps of the form f = I + λ−2n−2f∞,
were f∞ is holomorphic outside S1. The Lie algebra of this subgroup can be
represented as follows:

g2n+2 =

{
X(λ) =

−2n−2∑
−∞

Xiλ
i|Xi ∈ sl(2,C), X(λ)σ1 = σ1X(−λ)

}
.

One can construct the quotient of these groups LG/L2n+2G and its Lie alge-
bra is given by

g =

{
X(λ) =

∞∑
−∞

Xiλ
i|Xi ∈ sl(2,C), X(λ)σ1 = σ1X(−λ)

}
/g2n+2
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The Lie bracket is defined as

[X(λ), X̃(λ)] =
∞∑

−2n−1

(
i+2n+1∑
k=−2n−1

[Xk, Xi−k]

)
λi mod g2n+2.

This commutator clearly lies in g, and it satisfies the Jacobi identitiy. We
also require a dual space. Consider the following:

g∗ =

{
Ξ(λ) =

∞∑
−∞

Ξiλ
i|Ξi ∈ sl(2,C), Ξ(λ)σ1 = −σ1Ξ(−λ)

}
/g∗2n+2,

g∗2n+2 =

{
X(λ) =

∞∑
2n+1

Xiλ
i|Xi ∈ sl(2,C), X(λ)σ1 = σ1X(−λ)

}
.

By using the pairing

〈X(λ),Ξ(λ)〉 := Tr(Res(X(λ)Ξ(λ)))

we make these into the dual spaces of the above algebra. Note by Res we
mean to take the residue i.e. the coefficient of λ−1.
From this we now consider a subalgebra

g− =

{
X(λ) =

−1∑
−∞

Xiλ
i|Xi ∈ sl(2,C), X(λ)σ1 = σ1X(−λ)

}
/g2n+2

and its dual

g∗− =

{
Ξ(λ) =

∞∑
0

Ξiλ
i|Ξi ∈ sl(2,C), Ξ(λ)σ1 = −σ1Ξ(−λ)

}
/g∗2n+2.

We have of course the coadjoint action; an element X ∈ g acts on an element
Ξ ∈ g∗ by

〈ad∗XΞ, Y 〉 = −〈Ξ, [X, Y ]〉 = 〈[X,Ξ], Y 〉
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for all Y ∈ g. Restricting this action to the subalgebra g−, and its dual we
have

[X−,Ξ]+ = adX−Ξ, Ξ ∈ g∗−, X− ∈ g−

with ()+ denoting the projection to g∗− and ()− denoting the projection onto
g−. This preamble allows one to deduce the following result:

Lemma 2.2. With A(n) and B as given in equation (2.3), one can re-write
(2.3) as

(∂z − ∂(n)z )A(n) = ad∗BA

were B =
(

A(n)λ−2n+1

4n

)
−
∈ g− and A =

(
A(n)

)
+
∈ g∗−.

Thus our evolution equation, (2.8), can now naturally be viewed as oc-
curring on a coadjoint orbit.
What is important now is the Poisson structure, which we give an overview
of in section two, and the canonical coordinates on this structure.

2.3.2 The Painlevé property and canonical coordinates

From the standard Poisson structure as sketched above, there is a standard
process one can use to build a set of coordinates. One does this by considering
the spectral curve

Γ(µ, λ) = {det(µ−A(n)) = 0} = {µ2 = −det(A(n))}.

Upon some further consideration (see [15]), one can show that the coordinates
qk can be given by taking the roots of the equation

n−1∑
k=0

(b
(n)
2k+1 + a

(n)
2k+1)λ

2k + a
(n)
2n+1λ

2n+1 = 0 (2.9)

and the pk are given by

pj =
n∑
k=0

b
(n)
2k q

2k+1
j . (2.10)
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The issue is that the qk are obtained by taking roots of (2.9). As such it is
quite possible that these coordinates do not posses the Painlevé property, as
the process of taking such a root may introduce new essential singularities.
The advantage these coordinates have is that, as defined, the are guaranteed
to be canonical i.e.

{pj, pk} = 0, {qj, qk} = 0, {pj, qk} = δij.

We therefore seek coordinates that both have this feature, and the Painlevé
property.
In [15], Mazzocco and Mo found the following answer:

pk =
a
(n)
2(n−k)+1 + b

(n)
2(n−k)+1

a
(n)
2n+1

, (2.11)

qk =
n∑
j=1

−b(n)2j

( n∑
i=0

[
a
(n)
2(n−k)+1 + b

(n)
2(n−k)+1

a
(n)
2n+1

]
λ2i

)−1
2j−2k

. (2.12)

Their presentation in terms of the entries of A(n) means that one can easily
check the canonicity of these new coordinates. From the canonical Poisson
structure one can easily compute the differentials of the series a(n)2k+1, b

(n)
2k+1

and b(n)2k . Indeed one has

da
(n)
2k+1 =

1

2
(E11 − E12)λ

−(2k+1), 0 ≤ k ≤ n

da
(n)
2k+1 =

1

2
(−E12 + E21)λ

−(2k+1), 0 ≤ k ≤ n− 1

db
(n)
2k =

1

2
(E12 + E21)λ

−2k, 0 ≤ k ≤ n

with Eij being the the 2 × 2 matrix whose entries are zero except that in
the position ij, which is one. With this one can easily compute the Poisson
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bracket between these series:

{a(n)2k+1, b
(n)
2l+1} = −b(n)2(k+l+1) (2.13)

{a(n)2k+1, b
(n)
2l } = −b(n)2(k+l)+1 (2.14)

{b(n)2k , b
(n)
2l+1} = a

(n)
2(k+l)+1 (2.15)

with all other brackets vanishing. The above differentials reduce the compu-
tation of these quantities to the computation of commutators.
One can now easily check the canonicity of these new coordinates.

2.3.3 The canonicity of the new coordinates

Theorem 2.3. The coordinates, given by the formulas (2.11) and (2.12),
are canonical with respect to the standard Poisson structure on the coadjoint
orbit.

Proof. We begin with the bracket exclusively in the pk. From (2.13) this is
given by

{pk, pl} =

(
1

a
(n)
2n+1

)2

({b(n)2(n−l)+1, a
(n)
2(n−k)+1} − {b

(n)
2(n−k)+1, a

(n)
2(n−l)+1}) = 0

(2.16)
The final equality is obvious from (2.15).
Let us now consider the mixed bracket. First notice that the coordinate qk
can in fact be written as

qk =
n∑
j=1

−b(n)2j

( n∑
i=0

[pk]λ
2i

)−1
2j−2k

.

For the sake of brevity we shall refer to
[
(
∑n

i=0 [pk]λ
2i)
−1
]
2j−2k

as P (pk).

Indeed, it should be clear that this expression is a polynomial in pk. Conse-
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quently one can write the mixed bracket as

{pk, ql} = −
n∑
j=1

{pk, b(n)2j }P (pl)−
n∑
j=1

b
(n)
2j {pk, P (pl)}.

Clearly (3.9) implies that the second term on the right hand side of the above
equation vanishes. Thus we need only consider

−
n∑
j=1

{pk, b(n)2j }P (pl).

The Poisson bracket in the above becomes −pk−j. Thus we consider

n∑
j=l

pk−j

( n∑
i=0

plλ
2i

)−1
2j−2l

.

Observe that we can sum over the reduced range l, . . . , n as there are no
negative powers in the inverse series. This series is in fact given by the
coefficient of the expression λ2k−2l in(

n∑
i=0

pkλ
2i

)(
n∑
j=0

plλ
2j

)−1
= 1.

Thus one sees that
{pk, ql} = δkl. (2.17)

Finally we need to compute the bracket in terms of the qk exclusively. This
is of course given by

{qk, ql} =
n∑

i,j=1

{b(n)2j P (pk), b
(n)
2i P (pl)}.

Though expanding the bracket would usually lead to numerous terms, many
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of these will vanish owing to our earlier assertion regarding the bracket ex-
clusively in the pk and the fact that {b(n)2k , b

(n)
2l } = 0. Therefore we can write

{qk, ql} =
n∑

i,j=1

b
(n)
2j {P (pk), b

(n)
2i }P (pl)− b(n)2i {P (pl), b

(n)
2j }P (pk)

=
n∑

i,j=1

b
(n)
2j {P (pk), b

(n)
2i }P (pl)− b(n)2j {P (pl), b

(n)
2i }P (pk).

This last equality is arrived at by noticing that the formula is symmetric in
i and j. This in effect reduces our consideration to

n∑
i=1

{P (pk), b
(n)
2i }P (pl)− {P (pl), b

(n)
2i }P (pk). (2.18)

One can compute the Poisson brackets as follows:

{P (pk), b
(n)
2i } =

( n∑
i=0

pkλ
2j

)−2 n∑
s=0

{ps, b(n)2i }λ2s


2j−2k

=

( n∑
i=0

pkλ
2j

)−2 n∑
s=0

psλ
2s


2j−2k−2i

.

One obtains this equality by using earlier results, particularly the bracket
between the pk and the b(n)2i and by manipulating indices. From this one can
see that

n∑
i=1

{P (pk), b
(n)
2i }P (pl) =

( n∑
i=0

pkλ
2j

)−3 n∑
s=0

psλ
2s


2j−2k−2l

.

By implementing the same procedure verbatim on the second term in (2.18)
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one concludes that

n∑
i=1

{P (pl), b
(n)
2i }P (pk) =

( n∑
i=0

pkλ
2j

)−3 n∑
s=0

psλ
2s


2j−2k−2l

.

Hence one can conclude that

{qk, ql} = 0.

Thus we have demonstrated that the new coordinates are still canonical
with respect to the natural Poisson structure. Moreover as they are polyno-
mial in the series a(n)2k+1 etc. which are themselves differential polynomials in
the solution of P (n)

II (a(n)2n+1 is a constant), they clearly possess the Painlevé
property.

2.4 The canonical coordinates in terms of solutions of

P
(n)
II

The coordinates can be written in terms of solutions to P (n)
II :

pk =
1

22k−1

(
Lk[wz − w2] +

k∑
j=1

tn−jLk−j[wz − w2]

)
, (2.19)

qk =
n∑
j=1

−b(n)2j

[(
n∑
i=0

[
a
(n)
2(n−k)+1 + b

(n)
2(n−k)+1

a
(n)
2n+1

]
λ2i

)]
2j−2k

. (2.20)

In the above presentation of qk one can clearly use the equations (2.4), (2.5)
and (2.6) to write the a(n)2k+1, b

(n)
2k+1 and the b(n)2k in terms of w(z). The notation

[λ]m−n indicates one takes the coefficient of λm−n in the formal series k(λ).
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These formulas shall be fundamental in writing the canonical coordinates in
terms of sigma and its derivatives.
The last question is to be able to write the entries of A(n) in terms of these
coordinates. In this regard we have the following result.

Theorem 2.4. [15] Consider the polynomials in λ

A =
n∑
k=0

a
(n)
2k+1λ

2k+1, Bo =
n∑
k=0

b
(n)
2k+1λ

2k+1, Be =
n∑
k=1

b
(n)
2k λ

2k

Q =
n∑
j=1

qjλ
2j, P =

n∑
j=1

pjλ
−2j, T =

−z
(2λ)2n

+
n−1∑
i=1

ti(2λ)2i−2n.

Then the following relations between them hold

A =

[
1

4
(2λ)2n+1

(
1 + P +

(1 + T )2

1 + P

)
− (2λ)−2n−1Q2(1 + P )

]
+

(2.21)

Bo =

[
1

4
(2λ)2n+1

(
1 + P − (1 + T )2

1 + P

)
+ (2λ)−2n−1Q2(1 + P )

]
+

(2.22)

Be = −λ2
[
λ−2Q(1 + P )

]
+
. (2.23)

The notation [f ]+ indicates to take only the polynomial part of the series f .

With this one can compute the Hamiltonian explicitly for any given n.
However this form is not appropriate to give a formula in terms of pk and qk
for general n, which is necessary for the derivation of sigma forms.

2.5 Sigma form of PII

The sigma form of the second Painlevé equation is a known quantity derived
by Okamoto in [18]. The procedure he used is a template for the one we shall
develop for the entire hierarchy and so we shall recall it.
Starting form HII given in equation (1.8), one computes the first and second
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derivative of this Hamiltonian. One does this while considering that we make
the identification HII = σ(z). Thus one deduces

σ′(z) =
1

2
p

σ′′(z) = 2qp+

(
α− 1

2

)
.

One can solve the above system in the sense that one can write expressions
for the canonical coordinates in terms σ(z) and its derivatives. One can then
substitute these expressions into HII = σ(z), and one easily arrives at (1.14).
To find the sigma form of the hierarchy we shall implement a similar pro-
cedure. The main difference with the higher order members is the need to
solve a system of polynomial equations for the 2n canonical coordinates.
The feasibility of this is not apparent. As we shall show, the choice of coor-
dinates made by the authors of [15] allows for the development of systematic
approach to produce the sigma form for the whole hierarchy.

2.6 Special solutions and Bäcklund transformations of

the second Painlevé hierarchy

We shall now examine the results of Clarkson, Joshi and Pickering presented
in [21]. In this they obtain not only Bäcklund transformations for the second
Painlevé hierarchy, but also first integrals corresponding to certain values of
its parameter.
Note that the results in [21] are obtained under the hypothesis that the
additional parameters, t1, . . . , tn−1 vanish in (1.19). Therefore all details
that follow shall also be subject to this consideration.
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2.6.1 The Bäcklund transformation

The method to be used to obtain these transformation is known as a trun-
cated Painlevé expansion. To begin, one takes equation (1.19) (P (n)

II ) and
makes the following change of variables

w(z) =
1

2

ψ′′

ψ′
.

Upon performing this change (1.19) becomes(
d

dx
+
ψ′′

ψ′

)
Ln[

1

2
S(ψ)]− 1

2

ψ′′

ψ′
x− α = 0.

As before Ln[f ] refers to the n-th Lenard polynomial and S(ψ) is the Schwartzian
derivative:

S(ψ) =
d

dx

(
ψ′′

ψ′

)
− 1

2

(
ψ′′

ψ′

)2

.

The appearance of the Schwartzian derivative is fortuitous; it is invariant
under Möbius transformations thus one can apply them freely. Indeed setting
ψ = −1/φ, one has

w(z) =
−φ′

φ
+

1

2

φ′′

φ′
.

This new function satisfies the equation(
d

dx
+
φ′′

φ′
− 2

φ′

φ

)
Ln[

1

2
S(φ)]− 1

2

(
φ′′

φ′
− 2

φ′

φ

)
x− α = 0. (2.24)

If one now sets
w̃(z) =

1

2

φ′′

φ′
(2.25)

such that
w(z) = −φ

′

φ
+ w̃(z), (2.26)
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the w̃(z) satisfies(
d

dx
+ w̃ − 2

φ′

φ

)
Ln[w̃′ − w̃2]− 1

2

(
w̃ − 2

φ′

φ

)
x− α = 0. (2.27)

In equation (2.27) there are two possibilities. Either the new function w̃(z)

satisfies the equation P
(n)
II with the same parameter α as that satisfied by

w(z) or it does not. The former situation in fact leads one to the special
solutions; we shall suspend considering it for now.
Given that we now accept the latter situation let us suppose that w̃ satisfies
(1.19) with the parameter α̃. We shall use the the notation P

(n)
II [w̃, α̃] to

denote this equation. The consequence of this is that equation (2.27) can
now be written as

(2Ln[w̃′ − w̃2]− x)
φ′

φ
+ α− α̃ = 0. (2.28)

The key question is what is the relationship between α and α̃. To establish
this one needs to differentiate (2.28). Upon doing so one has

(
2
d

dx
Ln[w̃′ − w̃2]− 1

)
φ′

φ
+ (2Ln[w̃′ − w̃2]− x)

(
φ′′

φ
−
(
φ′

φ

)2
)

= 0.

Observing
φ′′

φ
=
φ′′φ′

φφ′

one can use equations (2.25) and (2.28) to write an equation exclusively in
terms of w̃. The result is the following:(

d

dx
+ 2w̃

)
Ln[w̃′ − w̃2] + w̃x− 1

2
(α− α̃− 1) = 0. (2.29)
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Recall that, by hypothesis, w̃(z) satisfies P (n)
II [w̃, α̃]. It must hold that (2.29)

is compatible with this. For this to be so, one must have the relation

α = 1− α̃. (2.30)

Having now obtained a relation between the transformed and untransformed
parameter we can now derive the transformation itself.

Returning to equation (2.28), one can rearrange to solve for the rational
expression in φ. This is of course given by

φ′

φ
=

α̃− α
2Ln[w̃′ − w̃2]− x

.

Using (2.30) and (2.26) one can then write this as

w = w̃ +
2α̃− 1

x− 2Ln[w̃′ − w̃2]
. (2.31)

This is the Bäcklund transformation. This in effect maps the pair (w(z), α)

to the pair (w̃(z), α̃).
One can generalise the transformation. Indeed consider equation (1.19)
i.e. P

(n)
II [w, α]. It is obvious that the function −w(z) satisfies the equa-

tion P (n)
II [−w(z),−α]. Thus, applying this symmetry to the transformation

one arrives at
w = w̃ +

2α̃∓ 1

x− 2Ln[±w̃′ − w̃2]
. (2.32)

Later in this thesis, we shall rediscover this transformation. Indeed we shall
show that it relates to certain canonical transformations of Hamiltonian sys-
tems.
We now wish to move on to special solutions of equation (1.19).
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2.6.2 First integrals of P (n)
II for half integer values of the parameter

Returning to equation (2.27) we now assume that the transformed solution,
w̃(z), satisfies the equation P

(n)
II [w(z), α]. As such now splitting (2.27) in

terms of powers of φ one arrives at

2Ln[w̃′ − w̃2]− x = 0. (2.33)

The above is a differential equation of order one less than P (n)
II . Moreover, it

is only compatible with it when α = 1/2. In that sense we can consider (2.33)
as a special solution to P (n)

II for this given value of the parameter. Note that
in the case n = 1, L1[w̃

′− w̃2] = w̃′− w̃2 and thus (2.33) represents a Riccati
equation that can be linearised and can be solved by standard methods.
The key observation os that one can combine this solution for α = 1/2 with
our Bäcklund transformation to generate solutions for all half integer values
of the parameter. For the sake of simplicity, the best way to proceed is to
choose the positive parity in equation (2.32). Then one can use the discrete
symmetry (w, α)→ (−w,−α) to write the transform as

w = −w̃ − 2α̃− 1

x− 2Ln[w̃′ − w̃2]
, α = α̃− 1

The above transform clearly takes solutions with parameter α and maps
them to those with parameter α + 1. From here one can use the discrete,
parity transform to generate those solutions that correspond to the negative
half integers. To provide illustration, we shall produce some of these special
solutions.

2.6.3 Examples

Example 2.5 (n = 1).

From equation (2.33), it is obvious that in the case of n = 1 the base
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special solution is given by

I
(1)
1
2

= w′ − w2 − 1

2
x = 0.

The solution in the case of α = −1/2 is clearly given by

I
(1)

− 1
2

= −w′ − w2 − 1

2
x = 0.

Now using the transformation one can easily produce the solutions in the
case of α = ±3/2:

I
(1)

± 3
2

= (w′)3 ∓
(
w2 +

1

2
x

)
(w′)2 −

(
w4 + xw2 ± 4w +

1

2
x2
)

±w6 ± 3

2
xw4 + 4w3 ± 3

4
x2w2 + 2xw ± 1

8
x3 ± 2 = 0

Note the above is obtained by substituting our formula for the transformation
into I(1)1

2

and multiplying out rational parts. There is no inconsistency here;
(2.33) only gives a solution when α = 1/2. We are therefore not multiplying
by zero (as it might appear). As the value of α ascends in absolute value the
number of terms in the solutions increases dramatically. Indeed for α = ±5/2

the expression has 38 terms. Thus implementation in computer algebra is
recommended to produce more integrals.

Example 2.6 (n = 2).

For the second member of the hierarchy, the special solution for α = ±1/2

is given by

I
(2)

± 1
2

= w′′′ ± (w′)2 ± 2ww′ − 6w2w′ ± w4 ∓ 1

2
x = 0.

From here the number of terms in the integrals grows rapidly. For α = ±3/2,
these have 63 terms. From there the next integrals have 281 and 318 terms.

34



Having now reviewed the pertinent results that we shall build on, we
move to original results in the next section. Specifically we shall discuss
Hamiltonians of the second Painlevé hierarchy, and derive new closed form
formulas for these.
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3 Closed forms of the Hamiltonians of P (n)
II

The main result of the paper of Mazzocco and Mo ([15]) was a formula for the
Hamiltonian of P (n)

II , given by equation (2.7). As shown in equations (2.11)
and (2.12), the a(n)2k+1, b

(n)
2k+1 and b

(n)
2k are all polynomials of the canonical

coordinates. These are defined by the non trivial power series (2.21), (2.22)
and (2.23).

3.1 Closed form Hamiltonians

Our aim is to prove the following theorems:

Theorem 3.1. The Hamiltonian for P (n)
II , with all tk = 0, is given in terms

of the canonical coordinates by the following formula:

H
(n)
t=0 = 22n

∑
∑
k.mk=n+1

(−1)
∑
mk

( ∑
mk

m1, . . . ,mn

) n∏
k=1

pmk
k + 2p1z

−
n∑
k=1

pk
∑

r+s=n+k, r,s 6=n

qrqs
22n
−
∑
r+s=n

qrqs
22n
− pnq

2
n

22n
+

(1− 2α)qn
22n

.

Here ( ∑
mk

m1, . . . ,mn

)
=

(
∑
mk)!

(m1)! . . . (mn)!

is the multinomial coefficient , and the first summation here means that one
sums over all n-tuples mk such that the sum of the products k.mk is equal
to n+ 1.

Theorem 3.2. For n ∈ N, the Hamiltonian of P (n)
II is given by

H(n) = H(n)|t=0 +
n−1∑
j=1

tj
∑

∑
r.mr=j+1

22j+1(−1)
∑
mr

( ∑
mr

m1, . . . ,mn

) n∏
r=1

pmr
r
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+
n−1∑

j=[n/2+1]

t2j
∑

∑
r.mr=2j−n+1

22(2j−n)(−1)
∑
mr

( ∑
mr

m1, . . . ,mn

) n∏
r=1

pmr
r

+
n−1∑
a=1

ta

n−1∑
b=n−a,a6=b

tb
∑

∑
r.mr=a+b−n+1

2(a+b−n)+1(−1)
∑
mr

( ∑
mr

m1, . . . ,mn

) n∏
r=1

pmr
r

where H(n)|t=0 denotes the part of the Hamiltonian independent of the pa-
rameters tk given in theorem (3.1) and [r] denotes the integer part of r.

In the car n = 1 the above formulas produce the following

H = 4p21 +
1

4
q1 +

1

4
p1q

2
1 + 2p1z −

1

2
q1α

. One can the use Hamilton’s equations to eliminate p1 and then setting
w = 1

4
q1, w(z) will satisfy PII . Note this additional constant factor in the

relation w = 1
4
q1 is the reason for the above differing form the classical form

of the PII Hamiltonian. This reflects a choice of normalisation made by Maz-
zocco and Mo ([15]).

The proof of these shall be given in section (3.4). The former gives an
expression for the Hamiltonian under the hypothesis that the parameters tk
vanish. This has typically been the situation considered when the hierarchy
has been discussed previously (as in [21]). The latter details the dependence
of the Hamiltonian upon these parameters.

One observation that this representation allows one to make is that, in full
generality, H(n) contains no products of the coordinates qj and the parame-
ters tk. It would be difficult to make this same observation from the original
formula for H(n) (2.7) for a specific n. From this one can deduce that the
Hamilton’s equations for the pk are independent of the tk parameters.
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This begin with the following lemmas:

Lemma 3.3. Assume that all tk = 0, then for positive integer n and for
1 ≤ j ≤ n− 1 we have

∂H(n)

∂qj
=

1

22j−1 [b
(n)
2(n−j) + pjqn] =

1

22j−1

[
−qn−j −

j−1∑
k=1

pkqn−j+k

]
.

For j = n one has

∂H(n)

∂qn
=
−1

22n−1 [(α− 1

2
)− pnqn].

Moreover, for pj with j ∈ {2, . . . , n} we have

∂H(n)

∂pj
=

∑
∑
k.mk=n−j+1

22n(−1)
∑
mk

( ∑
mk + 1

m1, . . . ,mn

) n∏
k=1

pmk
k

−
∑

r+s=n+j

qrqs
22n

+
qjqn
22n−1 .

For j = 1 one has

∂H(n)

∂p1
= 2z +

∑
∑
k.mk=n

22n(−1)
∑
mk

( ∑
mk + 1

m1, . . . ,mn

) n∏
k=1

pmk
k

−
∑

r+s=n+1

qrqs
22n

+
q1qn
22n−1 .

Lemma 3.4. For k ∈ {1, . . . , n− 1} and for general tk, one has

∂H(n)

∂tk
= 22k+1

∑
∑
r.mr=k+1

(−1)
∑
mr

( ∑
mr

m1, . . . ,mn

) n∏
r=1

pmr
r

+
n−1∑
j=n−k

22(j+k−n)+1tj
∑

∑
r.mr=j+k−n+1

(−1)
∑
mr

( ∑
mr

m1, . . . ,mn

) n∏
r=1

pmr
r .
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For the sake readability we shall spilt the proof of the above formulas in
to two natural cases; the case were the parameters tk vanish and the case of
general parameters. We commence with the former.

3.2 Derivatives of the a(n)2k+1 and the b(n)2k

For clarity, in this section we assume that all the tk identically vanish. With
this in mind we shall proceed to derive formulas for the b(n)2k , and the deriva-
tives of the functions a(n)2k+1. Note that we have excluded the b(n)2k+1. The
reason for this is the formula relating the b(n)2k1

to the a(n)2k+1

a
(n)
2k+1 + b

(n)
2k+1 = 22npn−k

given in [15].
With this one can now write the Hamiltonian as

H(n) =
−1

4n

[
n−1∑
l=0

22n+1(a
(n)
2l+1pl+1)− 42npn−lpl+1 +

n∑
l=0

b
(n)
2l b

(n)
2(n−l)

]
+
qn
4n
. (3.1)

We have now eliminated the dependence of H(n) upon the b(n)2k+1. Moreover
the resulting formula also contains no quadratic terms in the a(n)2k+1, which
shall become important as we move forward.

To find b(n)2k , we can use formula (2.23). Direct computations bring us to
the following lemma.

Lemma 3.5. The formula (2.23) implies that the b(n)2k can be given explicitly
as

b
(n)
2i = −qi −

n−i∑
k=1

pkqk+i. (3.2)

One just uses the definitions in theorem (2.4) to expand (2.23). From
this it is quite simple of isolate the coefficient of λ2k, which of course brings

39



one to the claimed expression.

For the a(n)2k+1, we cannot easily derive a similar result. However, as we are
interested in initially constructing the gradient we only require the deriva-
tives.

Lemma 3.6. With the a(n)2k+1 given by the coefficient of λ2k+1 in (2.21), we
have

∂a
(n)
2i+1

∂qj
=
−1

4n

[
qn+1−j+i +

j−i−1∑
l=1

plqn+1−j+i+l

]
(3.3)

for j ≤ i and 0 otherwise. Under the same hypothesis one has

∂a
(n)
2i+1

∂pj
=

∑
∑
k.mk=n−(i+j)

n∏
k=1

pmk
k Cm1,...,mk

−
∑

r+s=n+i+j+1

qrqs
22n+1

(3.4)

for i+ j < n, and again 0 otherwise.The coefficient Cm1,...,mn is given by

Cm1,...,mn = (mj + 1)22n−1(−1)
∑
mk+1

( ∑
mk + 1

m1, . . . ,mj + 1, . . . ,mn

)
.

In all these the indices take the range 1, . . . , n.

Proof. The justification of these formulas are all very similar. As such we
shall give the details for the case of derivatives with respect to pk only.

The a(n)2k+1 are defined by the coefficient of λ2k+1 in the power series in
formula (2.21). Observe that in order to expand this formula we need to
consider the rational term. We use the formalism (1 + P )−1 =

∑∞
i=0(−P )i.

While this is formally an infinite sum, one can easily show that the terms of
P k are of minimum degree −2k in λ. As we only require the polynomial part,
and as all terms of (1 + T )2 are of maximal degree 0 in λ, we may replace
the infinite sum with

∑n
i=0(−P )i.
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Moreover, from theorem (2.3) is is clear that the terms of (1 + T )2, with
the exception of the constant term, are of minimum degree −2n in λ. In
combination with the fact that the non-constant terms of

∑n
i=0(−P )i are of

maximal degree -2 in λ, we can eliminate the terms 2T
1+P

and T 2

1+P
. Thus we

are in fact required to only find the coefficient of λ2i+1 in[
1

4
(2λ)2n+1(2 +

n∑
i=2

(−P )i)− (2λ)−2n−1Q2(1 + P )

]
+

. (3.5)

Fixing now an i and j and expanding one has, using the definition of P and
Q,

22n−1
n2∑
k=2

λ2n+1−2k
∑

∑
r.mr=k

n∏
r=1

pmr
r (−1)

∑
mr

( ∑
mr

m1, . . . ,mn

)
(3.6)

−(2)−2n−1λ−2n−2j−1
n∑

r,s=1

2qrqspjλ
2(r+s).

The above is arrived at using the multinomial formula, which yields

P k =
∑

m1+...mk=k

n∏
r=1

pmr
r λ−2(

∑
r.mr)

(
k

m1, . . . ,mn

)
.

Taking the sum over k and parsing in powers of λ we have

n∑
i=2

(−P )k =
n2∑
k=2

λ−2k
∑

∑
r.mr=k

n∏
r=1

pmr
r (−1)

∑
mr

( ∑
mr

m1, . . . ,mn

)
.

Clearly only terms that are non-zero upon differentiating with respect to pj
are those that explicitly depend on it. These are of course those summands
for which mj ≥ 1. We can shift the indexing variables to represent only these
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terms, which allow one to rewrite (3.6) as

22n−1
n2∑
k=2

λ2n+1−2k
∑

∑
r.mr=k−j

n∏
r 6=j

pmr
r p

mj+1
j (−1)

∑
mr+1

( ∑
mr + 1

m1, . . . ,mj + 1, . . . ,mn

)
(3.7)

−(2)−2n−1λ−2n−2j−1
n∑

r,s=1

2qrqspjλ
2(r+s).

The coefficient of λ2i+1 is given when

r + s = n+ i+ j + 1,

k = n− i.

Thus upon differentiation by pj we arrive at

∂a
(n)
2i+1

∂pj
=

∑
∑
k.mk=n−(i+j)

n∏
k=1

pmk
k Cm1,...,mk

−
∑

r,s, r+s=n+i+j+1

qrqs
22n+1

which is of course precisely what was claimed.
Finally, consider the case when i + j ≥ n. This, in conjunction with the
equation r+s = n+i+j+1, implies that r+s ≥ 2n+1 which is a contradiction
as r, s ∈ {1, . . . , n}. Hence there are no contributions dependent upon the q
variables when i + j ≥ n. Also, under the same hypothesis, all solutions of∑
r.mr = n− i− j are either non existent or trivial. Thus both statements

of the lemma are proved.

We omit formal justification of the other derivative of a(n)2k+1 as the proof
is very similar to the above.
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3.3 Proof of lemma (3.3)

Our aim is compute the derivatives of H(n) with respect to the pj and qj. We
shall give the details for the derivative with respect to the pj. The others are
too similar to warrant detailed discussion.

Proof. One has that ∂a
(n)
2i+1

∂pj
= 0 if i + j ≤ n and ∂b

(n)
2i

∂pj
= 0 if i + j > n. Thus

now taking the derivative of the formula (3.1) one has

∂H(n)

∂pj
= −

[
n−j−1∑
i=0

2
∂a

(n)
2i+1

∂pj
pi+1 − 22n+1pn−j+1 + 2a2j−1 +

1

22n−1

n−j∑
i=0

∂b
(n)
2i

∂pj
b
(n)
2(n−j)

]
.

(3.8)
To rationalise the size of expressions we shall expand the terms of (3.8)
individually and then sum them. Therefore, using lemma (3.6) one has

n−j−1∑
i=0

2
∂a

(n)
2i+1

∂pj
pi+1 =

n−j−1∑
i=0

pi+1

 ∑
∑
k.mk=n−(i+j)

2Cm1,...,mn

n∏
k=1

pmk
k −

∑
r+s=n+i+j+1

qrqs
22n

 .

We can in fact absorb the pi+1 factor into the secondary summations by
adjusting certain indices.

n−j−1∑
i=0

2
∂a

(n)
2i+1

∂pj
pi+1 =

n−j−1∑
i=0

∑
∑
k.mk=n−j+1

22n(−1)
∑
mk

( ∑
mk

m1, . . . ,mi − 1, . . . ,mn

) n∏
k=1

pmk
k

−
n−j−1∑
i=0

∑
r+s=n+i+j+1

pi+1qrqs
22n

.
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We can in fact go further and absorb the outer sum into the bracket. To
illustrate we shall provide an example. Consider the case n = 7 and j = 2.
One of the solutions to

∑
k.mk = n − j + 1 is given by m1 = 1, m2 = 1

and m3 = 1. One can write the term p1p2p3 in three ways. Those are
p1.(p2p3), p2.(p1p3) and p3.(p1p2). These are contributed by the summands
corresponding to when i = 0, i = 1 and i = 2.
In general the number of appearances is equal to the number of non-zero mk.
Thus to evaluate the coefficient of the summation we need to compute

∑
mk>0

( ∑
mk

m1, . . . ,mi − 1, . . . ,mn

)
.

Using the definition, and putting over a common denominator one has

∑
mk>0

( ∑
mk

m1, . . . ,mi − 1, . . . ,mn

)
= (
∑

mk)!

[∑
mk>0

mk

m1! . . .mn!

]
.

Note that the sum over all nonzero mk of the mk themselves is equal to just
the sum of the mk for all k in the appropriate range. Thus we have

∑
mk>0

( ∑
mk

m1, . . . ,mi − 1, . . . ,mn

)
=
∑

mk(

( ∑
mk

m1, . . . ,mn

)
)

after inclusion of the −22n+1pn−j+1 term,

n−j−1∑
i=0

2
∂a

(n)
2i+1

∂pj
pi+1 − 22n+1pn−j+1 = (3.9)

∑
∑
k.mk=n−j+1

22n(−1)
∑
mk

∑
mk

( ∑
mk

m1, . . . ,mn

) n∏
k=1

pk−
n−j−1∑
i=0

∑
r+s=n+i+j+1

pi+1qrqs
22n

.

For 2a
(n)
2j−1 one can expand it using the procedure given in lemma (3.6).
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Therefore it can be written as

2a
(n)
2j−1 = (3.10)

∑
∑
k.mk=n−j+1

(−1)
∑
mk22n

( ∑
mk

m1, . . . ,mn

) n∏
k=1

pmk
k −

∑
s+r−t=n+j

ptqtqr
22n
−

∑
r+s=n+j

qrqs
22n

.

Finally we have the term in the b(n)2i and its derivative. Using lemma (3.5)
we can expand giving

1

22n−1

(
n−j∑
i=0

∂b
(n)
2i

∂pj
b
(n)
2(n−j)

)
=

1

22n−1

(
n−j∑
i=1

qi+j

i∑
k=1

pkqn−i+k +

n−j∑
i=1

qi+jqn−i

)
.

(3.11)
To arrive at the formula in the statement one needs to sum (3.9), (3.10)
and (3.11). Upon doing so certian cancelations shall occur that are not
immediately obvious. Consider

1

22n−1

n−j∑
i=1

qi+j

i∑
k=1

pkqn−i+k−
1

22n

∑
s+r−t=n+j

ptqrqs−
n−j−1∑
i=0

pi+1

∑
r+s=n+i+j+1

qrqs
22n

.

This in fact vanishes. One can check this by observing that each of the sums
has the same number of terms, (n−j)(n−j−1)

2
, and the sum of the q indices

minus the p index is identical in each expression. The differing sign and
numerical coefficient then clearly lead to the cancelation. Next consider

1

22n−1

n−j∑
i=1

qi+jqn−j −
∑

r+s=n+j

qrqs
22n

.

Notice that the term qjqn
22n

only occurs once in the sum of the qi+jqn−i but
twice in the other term. One can therefore re-write this combination as

1

22n

[
n−j∑
i=1

qi+jqn−i − qjqn

]
.
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One can now simplify the process of summing (3.9), (3.10) and (3.11). This
leads one to

∂H(n)

∂pj
=

∑
∑
k.mk=n−j+1

22n(−1)
∑
mk

( ∑
mk + 1

m1, . . . ,mn

) n∏
k=1

pmk
k

−
∑

r+s=n+j

qrqs
22n

+
qjqn
22n−1 .

For the case j = 1, one can repeat the argument used above to obtain all
terms in the above formula, with the exception of 2z. To show why such a
term appears in this derivative one must examine the formula for the series
A given in equation (2.21).
In the expression given in that theorem one has a expression (in λ) in

22n−1λ2n+1(1 + T )2
n∑
i=0

(−P )i.

One has that T = z
(2λ)2n

. Hence when one expands this, we find the only
polynomial term that is explicitly dependent upon z is zλ0. Thus, this ap-
pears in the formula for a(n)1 . Examining now the formula for the linearised
Hamiltonian given in equation (3.1), one has the product 2a

(n)
1 p1. Hence,

when one expands this one will clearly have the the product 2zp1, and thus
when one computes ∂H(n)

∂p1
, one will have the term 2z as part of it.

3.4 Proof of theorem 3.1 and 3.2

Proof. With both lemma (3.3) and (3.4) now proved, one has all the infor-
mation to construct the gradient of H(n).The proof is simple. We construct
the gradient of H(n). For this we treat the pk, qk and tk as coordinates.
Once these have been computed one can easily establish the compatibility
conditions;

∂2H(n)

∂r∂s
=
∂2H(n)

∂s∂r
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with r and s being any one of the pk, qk or tk.
From this one can then solve all the differential equations of the for ∂H(n)

∂s

with s being one of ps qs and ts. These then can be solved leading to 3n− 1

arbitrary functions that need to be determined. One does this by substituting
each solution into the other equations and deducing the remaining terms. The
solution obtained by this process is not necessarily unique; one can add an
arbitrary constant term to the Hamiltonian and still satisfy the compatibility
conditions .
To rule out the existence of such a constant term let us examine the formula
(2.7). One notices immediately that if their is a constant term, then t is
contained within the series a(n)2k+1, b

(n)
2k+1 or b(n)2k . If one look at the defining

formulas for these, the equations (2.21), (2.22) and (2.23), it becomes clear
that b(n)2k has no constant term.
From this observation, one should then examine a slightly different formula
for the Hamiltonian, given as formula (3.1). This contains only products of
the a(n)2k with the coordinates pk. As such this will clearly yield no constant
term.

From this we now wish to demonstrate how one can obtain elements of
the Painlevé hierarchy form these Hamiltonians.

3.5 Example: P (2)
II

We shall now demonstrate the reverse computation of the equations of the
Painlevé two hierarchy from our Hamiltonians. The process is identical for
each member. Though for higher members the number of calculations is in-
creased. Thus to best illustrate we shall give details for the case of P (2)

II .
For the subsequent calculations we shall assume that t1 = 0. Starting from
the formula in theorem (3.1) one can use this to compute Hamilton’s equa-
tions for p1, p2, q1 and q2. P

(2)
II is a fourth order differential equation. Thus
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taking the equation for q2 and differentiating 3 additional times one has

q
(4)
2 = 16α + (z + 40p21)q2 +

5

25
q1q

2
2 +

5

24
p1q

3
1 +

3

213
q52. (3.12)

We aim to express the above entirely in terms of q2. From Hamilton’s equa-
tions we can write

p1 =
1

25

(
−q22
24

+ q′2

)
, q1 = 8p′1

p2 =
1

24

(
q′1
2

+ 24p21 − z
)
.

These are all easily expressible in terms of q2. After doing so and substituting
into (3.12) one gets

q
(4)
2 = 16α− 3

215
q52 + q2

(
z +

5

27
(q′2)

2

)
+

5

27
q22q
′′
2 .

From this, if one makes the simple change of variables q2 = 42w(z) one
obtains

w(4) = α + wz − 6w5 + 10(w′)2w + 10w2w′′

which is exactly P (2)
II .

It should be clear from the calculations above how this process can be adapted
to higher order members of the hierarchy. We now shall shift focus. Specifi-
cally we shall now examine the problem of deriving the so called sigma forms
for the Painlevé two hierarchy.
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4 The sigma form of P (n)
II

With the information obtained above we are now in a position to derive the
sigma form of P (n)

II . Consider H(n). It is a function of the coordinates pk,
qk, the parameters tk and z. We now shift perspective. We consider σ(z) a
function of z and the tk alone. The connection between these objects is that
they coincide on the trajectories of H(n).
Our ultimate aim is to obtain the differential equation satisfied by σ(z).
Indeed it takes the particular form:

Theorem 4.1. The sigma form of P (n)
II , for all positive integer n, is a non-

linear differential equation given by

−22n

∫
pn

(
d

dz

[
Ln+1 +

n−1∑
k=1

tn−kLn−k+1 − zσ′ − σ(z)

]
+ tn−1

)
dz+α−α2+θ = 0

with Lk = Lk
[
σ′(z)− tn−1

2

]
defined by equation (1.20), and

pn = 1
22n−1Ln

[
σ′(z)− tn−1

2

]
+
∑n−1

k=1 tn−kLn−k
[
σ′(z)− tn−1

2

]
− z

2
. One has

t0 = −z and the constant θ has the value 1/4 for n = 1 and zero otherwise.
The parameter α is that of P (n)

II .

One way to proceed is to adapt the Okamoto method, used in the calcula-
tion of the sigma form of PII , to our case. Recall this involves calculating the
canonical coordinates as differential polynomials of σ and then substitution
into H(n) = σ(z).
The issue one has with attempting apply the same process in the more gen-
eral case is that one will have to solve a system of 2n polynomial equations.
Not only may this not be possible, it may not be feasible for large n without
computer algebra.
Our alternative is to use Hamilton’s equations to find a transformation be-
tween w(z) and σ(z). This will allow us to write the canonical coordinates as
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differential polynomials of σ(z). We shall then use this information to derive
a differential equation in terms of σ(z) alone.

4.1 The canonical coordinates as differential polynomi-

als of σ(z)

As an initial step we consider dH(n)

dz
, which we now consider in terms of sigma.

Using the results of the previous section one has

dσ(z)

dz
= {H(n), H(n)}+

∂H(n)

∂z
= 2p1

with the above equality holding for arbitrary n. This result shall prove crucial
moving forward.
Recall now the Mazzocco and Mo formalism. It allows one to write the
canonical coordinates in terms of w(z), the solution of P (n)

II , as

pk =
1

22k−1

(
Lk[wz − w2] +

k∑
j=1

tn−jLk−j[wz − w2]

)
. (4.1)

In particular, examining the formula for p1 one can deduce that

p1 =
1

2

(
wz − w2 +

tn−1
2

)
=

1

2
σ′(z).

Thus we have a transformation between σ′(z) and w(z). Moreover wz − w2

forms the argument of the Lenard polynomials that define the pk.

Lemma 4.2. The canonical coordinates, pk for 2 ≤ k ≤ n, of H(n) can be
written as

pk =
1

22k−1

(
Lk

[
σ′(z)− tn−1

2

]
+

k∑
j=1

tn−jLk−j

[
σ′(z)− tn−1

2

])
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with t0 = −z, σ(z) = H(n), and Lk[f ] being the kth Lenard differential
polynomial. The qk are given as

qn−j = 22n−1dpj
dz
−

j−1∑
k=1

pkqn−j+k, j ∈ {1, . . . , n− 1} (4.2)

with qn−1 = 4n−1σ′′(z). Moreover one has

qn =
d
dz

[
Ln
[
σ′(z)− tn−1

2

]
+
∑n−1

k=1 tn−kLn−k
[
σ′(z)− tn−1

2

]]
− α

−pn
.

Proof. The formula for pk follows from above, the formula for qk is recursive.
To find its starting point we take the first derivative of H(n), given by the
case of k = 1 in equation (4.1), and differentiate again. One then finds

d

dz
2p1 =

1

22n−2 qn−1.

This can be verified by using our extensive formulas covering the Hamiltonian
derivatives. Combine this with Hamilton’s equations i.e.

dpj
dz

= −∂H
(n)

∂qj

and one will obtain the given recursion. The final claim relates to the specific
form of qn. One computes the derivative of pn with respect to z resulting in

dpn
dz

=
1

22n−1

(
d

dz

[
Ln

[
σ′(z)− tn−1

2

]
+

n−1∑
k=1

tn−kLn−k

[
σ′(z)− tn−1

2

]]
− 1

2

)
.

Then using the formula for qn given in lemma (3.3) one can solve for the
claimed form.

We can now construct the sigma form.
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4.2 Proof of theorem 4.1

Proof. This above lemma gives a recursive formula that can be implemented
to compute the coordinates qk explicitly in terms of σ(z) and its derivatives.
It should be noted that this recursion can be solved, should direct compu-
tation of these quantities be required. We shall commence with the proof of
the general formula, and shall at the end observe the alterations that occur
in the case of n = 1.
The way the canonical coordinates were defined by Mazzocco and Mo allows
one to observe that

qn = 4nw(z).

If one now uses the second claim in lemma (4.2) this clearly means that we
can write the solution if P (n)

II as a rational function of σ(z) and its derivatives:

w(z) =
d
dz

[
Ln
[
σ′(z)− tn−1

2

]
+
∑n−1

k=1 tn−kLn−k
[
σ′(z)− tn−1

2

]]
− α

−22npn
. (4.3)

Note that in the case of n = 1 one has that t0 = −z. Consequently one will
have the term −(α− 1/2) in the numerator of (4.3). Observe that substitu-
tion of this expression into P (n)

II shall solve it automatically. This formula is
the key piece that will enable the final derivation of the sigma form.

Commencing with the case of k = 1 in formula (4.1), in conjunction with
our assertion that σ′(z) = 2p1, we arrive at

wz − w2 − σ′(z) +
tn−1

2
= 0. (4.4)

Using the abbreviation f(z) = Ln
[
σ′(z)− tn−1

2

]
+
∑n−1

k=1 tn−kLn−k
[
σ′(z)− tn−1

2

]
(4.4) can be written as

−2(f(z)− z/2)f ′′(z) + (f ′(z))2 − f ′(z) + α− α2

4(f(z)− z/2)2
= σ′(z)− tn−1

2
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for n ≥ 2, and

−2f(z)f ′′(z)− (f ′z)2 + α− α2 − θ
4(f(z))2

= σ′(z) +
z

2

for n = 1.
The appearance of θ in the numerator for the n = 1 case is a consequence
of the −(α − 1/2) in the numerator of (4.3). We can clear the rational part
of this equation if we assume that f(z) − z

2
6= 0. We shall in fact show in

the next section that if this is not true, then this corresponds to a special
solution of P (n)

II , which fixes the value of α. Thus we lose little generality
by adopting this assumption. This means that, conceptually, one can write
(4.4) as

g(σ, σ′, . . . ) = α2 − α + θ

We wish to rewrite the function g. To do this we will differentiate the above,
and then divide by a (non-zero) factor i.e.

d

dz
g(σ, σ′, . . . ) =

d

dz
[h(σ, . . . )m(σ, . . . )] =

d

dz
(α2 − α + θ)

In the process one in principle looses information regarding the constant
term α2 − α. However, having already determined the constant, this will be
recovered upon integration.
We proceed with the case for n ≥ 2. The case for n = 1 contains very minor
differences that do not warrant detailed discussion. Indeed the following
procedure is valid only with limited arithmetical adjustments.
Observe that, using lemma (4.2) one can write pn = 2−(2n−1)(f(z)− z

2
). Then

upon taking the derivative with respect to z and dividing by pn (4.4) becomes

2f ′′′(z) + 4σ′′(z)f(z)− 2zσ′′(z) + 8σ′(z)f ′(z) (4.5)

−4σ′(z)− 4tn−1(f
′(z)− 1

2
) = 0.
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Using the definition of f(z), (4.5) can be written as

(
d3

dz3
+ 4(σ′(z)− tn−1

2
)
d

dz
+ 2σ′′(z)

)[
Ln +

n−1∑
k=1

tn−kLn−k

]
.

− d

dz
(zσ′(z) + σ(z)) + tn−1 = 0

Using the equation (4.1), in conjunction with the fact that the parameters
tk are casimirs, one can conclude that(

d3

dz3
+ 4(σ′(z)− tn−1

2
)
d

dz
+ 2σ′′(z)

)
is in fact the Lenard recursion operator. This acts on the polynomials Lk in
the manner given in equation (1.20), thus (4.5) can be written as(

d

dz

[
Ln+1 +

n−1∑
k=1

tn−kLn−k+1 − zσ′(z)− σ(z)

]
+ tn−1

)
= 0. (4.6)

It may occur that one should integrate the result to obtain

Ln+1 +
n−1∑
k=1

tn−kLn−k+1 − zσ′(z)− σ(z) + tn−1z = C

with C being a constant. The issue is that we have no way of determining
information about the constant. Note that (4.6) (aside from dividing through
by pn ) is mathematical equivalent to (4.4). Between the two equations we
have only applied arithmetic and properties of the Lenard operators to re-
write the equation in a more truncated form.
To recover an equation equivalent to (4.4) form (4.6) we must reverse the
operations that we performed in obtaining this new representation. This was
a division by the function −2pn (which we can freely multiply (4.6) by as
we have already assumed pn 6= 0) and a differentiation. This of course gives
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all non-constant terms. From (4.4), we know the exact form of the constant
term, α − α2 − θ. Thus reversing these brings (4.6) to an equation that is
equivalent to (4.4), but is not in the claimed form, given in the statement of
theorem (4.1).

While the equation in theorem (4.1) is given in the form of an integral,
the integrand is in fact an exact differential. In that sense it is a nonlinear
differential equation in terms of σ(z). This is yet another remarkable oc-
currence of the integrability of the Lenard functions. To demonstrate our
equation we shall give the explicit example of the cases n = 1, 2.

Example 4.3 (n=1).

Starting form theorem (4.1) we wish to demonstrate that our formula, up
to normalisation recovers the Okamoto sigma form (1.14). Thus taking the
equation form (4.1) and integrating by parts we consider∫

d

dz
(σ′)[L2[σ

′ + z/2]− zL1[σ
′ + z/2]− σ]dz − (α− 1/2)2 = 0. (4.7)

One can then write (4.7) as∫
(σ′′)[σ(3) + 3(σ′)2 + 2zσ′ − σ]dz − (α− 1/2)2 = 0.

This can be integrated exactly to give

1

2
(σ′′)2 + (σ′)3 + z(σ′)2 − σσ′ + (α− 1/2)2 = 0.

This is exactly the Okamoto equation ([18]) with a different choice of nor-
malisation owing to the choice made by Mazzocco and Mo when deriving the
hierarchy Hamiltonians.

Example 4.4 (n=2).
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From the formula in theorem (4.1) one can clearly integrate by parts to
obtain the amended equation

−2pn(Ln+1 +
n−1∑
k=1

tn−kLn−k+1 − zσ′(z)− σ(z) + tn−1z) (4.8)

+2

∫
d

dz
pn

(
Ln+1 +

n−1∑
k=1

tn−kLn−k+1 − zσ′(z)− σ(z) + tn−1z

)
dz+α−α2 = 0

with pn given by lemma (4.2) and Lk being the kth Lenard polynomial of base
σ′(z)− tn−1

2
. Clearly we have a differential equation for σ(z) if the integrand

g(z) =
d

dz
pn

(
Ln+1 +

n−1∑
k=1

tn−kLn−k+1 − zσ′(z)− σ(z) + tn−1z

)
(4.9)

is an exact differential. This is what we shall see explicitly for n = 2.
We need to compute the relevant quantities i.e. L3, L2 and p2. We therefore
obtain

p2 =
1

8

(
σ(3)(z) + 3(σ′)2 − 2t1σ

′(z)− t21
2
− z

2

)
,

L2 = σ(3)(z) + 3(σ′(z))2 − 3t1σ
′(z) +

3t21
4
,

L3 = σ(5)(z) + 10σ(3)(z)σ′(z) + 5(σ′′(z))2 + 10(σ′(z))3,

−5t1σ
(3)(z)− 15t1(σ

′(z))2 +
15

2
t21σ
′(z)− 5

4
t31.

From these we can then form the following quantities:

d

dz
p2 =

1

8

(
σ(4)(z) + 6σ′(z)σ′′(z)− 2t1σ

′′(z)− 1

2

)
L3 + t1L2 − zσ′(z)− σ(z) + t1z =

σ(5)(z) + 10σ(3)(z)σ′(z) + 5(σ′′(z))2 + 10(σ′(z))3
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−4t1(σ
(3)(z) + 3(σ′(z))2) +

9

2
t21σ
′(z)− t31

2
− zσ′(z)− σ(z) + t1z.

One can now compute the quantity g(z), (4.9), for the case n = 2. One can
now show that it is indeed an exact differential. To abbreviate we drop the
argument from σ and its derivatives, and thus we can write

128

∫
g(z)dz = −4z2t1 + 4zt31 − 368t1(σ

′)4 + 192(σ′)5 + 16t1σ
′′ + 8z(σ′′)2

+28t21(σ
′′)2 + 4σ(2z − t21 + 8t1σ

′ − 12(σ′)2 − 4σ(3)) + 16zt1σ
(3)

−8t31σ
(3) − 16(σ′′)2σ(3) − 16t1(σ

(3))2 + (σ′)3(272t21 − 32z + 160σ(3))

+16(σ′)2(15(σ′′)2 − 2t1(3t
2
1 − 2z + 6σ(3)))− 8σ(4) − 32t1σ

′′σ(4) + 8(σ(4))2

−8σ′(20t1(σ
′′)2 + (2z − t21 − 4σ(3))(2t21 + σ(3)) + σ′′(6− 12σ(4))).

As one can see, even the simplest case of our new formula leads to expressions
of substantial size. Thus implementation of our formula is only practical in
computer algebra.
From this we move on to some natural applications of both the sigma form
and our explicit Hamiltonian expression.
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5 Special solutions and Bäcklund transforma-

tions

The first application is perhaps the most natural; canonical transformations
of H(n) . Our starting point for these are two transformations of the Painlevé
hierarchy detailed in [21]. We shall briefly introduce and review these trans-
formation and their action upon P (n)

II . We shall show that they give rise to
canonical transformation of the Hamiltonian system defined by H(n) as given
in theorem (3.1).

Our second application, is an examination of the case when the co-
ordinate pn vanishes. Recall that this not vanishing was a key assumption
in our derivation of the sigma form. We shall discover that this leads very
naturally to a special solution of P (n)

II . Moreover one can, using the work
of Shimomura ([24]), show that this solution is equivalent to a solution of a
member a Painlevé one hierarchy.

5.1 Bäcklund Transformations

For this section we shall impose the condition that all the additional pa-
rameter tk vanish. We do so in order to draw relevant comparisons to and
deductions from the work in [21], in which the same condition is also applied.
Consider the parameter space of the second Painlevé hierarchy. Given our
above hypothesis related to the additional parameters this is completely de-
termined by, to use the language of [27], the essential parameter α.
On this space acts an affine Weyl group, in this case A(1). They key ques-
tion is to determine how this action manifests upon the equation itself. In a
series of papers, [17], Okamoto showed that this is in fact given by Bäcklund
transformations.

In [21] Clarkson, Pickering and Joshi studied Bäcklund transformations
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of the PII hierarchy. They begin with the observation that for PII itself, with
solution w(z) and parameter α, has a transform given by

w(z) = w̃(z) +
2α̃∓ 1

z ∓ 2wz + 2w2
, α = ±1− α̃ (5.1)

with w̃(z) solving PII with parameter α̃. From this, they proceed to generalise
this transformation to all members of the PII hierarchy. These are given,
using our notation, by

w(z) = w̃(z) +
2α̃∓ 1

z − Ln[±w̃z − w̃2]
, (5.2)

with α = ±1− α̃. Recall that the function, pn (the co-ordinate of the Hamil-
tonian system of P (n)

II ) is given by equation (4.1). Thus apply the transfor-
mation one can replace every instance of w(z) by ±w̃(z) in the formula. As
before w̃(z) solves P (n)

II with parameter α̃. Observe that the indeterminate
±1 factor present in the above formulas is in fact a manifestation of the
trivial transformation (w(z), α) → (−w(z),−α), possessed by all members
of the hierarchy. This can be seen in the fact that the terms of the functions(

d

dz
+ 2w

)
Lk[wz − w2]

considered as polynomials in w(z) and its derivatives, are of odd degree.
Observe that some combination of the above transformations bring the Painlevé
two equation with parameter α to that with parameter α ± k with k being
an integer. This fact is exploited in [21] to produce special solutions for the
PII hierarchy for half integer values of the parameter.

Our result, is that for the trivial transformation (w(z), α)→ (−w(z),−α),
which we call parity, and for that given by equation (5.1), which we call
affine, we can construct canonical transformations for the system H(n). We
provide explicit formulas for how the coordinates transform, and write the
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new Hamiltonians.

5.1.1 The affine transformation

As explained above this transformation is given by (5.1). Writing this in
terms of w(z) explicitly one has the formula (5.2).
This transformation has the property that it preserves the form wz −w2 i.e.

wz − w2 = w̃z − w̃2.

Conveniently, the canonical coordinates as defined by equations (4.1) and
(4.2) are given as Lenard polynomials of this form. We can therefore conclude
immediately that

p̃k = pk, k = 1, . . . , n (5.3)

q̃k = qk, k = 1, . . . , n− 1. (5.4)

The omission of qn from the above statement reflects that qn is explicitly
dependent upon α. Thus the only work one must do to establish the details
of the canonical transformation is to deduce how this transforms.
Recall that qn is linearly proportional to w(z). Thus dividing (5.2) through
by 4n, and choosing a parity one can write

q̃n = qn −
2α̃− 1

−pn
. (5.5)

It is easy to show that these new coordinates, as given by equations (5.3),
(5.4) and (5.5) are canonical.
What remains is to detail how H(n) itself transforms. For the majority of
terms in formula of theorem (3.1) this is trivial. Indeed we need only restrict
our attention to those terms dependent upon qn. These are given by

1

22n
(pnq

2
n + (1− 2α)qn).
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Substituting our above assertions into this and calculating this can be written
in the new variables as

1

22n
(p̃nq̃

2
n + (1− 2α̃)q̃n).

These terms are also those explicitly dependent upon the parameter α. Thus
we can conclude that

H̃(n)(p̃, q̃, z, α̃) = H(n)(p̃, q̃, z, α̃) (5.6)

i.e. the new Hamiltonian is the old Hamiltonian with the old coordinates
exchanged one for one with the new, but with the new parameter α̃.

While computing this canonical transformation is of some intrinsic worth,
our ultimate aim is to demonstrate what is the corresponding change on the
sigma form. In the case of the affine transformation we have the relation

wz − w2 = w̃z − w̃2

between the transformed and untransformed solution to P (n)
II . If one then uses

the procedure of section 4 on this transformed system this relation implies
that

σ̃′(z) = σ′(z).

Thus in this case our sigma form is changed by at most a constant. Moreover
if we consider the differential equation satisfied by σ̃(z), then owing to equa-
tion (5.6), it will be identical to that satisfied by σ(z) with α replaced by α̃.
In that sense one can describe this as a sigma invariant transformation.

5.1.2 The parity transformation

This transformation is given by, at the level of P (n)
II , the change w̃(z) = −w(z)

in the solution and the corresponding change α̃ = −α in the parameter.
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The coordinate qn is linearly dependent upon w(z) (given explicitly as qn =

4nw(z)). Form this we immediately deduce that the canonical transformation
is, in part, given by

q̃n = −qn.

From equations (4.1) and (4.2) one can see that, in terms of the solution
to P (n)

II , the pk and qk are given in terms of the differential polynomial wz−w2.
While applying the transform w̃ = −w is a trivial affair, we want to be able
to compute the new coordinates in terms of the old.

Theorem 5.1. The Bäcklund transformation w̃ = −w is given in the canon-
ical coordinates by

p̃k =
1

22k−1

[
Lk

[
−2p1 −

q2n
4n−1

]
+ δkn

z

2

]
, k = 1, . . . , n (5.7)

q̃n−j = 22n−1dpj
dz
−

j−1∑
k=1

p̃kq̃n−j+k, j = 1, . . . , n− 2. (5.8)

Proof. Starting for the transformation for qn, which is given, and differenti-
ating this formula using the formula in theorem (3.1) one obtains

dq̃n
dz

= −22n+1p1 −
q2n
22n

.

As this is a canonical transformation we require Hamilton’s equations for the
new coordinates to be given by those for the old with the new substituted.
In the case of the above this implies that

dq̃n
dz

= 22n+1p̃1 +
q̃2n
22n

.

Thus from these one can deduce that

p̃1 = −p1 −
q2n
24n

. (5.9)
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Using the equation (4.1) we can write the above in terms of w(z) (note this
is the solution before transformation) as p̃1 = 1

2
(−wz−w2). This observation

in combination with the formulas (4.1) and (4.2) yields the formulas in the
statement.

For the purposes of computing these formulas (say, in computer algebra),
the fact that the Lenard polynomials Lk[f ] are obtained by a process of both
differentiation and integration means that direct computation of (5.7) is not
recommended. Instead one should produce a generic formula for Lk[f ], which
are differential polynomials. Then one can substitute f = −p1− q2n

24n
and use

the results of theorem (3.1) to evaluate the derivatives properly.

While the above gives a way to compute the transformed coordinates in
terms of the old, it does not guarantee the canonicity of these coordinates.
We demonstrate now the canonicity of the transformation in the case n = 2

explicitly.

Example 5.2 (n = 2).

Our theorem above and theorem (3.1) for n = 2 leads to the following
transformation of coordinates:

p̃1 = −p1 −
q22
28

;

p̃2 = −z
8

+ p21 − p2 −
q1q2
128
− p1q

2
2

256
;

q̃1 = −q1 − 2p1q2 −
q32

256
;

q̃2 = −q2.

From these expressions one can directly compute the Poisson brackets:

{p̃1, q̃1} = 1, {p̃2, q̃2} = 1;
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{p̃1, p̃2} = 0, {p̃1, q̃2} = 0;

{q̃1, p̃2} = 0, {q̃1, q̃2} = 0.

The veracity of these formulas is predicated on the original coordinates being
canonical. This of course was a key result of the work of Mazzocco and Mo
([15]).

For the case of general n, we can also use the work in [15]. Recall that
Mazzocco and Mo constructed the canonical coordinates, given by equations
(4.1) and (4.2), related to P (n)

II (w(z), α). Now it is evident, in particular from
the work in [21], that if w(z) satisfies this equation, then −w(z) satisfies the
P

(n)
II with parameter −α. Thus one can repeat their procedure and arrive at

equations (5.7) and (5.8). Moreover, this ensures that they are canonical.

The final consideration is to determine how the Hamiltonian transforms.
By our supposition, the Hamilton’s equations for the new coordinates are the
same as the old, just with the new coordinates substituted. All that remains
is to calculate how α changes.

From (5.7), we have that

p̃n =
1

22n−1

[
Ln[−wz − w2]− z

2

]
.

We shall, in order to rationalise the size of subsequent expressions invoke the
above Lenard polynomial as L−n . Taking the derivative of the above with
respect to z, and using P (n)

II one can obtain

d

dz
p̃n =

1

22n−1 [2w(z)L−n − zw(z)− α− 1

2
]

=
1

22n−1 [q̃np̃n − (
1

2
+ α)].
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This is precisely what one would expect, apart form the substitution of−α for
α in the original formula (though, realistically, this would also be expected).
Consequently we can conclude that the Hamiltonian transforms as follows:

H̃(n)(p̃, q̃, z, α) = H(n)(p̃, q̃, z,−α). (5.10)

That is the new Hamiltonian is identical to the old (when written in the new
coordinates), with only a change in α given by a change in parity.

As for the affine case we want to establish the corresponding change in
the sigma form. For the differential equation, one can apply the procedure
of section 4 starting with equation (5.10). The consequence is an equation,
for σ̃(z), identical to that found in theorem (4.1), with −α substituted for
α. Thus our transformation leaves that equation invariant to a large extent.
Unlike in the affine case the relationship between σ̃(z) and σ(z) is not trivial.
From the details of the canonical transformation, specifically equation (5.9)
one can deduce

σ̃′(z) = −σ′(z)− ∂zLn[σ′(z)]− α
z − 2Ln[σ′(z)]

.

This is a non trivial differential equation. In effect it would be of equiva-
lent complexity to solve the equations for σ and σ̃ given by theorem (4.1)
and compare them directly, as to solving the above. We include it here to
complete our treatment of this case, as the same for the affine case.

5.2 A special solution of P (n)
II

The issue at hand is that of the assumption made in the proof of the new
sigma form. That is, in the general situation, one may assume that the
coordinate pn does not vanish identically.
The first test that one can apply is to examine the Hamilton’s equation for pn.
This is of course directly related to the derivative ∂H(n)

∂qn
. Therefore consider
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the Hamilton equation for pn. This is given by

dpn
dz

=
1

22n−1

(
α− 1

2
− pnqn

)
.

From this it is obvious that a necessary condition for the vanishing of pn is
that the parameter α must take the value 1

2
. As such we can conclude that

for generic α our assumption was indeed valid.
Having settled this, it is natural to consider this special case. If pn does
vanish then this implies that w(z) satisfies

Ln
[
wz − w2

]
+

n−1∑
k=1

tn−kLn−k
[
wz − w2

]
=
z

2
. (5.11)

Importantly any function that satisfies the above equation will solve P (n)
II ,

(1.19), upon direct substitution, for α = 1/2. We have consequently obtained
a solution of P (n)

II determined exclusively by (5.1). This is itself a differential
equation for w(z) of order one less than P

(n)
II i.e. a special solution. Note

that these special solutions are not in themselves new. In [21] Clarkson et
al derived a method to compute special solutions for the hierarchy for all
half integer values of the parameter α. Our construction of these solutions
is new however, as it depends on the explicit formulas for the Hamiltonians
computed in section three. We shall now add an additional observation about
these solutions.

5.2.1 Connection to PI hierarchy

Consider our special solution in the case n = 2. Explicitly, this is given as

L2[wz − w2] =
1

2
.
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Now if one performs the transformation −y = wz − w2 one obtains

−y′′ + 3y2 =
1

2
z

which after some simple rescaling is the PI equation.
In [24], Shimomura defined a Painlevé one hierarchy in the following manner

Ddn+1[y] = (D3 − 8yD − 4y)dn[y]

P
(n)
I : dn+1[y] + 4z = 0. (5.12)

It is clear that in a similar manner, our special solutions can be mapped to
this hierarchy. We have therefore established the following result:

Proposition 5.3. For any solution, y(z) to the n member of the Painlevé
one hierarchy (5.12), The solution w(z) defined by −y = wz−w2 corresponds
to a special solution of the n+ 1th member of the Painlevé two hierarchy.

In particular the change of variables between these hierarchies is given
by −y = wz − w2. This is a Ricatti equation and therefore can in principle
always be solved.
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6 Conclusion

In this thesis we have presented 2 main results:

• Closed form formulas for the Hamiltonian of the second Painlevé hier-
archy, theorems (3.1) and (3.2).

• A sigma form of this hierarchy, theorem (4.1).

We have also discussed the canonicity of the Bäcklund transformations
and some special solutions of the second Painlevé hierarchy.

The new formulas for the Hamiltonian was an extension of the work done
by Mazzocco and Mo, [15], who had obtained expression for these quantities
in terms of certain non-trivial power series. By recognising that these series
simplified upon differentiation, we constructed the gradient of these Hamil-
tonians. From this, deduction of the full formula was relatively straight
forward.
The purpose of finding these new expression was to allow the computation
of the sigma forms of the higher members of the Painlevé two hierarchy.
Okamoto ([18]) had obtained this for the first member by a procedure that
required intimate knowledge of this Hamiltonian. Having obtained equally
detailed expressions for the higher members, we were able to derive sigma
forms in these cases.
We then wanted to apply our new results. The first was to study the Bäcklund
transformation of P (n)

II and show that these very naturally lead to canonical
transformation of the Hamiltonian systems. In doing so we were able to de-
tail the transformation explicitly. Importantly, we observed the effect that
these transformations had on the sigma form. Indeed, this was also computed
explicitly.

A more interesting application relates to a special solution to the Painlevé
hierarchy. This solution, while already known ([21]), was particularly simple
to derive given our new expressions of the Hamiltonians. We then combined
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this with the work of Shimomura ([24]), and concluded that these correspond
to solutions to members of a Painlevé one hierarchy. This raises questions
about the connection between these hierarchies and could be a future line of
inquiry.

Given the appearance of the sigma forms for the classical Painlevé equa-
tions in physical contexts, it is natural to ask if these new higher forms also
have such utility. Another natural question is to find the sigma form of other
Painlevé hierarchies. Given the similarity between the second and fourth
equation, one could reason that a similar process to the one described above
could be used to obtain the sigma forms for that hierarchy as well.
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