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Abstract

A Feynman-Kac type formula of relativistic Schrodinger operators with unbounded
vector potential and spin 1/2 is given in terms of a three-component process con-
sisting of Brownian motion, a Poisson process and a subordinator. This formula is
obtained for unbounded magnetic fields and magnetic fields with zeros. From this
formula an energy comparison inequality is derived. Spatial decay of bound states
is established separately for growing and decaying potentials by using martingale
methods.
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1 Introduction

In the paper [HIL09] we constructed a Feynman-Kac formula for a generalized Schrédinger
operator with spin of the form
U(h(a,o0)) + V. (1.1)

Here V' is a real-valued external potential, ¥ is an arbitrary Bernstein function with
U(0) = 0, and h is a Schrodinger-type operator of the form

Maa) = 500+ (0= @) (1.2

including a vector potential a = (aj,as, az) describing a magnetic field, and the Pauli
matrices 0 = (01, 09,03) describing spin 1/2. As we have shown, the Feynman-Kac
representation of ((IT]) involves three independent stochastic processes, Brownian motion,
a Poisson process and a subordinator. Moreover, spin 1/2 was also extended to higher
spins in [HILO9], see also [ARSII].

In this paper we consider a functional integral representation of the strongly continuous
one-parameter semigroup generated by the relativistic Schrodinger operator with spin 1/2
in three-dimensional space,

Vie-(p—a)?+m?—m+V. (1.3)

Here m is the mass of the relativistic particle, which we regard as a parameter; see [Car7§]
for standard Schrodinger operators, where a = 0. This Hamilton operator is a special case
of (ILT)) obtained by choosing

U(u) =vV2u+m?—m, m>0. (1.4)

In this case we have the %—stable subordinator about which more details are known than
about subordinators related to a general W. Using this extra information, our main goal
in this paper is to prove a Feynman-Kac-type formula for (3] under weaker conditions
than needed for general W, and use it to derive the fall-off properties of bound states. In
particular, in contrast to [HIL09] we can cover unbounded magnetic fields in Theorem
and magnetic fields with zeros in Theorem [3.8]

This paper is organized as follows. Section 2 is devoted to introducing the relativistic
Schrodinger operator with spin 1/2 as a self-adjoint operator on C*® L?*(R?) and a unitary
equivalent representation on L*(R3 x Zy). In Section 3.1 we reassess results in [HIL09]
and give a Feynman-Kac formula with bounded magnetic fields. In Section 3.2 we prove
a Feynman-Kac formula for unbounded magnetic fields, and in Section 3.3 for magnetic
fields having zeros. In Section 4 we derive the decay properties of bound states separately
for growing and decaying potentials by using martingale methods.
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2 Relativistic Schrodinger operator with spin 1/2

2.1 Definitions

We begin by defining the self-adjoint operator h(a,o) and y/2h(a,0) +m2?2 —m + V
rigorously.

The spinless Schrodinger operator hy with vector potential a and zero external poten-
tial is defined as a self-adjoint operator on L*(R*). Let D, = p, — a,, where p, = —i0y,
is the generalized differential operator. Define the quadratic form ¢ by

Z D, f, Dug (2.1)

p=1

where H'(R?) = {f € L*(R®)|D,f € L*(R?), u = 1,2,3}. If a € (L.(R?))?, then
the quadratic form ¢ is non-negative and closed, and hence there exists a unique self-
adjoint operator hg satisfying (hof,g9) = q(f,g), for f € D(hy) and g € H*', where
D(ho) = {f € Qq) | q(f,") € L*(R%)'}. Let Cg°(R%) = Cg° be the set of infinitely many
times differentiable functions with compact support on R?. It can be seen that C§° is a
form core for hy under the assumption a € (L2 _(R?))3, see [LSSI1].

Next we introduce a magnetic field b = (by, b, b3). Physically it is given by b = V x a,
however, in this paper we regard the magnetic field b independent of the vector potential
a. We will use the following conditions on the vector potential a.

H'(R?) x H'(R?) 3 (f,9) = q(f,9)

[\DlH

Assumption 2.1 (Vector potential) The vector potential a = (aq, as, az) is a vector-
Valued function whose components a,, p = 1,2,3, are real-valued functions such that
€ (L3 .(R*)3 and V - a € LL (R3), where V - a is understood in distributional sense.

loc

Assumption 2.2 (Magnetic field) Suppose that D(—A) C D(b,) and for f € D(—A)
the conditions ||b, f[| <kl = Af|+ R, 1w =1,2,3, and k1 + Ko+ k3 < 1 are satisfied.

Finally we introduce the spin variables. Let o = (01, 09, 03) be the 2 x 2 Pauli matrices

given by
o1 [0 —i oo
A= 0l 2T oot BT o —1]¢

They satisfy the relations 0,0, + 0,0, = 20,1 and 0,0, = iZi’:l My, where €
the anti-symmetric Levi-Civita tensor with ! = 1. Then it can be seen directly that

> b b, — ib
3 1 — 20
a®b—§ U“®b“_[bl by by }

p=1

v g
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Under Assumption o ® b is relatively bounded with respect to 1 ® 2hg, as an operator
in C* ® L?(R3), with a relative bound strictly smaller than 1,

(o @) fIl < (k1 + ko + Ka) |1 @ 2ho f|| + C| fIl,  f € C*® D(h). (2.2)

This follows through the diamagnetic inequality |(f,e "0g)| < (|f],e "2%)]|g|) under
Assumption 21l Thus the self-adjoint operator

1
h=1@h— 50 ®b (2.3)

in C* @ L*(R?) is bounded from below under Assumptions 2] and We choose m so
as to guarantee that
2h+m? =1®2hg — o @b+m® > 0.

Note that under a suitable condition A is positive, and in this case we can take m = 0.
From now on we omit the tensor product ® for notational convenience.
We now define the self-adjoint operator H.

Definition 2.3 Under Assumptions 2ZIand 22 H is defined by the self-adjoint operator
H=+v2h+m?—m (2.4)

in C*> ® L*(R?). Here the square root is taken through the spectral resolution of 2h + m?.

An example is the operator \/(o - (p — a))? + m2? — m such that a € (L} (R?))3, V-a €
L2 (R3) and V x a € (L% (R?))3. In this case it is seen that
(0-(p—a)’=@-a)’+0-(Vxa)
on 1® C5°(R3).
2.2 Spin variable
—H(H4V)

In order to construct a functional integral representation of (f,e g) we make a
unitary transform of H on C? ® L*(R?) to an operator on the space L?(R3 x Z). This
is a space of L2-functions of z € R?® and an additional two-valued spin variable § € Z,
where

Zy={-1,1}. (2.5)
We define the spin interaction U on L*(R?® X Zj,) by
U: f(!lﬁ', 9) = Ud(Ia e)f(l’, 9) + Uod(x> —e)f(l', _9) (26)

where (z,0) € R? X Zy,
1
Uq(z,0) = —iebg(x) (2.7)
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is the diagonal component, and
1 .
Uga(z, —0) = —5(61(56) — i0by(x)) (2.8)
is the off-diagonal component. Let

hz, = ho + U. (2.9)

Under Assumption U is symmetric, relatively bounded with respect to hy with a
relative bound strictly smaller than 1 so that hz, and h are unitary equivalent,

ha, = h (2.10)
as seen below. Define the unitary operator F : L?(R3 x Zy) — C? @ L*(R3) by
F:f— . 2.11

Also, define 7, = F~l'o,F. We see that 7 : f(z,0) — f(z,—0), 7o : f(z,0) —
—i0f(x,—0) and 73 : f(x,0) — 0f(x,0).

Definition 2.4 Let Assumptions 2.1l and 2.2 hold. Then Hy, is defined by

Hy, = \/2hz, + m? —m. (2.12)

In what follows instead of H we study Hyz,, and write H (resp. h) instead of Hy, (resp.
hz,).

2.3 Three independent stochastic processes

In order to construct a path integral representation we will need three independent
stochastic processes (Bi)i>0, (Ni)i>0 and (7});>¢ which we introduce next. We denote
the expectation with respect to path measure W starting at = by Ef,.

Let (Bt)t>0 be three-dimensional Brownian motion on a probability space (Qp, #p, P?)
with initial point P*(By = z) = 1.

Secondly, let (N¢):>o be a Poisson process on a probability space (Qy, Zn,p) with

unit intensity, i.e.,
n

t
,u(Nt = n) = —'e_t, neNU {O}
n!
Let u® be the image measure of the process (N; + a)i>o for o € Zy and thus Ej[f(N.)] =
ES[f(N. + a)]. We define integrals with respect to this process in terms of the sum of
evaluations at jumping times, i.e., for g we define

[ b}g(SaNs)st - Z g(ra NT’) (213)

re(a,b]
Ny #Ny_
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b+
and we also write / .-~ dN, for / ---dN,. Associated with the Poisson process we
a (a,b]
also define a Zy-valued stochastic process (6;)¢>0 on (Qy, Fn, u°) by
0, = (—1)N. (2.14)

Finally, let (7}):>o denote the subordinator starting from 0 at t = 0 on a given proba-
bility space (€, .%,,v) defined by its Laplace transform

EDfe ™ = exp (—t (V2u+m? = m)). (2.15)

Note that (7}):>o is a one-dimensional Lévy process with right continuous paths with
left limits, almost surely non-decreasing. It can be more explicitly described as the first
hitting time process

T, = inf{s > 0| B! + ms =t},

where (B} )i>0 is a one-dimensional Brownian motion independent of the three-dimensional
Brownian motion B; above. We also define the measure v*, s € R, by the image measure
on (7} + s)i>0, and use the shorthand

E3ESES = B, (2.16)

The role of these three stochastic processes is as follows. Clearly, the Schrodinger operator
—%A + V generates an Ito process which can be described using the Brownian motion
(Bt)>o under V. The Poisson process (N;)¢>o results from the Schrodinger operator with
spin. Finally, the subordinator (7}):>o appears due to the relativistic Schrédinger operator
which generates a Lévy process. A particular combination of these three independent
stochastic processes then yields the path integral representation of e *#+V) which we will
discuss below.

2.4 Generator of Markov process

Consider the R? x Zs-valued joint Brownian and jump process
Qp x Qv 3 (w,w1) = Xy(w,w) = (By(w), O(wy)) € R x Zy
with initial value X,. The generator of this Markov process is [HILOI)

1
Go=—50+0r +1, (2.17)

where 1 is the 2 x 2 identity matrix and o is the fermionic harmonic oscillator defined
in terms of the Pauli matrices by

op = —(03 +i0q)(03 — ioy) — 1 = —07.

2
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Note that inf Spec(Gy) = 0.
In the relativistic case, the subordinator explained above appears in addition to this.
We define the subordinate process (g;)¢>o in terms of the R? x Zy-valued stochastic process

QP X QN X Q,, = (w,wl,wg) — qt(w,wl,wg) = (BTt(wg)(W>79Tt(w2)(w1)) < Rs X ZQ.
In a similar manner to (X;)¢>0, we can identify the generator of (¢ )>o-

Proposition 2.5 The generator of the Markov process (qi)i>o s

G=+v-A+20p+2+m2—m (2.18)
and its characteristic function is given by
E(]J\,;),O[eith] — E(Z]\’f’o 16511 8207 ] — o~Hv EPH+m2=m) o8 2 4 je MV IEPFAm2=m) i)y o (2.19)

for Z = (£,2) e R® x R.

PRroOOF. This is obtained through the equalities

> [ e [fastw)] = &

a=0,1

/ drEp, [f<qo>g<qt>]]

[(f T stertlg)] = (f, 7).

Hence it follows that (2.1I8)) is the generator of (¢);>0, while (Z.I9) is straightforward.
qed

3 Feynman-Kac-type representations

3.1 Bounded magnetic field

In this subsection we briefly discuss some results established in [HIL0O9] obtained for a
general version of the relativistic Schrodinger operator with spin and bounded magnetic
field. Write

\/bl 24 bo(a (3.1)
and notice that |Usq(z,0)| = W(x).

Proposition 3.1 (Feynman-Kac formula: bounded magnetic field) Let Assump-
tion [21] hold and assume that b, € L* for p = 1,2,3. Let 'V be relatively bounded with
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respect to \/—A + m? with a relative bound strictly smaller than 1. Assume, furthermore,
that

Ty
E%0 [/ |logW(BS)|ds] <00, ae xcR? (3.2)
0
Then H + 'V is self-adjoint on D(H) and
(f.e W gy = >~ / ey [T Flan)g(ae” | (3:3)
a=0,1 7R
where the exponent . = Sy + S5 + S5 is given by
t
y\/ = —/ V(BTS)CZS, (34)
0 .
SN = —z'/ a(By) o dBg, (3.5)
3} Ti+
S = —/ Ud(BS, QS)dS + / log (—Uod(Bs, —95_)) dNj. (36)
0 0

ProOOF. Since |V f]| < k||V—=A+m2f| + «'[| f|| with constants x < 1 and #’, and b,
is bounded, we have ||V f|| < k|| H f|| + C||f|| with a constant C'. Hence self-adjointness
follows by the Kato-Rellich theorem. (B3) follows from [HIL09, Theorem 5.9]. qed

We note that .4 and . in Proposition Bl stand for the integrals —i [ a(B;) o dB

and — for Ua(Bs, 65)ds + fOH log (—Uoa(Bs, —05_)) dNy evaluated at r = Ty, respectively.
A Feynman-Kac formula without spin is an immediate corollary. This was first es-
tablished in [CMS90] without a vector potential; we give a version including a vector

potential. Let
Hspinless =V 2hO +m?2 —m. (37)

Corollary 3.2 Let Assumption [21] hold, and assume that V = V. — V_ satisfies that
Vi € LL (R3) and V_ is relatively form bounded with respect to \/—A + m?2 with a relative

loc

bound strictly less than 1. Then

(f’ e_t(Hspinless + Vi - V*)g) — /

[ e, [F(Bo)g(Br)e” 7] (3.8)

In particular, when a = 0,

(f e (7 atmimm Ve = Vg) = / daEg, [F(Xo)g(xpe bVODE] . (3.9)
R
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By Corollary we have the following energy comparison inequality. Let

Hy=vV—-A+m?—m. (3.10)

Corollary 3.3 Under the assumptions of Corollary 33 we have
(1) |(f, e Hapmiess TVE V) g)| < (| f|, 7 HoF Ve =V g

(2) inf SpeC(HO _'_ V+ - v—) S inf SpeC(Hspinlcss + VJ,- - v-) .

3.2 Unbounded magnetic field

We extend the Feynman-Kac formula above (Proposition B]) to the case of magnetic
fields b that are possibly unbounded and satisfy Assumption This extension is not
straightforward, and we need several lemmas.

Define the truncated magnetic field 6™V by

bu(x) if [bu(x)] < N
b (x)=q N if bu(x)
u()

> N
-N if b,(z) < —N.

Then the Feynman-Kac formula for the Hamiltonian with the truncated magnetic field is
readily given by Proposition Bl in which b is replaced by 8¥). Let Hy be defined by H
with b replaced by bV,

Lemma 3.4 Under Assumptions[Z1 and 22 the semigroup e "~ is strongly convergent
to e as N — oo.

PROOF. Let hy be h with b replaced by b™N) . We see that hy — h as N — oo on the
common domain D(h,) = D(h). Then e "~ — e~ strongly as N — oo. Thus it is
immediate to see that

(f. e g) =ED[(f, e g)] = Eo[(f. e "g)] = (f, e "), (3.11)

which implies strong convergence. qed

Lemma 3.5 Let f,g € L*(R? x Zs), and set

Jo'* 31bs(Bolds [ log W (Bs)dN; Ty

p = f(q)g(ar)e

Then under Assumption[2.2 it follows that Z / Az p]] < oo.
R3

a=0,1
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PROOF. Define the spin operator |U| and |U|y by
U] 7(2,0) o —3 bs(a) £, 0) — W(a) f(, ~6), (312
Ul £(2,6) = 516V @) (2, 6) = W ), ~6). (3.13)

where W) is W with b replaced by b¥), and define

H=\/-A+2|U| +m?—m. (3.14)

Also, we define Hy by H with |U] replaced by |U|y. Let f, g € L*(R®) be non-negative.
For Hy we have the Feynman-Kac formula

(Fe ™) = 3 [ domget [ Taalae”]. (3,15
a=0,1""
where . -
= [ IO mlas+ [ s w(B)an, (3.16)
0 0

By the monotone convergence theorem for forms we see that e *(=2+2UIn) . =H=A+2{U])

strongly as N — oo, and thus et _y o=t strongly as N — oo is shown in the same
way as (B.II). Then the monotone convergence theorem for integrals implies that p is
integrable and the Feynman-Kac formula (3.I5) with b®¥) replaced by b also holds. qed

Now we can state the first main theorem.

Theorem 3.6 (Feynman-Kac formula: unbounded magnetic field) Let Assump-
tions 21 and (2.3 as well as condition (32) hold, and suppose that V is relatively bounded
with respect to v/ —A +m? with a relative bound strictly less than 1. Then H + V is
self-adjoint on D(H) and

(R = 3 [ @i [ Faa(e’]. (3.17)

a=0,1

Proor. We divide the proof in five steps.

Step 1: Suppose that V = 0. Then the theorem holds.

Proof: Recall that Hy is defined by H with b replaced by bY). Then the Feynman-Kac

formula holds with . replaced by .3V, where /" is defined by .#s with b replaced by
DR

(fre Mgy =>" /R daEy;" [eTtmg(qt)e‘“SN T (3.18)

a=0,1
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The left hand side above converges to (f,e " g) as N — oo by LemmaB4l On the other
hand, we have

N S + O: s E]
e | £ (g0)9(q0)||e73 7 < €| f(qo)g(qr)|elo " 21o(Bo)lds o™ log W (B)aN

so that the right hand side of (8:I])) is integrable by Lemma[3.5] and therefore the Lebesgue
dominated convergence theorem yields

; z,0,0 eTt ;ﬂ +VA T an Tt S+ )
im 3 @B [ e ] = 3 [ aam [ antae™

N—oo
a= a=0,1

Hence the theorem follows for V = 0.

Step 2: V is relatively bounded with respect to H with a relative bound strictly smaller
than 1. In particular, H +V is self-adjoint on D(H).

Proof: Let by = (1/b? + b3,0,b3) and H,, be defined by H with a = 0 and b replaced by
bo, i.e., Hy, =/—A +0-by+m?—m. Set o - by = Up,. Then we have

IV=A+m2 f|I* = ||(Hy, +m) fI* + (f, —Usy f)-

Since |(f, Uy, f)| < K| f]|? with a constant &/, and |V f|| < k[|[v/—=A +m2f|| + &"|| f|| with
constants k < 1 and x”, we have ||V f| < A|Hy, f]| + C||f]| with some C and A < 1.
From the Feynman-Kac formula established in Step 1 the diamagnetic inequality,

(f,e™ ) < (If], e ogl) (3.19)
follows. From (B19) we have ||Hy, f|| < [[H f|| + ¢/ f|l, and thus

VA< AIHfI+ A

with a constant C’. Hence self-adjointness follows by the Kato-Rellich theorem.

Step 3: Suppose V € L®(R?) N C(R3). Then the statement holds.
Proof: By the Trotter product formula and the Markov property of (¢;):>0 we have that

(f, e tHV)g) = lim (f, (e"@W/mHe=E/mVyng)
n—oo
= Z/ d:cE“‘O e f(q0)g(q )—Z}Ll(t/n)V(Bth/n)estryA]'
a=0,1 /&

Note that s — V(Br,) is continuous in s € [0, ¢] except for at most finitely many points.
Thus

_Z t/m)V (Br,,, ) (@) "= —/0 V(Br ) (w))ds
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for almost every (w,ws) € Qp x Q, as a Riemann integral. Then the theorem follows for
V e L>*(R3) N C(R?).

Step 4: Suppose V € L°°(R?). Then the statement holds.

Proof: Let V,, = ¢(-/n)(V xj,), where j,(x) = n®¢(zn) with ¢ € C5° such that 0 < ¢ < 1,
Jps ¢(x)dz = 1 and ¢(0) = 1. Then V,(x) — V(z)for © & A, where A4 is a set of
Lebesgue measure zero. Notice that

EZY, (L, (Br)] = / Lz y)P(y)dy =0

for x € 4, where
m\ 2 s
P =2 (32) e (VP )
(x) o) TP o (mA/|z]? + s

is the distribution of the random variable Br, and

1 [ -
- 5/ e3¢ g
0

is the modified Bessel function of the third kind. Hence

t t
0= [ Bt nds =B, | [ 1Enas).
0 0

Then the Lebesgue measure of {s € [0,00) | Br,(u,)(w) € A"} is zero for almost every path

(w,ws) € Qp x Q,. Therefore fg Vo (Br,)ds — fo (Br,)ds as n — oo for almost every
path (w,ws) € Qp x Q,. Moreover,

Z/ da:IE”O th(Qo) (g )yA-i-é’se—fotVn(Bs)ds}
R3

a=0,1

n—>°° Z / dexOlO Ttmg(Qt)eyA+yse_fo V(Bs)ds].

a=0,1

On the other hand, e "H+Ve) — o=tH+V) strongly as n — oo, since H + Vj, converges to
H +V on the common domain D(H). Then the theorem follows for V' € L>(R?).

Step 5: We complete the proof of TheoremB.6l Let V =V, —V_and V,,,,, = Vi, —V_,,
with V., V_ denoting the positive and negative parts of V', respectively, and V,,,(z) =
Vi(z)if Vi(z) <m, and Vi(z) =mif V,(z) > m, similarly V_, (z) = V_(z) if V_(z) <n
and V_(z) = n if V_(2) > n. Then by the monotone convergence theorem for forms, we
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have e tH+Vmn) strongly converges to e *H+Vm=) asn — oo, and furthermore et H+Vmeo)
strongly converges to e *#+V) as m — oco. Hence

lim lim e tH+Vmn) — o—tH+V),

On the other hand, by the monotone convergence theorem for integrals the right hand
side converges. This completes the proof of the theorem. qed

3.3 Magnetic field with zeros

Next we consider the case when the off-diagonal component Uyq(x, —#) vanishes for some

x € R3. In this case it is not clear whether f:r | log W (Bs)|dN,s < oo holds almost surely.
An example when this is not the case is obtained by choosing b € (C§°)3.

Let | |
1, |z] <e,
W)—{o, 2 > e,

Xe(2) = 2z +¢ed.(2), zeC. (3.20)

for z € C and write

We see that
IxXe (Uosa(z,—0))| > ¢, (2,0) € R®x Z,.

Define h. by h with the off-diagonal part replaced by x. (Usq(z, —0)), i.e.,
hef(z,0) = (ho + Ua(x,0)) f(x,0) + xe (Uoa(x, —0)) f(z,—0), (z,0) € R® x Zs.

Also, define H. by H with U,q replaced by x. (Usa(x, —0)).
We note that for every (z,w,wi,ws) € R3 x Qp x Qy x Q, there exists a number

n = n(wy,wy) and random jump times 7 (wy),...,r,(wi) of s — N for 0 < s < Ty(ws)
such that
Tt (w2)+ n(wi,ws)
/ log W (s + By(@))dN, = S 1og W (z + By (@)).
0 =1
Consider

T+
W = {(x,w,wl,wg) ER?x Qp x Qn x Q, / log W(z + Bg)dN, > —oo}. (3.21)
0

Notice that by the definition (z,w,w;,ws) € #°¢ if and only if there exists r such that

(1) 0 <r <t<Tyws),
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(2) s+ Ny is discontinuous at s =7,
(3) bi(Br(w)) = ba(Br(w)) = 0.
Lemma 3.7 For every (x,w,w;,wq) € #'¢ we have

hm ’efo IOg ( od(B57_€sf)))st — O
e—0

ProoOF. We have |€f0Tt+log(_Xs(Uod(Bs,—95—)))dNS < eJo T los(W(By)+e)dNs  Observe that

T+ n
| tos W (B + N, = Y losW(B) +9), s € (0.7
0

j=1
Since (x,w,wy,wq) € #¢, there exists an r; such that by (B,,(w)) = ba(B,,(w)) = 0. Then
T+
/ log(W(Bs) +¢)dN, = Z log(W(B,,) +¢) + loge,
0 J#i

T+ n +
and 6f0 tT log(W (Bs)+e)dNs < ezj?fi log(W(Br )+€)610g5. Thus llma_m |€f0 t+ log(W (Bs )+¢)dNs

and the lemma follows. qed

Theorem 3.8 (Feynman-Kac formula: magnetic field with zeros) Let Assump-
tions[21 and[2.2 hold, and suppose that V' is relatively bounded with respect to /—/A + m?
with a relative bound strictly less than 1. Let W be given by (321). Then

(R gy = 3= [ B [ Flanda(ae” 1] (322

a=0,1

Proor. Put V =0 and fix ¢ > 0. We can show that the functional integral representation
of H. is given by ([BI7) with . replaced by . + %s(e) with

Fle) = — /0 Ua(B.,0.)ds + /0 a log (—Xe(Una(Bs, —8,_))) dN.. (3.23)

That is,
g = 3 [ B [ Tmatae” ). (3:24)

a=0,1
Take the limit € | 0 on both sides above. This gives

hi%l exp (—tH.) = exp (—tH) (3.25)
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in strong sense, obtained in the same way as Lemma B4l On the other hand, by the
Lebesgue dominated convergence theorem it follows that

lim d:L’E?\’f’O [eTtmg(Qt)eyAJ’yS(e)} = /

deﬁ/f"O [lim e f(q0)g(q)e” 756
el0 R3 R3

el0

By Lemma B.7 we find that lim._,,.%s(¢) = 0 on # and hence

lim eZat5) — |im e7aT5(€) Iat+ss6E)1,,. = 7atTs 1y.

el0 el0

1y +lime e
el0

Next suppose that V' € L®°(R3) N C(R3). In this case we can show the theorem in the
same way as in Step 3 in the proof of Theorem Furthermore, the theorem holds for
the required V in the same way as in Steps 4 and 5 above. qed

A diamagnetic inequality follows immediately from Theorem B.8l Recall that H,, is
defined by H with b replaced by by = (1/b3 + 03,0, b3) and a by zero, respectively.

Corollary 3.9 (Energy comparison inequality) Under the assumptions of Theorem[3.8
we have that

|(f, e T Vg) < (| f, e otV g]). (3.26)
In particular, it follows that inf Spec(Hy, + V') < inf Spec(H + V).

4 Fall-off of bound states

4.1 Martingale properties: non-relativistic case

In this section we prove the decay properties of bound states of relativistic Schrodinger
operators with spin by means of the Feynman-Kac formula derived in the previous section.
For simplicity we assume throughout that

t
E% {/ |log W (B,)|ds| < oo, a.e.z € R? (4.1)
0

and

T
B3, U [log W (By)lds| < o0, ae.xeR’, (4.2
0

i.e., the measure of #¢ in ([B.21)) is zero.
We first consider the non-relativistic case. Let Hygr be the Hamiltonian defined by

Hxg =h+V, (4.3)

where h is given by (Z3]). Let .Agr be defined by the exponent . with the subordinator
T, replaced by the non-random time ¢. If Assumptions 2 Tland 222 hold and V' is relatively
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bounded with respect to —A with a relative bound strictly smaller than 1, then A+ V is
self-adjoint on D(—A). Then the Feynman-Kac formula of (f, e #"*V)g) is

(f, e V) Z /R 3 da:IEfD‘;‘u ' f(Bo,00)g(Bs, 0;)e % |, (4.4)
where the exponent Ar = AKry + Ara + Arg is given by
A == [ VB
AKra = —1 /Ota(BS) o dB;,

t t+
%RS = _/ Ud(33793>d8+/ 10g (_UOd(BS7_93—)) st
0 0

Let ¢, be a bound state such that Hyryp, = Fo, with £/ € R. We consider the spatial
decay of |pg(x, (—1)%)], i.e., its behavior for large |z|.

Let Ar(z,) = Ary () + AKra(z) + Arg(r, a) be given by Ar with B, and N
replaced by B, + x and N, + «, respectively:

t
Ary(z) = —/ V(B + x)ds,
0
t
AKra(r) = —z'/ a(Bs + ) o dBs,
0
t t+
Kins(, @) = —/ Us(Ba+ 2, (—1)°0,)ds +/ log (—Una(B, + 7, —(—1)*0,_)) dN..
0 0

Define the stochastic process (M;(x, @));>0 by
My(z, ) = EHeARE@ p (B g (—1)70,), t>0,
and the filtration
My =0((B,0,.),0<r<t), t>0.
Note that e *H#Nxe=E) = o and then

Ep5,[Mi(0,0)] = Eg5, [Mi (2, )] = gy, (-1)°) (4.5)

Pxpu

by ([@4).

Lemma 4.1 The stochastic pmcess (My(z, @))i>0 s a martingale with respect to (AMy)i>o0,
i.e., B [My(x, )| = My(z,a) fort>s.

Pxpu
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PROOF. We prove the case when (z,a) = (0,0) for notational simplicity, the proof for
(x,a) # (0,0) is similar. Let .Kr([u,v]) be defined by Agr with the integration domain
in [} replaced by [---. Write M, = M,(0,0). We see that

0,0
E

PX/.L[Mt"%S] et et(E'l'l)e%R([O’s])E%gu [eij([&tD@g(Btyet)‘%s] .

By the Markov property of the R® x Zy-valued stochastic process (By, N;)i>o we have

B2 [eAnlot, (B, 6|4

= B [en B Vi Iy ol i GalBr e K (B, )] (4.6)

The off-diagonal part K in ([4.0) is

K = Z log(_Uod<Bu—sa _e(u—s)—))

s<u<t
New—s)+#N(u—s)—

(t—s)+
= > log(—Uod(Br,—Hr_)):/ log(—Uspa(By, —0,_))dN,.
0

0<r<t—s
Npy #Np

Hence we conclude that

Eg [0 D (B, 0,)| ) = By [e*= =D (B, 0,,)],

which implies that

E(I);?(M[Mt|%s] — es(E‘f‘l)e;KIR([OvSDEIB;;’]:S [M;_,] = M,.

Thus the lemma follows. qed

4.2 Martingale properties: relativistic case

Next we discuss the relativistic case H + V. Let ¢, be a bound state of 4 + V such that
(H+V)pg = Ep, (4.7)

for £ € R. We use the same notation ¢, as for the non-relativistic case. Consider the

stochastic process
Y, = eFelte” p,(q), t>0. (4.8)

Furthermore, we define

Yy(z,a) = eFelte” ™M, (q(z,a)), t>0, (4.9)
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where ¢ (z, ) = (Bp, + z,(—1)%07,) and 7 (z, ) = S (z) + Sa(z) + S5z, «) is given
by
t
yv = —/ V(BTS + SL’)dS, (410)
0

T
Sy = —z/ a(By + ) o dB,, (4.11)
0

Ty Ti+
T = —/ Ua(Bs + z, (=1)"0,)ds +/ log (—Uoa(Bs + =, —(=1)%0,-)) dN;. (4.12)
0 0

Then
Eqfve] = By [Yi(z, @)] = g, (—1)%). (4.13)

We introduce a filtration under which (Y;);>o is a martingale. Define Y;(w) and Y;(x, o, w)
for every w € Q, by Y; and Yj(x, ), respectively, and with subordinator T} replaced by
the number T} (w) > 0. Let

F (W) = 0((B,,N,),0 < r < Th(w)) € Fp x F, (4.14)

for w € €, and define

FV = { U (Aw),w)

We also define

3"52)2{ U @ BW)

weNPp XN

Alw) € FM (w )} C Fp x T x F,. (4.15)

Bw) € a(T,,0<r < t)} C Fpx Fux F.  (4.16)

We see that ﬁt(l) and ft@) are sub-o-fields of p x .7, x .%,. Write
F, =7 nFz?, t>o. (4.17)

The conditional expectation E3°[V(z, a)|ﬁt(1)] = B0y, a)|ﬁt(1)](-, -, ) is a stochas-
tic process on Qp X Qn X .

Leména 4.2 We have E3)[Y (2, )| ZV] (-, w) = B3,
weN,.

PROOF. Let A =J

V(2. 0, w)| Z (@)](,-) for all

(A(w),w) with A(w) € ZM(w). Then

weN,

qu (w)Y;(%O"w)]

ES[14Yi(z, )] = /dl/ JEX |
Q

- /Q dv(W)ER), | Law) (- )ERL, | Yi(z, a, )| Z (w )} (.,.)}.
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On the other hand, we have
B LaYi(z,a)] = E3P° LB [¥i(w, )2
— [ @B, [La B [V, ) 2] )]
A comparison of the two sides above completes the proof. qed

Lemma 4.3 The stochastic process (Yi(x,@))i>o is a martingale with respect to (F)i>0,
i.e., ESPCY(x, )|.7,] = Yi(x, @) fort > s.

PROOF. We prove the case when (z,a) = (0,0) to keep the notation simple, the proof
for (z,a) # (0,0) is again similar.

Note that ESP0[Y|.Z,] = ESXC1y, .28 0 Z2] = ESOO RSOy, | .22 We first
compute EPXM[ t(w)|fs(1 (w)]. Write

Ty
S ([u, V (Br. dr—z/ a(B,) o dB,

Tu Tv+
/ Ua(B,, 0, dr—l—/ log(—Usa(B,, —0,_))dN,

Tu

and, for every w € (2,

Tw(w)
< ([u,v], / (B, (w))dr — z/ a(B,) o dB,

u(w)

Ty (w) Ty (w)
- / Ua(B,, 0,)dr + / log(—Usa(By, —0, ))dN,
u(w) u(w)

and ¢ (w) = (Bry(w), 01,(w)), t > 0. Since T} (w) is non-random, we see in a similar way to
the non-relativistic case that

EpylYe ()71 ()]

= Pl OIS [ (090, (g, (w)) | F M (w )]
T (w)

— M TH(w) y([o,s},w)EgTszTs(w) [ — [ V(B ()~ Ts () =8 J1 () A(Brty())odBr
X p
w o Jr ) Ua(Brty () Br—ty )1 75 108(=Uoa (B, ()= 8-y ()N

X Qg (BTy(w)~Ts ()5 0T (0)- T () ] :
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Hence by Lemma 2] we have
B Z0)] = e Te” 0 7,

where
Z, . = eTt—TsE]B;TS7NTS [e‘ It V(BTT,TS)dre—if{? a(By_1,)odB;
X

)

Ty T+ _ _
e fTs Ud(BrfTsverfTs)drefTs log(—Uod (Br—Ts, e(riTS)i))dNT(pg(BTt—Ts?eTt—Ts):|‘

Here Z, , is given by
eu—UEIB;;Z:[v [e— LV (Br, —)dr =i [ a(By—.)odB;
sce™ Ji' Ua(Broubr—)dr o [} 108(~Voa (Br—v. =0y NANr 5 (B Gu_v)]
evaluated at uw = T; and v = T,. Take the conditional expectation of the right hand side
above with respect to F . We note that
Eyr [f1F ) (w, we, ) = E)[f (wr,wa, ) [A] (), (4.18)

where A, = o(T;,0 < r < s). Since ePe’e” (03] is measurable with respect to F& | by
(@I8) we consider the conditional expectation of Z; ¢ giving

EY [Zeo| F 2]

— E° [eTt—TSEfQTS e [e— J3 VBt )dr =i Jo T a(Br)odB
v X 4

Ty —Ts (Ty—Ts)+
- Uq(Br,0r)dr log(—Uoq(Br,—0r—))dN,
Xe fO d( ) efO g( d( (s )) (pg(BTt_TS’ HTt—TS>:| ‘ '/;/S] ,

where we used the Markov property of ((By, Ny))i>0. By the Markov property of (7}):>0
we have

. T —T
— ETS |:6ths_TO E]B;TO ’NTO [6_ fst V(BTT-—S*TO)dT,e_Z fO e 0 a(BT')OdB'r
v X [

_ Ti—s
xe Jo

—Tp (Ty—s—To)+
Ua(Br0r)dr | log(—Usd (Br,—6y_))dNy
el ’ ©e(Br,_—10, 010,15 | | -

Since EX[f(T))] = EY[f(T + u)], we see that

T

_ RO [eTt,s—TOE]JiTﬁmNTOﬂ [e_ JLV(Br, _ —y)dr =i 0 o(B,)odB,
v X L

Ti—s

(Ty—s—To)+
xe_fo f ‘ 0

0 10g(_Uod(Br7—6rf))dNr' (pg(Bths—Toa eths—To)] :| ’V

_ Ty
_ Eﬁ[TyNTS ,0 |:€thse_ fg ® V(BTr)dT’e_Z Io t—s a(Br)odB;

—T
O Ua(By,0,)dr e
u=Ts

Ty s Ty _ s+
e~ Jot Ud(BT.,GT.)drefO ¢ log(—Usq(Br,—0,—))dN,

— (e—(t—s)H22 Sog) (Qs)-

Sog(Qt—s)]
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Hence we conclude that
E(])\,}),O [Y;‘ys] _ 6SE€TS 65”([0,3})(6—(15—3)(HZ2 —E) (Pg)(qs) _ Y;

and the lemma follows. qed

4.3 Upper estimates on bound states

We will use the following conditions.
Assumption 4.4 The following properties hold:
(1) by € L® and W = /b3 + b3 € L.
(2) With m, = ||b3]|ec + [|[W]|se, we have m, < m?/2.

(3) V is of relativistic Kato-class, i.e.,

¢
lim sup E%° {/ V(BTT)dr] = 0. (4.19)
0

HO 2R3
Lemma 4.5 If Assumption[].4) holds, then ¢, € L(R?) and
— [IAT xT)ar 1 AT M
e, (—1)%)] < B, [0 Fem BV BrtadredTinrm ] o | (4.20)

for every stopping time T with respect to (Fs)s>o and t > 0.

PROOF. Notice that ¢4 (z, (—1)*) = E}*°[V}] for every t. Then Schwarz inequality yields
that

|os (2, (=1)%)]

1/2
< etEEﬂap [62Tt6—2ng(BTr)dref0Tt \bg(BT-)|dr6f0Tt+logW(BT)dNT:| / E;c\,;,o [|S0g(qt)|]1/2

(B3 llog(a) )

Here we used that E [eN7: °sW] — ¢T:V=1) Note that

< o'F (E%iy[e_z JIV(Br, +x)dr€Ttm*])

s
n!

B llen(adl’) = [ " dspi(s) | @ir 3yt + v (-

0 R3 n=0
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tetm

where p;(s) = 27rs36_%( m? s)l[o,oo)(s) denotes the distribution of subordinator T;.
Since i
ng (2 -+, (“)) e < fogla+ 3, D + lpgla + 9, 1)
we obtain
Exao [|og(q)]

/Rgdy/ () el + >|2+wg<x+y,—1>\2>

) ) (e+m20ul2 +t2>/4)
= dy(|¢g($+ya1)| + |80g(if+y>—1)| )7T 2 2 5 df
R \y\ + 1)
< Ct||<Pg||2L2(R3xZZ)
with a constant Cy. Furthermore, let m?/(2m,) > ¢ > 1 and % + % = 1. Then we get

1/p

Ep, [e2 VB gt < (B0 [em2edoV Brniir]) T (B [edon))

The first term at the right hand side above satisfies that

t 1/p
sup (E}”_;QV [6_2”0 V(BTTWD < 00 (4.21)

z€R3

since V' is of relativistic Kato class, and

o temt 12 2 2
Em,(] ethm* _ EB ethm,F _ ed5mx 6—5(?+m s)dS — 6—l—t(m—\/m —2gme) < 00.
qu[ ] [ ] 0 W
(4.22)
Hence p, € L=(R?). Notice that by the martingale property of Y;(z,a),
pe(, (1)) = By [Yirr (2, )] (4.23)

for every stopping time 7 and ¢ > 0. (£20) follows from (£.23]) and
sl (F1))] < ERS, (e BTV m T2 g

qed
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4.4 Decay of bound states: the case V — oo

In this subsection we show the spatial exponential decay of bound states of H + V at
infinity.

Lemma 4.6 Let 7p = inf{t||Br,| > R}. Then g is a stopping time with respect to the
filtration (F)i>o.

PROOF. It suffices to show that {7 <t} € .%,. Notice that

{re<t}= [ (Aw),w),

we,

where A(w) = {w' € Qp|supy<,<; |Br,w) (W) > R} € ﬁt(l)(w). Thus {7 < t} € ﬁt(l).

Moreover
{rr <t} = | (w, Bw)),

weNp
where B(w) = {w' € Q,|supy<,<; | Br, () (w)| > R}. Therefore {7z <t} € Z?) and hence
{’TR < t} € gt- qed
Theorem 4.7 If Assumption[{.4] holds and
lim V(x) = oo, (4.24)

|z| =00
then for every a > 0 there exists b > 0 such that
|, (=1)")] < eI, (4.25)

PRrROOF. We have by Lemma 5] that
a T —9 ("R x)dr 1/2 m 1/2
el (~1))] < (B, [2rmEem2h ™ VEnennr ) (g0 [enTomn])' ).

Let W(z) = Wg(z) = inf{V (y)||z — y| < R}, and notice that
lim W(z) — E = oc. (4.26)

|z| =00

In particular, we may assume that W(x) — E > 0. This gives
(EOPOX ) [ 2(ATR)E =2 [T V(BTT+x)dr:| ) 1/2
0,0 [ —2(tArr)(W(z)—E)1\ /2
< (Epx, [e )

_o(thr 2—E)7) 1/2 7 —o(tAr 2B 1/2
< (]E(]]D’?(V |:1{7'R<t}e 2(tATR)(W () E)D + (E(I)Dgu {1{rth}€ 2(tATR)(W (z) E)D

< (E%gy |:1{TR<t}])l/2 + e~ tW(2)—E)
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We see that
0,0 0,0 0,0 a(su —
EPXI/ [1{TR<t}:| = EPXV [1{511]@0539 \BTS\—RZO}] < EPXI/ [6 (supossss 1B, R)} (4'27>

1/2 .
for any o > 0. It can be shown that (E?;gy [esuPosest [Br:1]) / < C1e®?! for sufficiently
<

small a, see [CMS90, Proposition I1.5]. Hence (E?;gu[l{mgt}])lp e 201t and

V2 W) e B2 e, (4.28)

(E(I))(i [ G2(ATR)E =2 [INTR V(BTT.+:v)dr:| )

We also see that

Epy, [ r] < Epy, [Lpcmye™ 0] + EpY, [Lisraye™ " n]
Epy, [ 7] +Epy, [Lizrmye™r]

2EQ [e71]

VAN VAN VAN

where we used that T;, < T, for 7z <t. Thus we have

E(I)D,(iy [6m*Tt/\TR}1/2 < ﬂet(m_\ﬁmz_zm*)/z (4.29)
by ([£22). Hence by ([E28) and ([£29),
|og (@, (—1)*)| < V2 (e7WO=F) p gmai20y gty gltm=vmi=2ma) 2 || (4.30)

Notice that by inserting R = plz| with any 0 < p < 1, W(z) — E = Wg(x) — E =
Whie|(x) — E — o0 as || — oo. Thus substituting ¢ = d|x| for sufficiently small 6 > 0
and R = p|z| with some 0 < p < 1 in (£30), the theorem follows. qed

4.5 Decay of bound states: the case V' — 0
In this subsection we consider the case of potentials decaying to zero as |z| — oo.

Theorem 4.8 Let Assumption[{.4) hold and suppose that
lim V(z) = 0. (4.31)

|z|—o00

Also, assume that
m—\/m?—2m, < -2E. (4.32)

Then there exist a,b > 0 such that

[pg(, (=1)7)] < e, (4.33)
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PROOF. Define 7 = 7g(z) = inf{t > 0| |By, + x| < R}. Then 75 is a stopping time,
which can be seen in the same way as in Lemma .6 Thus

@ r _ tATR 2)dr 1/2 m 1/2
el (~1))] < (BR, [e2ermPem2h ™ Vn | ) (B [emToen])

AR (0) 1/2
— (B3, |22 b V@ ) gD [ Tnen@] ) oy

We rewrite 75(0) by 7. Let € > 0 be arbitrary. Then for sufficiently large R it follows
that sup, >z |V (2)| < e by [@3]), and we see that |f(fATR V(Bg,)dr| < (t A Tg)e. This
gives

g, (—1))] < (BB, [2AmE+) 2 (20 [omTinms] )2 .
Thus

Ep, [ = BRI+ BED [y )]

< e2t(E+E) + Cle—m5|:c|

by making use of [CMS90, (I1.29)(I1.22) and (IV.3)] as above, where

[ m if 2|E|>m
M= 2 /mlE[— [E] if 2|E| < m.

Also, notice that
50 o] < 20—V

Therefore
|S0g(a7a (_1)a)| < (et(E-i-e) + Cle_me‘x‘/2)\/§6t(m_\/m2_2m*)/2. (4.34)
On inserting ¢t = 0|x| with sufficiently small §, the theorem follows from (£.32). qed
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