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Abstract

We investigate n-component systems of conservation laws that pos-
sess third-order Hamiltonian structures of differential-geometric type.
The classification of such systems is reduced to the projective clas-
sification of linear congruences of lines in Pn+2 satisfying additional
geometric constraints. Algebraically, the problem can be reformulated
as follows: for a vector space W of dimension n + 2, classify n-tuples
of skew-symmetric 2-forms Aα ∈ Λ2(W ) such that

φβγA
β ∧Aγ = 0,

for some non-degenerate symmetric φ.
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1 Introduction

1.1 Systems of conservation laws and line congruences in
projective space

Systems of conservation laws are n-component first-order PDEs of the form

uit = (V i(u))x, (1)

i = 1, . . . , n, where V i(u) is a (nonlinear) vector of fluxes. We will assume
that the characteristic speeds of system (1), that is, the eigenvalues of the
Jacobian matrix of the fluxes V i, are real and distinct (condition of strict
hyperbolicity). Systems of conservation laws appear in a wide range of
applications in continuum mechanics and mathematical physics, see e.g.
[21, 25, 35, 32, 34, 33]. Following the geometric approach of [1, 2], with
system (1) we associate a congruence (that is, n-parameter family of lines),

yi = uiyn+1 + V iyn+2, (2)

in auxiliary projective space Pn+1 with homogeneous coordinates (y1 : · · · :
yn+2). It was demonstrated in [1, 2] that various standard concepts of the
theory of conservation laws such as rarefaction curves, shock curves, linear
degeneracy, reciprocal transformations, etc, acquire a simple interpretation
in the language of the projective theory of congruences. In particular, recip-
rocally related systems (1) correspond to projectively equivalent congruences
(2). Algebro-geometric aspects of this correspondence were investigated in
[6, 7, 8, 26].

In this paper we utilise the above geometric correspondence for the clas-
sification of systems (1) possessing third-order Hamiltonian structures. We
will show that congruences associated with Hamiltonian systems are nec-
essarily linear, that is, they are specified by n linear relations among the
Plücker coordinates (in geometric language, codimension n linear sections
of the Grassmannian G(1, n + 1)). We recall that the lines of a linear con-
gruence in Pn+1 can be characterised geometrically as n-secants of the focal
variety (jump locus), which is a codimension two subvariety in Pn+1 (possi-
bly, reducible):

• For n = 2 the focal variety of a linear congruence consists of 2 skew
lines in P3.

• For n = 3 the focal variety of a generic linear congruence is a projection
of the Veronese surface V 2 ⊂ P5 into P4 [5].
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• For n = 4 the focal variety is a Palatini threefold in P5 [28], etc.

In parametrisation (2), the Plücker coordinates are just ui, V i, uiV j −ujV i.
Imposing n linear relations among the Plücker coordinates we obtain a linear
system for the fluxes V i which implies that V i are rational in u. Systems
associated with linear congruences are linearly degenerate, and satisfy the
Temple property [2].

1.2 Third-order Hamiltonian operators

Third-order Hamiltonian operators of differential-geometric type were intro-
duced by Dubrovin and Novikov in [10], and subsequently investigated in
[31, 9, 30, 27, 4, 15, 16]. They are defined by the general formula

P ij = gij∂3x + bijk u
k
x∂

2
x + (cijk u

k
xx + cijkmu

k
xu

m
x )∂x

+ dijk u
k
xxx + dijkmu

k
xxu

m
x + dijkmnu

k
xu

m
x u

n
x,

where ui, i = 1, . . . , n, are the dependent variables, and the coefficients
gij , . . . , dijkmn are functions of ui only; ∂x stands for the total derivative with
respect to x. The requirement that the corresponding Poisson bracket,

{F,G} =

∫
δF

δui
P ij

δG

δuj
dx,

is skew-symmetric and satisfies the Jacobi identities, imposes strong con-
straints on the coefficients of P . We restrict our considerations to the non-
degenerate case, det gij 6= 0; in what follows we use gij for raising and
lowering indices. It was demonstrated in [31, 9] that there exists a coor-
dinate system (flat coordinates) in which Hamiltonian operator P takes a
simple factorised form [27],

P ij = ∂x

(
gij∂x + cijk u

k
x

)
∂x. (3)

In what follows we will always work in the flat coordinates, and keep for
them the notation ui; note that ui are nothing but the densities of Casimirs
of the corresponding Hamiltonian operator. Introducing cijk = giqgjpc

pq
k one

can show [30] that the skew-symmetry conditions and the Jacobi identities
for operator (3) are equivalent to

gmn,k = −cmnk − cnmk, (4a)

cmnk = −cmkn, (4b)

cmnk + cnkm + ckmn = 0, (4c)

cmnk,l = −gpqcpmlcqnk. (4d)
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Equations (4a)–(4c) imply [15]

cskm =
1

3
(gsm,k − gsk,m). (5)

The elimination of c from equations (4) gives a system for the metric g,

gmk,n + gkn,m + gmn,k = 0, (6a)

gm[k,n]l = −1

3
gpqgp[l,m]gq[k,n]. (6b)

Equations (6a) mean that g is a Monge metric, and as such is an object of
projective differential geometry. Building on the correspondence of Monge
metrics to quadratic complexes of lines in Pn, in [15, 16] we proposed a
classification of Hamiltonian operators (3) for n ≤ 4.

In what follows we will also need the result of Balandin and Potemin [4]
according to which the general solution of system (6) is given by the formula

gij = φβγψ
β
i ψ

γ
j , (7)

where φβγ is a non-degenerate constant symmetric matrix, and

ψγk = ψγkmu
m + ωγk ; (8)

here ψγkm and ωγk are constants such that ψγkm = −ψγmk. These constants
have to satisfy an additional set of quadratic relations,

φβγ(ψβisψ
γ
jk + ψβjsψ

γ
ki + ψβksψ

γ
ij) = 0, (9)

φβγ(ωβi ψ
γ
jk + ωβj ψ

γ
ki + ωβkψ

γ
ij) = 0, (10)

whose algebraic meaning was clarified in [16]. An important invariant of
Hamiltonian operator (3) is its singular variety, det gij = 0, which, due to
(7), is a double hypersurface of degree n− 1:

det g = detφ(detψ)2;

here the degree of detψ equals n− 1 [16].

1.3 Hamiltonian systems of conservation laws

In this paper we are interested in Hamiltonian systems of conservation laws,
namely systems (1) possessing third-order Hamiltonian structures (3):

ut = (V (u))x = P
δH

δu
,
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for some (nonlocal) Hamiltonian functionals H. Examples of such systems
include Monge-Ampère equations, as well as various versions of WDVV
equations, see [11] for their geometric treatment based on the theory of
Frobenius manifolds. Our main results in this direction can be summarised
as follows.

Theorem 1. The necessary and sufficient conditions for a conservative sys-
tem (1) to possess third-order Hamiltonian operator (3) are the following:

gimV
m
j = gjmV

m
i , (11a)

cmklV
m
i + cmikV

m
l + cmliV

m
k = 0, (11b)

V k
ij = gkscsmjV

m
i + gkscsmiV

m
j , (11c)

here lower indices of V m denote partial derivatives: V m
i = ∂V m/∂ui, etc.

In Theorem 7 of Section 2.5 we present explicit formulae for the corre-
sponding Casimirs, Momentum and Hamiltonian. The proof of Theorem 1
can be found in Section 2.1.

Conditions (11) are analogous to Tsarev’s conditions in the theory of
first-order homogeneous Hamiltonian operators [36]. System (11) possesses
a number of important properties, in particular, in Section 2.2 we establish
the following result:

Theorem 2. System (11) is in involution. Its general solution depends on

≤ n(n+3)
2 arbitrary constants.

It is quite remarkable that system (11), which is a linear involutive sys-
tem with non-constant coefficients, can be integrated in closed form (Section
2.3). This leads to the following result (Section 2.3):

Theorem 3. For Hamiltonian system (1) the following conditions hold:

• The associated congruence (2) is linear.

• System (1) is linearly degenerate and belongs to the Temple class.

• The fluxes V i are rational functions of the form

V i =
Qi

detψ
,

where detψ is a polynomial of degree n−1 defining the singular variety,
and Qi are polynomials of degree n.
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Note that for n ≥ 4 systems of conservation laws possessing third-order
Hamiltonian structures are neither diagonalisable nor integrable in general.

Based on the classification of linear congruences in P3 and P4 dating back
to the classical work of Castelnuovo [5], this leads to a complete description
of Hamiltonian systems (1) for n = 2, 3, see Section 1.6.

1.4 Examples

Here we list examples of conservative systems (1) with third-order Hamil-
tonian structures (3) that will feature in the classification results below. In
order to simplify the expressions for the Hamiltonian densities we introduce
potential coordinates bi via ui = bix. In these coordinates system (1) will
no longer be quasilinear, and third-order Hamiltonian operator (3) takes a
first-order form, see (21), (22).

Example 1. A linear n-component system of conservation laws,

uit = (aiju
j)x,

aij = const, possesses third-order Hamiltonian formulation

uit = ηij∂3x
δH

δuj
,

ηij = const, with the nonlocal Hamiltonian

H = −1

2

∫
ηjpa

p
kb
jbk dx.

In this case, conditions (11) reduce to ηjpa
p
k = ηkpa

p
j , which means that the

operator a is symmetric with respect to the metric η.
The associated congruence (2) is the set of lines that intersect n lin-

ear subspaces of codimension two in Pn+1 (the union of these subspaces
constitutes the focal variety). These subspaces can be described explicitly:
let λk be the eigenvalues of a with the corresponding left eigenvectors ξk,
that is, aji ξ

k
j = λkξki . Then the k-th focal subspace is defined by two linear

equations, y0 = λk, ξkj y
j = 0.

Example 2. The simplest WDVV equation [11], fttt = f2xxt − fxxxfxtt, can
be reduced to a 3-component conservative form,

u1t = u2x, u2t = u3x, u3t = ((u2)2 − u1u3)x, (12)
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by setting u1 = fxxx, u2 = fxxt, u
3 = fxtt. System (12) possesses a Hamil-

tonian formulation ut = PδH/δu [13], with the homogeneous third-order
Hamiltonian operator

P = ∂x

 0 0 ∂x
0 ∂x −∂xu1
∂x −u1∂x ∂xu

2 + u2∂x + u1∂xu
1

 ∂x,

and the nonlocal Hamiltonian

H = −
∫ (

1

2
u1(b2)2 + b2b3)

)
dx.

Note that system (12) possesses a compatible first-order Hamiltonian for-
mulation, as well as a Lax pair, which elucidate its integrability [13].

The associated congruence (2) was thoroughly investigated in [2]. It
consists of trisecant lines of the focal variety which, in this case, is a generic
projection of the Veronese surface V 2 ⊂ P5 into P4. Various generalisations
of this example can be found in [19, 20, 29, 23].

Example 3. The following 4-component conservative system was obtained
in [3] in the classification of non-diagonalisable linearly degenerate systems
of Temple’s class whose characteristic speeds are harmonic (have cross-ratio
equal to −1):

u1t = u3x,

u2t = u4x,

u3t =
(
u1u2u4+u3((u3)2+(u4)2−(u2)2−1)

u1u3+u2u4

)
x
,

u4t =
(
u1u2u3+u4((u3)2+(u4)2−(u1)2−1)

u1u3+u2u4

)
x
.

(13)

System (13) possesses a Hamiltonian representation ut = PδH/δu where
the third-order Hamiltonian operator P is generated by the Monge metric

gij =


(u2)2 + (u3)2 + 1 −u1u2 + u3u4 −u1u3 + u2u4 −2u2u3

−u1u2 + u3u4 (u1)2 + (u4)2 + 1 −2u1u4 u1u3 − u2u4
−u1u3 + u2u4 −2u1u4 (u1)2 + (u4)2 u1u2 − u3u4
−2u2u3 u1u3 − u2u4 u1u2 − u3u4 (u2)2 + (u3)2

 .
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Due to det g = (u1u3 + u2u4)2, its singular variety consists of a double
quadric and a double plane an infinity. The corresponding nonlocal Hamil-
tonian H is given by

H = −1

2

∫
(b1b3 + b2b4 + x(b1u3 − u1b3 + b2u4 − u2b4))dx,

note the explicit dependence on x. Integrability of system (13) can be
demonstrated as follows. Introducing the 2× 3 matrix

Z =

(
u1 u2 1
u3 u4 0

)
,

one can represent (13) in matrix form (compare with Sect. 4 in [17]),

Zt = (aZZTZ + bZ)x, (14)

where a = 1
u1u3+u2u4

, b = − (u1)2+(u2)2+1
u1u3+u2u4

. Introducing the 5 × 5 skew-
symmetric matrix

S =

(
0 Z
−Zt 0

)
,

one can rewrite (14) as a matrix Hopf-type equation,

St = (bS − aS3)x,

with the Lax pair

ψx = λSψ, ψt = λ(bS − aS3)ψ.

Congruence (2) associated with system (13) is related to the Cartan
isoparametric hypersurface in S5, see [3] for further details. Note that its
focal variety is reducible.

Example 4. Let us consider a class of conservative 4-component systems
of the form

u1t = u2x, u2t = u3x, u3t = u4x, u4t = [f(u1, . . . , u4)]x.

Under the substitution u1 = fxxxx, u2 = fxxxt, u
3 = fxxtt, u

4 = fxttt they
reduce to a scalar fourth-order PDE for f(x, t). One can show that mod-
ulo equivalence transformations there exist only two types of such systems
possessing third-order Hamiltonian structures:
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Case 1. f = (u2)2 − u1u3. The corresponding system possesses a Hamilto-
nian formulation ut = PδH/δu with the third-order Hamiltonian operator

P = ∂x


0 0 0 ∂x
0 0 ∂x 0
0 ∂x 0 −∂xu1
∂x 0 −u1∂x ∂xu

2 + u2∂x

 ∂x,

and the nonlocal Hamiltonian

H = −1

2

∫
(u1(b2)2 + 2b2b4 + (b3)2)dx.

Case 2. f = (u3)2 − u2u4 + u1. The corresponding system possesses a
Hamiltonian formulation ut = PδH/δu with the third-order Hamiltonian
operator

P = ∂x


∂x 0 0 0
0 0 0 ∂x
0 0 ∂x −∂xu2
0 ∂x −u2∂x ∂xg + g∂x

 ∂x,

where g = u3 + 1
2(u2)2, and the nonlocal Hamiltonian

H =

∫
(b2b3u3 − b1b2 − b3b4)dx.

We point out that systems from cases 1, 2 are likely to be non-integrable.

1.5 Projective invariance

The class of conservative systems (1) is invariant under reciprocal transfor-
mations of the form

dx̃ = (aiu
i + a)dx+ (aiV

i + b)dt,
dt̃ = (biu

i + c)dx+ (biV
i + d)dt,

(15)

which can be viewed as nonlocal changes of the independent variables x, t;
here ai, bi, a, b, c, d are arbitrary constants. It was shown in [1, 2] that, along
with affine transformations of the dependent variables ui, reciprocal trans-
formations generate the group SL(n + 2) which acts by projective trans-
formations on the associated congruence (2). It is remarkable that these
transformations preserve the Hamiltonian property.
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Theorem 4. The class of conservative systems (1) possessing third-order
Hamiltonian formulation (3) is invariant under reciprocal transformations
(15).

We prove this result in Section 2.4. Note that, in contrast to third-order
operators (3), first-order Hamiltonian structures of Dubrovin-Novikov type
are not reciprocally invariant, and generally become nonlocal [14].

Remark. In [15, 16] we have classified third-order Hamiltonian opera-
tors/systems modulo the restricted group of reciprocal transformations that
change the independent variable x only,

dx̃ = (aiu
i + a)dx+ (aiV

i + b)dt, dt̃ = dt.

In the 3-component case this resulted in the 5 canonical forms. Modulo
extended transformations (15), all of them are equivalent to that of Example
2 from Section 1.4.

Ultimately, the classification of Hamiltonian systems of conservation laws
(1) up to reciprocal transformations (15) reduces to projective classification
of the associated congruences (2).

1.6 Classification results

Here we summarise the classification results of Hamiltonian systems of con-
servation laws with n = 2 and 3 components. The classification is performed
modulo reciprocal/projective transformations as discussed in Section 1.5.
We always assume that system (1) is strictly hyperbolic, and that the met-
ric g defining Hamiltonian operator (3) is non-degenerate.

The existing classification of linear congruences in P3 and P4 readily
leads to the classification of 2- and 3-component Hamiltonian systems of
conservation laws. Thus, every linear congruence in P3 consists of bisecants
of two skew lines in P3. This leads to

Theorem 5. For n = 2, every Hamiltonian system of conservation laws
is linearisable (that is, equivalent to 2-component case of Example 1 from
Section 1.4).

Linear congruences in P4 were classified by Castelnuovo in [5]: they
can be obtained as trisecant lines of suitable projections of the Veronese
surface from P5 into P4. Thus, all generic linear congruences are projectively
equivalent (non-generic projections correspond to systems with degenerate
Hamiltonian operators).

11



Theorem 6. For n = 3, every Hamiltonian system of conservation laws
is either linearisable (that is, equivalent to 3-component case of Example 1
from Section 1.4), or equivalent to the system of WDVV equations (Example
2 from Section 1.4).

Theorems 5, 6 are proved in Section 2.7. It follows that all 3-component
systems of conservation laws with third-order Hamiltonian structures are
automatically integrable.

The case n = 4 is far more complicated, primarily, due to the fact that
there exists no classification of linear congruences in P5. Only partial results
are currently available. In particular, 4-component Hamiltonian systems
(1) associated with third-order Hamiltonian operators are not integrable in
general.

1.7 Algebraic reformulation of the problem

Linear congruences in Pn+1 are defined by n linear relations in the Plücker
coordinates. Setting Pn+1 = P(W ) where W is a vector space of dimension
n + 2, these linear relations correspond to the choice of an n-dimensional
subspace A ⊂ Λ2(W ). Let A1, . . . , An denote a basis of A. The condition
that the corresponding system (1) is Hamiltonian, is equivalent to the exis-
tence of a non-degenerate symmetric matrix φβγ , the same as in (7), such
that

φβγA
β ∧Aγ = 0,

see Section 2.6. The existence of such relation does not depend on the
choice of basis, and imposes strong constraints on A. Despite its apparent
simplicity, the classification of normal forms of such subspaces is an open
problem (starting with n = 4).

1.8 Symbolic computations

Symbolic computations were performed by CDE [38], a Reduce [37] package
for integrability of PDEs. CDE (by one of us, RFV) can compute: Fréchet
derivatives, formal adjoints, symmetries and conservation laws, Hamiltonian
operators, and their brackets. Examples are available from [38], and a User’s
manual is included in the official Reduce manual; a book with numerous
detailed computations is to appear soon [24].
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2 Proofs

2.1 Conditions for a system to be Hamiltonian: proof of
Theorem 1

In this section we derive the necessary and sufficient conditions for system
(1) to possesses Hamiltonian structure (3).

Theorem 1. The necessary and sufficient conditions for a conservative
system (1) to possess third-order Hamiltonian operator (3) are the following:

gimV
m
j = gjmV

m
i ,

cmklV
m
i + cmikV

m
l + cmliV

m
k = 0,

V k
ij = gkscsmjV

m
i + gkscsmiV

m
j ,

here low indices of V m denote partial derivatives, V m
i = ∂V m/∂ui, etc.

Proof. The proof is based on the Kersten–Krasil’shchik–Verbovetsky ap-
proach to Hamiltonian operators [22] which can be summarised as follows.
Consider an evolutionary system of the form

F i = uit − f i(t, x, u, ux, uxx, . . .) = 0, (17)

with the formal linearization (Fréchet derivative) `F . Let P be a Hamilto-
nian operator, that is, a skew-adjoint operator with zero Schouten bracket,
[P, P ] = 0. If system (17) possesses P as a Hamiltonian structure, then P
maps variational derivatives of conserved densities of (17) into generalized
(higher) symmetries, that is,

`F ◦ P = P ∗ ◦ `∗F . (18)

Let us introduce the adjoint system (cotangent covering) of system (17),{
F = 0,
`∗F (p) = 0,

(19)

where p is an auxiliary (vector) variable. Then (18) is equivalent to

`F (P (p)) = 0, (20)

which must hold identically modulo (19). Note that the idea of represent-
ing Hamiltonian operators P by linear differential expressions of type P (p)
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was used in [18] to compute Hamiltonian cohomology. The advantage of
the above formulation is that finding Hamiltonian operators amounts to
solving a problem which is computationally the same as finding generalized
symmetries.

To apply this technique to system (1) we introduce a potential substi-
tution ui = bix, for reasons that will become clear soon, obtaining a non-
quasilinear system

bit = V i(bx). (21)

This substitution turns Hamiltonian operator (3) into a first-order operator,

P ij = −(gij(bx)∂x + cijk (bx)bkxx), (22)

and the corresponding Hamiltonian can be calculated explicitly (see Sec-
tion 2.5). Note that the above Hamiltonian operator is not of Dubrovin–
Novikov type as its coefficients gis(bx) and cisk (bx) loose their geometric
interpretation: their transformation rule is no longer tensorial. The lineari-
sation operator of system (21) is

`F (ϕ) = Dtϕ
i − ∂V i

∂bjx
Dxϕ

j ,

with the adjoint

`∗F (ψ) = −Dtψk +Dx

(
∂V i

∂bkx
ψi

)
.

The adjoint system is

bit = V i(bx),

pk,t =
∂2V i

∂bkx∂b
h
x

bhxxpi +
∂V i

∂bkx
pi,x.

Setting P (p) = −gijpj,x − cijk b
k
xxpj , condition (20) takes the form

`F (P (p)) = −∂g
ij

∂bkx
bkxtpj,x − gijpj,xt −

∂cijk
∂bhx

bhxtb
k
xxpj − c

ij
k b

k
xxtpj − c

ij
k b

k
xxpj,t

+
∂V i

∂bjx

(
∂gjk

∂bhx
bhxxpk,x + gjkpk,xx +

∂cjhk
∂blx

blxxb
k
xxph + cjhk b

k
xxxph + cjhk b

k
xxph,x

)
.

Using differential consequences of the adjoint system,

bitx = V i
x , bitxx = V i

xx, pk,tx = Dxx
∂V i

∂bkx
pi + 2Dx

∂V i

∂bkx
pi,x +

∂V i

∂bkx
pi,xx,
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we obtain

`F (P (p)) =

(
−gij ∂V

h

∂bjx
+
∂V i

∂bjx
gjh
)
ph,xx

+

(
−∂g

ih

∂bkx
V k
x − gij2Dx

∂V h

∂bjx
− cijk b

k
xx

∂V h

∂bjx

+
∂V i

∂bjx

∂gjh

∂bkx
bkxx +

∂V i

∂bjx
cjhk b

k
xx

)
ph,x

+

(
− gijDxx

∂V h

∂bjx
−
∂cihk
∂bjx

V j
x b

k
xx − cihk V k

xx − c
ij
k b

k
xx

∂2V h

∂bjx∂blx
blxx

+
∂V i

∂bjx

(
∂cjhk
∂blx

blxxb
k
xx + cjhk b

k
xxx

))
ph.

The above expression is linear in ph, ph,x, ph,xx, and the coefficients are
polynomials in bixx, bixxx. So, the expression vanishes if and only if

− gij ∂V
h

∂bjx
+
∂V i

∂bjx
gjh = 0, (23a)

− gik ∂
2V h

∂bkx∂b
l
x

− cihk
∂V k

∂blx
+
∂V i

∂bkx
ckhl = 0, (23b)

− ∂gih

∂bkx

∂V k

∂blx
− gij2 ∂2V h

∂bjx∂blx
− cijl

∂V h

∂bjx
+
∂V i

∂bjx

∂gjh

∂blx
+
∂V i

∂bjx
cjhl = 0, (23c)

− gij ∂3V h

∂bjx∂blx∂b
m
x

− 1

2

(
∂cihm

∂bjx

∂V j

∂blx
+
∂cihl
∂bjx

∂V j

∂bmx

)
− cihk

∂2V k

∂blxb
m
x

− 1

2

(
cijm

∂2V h

∂bjx∂blx
+ cijl

∂2V h

∂bjx∂bmx

)
+

1

2

(
∂V i

∂bjx

∂cjhm
∂blx

+
∂V i

∂bjx

∂cjhl
∂bmx

)
= 0.

(23d)

The conditions (23a), (23b), (23c) can be simplified by using objects gij , cijk
with lower indices, leading to

gij
∂V j

∂bhx
− ∂V j

∂bix
gjh = 0, (24a)

cmkl
∂V m

∂bix
+ cmik

∂V m

∂blx
+ cmli

∂V m

∂bkx
= 0, (24b)

∂2V k

∂bix∂b
j
x

= gkscsmj
∂V m

∂bix
+ gkscsmi

∂V m

∂bjx
. (24c)
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Indeed, lowering indices in (23a) leads to (24a). Similarly, lowering indices
in (23b) and using (24a) leads to (24c). Using (23b) to eliminate second-
order derivatives in (23c) we get

−∂g
ih

∂bkx

∂V k

∂blx
+ 2

(
cihk
∂V k

∂blx
− ∂V i

∂bkx
ckhl

)
− cijl

∂V h

∂bjx
+
∂V i

∂bjx

∂gjh

∂blx
+
∂V i

∂bjx
cjhl = 0.

Lowering indices and using (24a) again we obtain

(gps,k + 2cspk)
∂V k

∂blx
+ (−gsk,l − cskl)

∂V k

∂bpx
− ckpl

∂V k

∂bsx
= 0.

Using (4) we obtain (24b). It remains to show that equation (23d) is a
differential consequence of equations (24). In order to prove this statement
we will need equation (4d). Let us differentiate (24c) with respect to blx and
lower the index k by the metric g. Using (4), (5), (6) we obtain

gkm
∂3V m

∂bjx∂bix∂b
l
x

= gpq(ckpicqml + ckplcqmi)
∂V m

∂bjx

+ gpq(ckpjcqml + ckplcqmj)
∂V m

∂bix
+ gpq(ckpicqmj + ckpjcqmi)

∂V m

∂blx
.

One can show that equation (23d) can be brought to this form. Let us first
bring (23d) to the form

∂3V k

∂bix∂b
j
x∂blx

=− 1

2
gjm

(
2cmks gsqcqpi +

∂cmki
∂bpx

+ cmsi gkqcqps

)
∂V p

∂blx
(25a)

− 1

2
gjm

(
2cmks gsqcqpl +

∂cmkl
∂bpx

+ cmsl gkqcqps

)
∂V p

∂bix
(25b)

− 1

2
gkqgjm(cmsi cqpl + cmsl cqpi)

∂V p

∂bsx
(25c)

+
1

2
gsm

(
∂cski
∂blx

+
∂cskl
∂bix

)
∂V m

∂bjx
. (25d)

Observe that the term (25c) can be rearranged as

gjm(cmsi cqpl+c
ms
l cqpi)

∂V p

∂as

=gsb(cbjicqpl + cbjlcqpi)
∂V p

∂as

=gsp(cbjicqpl + cbjlcqpi)
∂V b

∂as

=− cqpl
(
cbsj

∂V b

∂ai
+ cbis

∂V b

∂aj

)
− cqpi

(
cbsj

∂V b

∂al
+ cbls

∂V b

∂aj

)
,
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where we used (24a) and (24b). Lowering indices in (25), using

ghkgjm
∂cmkl
∂bpx

=
∂chjl
∂bpx

− ∂ghk
∂bpx

gjmc
mk
l − ghk

∂gjm
∂bpx

cmkl , (26)

as well as (4), we arrive at (23d). Replacing in (24) bix by ui we obtain
(11). To finish the proof, it remains to note that conditions (11) imply
the existence of a (nonlocal) Hamiltonian, see Theorem 7 of Section 2.5 for
explicit formulae.

2.2 Involutivity of system (11): proof of Theorem 2

In this section we establish the involutivity of system (11), and estimate the
number of parameters in the general solution.

Theorem 2. System (11) is in involution. Its general solution depends on

≤ n(n+3)
2 arbitrary constants.

Proof. We need to show that differentiation of first-order conditions (11a)
and (11b) does not lead to new first-order relations. Then, we need to
demonstrate consistency of second-order equations (11c). All this is a straight-
forward tensor algebra. Differentiating

gipV
p
j = gjpV

p
i ,

we obtain
gipV

p
jk + gip,kV

p
j = gjpV

p
ik + gjp,kV

p
i .

Using (11c) we get

gipg
ps[csmjV

m
k + csmkV

m
j ] + gip,kV

p
j = gjpg

ps[csmkV
m
i + csmiV

m
k ] + gjp,kV

p
i .

Thus,

cimjV
m
k + cimkV

m
j + gip,kV

p
j = cjmkV

m
i + cjmiV

m
k + gjp,kV

p
i ,

or, relabelling indices,

cipjV
p
k + cipkV

p
j + gip,kV

p
j = cjpkV

p
i + cjpiV

p
k + gjp,kV

p
i .

This can be rewritten in the form

(cipj − cjpi)V p
k + (cipk + gip,k)V

p
j − (cjpk + gjp,k)V

p
i = 0.
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Taking into account (4a) we obtain

(cipj − cjpi)V p
k − cpikV

p
j + cpjkV

p
i = 0.

Due to (4b) we can rewrite this as

(cipj − cjpi)V p
k + cpkiV

p
j + cpjkV

p
i = 0.

Using (11b) we obtain

(cipj − cjpi)V p
k = cpijV

p
k .

It remains to note that the equality cipj − cjpi = cpij holds identically due
to the cyclic condition (4c). Thus, differentiation of (11a) does not lead to
new first-order relations.

Similarly, differentiating (11b) we obtain

cmkl,jV
m
i + cmklV

m
ij + cmik,jV

m
l + cmikV

m
lj + cmli,jV

m
k + cmliV

m
kj = 0.

The substitution of (4d) and (11c) gives

− gpqcpmjcqklV m
i + cmklg

ms(cspiV
p
j + cspjV

p
i )

− gpqcpmjcqikV m
l + cmikg

ms(csplV
p
j + cspjV

p
l )

− gpqcpmjcqliV m
k + cmlig

ms(cspkV
p
j + cspjV

p
k ) = 0.

Note that all terms apart from those containing V p
j cancel, leading to

gms(cmklcspi + cmikcspl + cmlicspk)V
p
j = 0.

Due to (4d), (4b) this expression can be rewritten as

−(ckpi,l + cpik,l + cikp,l)V
p
j = 0,

which is an identity due to (4c).

The compatibility of second-order relations (11c) can be shown as fol-
lows. Computation of the consistency condition V p

ij,k = V p
kj,i gives

gps,k [csmjV
m
i + csmiV

m
j ]

+ gps[csmjV
m
ik + csmj,kV

m
i + csmiV

m
jk + csmi,kV

m
j ]

= gps,i [csmjV
m
k + csmkV

m
j ]

+ gps[csmjV
m
ik + csmj,iV

m
k + csmkV

m
ij + csmk,iV

m
j ].
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Cancelling terms with V m
ik results in a simplified expression,

gps,k [csmjV
m
i + csmiV

m
j ] + gps[csmj,kV

m
i + csmiV

m
jk + csmi,kV

m
j ]

= gps,i [csmjV
m
k + csmkV

m
j ] + gps[csmj,iV

m
k + csmkV

m
ij + csmk,iV

m
j ].

Contraction with gpq gives

gpqg
ps
,k [csmjV

m
i + csmiV

m
j ] + cqmj,kV

m
i + cqmiV

m
jk + cqmi,kV

m
j

= gpqg
ps
,i [csmjV

m
k + csmkV

m
j ] + cqmj,iV

m
k + cqmkV

m
ij + cqmk,iV

m
j .

Taking into account (11c) along with the identity gpqg
ps
,k = −gspgpq,k we get

− gspgpq,k[csmjV m
i + csmiV

m
j ] + cqmj,kV

m
i

+ cqpig
ps[csmjV

m
k + csmkV

m
j ] + cqmi,kV

m
j

= −gspgpq,i[csmjV m
k + csmkV

m
j ] + cqmj,iV

m
k

+ cqpkg
ps[csmjV

m
i + csmiV

m
j ] + cqmk,iV

m
j .

Rearrangement gives

[cqmj,k − cqpkgpscsmj − gspgpq,kcsmj ]V m
i

+ [cqpig
pscsmj + gspgpq,icsmj − cqmj,i]V m

k

+ [cqmi,k − gspgpq,kcsmi + cqpig
pscsmk + gspgpq,icsmk

− cqpkgpscsmi − cqmk,i]V m
j = 0.

Taking into account (4a) we obtain

(cqmj,k + gspcsmjcpqk)V
m
i − (cqmj,i + gspcsmjcpqi)V

m
k

+[(cqmi,k + gspcsmicpqk)− (cqmk,i + gspcsmkcpqi)]V
m
j = 0,

which is an identity due to (4d).

Thus, system (11) is in involution. Since equations (11c) express all
second-order partial derivatives of V i, the general solution depends on no
more than n+n2 parameters (values of V i and first-order derivatives thereof).

However, relations (11a) impose n(n−1)
2 independent constraints on first-

order derivatives of V i. Thus, the general solution depends on no more
than n + n2 − n(n−1)

2 = n(n+3)
2 arbitrary constants: the inequality is due

to the extra first-order relations (11b) that are not so easy to control. Ex-
amples show that solution spaces to equations (11) for different third-order
Hamiltonian operators (with the same number of components) may have

different dimensions. In particular, the maximal possible dimension, n(n+3)
2 ,

corresponds to constant-coefficient operators (gij = const, cijk = 0).
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2.3 Integration of system (11): proof of Theorem 3

It is quite remarkable that system (11) for the fluxes V i, which is a linear
involutive system with non-constant coefficients, can be integrated in closed
form. Let us recall that the metric g defining Hamiltonian operator (3) can

be represented in factorised form (7), gij = φβγψ
β
i ψ

γ
j , where φβγ is a non-

degenerate constant symmetric matrix, and ψγk = ψγkmu
m + ωγk ; here ψγkm

and ωγk are constants such that ψγkm = −ψγmk. These constants satisfy a set
of quadratic relations (9), (10). Using relations (7) – (10), one can show
that in the new variables W γ defined as

W γ = ψγkV
k,

system (11) takes the form

φβγ [ψβikW
γ + ψβkW

γ
i − ψ

β
i W

γ
k ] = 0,

φβγ [ψβijW
γ
k + ψβjkW

γ
i + ψβkiW

γ
j ] = 0,

W γ
ij = 0,

where lower indices of W γ denote partial derivatives. The last condition
implies that W γ are linear functions,

W γ = ηγmu
m + ξγ , (29)

while the first two conditions imply that the constants ηγm and ξγ satisfy a
linear system

φβγ [ψβijη
γ
k + ψβjkη

γ
i + ψβkiη

γ
j ] = 0,

φβγ [ψβikξ
γ + ωβk η

γ
i − ω

β
i η

γ
k ] = 0.

(30)

Thus, finding conservative Hamiltonian systems for a given third-order Hamil-
tonian operator (3) is reduced to linear algebra. Conversely, given conser-
vative system (1), the reconstruction of the associated Hamiltonian repre-
sentation from system (11) reduces to a linear system for the coefficients of
a Monge metric. The above representation implies the following result.

Theorem 3. For Hamiltonian system (1) the following conditions hold:

• The corresponding congruence (2) is linear.

• System (1) is linearly degenerate and belongs to the Temple class.
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• The fluxes V i are rational functions of the form

V i =
Qi

detψ
,

where detψ is a polynomial of degree n−1 defining the singular surface,
and Qi are polynomials of degree n.

Proof. Linearity of the congruence can be demonstrated as follows. Substi-
tuting W γ = ηγmum + ξγ and ψγk = ψγkmu

m + ωγk into the formula W γ =
ψγkV

k we obtain a linear relation in the Plücker coordinates (note the skew-
symmetry condition ψγkm = −ψγmk),

1

2
ψγkm(umV k − ukV m) + ωγkV

k − ηγmum − ξγ = 0. (31)

This proves the linearity. Linear degeneracy and the Temple property of
system (1) follows from the linearity of the corresponding congruence [2].
Finally, solving the equations W γ = ψγkV

k for V k implies V k = ψkγW
γ

where ψkγ is the inverse matrix to ψγk . Thus, V k will have detψ in the
denominator, while numerators will be polynomials of degree n.

2.4 Projective invariance: proof of Theorem 4

In this section we show that third-order Hamiltonian formalism (3) is in-
variant under reciprocal transformations (15). This is in contrast with the
case of first-order Hamiltonian structures of Dubrovin-Novikov type, which
generally become nonlocal after a reciprocal transformation [12, 14].

Theorem 4. The class of conservative systems (1) possessing third-order
Hamiltonian formulation (3) is invariant under reciprocal transformations
(15).

Proof. A general reciprocal transformation (15) can be represented as a
composition,

(x−transformation) ◦ (x↔ t) ◦ (x−transformation),

where x-transformation is a reciprocal transformation changing the variable
x only, and x↔ t denotes the ‘inversion’, that is, the interchange of x and t.
The invariance of Hamiltonian formalism (3) under x-transformations was
established in [15]. Thus, it remains to show that third-order Hamiltonian
formalism (3) is invariant under the inversion. Under this transformation,
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the new dependent variables and the new fluxes are defined as ũi = V i, Ṽ i =
ui, respectively. Recall that system (1) possesses Hamiltonian operator (3)
if the following conditions are satisfied:

1. Metric g of Hamiltonian operator (3) possesses factorised form (7),

gij = φβγψ
β
i ψ

γ
j , where φβγ is a constant symmetric matrix and ψγk =

ψγkmu
m + ωγk ; here the constants ωγk and skew-symmetric ψγkm satisfy

relations (9), (10).

2. The functions ψγkV
k are linear in u: ψγkV

k = ηγmum + ξγ , where the
constants ηγm, ξγ satisfy relations (30).

We claim that the ‘inverted’ system is also Hamiltonian, and the metric of
the transformed Hamiltonian operator is given by

g̃ij = V m
i gmnV

n
j , (32)

note that this transformation rule is identical to that for first-order Hamil-
tonian operators of Dubrovin-Novikov type. Thus, we have to demonstrate
the following:

1. Metric g̃ of the transformed Hamiltonian operator possesses factorised
form g̃ij = φ̃βγψ̃

β
i ψ̃

γ
j , where φ̃βγ is a constant symmetric matrix, and

ψ̃γk = ψ̃γkmV
m + ω̃γk ; here ω̃γk and skew-symmetric ψ̃γkm must satisfy

relations (9), (10).

2. The expressions ψ̃γku
k are linear in V : ψ̃γku

k = η̃γmV m + ξ̃γ , where the

constants η̃γm, ξ̃γ satisfy relations (30).

We claim that this is indeed the case, furthermore,

φ̃βγ = φβγ , ψ̃γkm = ψγkm, ω̃γk = ηγk , η̃γk = ωγk , ξ̃γ = −ξγ ,

note that the constants with tilde’s satisfy the same relations (9), (10), (30).
To establish part 1 we proceed as follows. Differentiating the relation

W γ = ψγkV
k with respect to um we obtain ηγm = ψγkV

k
m + ψγkmV

k. Solving
for V k

m gives V k
m = ψkγη

γ
m − ψkγψ

γ
smV s, where ψkγ is the inverse matrix to ψγk .

Thus, using (32),

g̃ij = V m
i gmkV

k
j = (ψmγ η

γ
i − ψ

m
γ ψ

γ
riV

r)gmk(ψ
k
τ η

τ
j − ψkτψτsjV s)

= (ψmγ η
γ
i − ψ

m
γ ψ

γ
riV

r)ψβmφβγψ
γ
k (ψkτ η

τ
j − ψkτψτsjV s)
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= (ηβi −ψ
β
riV

r)φβγ(ηγj −ψ
γ
sjV

s) = (ηβi +ψβirV
r)φβγ(ηγj +ψγjsV

s) = ψ̃βi φβγψ̃
γ
j ,

which is the required formula. Finally, for part 2, it is a simple exercise to
verify that the relation ψ̃γku

k = η̃γmV m + ξ̃γ follows from ψγkV
k = ηγmum +

ξγ .

2.5 Casimirs, Momentum, Hamiltonian

Given system (1) satisfying conditions (11), in this section we derive explicit
formulae for the corresponding Casimirs, Momentum and the Hamiltonian.
To do so we introduce the substitution ui = bix transforming system (1) into
(non-quasilinear) first-order form (21),

bit = V i(bx).

In variables bi, operator (3) takes first-order form (22). Using gij = φβγψ
β
i ψ

γ
j

we can rewrite it in factorised form,

P ij = −φβγψiβ∂xψjγ ,

recall that ψiβ is the inverse matrix to ψβi .

Theorem 7. System (21) can be represented in Hamiltonian form,

bit = V i(bx) = P ij
δH

δbj
,

with the local Hamiltonian

H =
∫
h dx = −

∫
φβγ

[ (
1
3η

γ
pψ

β
qmbmx + 1

2ω
β
p η

γ
q

)
bpbq

+xξγ
(
1
2ψ

β
pqbpb

q
x + ωβq bq

) ]
dx,

(33)

note the explicit x-dependence. The n Casimirs are given by

Cα =

∫
cαdx =

∫ (
1

2
ψαmkb

k
x + ωαm

)
bmdx. (34)

The Momentum has the form

M =

∫
m dx = −

∫ (
1

3
φβγω

β
q ψ

γ
pmb

m
x +

1

2
φβγω

β
pω

γ
q

)
bpbqdx. (35)
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Remark. In the particular case ξ = 0, equations (29), (30), (33) were
obtained in [29]. If ξ 6= 0, the corresponding Hamiltonian density h has
explicit x-dependence. It may be more than just a curiosity that all known
integrable systems (1) with Hamiltonian structure (3) admit a local compat-
ible first-order Hamiltonian operator iff h has no explicit x-dependence.

Proof. Using relations (30), one obtains the following expression for the
variational derivative of H,

δH

δbj
= −φβγ(ψβjpb

p
x + ωβj )(ηγq b

q + ξγx) = −φβγψβj (ηγq b
q + ξγx).

Thus,

bit = P ij δH
δbj

= −φβγψiβ∂xψ
j
γ
δH
δbj

= φβγψiβ∂xψ
j
γφµνψ

µ
j (ηνq b

q + ξνx)

= φβγψiβ∂xφγν(ηνq b
q + ξνx) = φβγψiβφγν(ηνq b

q
x + ξν)

= ψiν(ηνq b
q
x + ξν) = ψiνW

ν = V i(bx),

as required. Similarly, variational derivatives of the Casimirs are

δCα

δbj
= ψαjkb

k
x + ωαj = ψαj ,

so that

P ij
δCα

δbj
= −φβγψiβ∂xψjγ

δCα

δbj
= −φβγψiβ∂xψjγψαj = −φβγψiβ∂xδαγ = 0.

Finally, using (10), one computes variational derivatives of the Momentum,

δM

δbj
= −φβγψβj ω

γ
mb

m = −φβγψβj ∂
−1
x ψγmb

m
x ,

thus,

P ij
δM

δbj
= −φβγψiβ∂xψjγ

δM

δbj
= bix,

as required. Note that in the original variables ui, all of the above densities
become nonlocal.
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2.6 Algebraic reformulation of conditions (9), (10), (30)

In this section we demonstrate that algebraic constraints (9), (10), (30) can
be represented in a compact invariant form which substantially simplifies
their analysis. Let us note that lines (2) pass through the points yi =
ui, yn+1 = 1, yn+2 = 0 and yi = V i, yn+1 = 0, yn+2 = 1, respectively. The
corresponding Plücker coordinates, which are 2×2 minors of the 2× (n+ 2)
matrix (

ui . . . un 1 0
V i . . . V n 0 1

)
,

can be arranged into (n+ 2)× (n+ 2) skew-symmetric matrix,

Y =


U

−V 1 u1

...
...

−V n un

V 1 . . . V n

−u1 . . . −un
0 1
−1 0

 ,

here U is the skew-symmetric matrix with entries uiV j − ujV i. In this
notation, relations (31) can be represented as

trY Aγ = 0,

where (n+ 2)× (n+ 2) skew-symmetric matrices Aγ are defined as

Aγ =


1
2ψ

γ

ωγ1 ηγ1
...

...
ωγn ηγn

−ωγ1 . . . −ωγn
−ηγ1 . . . −ηγn

0 ξγ

−ξγ 0

 ,

here ψγ is the skew-symmetric matrix with entries ψγij . What is remarkable,
relations (9), (10), (30) compactify into a single relation

φβγA
β ∧Aγ = 0,

where each Aγ is interpreted as a 2-form.

2.7 Classification results: proof of Theorems 5, 6

In this Section we summarise the classification of 2- and 3-component Hamil-
tonian systems of conservation laws based on the classification of linear con-
gruences in P3 and P4.
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Theorem 5. For n = 2, every Hamiltonian system of conservation laws
is linearisable (that is, equivalent to 2-component case of Example 1 from
Section 1.4).

Proof. Every linear congruence in P3 consists of bisecants of two skew lines.
Modulo projective transformations, any such congruence can be brought to
the form

y1 = u1y3 + u2y4, y2 = u2y3 + u1y4,

where yi are homogeneous coordinates in P3. In the affine chart y4 = 1, the
skew lines in question can be defined as y3 = 1, y1 = y2 and y3 = −1, y1 =
−y2, respectively. The corresponding system of conservation laws is clearly
linear,

u1t = u2x, u2t = u1x,

which is a particular case of Example 1.

Theorem 6. For n = 3, every Hamiltonian system of conservation laws
is either linearisable (that is, equivalent to 3-component case of Example 1
from Section 1.4), or equivalent to the system of WDVV equations (Example
2 from Section 1.4).

Proof. Linear congruences in P4 were classified by Castelnuovo in [5]. In
our presentation we follow [2], and use (y1 : · · · : y5) for homogeneous
coordinates in P4. Over C, every linear congruence in P4 can be brought to
one of the four normal forms:

• Generic case: the focal variety is a generic projection of the Veronese
surface V 2 ⊂ P5 into P4:

y1 = u1y4 + u2y5, y2 = u2y4 + u3y5, y3 = u3y4 + ((u2)2 − u1u3)y5.

The corresponding system,

u1t = u2x, u2t = u3x, u3t = ((u2)2 − u1u3)x,

does not possess Riemann invariants (Example 2).

• The focal variety is reducible, and consists of a cubic scroll and a plane
which intersects the cubic scroll along its directrix:

y1 = u1y4 + u2y5, y2 = u2y4 + u3y5, y3 = u3y4 +
u2u3

u1
y5.
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The corresponding system,

u1t = u2x, u2t = u3x, u3t =

(
u2u3

u1

)
x

,

possesses one Riemann invariant. One can show that this system does
not possess non-degenerate third-order Hamiltonian structures.

• The focal variety is reducible, and consists of a two-dimensional quadric
and two planes which intersect the quadric along rectilinear generators
of different families:

y1 = u1y4 + u2y5, y2 = u2y4 + u3y5, y3 = u3y4 +
(u3)2 − 1

u2
y5.

The corresponding system,

u1t = u2x, u2t = u3x, u3t =

(
(u3)2 − 1

u2

)
x

,

possesses two Riemann invariants. One can show that this system does
not possess non-degenerate third-order Hamiltonian structures.

• The focal variety consists of 3 planes in general position:

y1 = u1y4 + u2y5, y2 = u2y4 + u3y5, y3 = u3y4 + u2y5.

The corresponding system is linear:

u1t = u2x, u2t = u3x, u3t = u2x,

(Example 1).

Note that the number of planar components of the focal variety equals the
number of Riemann invariants of the associated system [2].

3 Concluding remarks

The classification of n-component Hamiltonian systems of conservation laws
has been reduced to the following algebraic problem: for a vector space W
of dimension n+ 2, classify n-dimensional subspaces A ⊂ Λ2(W ) satisfying
a relation

φβγA
β ∧Aγ = 0,

where Aα is a basis of A and φ is symmetric and non-degenerate. This gives
rise to the following natural questions:

27



• Classify normal forms of such subspaces A, at least for n = 4. This
would provide explicit coordinate representation of Hamiltonian sys-
tems of conservation laws.

• Classify subspaces A corresponding to integrable systems of conserva-
tion laws (note that for n = 2, 3 all Hamiltonian systems are automat-
ically integrable). We emphasise that for n ≥ 4 the integrability is no
longer the case in general. We expect that Example 3 from Section
1.4 will play a key role in this classification.

We hope to return to these questions elsewhere.
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