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THE INTERFACE CONTROL DOMAIN DECOMPOSITION (ICDD)
METHOD FOR STOKES-DARCY COUPLING

MARCO DISCACCIATI† , PAOLA GERVASIO‡ , ALESSANDRO GIACOMINI‡ , AND ALFIO

QUARTERONI¶

Abstract. The ICDD method [15, 16] is here proposed to solve the coupling between Stokes
and Darcy equations. According to this approach, the problem is formulated as an optimal con-
trol problem whose control variables are the traces of the velocity and the pressure on the internal
boundaries of the subdomains that provide an overlapping decomposition of the original computa-
tional domain. A theoretical analysis is carried out and the well-posedness of the problem is proved
under certain assumptions on both the geometry and the model parameters. An efficient solution
algorithm is proposed, and several numerical tests are implemented. Our results show the accuracy
of the ICDD method, its computational efficiency and robustness with respect to the different pa-
rameters involved (grid-size, polynomial degrees, permeability of the porous domain, thickness of the
overlapping region). The ICDD approach turns out to be more versatile and easier to implement
than the celebrated model based on the Beavers, Joseph and Saffman coupling conditions.

Key words. Domain decomposition, Optimal control, Stokes-Darcy coupling, Heterogeneous
problems, ICDD.

AMS subject classifications. 49K20, 65N30, 65N35, 65N55, 76D07, 76S05

1. Introduction. Flow processes in a free-fluid region adjacent to a porous
medium occur in many relevant applications: in the filtration of blood through arte-
rial vessel walls and/or body tissues, in industrial processes involving, e.g., air or oil
filters and fuel cells, in cross-flow filtration procedures, in the percolation of waters of
hydrological basins through rocks and sand, just to mention a few.

At the microscopic scale the complete process can in principle be modelled by
the Navier-Stokes equations in the whole domain (both in the free-fluid and in the
porous medium regions). This would allow the computation of the exact velocity
and stress fields without resorting to any averaging procedure. However, it would
require a detailed description of the porous medium and its computational cost could
be prohibitive.

Alternatively, under the (realistic) assumption that the Reynolds number in the
porous domain is small, the Navier-Stokes equations could be therein upscaled to
a macroscopic level and replaced by the Darcy law [12], the simplest linear relation
between the fluid velocity and the pressure. Following this approach, the two different
flow regimes (the free fluid and the porous-medium flow) must be suitably coupled
to correctly describe the physical process of filtration, through transition region. An
extensive overview of coupling strategies to be used in this transition layer is presented
in [28, 40, 41].

Physical considerations induce to speculate that the thickness of the transition
region is O(ε), being ε the characteristic length of the pores inside the porous medium.
However, in several models such a region is replaced by a virtual (dimensionless) sharp
interface.
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In the latter case, the most popular method used to couple the two regimes con-
sists in imposing a set of three interface conditions based on the mass conservation,
the balance of normal forces, and the well-known Beavers–Joseph–Saffman (BJS) con-
dition. The BJS condition was derived from experimental observations by Beavers
and Joseph [1], then simplified by Saffmann [46] and later justified mathematically
by Jäger and Mikelić [29, 30] by using homogenization techniques. Other approaches
to derive the same condition are based on volume averaging, upscaling, or matched
asymptotic expansion techniques (see, e.g., [40, 41, 31, 8]). However, since the BJS
condition depends on a coefficient related to the structure of the porous material close
to the interface region and to the position of the interface itself, it is not straightfor-
ward to be characterized (see, e.g. [30, 47, 7]).

Another approach, alternative to using interface conditions, consists in solving the
Brinkman equation [3] in the whole domain (that is both in the fluid and in the porous
medium). The transition between the two fluid regimes is achieved automatically
by varying in a discontinuous way the permeability and the porosity across a sharp
interface and by introducing the so-called effective viscosity in the porous medium. No
interface conditions are needed in this approach. See [9] and references therein. This
technique is very simple to implement and it is widely used in commercial software,
however it is very sensitive to the parameters used in the model and some of the
quantities involved (e.g., the effective viscosity) are difficult to characterize in practical
applications [26, 27, 33].

Minor attention has been given in the literature to the case of a transition region
with positive and small thickness. In [40, 41], Ochoa-Tapia and Whitaker solve the
Stokes equations in the free-fluid domain, the Stokes problem with an additional term
featuring a variable porosity inside the transition region, and the Darcy model with
Brinkman correction in the porous domain. Their approach produces a jump in the
stress but not in the velocity at the two interfaces of the transition region.

In this paper we propose an alternative approach still based on the use of a thin
transition region. However, the novelty is that we do not solve any particular new
equation inside such a region (neither we enforce any matching conditions in it). In
fact, our transition region merely represents the overlap of two regions, one in which
we solve the free fluid (Stokes) equations, the other where we solve the porous medium
(Darcy) equation. The coupling between the two solutions is not modelled, rather it
is achieved by imposing in a least-squares sense the continuity of velocity and pressure
only across the two subdomain interfaces that delimitate the thin transition layer.

More specifically, we use the so-called Interface Control Domain Decomposition
(ICDD) method, formerly introduced in [15] as a solution strategy for boundary value
problems governed by elliptic partial differential equations and then extended to the
Stokes equations in [16]. The ICDD method shares some similarities with the classic
overlapping Schwarz method [44] and with the Least Square Conjugate Gradient [23]
and the Virtual Control [37, 20, 14] methods, and it is characterized by a decompo-
sition of the original domain into overlapping regions.

Generally speaking, the ICDD method introduces new auxiliary control variables
on the subdomain internal boundaries (named interfaces) that play the role of the
unknown traces (or fluxes) of the state solutions of the subproblems. Such controls
are determined by minimizing a suitable cost functional that measures the jump of
the quantities of interest at the interfaces of the decomposition. As a matter of fact we
solve an optimal control problem in which both controls and observation are defined
on the interfaces and whose constraints are the PDE’s on the overlapping subdomains.
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In this paper we propose and analyze an ICDD method for the Stokes-Darcy
coupling, in which the controls are of Dirichlet type: we control the velocity on the
interface of the Stokes domain and the pressure on the interface of the Darcy one.
The cost functional measures the gap between Stokes and Darcy velocities on one
interface and the gap in the pressures on the other one. In this way, both Stokes and
Darcy subproblems are closed by very simple (Dirichlet) boundary conditions on the
interfaces and there is no need to evaluate neither fluxes nor tangential derivatives, nor
to solve auxiliary problems inside the thin layer (overlapping) region. In particular,
this feature makes ICDD very suitable to deal with interfaces of arbitrary shape (not
only straight lines).

In the case of the Stokes-Darcy coupling the thickness δ of the overlapping region
is crucial to correctly represent the filtration process. It is known that for isotropic
media, δ should be set proportional to the characteristic length of the pores ε or, after
nondimensionalization, to the ratio between ε and the characteristic length xs of the
Stokes domain [46, 40, 30]. Using a totally different argument, a similar quantity d/h
was introduced in the asymptotic expansion of Chandesris and Jamet in [8], where
d is proportional to the pore dimension, while h is the height of the fluid standing
above the porous layer.

At the discrete level the ICDD method uses conforming discretization spaces for
both the Stokes velocity and the Darcy pressure, to ensure the correct definition of
the optimal control problem.

Numerical comparison with the results obtained using the BJS condition on a
sharp interface shows that ICDD provides accurate solutions for both near parallel
and near normal flows to the porous media (this terminology follows the classification
of Levy and Sanchez-Palencia [18, 35]). We point out that the numerical comparision
with the sharp interface approach and BJS conditions is performed to validate the
ICDD method and not to show any equivalence between the two approaches when
δ → 0. As a matter of fact, there is no reason why ICDD should make sense when
δ = 0.

The outline of the paper is as follows. In section 2 we present the ICDD method.
In section 3 the well-posedness of the optimal control problem in the continuous setting
is analyzed. In section 4 we present the hp-FEM discretization of the optimal control
problem and we focus on its well-posedness and convergence analysis. Finally, section
5 presents several numerical results aimed at corroborating the convergence behavior
of the proposed ICDD method and comparing it to the classical coupling strategy
relying on the BJS condition on a sharp interface.

2. The ICDD method. Let Ω ⊂ Rd (d = 2, 3) be an open bounded domain
with Lipschitz continuous boundary ∂Ω. We consider an overlapping decomposition
of Ω into two subdomains Ω1 and Ω2 such that

Ω = Ω1 ∪ Ω2, Ω12 = Ω1 ∩Ω2 6= ∅, Γi = ∂Ωi \ ∂Ω, i = 1, 2,

as shown in the picture on the left of Figure 2.1. For i = 1, 2, let ∂ΩN
i and ∂ΩD

i be
non-empty, non-intersecting, and complementary subsets of ∂Ωi ∩ ∂Ω; ni be the unit
normal vector to ∂Ωi directed outwards the domain Ωi. The following geometrical
assumptions will be considered in the whole paper (see the picture on the left of Fig.
2.2).

Assumptions 2.1 (Geometric assumptions). For i = 1, 2 (and j = 3 − i), let

∂ΩD
i be open in the relative topology of ∂Ωi with di = dist(Γi, ∂ΩD

i ) > 0.
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Γ

Fig. 2.1. Representation of a 2D section of a possible computational domain for the coupled
free/porous-media flow problem. On the left a decomposition with overlap, on the right a decompo-
sition with sharp interface Γ.
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Fig. 2.2. The description of the geometric Assumptions 2.1 (on the left) and 3.2 (on the middle
and on the right)

The free/porous-media flow problem is typically modeled by the coupling of
Navier-Stokes equations and Darcy law (see, e.g., [39, 17]). However, when the
Reynolds number is small the Stokes equations can replace the Navier-Stokes ones,
upon neglecting the nonlinear convective term. The same (generalized) Stokes equa-
tions are recovered when the time discretization of the Navier-Stokes problem is car-
ried out by using a semi-implicit scheme that treats the convective part explicitly. For
these reasons we will present the ICDD method for the Stokes/Darcy problem. With
this aim, we introduce two unknown functions λ1 and λ2 defined on the interfaces Γ1

and Γ2, respectively, that are named controls and play the role of Dirichlet data for
the following Stokes and Darcy subproblems, respectively:

Stokes system: Darcy system:

−∇ ·T1(u1, p1) = f1 in Ω1 α−1u2 +∇p2 = f2 in Ω2

∇ · u1 = 0 in Ω1 ∇ · u2 = 0 in Ω2

u1 = λ1 on Γ1 p2 = λ2 on Γ2

u1 = 0 on ∂ΩD
1 p2 = 0 on ∂ΩD

2

T1(u1, p1)n1 = 0 on ∂ΩN
1 u2 · n2 = 0 on ∂ΩN

2 ,

(2.1)

where u1 and p1 denote, respectively, the velocity and the pressure of the free fluid in
Ω1; T1(u1, p1) = µ(∇u1 + (∇u1)

T )− p1I is the Cauchy stress tensor, where µ > 0 is
the dynamic viscosity and u2 is the specific discharge (also known as Darcy velocity,
seepage velocity, filtration velocity, or volumetric flux density) and represents the
average of the fluid velocity over a volume element of the medium (incorporating
both solid and fluid material); p2 is the intrinsic average pressure of the fluid inside
the porous media; f1 and f2 are given external forces and finally α represents a suitable
bounded positive definite and symmetric tensor. More precisely, denoting by g the
modulus of gravity acceleration, by z0 a reference quote, and by κ = κ(x) the intrinsic
permeability of the media, we recover the classical Darcy equations by setting

α =
κ

µ
and f2 = −∇(ρg(z − z0))
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where ρ > 0 is the density of the fluid.
The unknown controls λ1 and λ2 in (2.1) can be obtained by minimizing a suitable

cost functional that measures the gap between the velocities and the pressures on the
interfaces Γ1 and Γ2, respectively, that is

inf
(λ1,λ2)

[
J(λ1, λ2) =

1

2
‖u1(λ1)− u2(λ2)‖2Γ1

+
1

2
‖p2(λ2)− p1(λ1)‖2Γ2

]
, (2.2)

in suitable norms. For the time being, this expression is a formal one. We will better
specify the meaning of J after introducing the functional spaces.

Problem (2.1)–(2.2) is in fact an optimal control problem, in which (ui, pi) (for
i = 1, 2) represent the state variables. The solutions of (2.1)–(2.2) depend on both
the controls, the right hand side of the momentum equation and the boundary data,
but we omit at this stage such dependences for sake of notation.

3. Analysis of ICDD. In this section we analyze the problem in the continuous
setting. First we study the well-posedness and the regularity for the subproblems, then
we apply such results to prove that the optimal control problem is well defined.

3.1. Weak formulation of the subproblems and regularity results. We
introduce the functional spaces

H(div,Ω) = {v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)},
V1 = {v1 ∈ [H1(Ω1)]

d : v1|∂ΩD
1

= 0}, V0
1 = {v1 ∈ V1 : v1|Γ1

= 0}, Q1 = L2(Ω1),

V2 = {v2 ∈ H(div,Ω2) : v2 · n2 = 0 on ∂ΩN
2 }, Q2 = L2(Ω2),

Λ1 = [H1/2(Γ1)]
d, Λ2 = H1/2(Γ2).

Assumptions 3.1 (Data assumptions). We assume that f1 ∈ [L2(Ω1)]
d, f2 ∈

H(div,Ω2), and ∃λα > 0 such that the symmetric tensor α ∈ [L∞(Ω2)]
d×d satisfies

ξTαξ ≥ λα|ξ|2, ∀ξ ∈ Rd.
Should λ1 ∈ Λ1, λ2 ∈ Λ2 be known, the weak form of system (2.1) reads: given

f1 ∈ [L2(Ω1)]
d, f2 ∈ H(div,Ω2), look for (u1, p1) ∈ V1 ×Q1 with u1 = λ1 on Γ1 and

(u2, p2) ∈ V2 ×Q2 s.t.

a1(u1,v1) + b1(v1, p1) = F1(v1) ∀v1 ∈ V0
1

b1(u1, q1) = 0 ∀q1 ∈ Q1

(3.1)

and

a2(u2,v2) + b2(v2, p2) = F2(v2)− 〈v2 · n2, λ2〉Γ2
∀v2 ∈ V2

b2(u2, q2) = 0 ∀q2 ∈ Q2,
(3.2)

where:

a1 : V1 ×V1 → R, a1(u1,v1) =

∫

Ω1

µ

2
(∇u1 + (∇u1)

T ) : (∇v1 + (∇v1)
T )dΩ,

a2 : V2 ×V2 → R, a2(u2,v2) =

∫

Ω2

(α−1u2) · v2dΩ

bi : Vi ×Qi → R, bi(vi, qi) = −
∫

Ωi

qi∇ · vidΩ,

Fi : Vi → R, Fi(vi) =

∫

Ωi

fi · vidΩ, i = 1, 2,

(3.3)
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while 〈·, ·〉Γ2
denotes the duality pairing between H1/2(Γ2) and its dual space. The

inner product and the norm in H1/2(Γi) will be denoted by (·, ·) 1

2
,Γi

and ‖ · ‖ 1

2
,Γi

,
respectively. The following well-posedness result holds true.

Theorem 3.1 (Well posedness). Let Assumptions 2.1 and 3.1 be satisfied. If
λ1 ∈ Λ1, and λ2 ∈ Λ2, then both problems (3.1) and (3.2) are well-posed, with in
addition p2 ∈ H1(Ω2). Moreover

‖u1‖V1
≤ C1

(‖f1‖L2(Ω1)

µ
+ ‖λ1‖ 1

2
,Γ1

)

‖p1‖L2(Ω1) ≤ C1

(
‖f1‖L2(Ω1) + µ‖λ1‖ 1

2
,Γ1

) (3.4)

and

‖p2‖H1(Ω2) ≤ C2

(
‖f2‖L2(Ω2) + ‖λ2‖ 1

2
,Γ2

)
, (3.5)

for suitable constants C1 = C1(Ω1, ∂Ω
D
1 ,Γ1) and C2 = C2(Ω2, ∂Ω

D
2 ,Γ2,α).

Proof. Let us consider the Stokes problem. The velocity field solution of (3.1)
can be written as u1 = u1,0 + E1λ1, where (u1,0, p1) ∈ V0

1 ×Q1 is the solution of

a1(u1,0,v1) + b1(v1, p1) = (f1,v1)L2(Ω) − a1(E1λ1,v1) ∀v1 ∈ V0
1

b1(u1,0, q1) = −b1(E1λ1, q1) ∀q1 ∈ Q1,
(3.6)

and E1λ1 ∈ V1 is an extension of λ1. We claim that we can assume

‖∇(E1λ1)‖L2(Ω1) ≤ c1‖λ1‖ 1

2
,Γ1
, (3.7)

where c1 depends on the triplet (Ω1, ∂Ω
D
1 ,Γ1). The bilinear form a1 is continuous

and coercive on ‖ · ‖V1
, coercivity being a consequence of Korn’s inequality (see e.g.

[44, (5.2.5)])

∫

Ω1

(∇v + (∇v)T ) : (∇v + (∇v)T ) ≥ K∗(Ω1, ∂Ω
D
1 )‖v‖V1

for any v ∈ V0
1. The bilinear form b1 is continuous and satisfies the inf-sup condition

[44, Prop. 5.3.2]. By applying classical results on saddle-point problems ([2, Thm.
4.2.1]), (3.6) admits a unique solution. Moreover, estimate (3.4) is a consequence of
[2, Cor. 4.2.1], and of (3.7).

We achieve estimates (3.7) by choosing E1λ1 ∈ V1 as a harmonic extension with
Neumann conditions on ∂ΩN

1 , i.e., such that

(∇E1λ1,∇v1)L2(Ω1) = 0 ∀v1 ∈ V0
1.

This can be proved as follows. On Λ1 we define the norm

‖λ1‖∗ = inf{‖v‖H1(Ω1) : v = λ1 on Γ1, v = 0 on ∂ΩD
1 }. (3.8)

In view of the geometrical assumptions 2.1, ‖ · ‖∗ is equivalent to the canonical norm
in H1/2(Γ1). As a matter of fact

‖λ1‖ 1

2
,Γ2

= inf{‖v‖H1(Ω1) : v = λ1 on Γ1}
≤ inf{‖v‖H1(Ω1) : v = λ1 on Γ1, v = 0 on ∂ΩD

1 } = ‖λ1‖∗.
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Vice versa, being d1 = dist(Γ1, ∂ΩD
1 ) > 0, there exist functions ϕ ∈ C∞

c (Rd) s.t.

ϕ = 1 in an open set containing Γ1 and ϕ = 0 in an open set containing ∂ΩD
1 . Let

v ∈ H1(Ω1) s.t. v|Γ1
= λ1, then (ϕv) ∈ H1(Ω1), (ϕv)|Γ1

= λ1, (ϕv)|∂ΩD
1

= 0, and

‖λ1‖∗ ≤ ‖ϕv‖H1(Ω1) ≤ Cϕ‖v‖H1(Ω1). By taking the infimum over v, it holds

‖λ1‖∗ ≤ Cϕ inf{‖v‖H1(Ω1) : v = λ1 on Γ1} = Cϕ‖λ1‖ 1

2
,Γ1
.

Since clearly ‖∇(E1λ1)‖L2(Ω1) ≤ ‖λ1‖∗, claim (3.7) follows (note that Cϕ depends
only on the geometry of (Ω1, ∂Ω

D
1 ,Γ1)).

Existence of a unique solution for the Darcy problem can be obtained in a similar
way. (See [2, Sect. 4.2.5] for the existence, and [43, Thm 7.1.2] for the higher regularity
of p2. See also Remark 3.2 below). Estimate (3.5) is a consequence of classical results
on elliptic problems (together with the scalar analogue of (3.7)).

Remark 3.1. In view of the proof above, the constant C1 appearing in (3.4)
depends on the geometry of the triplet (Ω1, ∂Ω

D
1 ,Γ1). In particular the constant C1

increases as d1 = dist(Γ1, ∂ΩD
1 ) decreases. Roughly speaking, we can assume C1 ∼

d−1
1 . The dependence of C2 in (3.5) upon both α and (Ω2, ∂Ω

D
2 ,Γ2) is readily seen

(see Remark 3.2 below) to be of the form

C2 =

√
‖α‖∞
λα

√

1 +
‖α‖∞
λα

Ĉ2(Ω2, ∂Ω
D
2 ,Γ2) (3.9)

where λα is the coercivity constant of α, and the dependence of Ĉ2 on the triplet
(Ω2, ∂Ω

D
2 ,Γ2) having the same features already seen for C1.

Remark 3.2. The Darcy problem can be reformulated as an elliptic problem for
the pressure p2 as follows, making both the higher regularity for the pressure and the
associated estimate more transparent. As a matter of fact p2 ∈ H1(Ω2) is such that
for every ϕ ∈ H1(Ω2) with ϕ = 0 on Γ2 ∪ ∂ΩD

2

∫

Ω2

α∇p2 · ∇ϕdΩ =

∫

Ω2

αf2 · ∇ϕdΩ.

The associated velocity u2 is recovered by setting u2 = α(f2 −∇p2).
The following theorem establishes the local regularity of the solutions of (3.1) and

(3.2).
Theorem 3.2 (Regularity). Let Assumptions 2.1 and 3.1 be satisfied. For i =

1, 2, let Ω′ ⊆ Ωi be such that Ω′ ∩ ∂Ωi ⊂ Ai, with Ai ⊂ (∂ΩD
i ∪ int(∂ΩN

i )) open and
of class C2,1 (openness and internal part are intended in the relative topology of the
boundary). Then the following items hold true.

1. Let (u1, p1) ∈ V1 × Q1 be the solution of (3.1). Then u1 ∈ H2(Ω′), p1 ∈
H1(Ω′) and there exists a positive constant C3(Ω

′) s.t.

µ‖u1‖H2(Ω′) + ‖p1‖H1(Ω′) ≤ C3(‖f1‖L2(Ω1) + µ‖u1‖H1(Ω1) + ‖p1‖L2(Ω1)).
(3.10)

2. Let (u2, p2) ∈ V2×Q2 be the solution of (3.2). If α is of class C1 on Ω2 and
f2 ∈ H(div,Ω2) ∩H1(Ω2), then u2 ∈ H1(Ω′), p2 ∈ H2(Ω′) and there exists
a positive constant C4(Ω

′, ‖α‖C1) s.t.

‖u2‖H1(Ω′) + ‖p2‖H2(Ω′) ≤ C4(‖f2‖H1(Ω2) + ‖p2‖H1(Ω2)). (3.11)
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Proof. Concerning the Stokes problem, interior regularity and regularity up to
the Dirichlet part of the boundary are contained in Chapter 3 of [10] (Lemma 3.6
and Theorem 3.7). The extension to the regularity up to the Neumann part of the
boundary can be achieved by adapting the same arguments. More precisely: regular
cut-off functions are used to localize the problem near the Neumann part of the
boundary; the change of coordinates is employed to flatten the boundary (this is the
reason why we require that Ai is C

2,1 regular); Nieremberg method is used to bound
the incremental quotients in tangential direction for both ∇u1 and p1; information
concerning normal directions are inferred using the Stokes equations, hence the full
local H2 regularity for the velocity and full local H1 regularity for the pressure,
together with the associated estimate (3.10) through a covering argument.

Concerning the Darcy problem, we employ the equivalent reformulation detailed
in Remark 3.2. Then as a consequence of standard elliptic regularity (see, e.g., [22]),
we obtain that p2 ∈ H2(Ω′), hence also u2 ∈ H1(Ω′) in view of u2 = α(f2 − ∇p2),
together with estimate (3.11) through a covering argument.

Remark 3.3. Notice that the constant C3(Ω
′) increases as the distance between

Ω′ and Γ1∪(∂ΩD
1 ∩∂ΩN

1 ) decreases: roughly speaking, we can say that it is proportional
to the inverse of this distance. The same can be said for C4(Ω

′, ‖α‖C1).
The previous result motivates the following assumptions (see also Fig. 2.2).
Assumptions 3.2 (Regularity assumptions). For i = 1, 2 (and j = 3 − i), let

Γj ∩ ∂Ωi ⊂ Ai, with Ai ⊂ (∂ΩD
i ∪ int(∂ΩN

i )) open and of class C2,1 (openness and
internal part are intended in the relative topology of the boundary). Moreover, let
α ∈ [C1(Ω2)]

d×d and f2 ∈ H(div,Ω2) ∩H1(Ω2).
Notice that Assumptions 3.2 entails that Γj is far enough from the points of the

boundary where boundary conditions change from Dirichlet to Neumann and that

δ = dist(Γ1,Γ2) > 0. (3.12)

We can think of δ as the characteristic length of the overlapping between Ω1 and Ω2.
Remark 3.4. Assumptions 3.2 imply that the traces of p1 on Γ2 and u2 on Γ1

are well-defined as elements in H1/2 (we can choose Ω′ containing Γi), so that we
can characterize the norms involved in the minimization problem (2.2) by choosing
H1/2(Γi) norms.

3.2. Well-posedness of the optimal control problem. Let us formally write
the solutions (ui, pi) of (3.1) and (3.2) as ui = uλi,fi

i and pi = pλi,fi
i . Upon setting

Λ = Λ1 × Λ2, the ICDD method to solve the Stokes-Darcy problem (2.1) reads as a
constrained minimization problem: look for

inf
λ∈Λ

[
J(λ) =

1

2
‖uλ1,f1

1 − uλ2,f2
2 ‖2

1

2
,Γ1

+
1

2
‖pλ2,f2

2 − pλ1,f1
1 ‖2

1

2
,Γ2

]
. (3.13)

The main result of this section is that under suitable assumptions on the geometry
of the domains and on the coefficients, problem (3.13) admits a unique solution.

Let us set

uλi

i = uλi,0
i and pλi

i = pλi,0
i .

The following lemma provides stability estimates at the interfaces which will be useful
in the sequel.

Lemma 3.3. Let Assumptions 2.1, 3.1, and 3.2 be satisfied. Then
∥∥∥pλ1

1 |Γ2

∥∥∥
1

2
,Γ2

≤ µC1C3‖λ1‖ 1

2
,Γ1

(3.14)
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and
∥∥∥uλ2

2 |Γ1

∥∥∥
1

2
,Γ1

≤ ‖α‖C1C2C4‖λ2‖ 1

2
,Γ2
, (3.15)

where C1, C2 are defined in Theorem 3.1, while C3, C4 are defined in Theorem 3.2.
Proof. In view of Assumptions 3.2 we can apply Lemma 3.2 to (uλ1

1 , pλ1

1 ), by
choosing an admissible Ω′ s.t. Γ2 ⊂ Ω′. Estimate (3.14) follows then combining (3.10)
and (3.4). The proof of estimate (3.15) is similar recalling that uλ2

2 = −α∇pλ2

2 .
For any λ = (λ1, λ2) ∈ Λ = Λ1 × Λ2, we define

|||λ||| =
(
‖uλ1

1 − uλ2

2 ‖21
2
,Γ1

+ ‖pλ2

2 − pλ1

1 ‖21
2
,Γ2

)1/2
. (3.16)

Lemma 3.4. Let Assumptions 2.1, 3.1, and 3.2 be satisfied. Let

µ‖α‖C1C1C2C3C4 < 1 (3.17)

where C1, C2 are defined in Theorem 3.1, while C3, C4 are defined in Theorem 3.2.
Then ||| · ||| is a norm on the control space Λ equivalent to the canonical norm

‖λ‖Λ =
(
‖λ1‖21

2
,Γ1

+ ‖λ2‖21
2
,Γ2

)1/2
.

Proof. ||| · ||| is obviously a seminorm, therefore we limit ourselves to show that
|||λ||| = 0 implies λ = 0. We observe that |||λ||| = 0 implies

λ1 = uλ2

2 |Γ1
, λ2 = pλ1

1 |Γ2
. (3.18)

Then, we have to prove that the unique solution of (3.1), (3.2), (3.18) is λ =
(λ1, λ2) = (0, 0). We define the linear map ψ : Λ → Λ such that

λ =

[
λ1

λ2

]
7→
[

(uλ1

1 , pλ1

1 )

(uλ2

2 , pλ2

2 )

]
7→
[

uλ2

2 |Γ1

pλ1

1 |Γ2

]
= ψ(λ). (3.19)

We observe that λ is a solution of (3.1), (3.2), (3.18) if and only if ψ(λ) = λ.
If ψ(λ) = λ, then in view of (3.14) and (3.15) we infer

‖λ1‖ 1

2
,Γ1

≤ ‖α‖C1C2C4‖λ2‖ 1

2
,Γ2

and ‖λ2‖ 1

2
,Γ2

≤ µC1C3‖λ1‖ 1

2
,Γ1
,

and thus

‖λ2‖ 1

2
,Γ2

≤ µ‖α‖C1C1C2C3C4‖λ2‖ 1

2
,Γ2
.

In view of (3.17) we infer λ2 = 0. Similar calculations show that also λ1 = 0.
Inequality (3.17) entails also the equivalence of the two norms. In view of Lemma

3.3 the norm ||| · ||| is controlled by ‖ · ‖Λ. Vice versa, we have

‖λ1‖ 1

2
,Γ1

≤ ‖uλ1

1 − uλ2

2 ‖ 1

2
,Γ1

+ ‖α‖C1C2C4‖λ2‖ 1

2
,Γ2
,

‖λ2‖ 1

2
,Γ2

≤ ‖pλ2

2 − pλ1

1 ‖ 1

2
,Γ2

+ µC1C3‖λ1‖ 1

2
,Γ1
,

so that

(1− µ‖α‖C1C1C2C3C4)‖λ1‖ 1

2
,Γ1

≤ ‖uλ1

1 − uλ2

2 ‖ 1

2
,Γ1

+ ‖α‖C1C2C4‖pλ2

2 − pλ1

1 ‖ 1

2
,Γ2
,
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and a similar estimate holds for ‖λ2‖ 1

2
,Γ2

. The equivalence between the two norms
immediately follows.

Remark 3.5. Fixing the geometry, condition (3.17) can be achieved by taking
µ or ‖α‖C1 (with ‖α‖∞/λα bounded from above) sufficiently small. In the isotropic
case

α =
κ

µ
I

and in the case in which the thickness overlap δ (defined in (3.12)) is small, so that C3

and C4 behave essentially as δ−1, in view of Remarks 3.1 and 3.3 we get the condition
κC(δ) < 1, where C(δ) ∼ δ−2. This is in agreement with the requirement δ ∼ √

κ ∼ ε
suggested by the physical analysis of the filtration of fluids in porous media (being ε
the porous size). See the comment in the introduction and Sect. 5.

Remark 3.6. The requirement di = dist(Γi, ∂ΩD
i ) > 0 for i = 1, 2 entailed by

Assumptions 2.1 is crucial for our arguments in the proof of Lemma 3.4. If indeed

di = 0, then estimates (3.4) and (3.5) would involve the H
1/2
00 norms of λ1 and λ2.

However, the traces of uλ2

2 on Γ1 and of pλ1

1 on Γ2 do not belong to H
1/2
00 in general,

so that the form of (3.16) should remain unchanged. Since the H1/2 norm is strictly

weaker than that of H
1/2
00 , the arguments employed above fail.

Let us define the bilinear form π : Λ×Λ → R

π(λ,η) =
1

2
(uλ1

1 − uλ2

2 ,u
η

1

1 − uη2

2 ) 1

2
,Γ1

+
1

2
(pλ2

2 − pλ1

1 , pη2

2 − p
η

1

1 ) 1

2
,Γ2

(3.20)

and the linear functional L : Λ → R

L(η) = −1

2
(u0,f1

1 − u0,f2
2 ,u

η
1

1 − uη2

2 ) 1

2
,Γ1

− 1

2
(p0,f22 − p0,f11 , pη2

2 − p
η

1

1 ) 1

2
,Γ2
, (3.21)

so that (since u0,f1
1 = 0 on Γ1 and p0,f22 = 0 on Γ2)

J(η) = π(η,η)− 2L(η) + 1

2
‖u0,f2

2 ‖21
2
,Γ1

+
1

2
‖p0,f11 ‖21

2
,Γ2
. (3.22)

It is immediate to show that π and L are continuous in Λ w.r.t. the norm ||| · |||.
We prove now that the optimal control problem (3.13) has a unique solution.
Theorem 3.5. Under the hypoteses of Lemma 3.4, problem (3.13), whose state

variables satisfy (3.1), (3.2), has a unique solution λ = argmin
η∈Λ

J(η) that satisfies the

Euler-Lagrange equation

〈J ′(λ),η〉 = (uλ1,f1
1 − uλ2,f2

2 ,u
η

1

1 − uη2

2 ) 1

2
,Γ1

+(pλ2,f2
2 − pλ1,f1

1 , pη2

2 − p
η

1

1 ) 1

2
,Γ2

= 0 ∀η ∈ Λ.
(3.23)

Moreover, ∃c > 0 constant such that |||λ||| ≤ c
(
‖u0,f2

2 ‖ 1

2
,Γ1

+ ‖p0,f11 ‖ 1

2
,Γ2

)
.

Proof. Thanks to Lemma 3.4, π is coercive on Λ with respect to the norm ||| · |||
(as a matter of fact |||η|||2 = π(η,η)). Then, by applying classical results of the
calculus of variations (see, e.g., [36, Thm I.1.1]), both existence and uniqueness of
solution in Λ follow. The Euler-Lagrange equation (3.23) follows by noticing that
〈J ′(λ),η〉 = 2π(λ,η)− 2L(η), for any λ,η ∈ Λ. Then λ is the unique solution of

π(λ,η) = L(η) ∀η ∈ Λ. (3.24)

Finally, the last assertion follows from |||λ|||2 = π(λ,λ) = L(λ) ≤ c(‖u0,f2
2 ‖ 1

2
,Γ1

+

‖p0,f11 ‖ 1

2
,Γ2

)|||λ|||.
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4. hp-FEM discretization. For i = 1, 2, let Ti be a partition of the computa-
tional domain Ωi ⊂ Rd in either simplices or quads (quadrilaterals when d = 2 and
hexahedra when d = 3). The first ones are typical of classical FEM, the others of
Spectral Elements Methods (SEM) with tensorial structure (see [5, 6]); from now on
we group them under hp−FEM. We denote by T̂ the reference element, that can be
either the reference simplex with vertexes 0 and the points on the axis whose distance
from the origin is 1, or the d−dimensional cube (−1, 1)d.

We suppose that each element T ∈ Ti is obtained by a C1 diffeomorphism FT of
the reference element T̂ and we suppose that two adjacent elements of Ti share either
a common vertex, or a complete edge, or else a complete face (when d = 3). For each
T ∈ Ti we denote by hT = diam(T ) = maxx,y∈T |x − y| the diameter of element T
and we define hi = maxT∈Ti

hT . Then, when simplicial partitions are considered, we
require that the grid is regular in each Ωi (see, e.g., [43]).

Given an integer p ≥ 1, let us denote by Pp the space of polynomials whose global
degree is less than or equal to p in the variables x1, . . . , xd and by Qp the space of
polynomials that are of degree less than or equal to p with respect to each variable
x1, . . . , xd. The space Pp is used for simplexes, Qp for quads. We introduce the
following finite dimensional spaces in Ωi:

Xp
i,h = {v ∈ C0(Ωi) : v|T ∈ Qp, ∀T ∈ Ti} (4.1)

where Qp = Pp in the simplicial case and Qp = Qp ◦ F−1
T for quads. Finally, let Mi

be the set of the nodes xj of the mesh Ti.
In the Stokes subdomain we consider either inf-sup stable finite dimensional spaces

or stabilized couples of spaces (see, e.g., [2, 19, 21, 25, 42]). In the Darcy subdomain
we can either consider stabilized finite dimensional spaces (see, e.g., [38]) to approxi-
mate the velocity and the pressure, or adopt a Stokes-compatible formulation as that
introduced in [11], or again inf-sup stable spaces. We assume that the polynomials
used for both the Stokes velocity and the Darcy pressure are continuous (see, e.g.,
[2, 43]) to guarantee that the traces of u1,h and p2,h are well defined on Γ1 and Γ2,
respectively. Then, for suitable polynomial degrees p, r, t and s, the finite dimensional
spaces for velocity and pressure are, respectively,

V1,h = V1 ∩ [Xp
1,h]

d, V0
1,h = V0

1 ∩ [Xp
1,h]

d, Q1,h = Q1 ∩Xr
1,h,

V2,h = V2 ∩ [Xt
2,h]

d, Q2,h = Q2 ∩Xs
2,h.

Finally, the spaces of discrete Dirichlet controls are defined as

Λ1,h = {λ1,h ∈ [C0(Γ1)]
d : ∃v1,h ∈ V1,h with λ1,h = v1,h|Γ1

} ⊂ Λ1 (4.2)

Λ2,h = {λ2,h ∈ C0(Γ2) : ∃q2,h ∈ Q2,h with λ2,h = q2,h|Γ2
} ⊂ Λ2. (4.3)

We denote by Nu
Ω1
, Np

Ω1
, NΓ1

, Nu
Ω2
, Np

Ω2
, and NΓ2

the cardinality of V0
1,h, Q1,h,

Λ1,h, V2,h, Q2,h, and Λ2,h, respectively.
In each discrete functional space we consider the basis of the characteristic La-

grange polynomials associated with the nodes ofMi and we denote by ϕi,ℓ (for i = 1, 2
and ℓ = 1, . . . , Nu

Ωi
) and ψi,ℓ (for i = 1, 2 and ℓ = 1, . . . , Np

Ωi
) the basis functions of

V0
1,h, V2,h and Q1,h, Q2,h respectively. The basis functions in Λ1,h are denoted by

η1,ℓ (for ℓ = 1, . . . , NΓ1
) and they are defined by restriction to Γ1 of the basis func-

tions of V1,h that are not identically null on Γ1. Similarly we define the basis function
η2,ℓ (for ℓ = 1, . . . , NΓ2

) of Λ2,h, starting from the basis in Q2,h.
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Because of the difficulty to compute integrals exactly for large p, typically when
quad partitions are employed, Legendre-Gauss-Lobatto quadrature formulas are used
to approximate both the bilinear forms Ai and the L2−inner products in Ωi (as well
as on the interfaces). This leads to the so-called Galerkin approach with Numeri-
cal Integration (G-NI) [5, 4] and to the Spectral Element Method with Numerical
Integration (SEM-NI).

We define the discrete counterpart of the extension operator: E1,h : Λ1,h → V1,h

s.t. E1,hλ1,h = λ1,h on Γ1 and (E1,hλ1,h)(xj) = 0 for any xj ∈ M1∩(Ω1\(Γ1∪∂ΩN
1 )).

The discrete counterpart of (3.1)–(3.2) reads: given f1 ∈ [L2(Ω1)]
d, f2 ∈ H(div,Ω2),

λ1,h ∈ Λ1,h, λ2,h ∈ Λ2,h we look for (u1,0,h, p1,h) ∈ V0
1,h × Q1,h and (u2,h, p2,h) ∈

V2,h ×Q2,h such that

A1,h(u1,0,h, p1,h;v1,h, q1,h) = −B1,h(E1,hλ1,h;v1,h, q1,h) + F1,h(v1,h, q1,h)

∀(v1,h, q1,h) ∈ V0
1,h ×Q1,h

u1,h = u1,0,h + E1,hλ1,h

A2,h(u2,h, p2,h;v2,h, q2,h) = −B2,h(λ2,h;v2,h) + F2,h(v2,h, q2,h)

∀(v2,h, q2,h) ∈ V2,h ×Q2,h

(4.4)

where, for γ1 ∈ {−1, 0, 1}, and τk = τk(x) a stabilization parameter depending on
both mesh size h and local polynomial degree (see, e.g. [19, 21]), we set:

A1,h(w1,h, s1,h;v1,h, q1,h) = a1(w1,h,v1,h) + b1(v1,h, s1,h)− b1(w1,h, q1,h)

+
∑

Tk∈T1

(−ν∆w1,h +∇s1,h, τk(γ1ν∆v1,h +∇q1,h))L2(Tk)

B1,h(w1,h;v1,h, q1,h) = A1,h(w1,h, 0;v1,h, q1,h)

F1,h(v1,h, q1,h) = F1(v1,h) +
∑

Tk∈T1

(f1, τk(γ1ν∆v1,h +∇q1,h))L2(Tk).

(4.5)

Moreover,

A2,h(w2,h, s2,h;v2,h, q2,h) = a2(w2,h,v2,h) + b2(v2,h, s2,h)− b2(w2,h, q2,h)

+γ2,1(α
−1w2,h +∇s2,h,α/2(−α−1v2,h +∇q2,h))L2(Ω2)

+γ2,2(∇·w2,h, ‖α−1‖∇· v2,h)L2(Ω2) + γ2,3(α∇× (α−1w2,h),∇× (α−1v2,h))L2(Ω2),

B2,h(s2,h;v2,h) = 〈v2,h · n2, s2,h〉Γ2

F2,h(v2,h, q2,h) = F2(v2,h) + γ2,1(f2,α/2(−α−1v2,h +∇q2,h))L2(Ω2)

+γ2,3(α∇× (α−1f2),∇× (α−1v2,h))L2(Ω2).

For γ2,1 = 1, γ2,2 = h2/2, γ2,3 = 0 we recover the stabilization method [38], while if
γ2,1 = 0 and γ2,2 and γ2,3 are suitably chosen parameters we obtain the formulation
proposed in [11]. If τk = 0 in (4.5) we recover the classical weak form of the Stokes
problem, that is well-posed once the discrete spaces satisfy the inf-sup condition [2].
We need however to mention that other finite dimensional discretizations could be
used as well. As a matter of fact, the emphasis of this paper is on the ICDD modeling
and not necessarily on the specific way the two subproblems (Stokes’ and Darcy’s)
are approximated.

As for the continuous case, the solution of (4.4) depends on both the control

λh and the given function f , thus actually we have u1,h = u
λ1,h,f1
1,h , p1,h = p

λ1,h,f1
1,h ,



THE ICDD METHOD FOR STOKES DARCY COUPLING 13

u2,h = u
λ2,h,f2
2,h , and p2,h = p

λ2,h,f2
2,h , and u1,h = u

λ1,h

1,h , p1,h = p
λ1,h

1,h , u2,h = u
λ2,h

2,h , and

p2,h = p
λ2,h

2,h , when f1 = 0 and f2 = 0.
Let us define Λh = Λ1,h × Λ2,h and for any ηh ∈ Λh let ηh = (η1,h, η2,h).
The discrete counterpart of the minimization problem (2.2) reads: look for

λh = argmin
ηh∈Λh

[
Jh(ηh) =

1

2
‖uη

1,h,f1
1,h − P1(u

η2,h,f2
2,h )‖21

2
,Γ1

+
1

2
‖pη2,h,f2

2,h − P2(p
η

1,h,f1
1,h )‖21

2
,Γ2

]
,

(4.6)

where (u
η

1,h,f1
1,h , p

η
1,h,f1

1,h ) and (u
η2,h,f2
2,h , p

η2,h,f2
2,h ) are the solutions of (4.4) with ηh instead

of λh, while P1 is a suitable projection/interpolation operator from V2,h to Λ1,h and
P2 is a suitable projection/interpolation operator from Q1,h to Λ2,h. Should the two
discretizations coincide on the overlap, then P1 and P2 would be the identity operator.

In order to prove that the minimization problem (4.6) admits a unique solution
we proceed as in the previous section.

For any λh = (λ1,h, λ2,h) ∈ Λh, with (u
λ1,h

1,h , p
λ1,h

1 ) and (u
λ2,h

2,h , p
λ2,h

2,h ) solutions of
(4.4) with fi = 0 for i = 1, 2, we define the seminorm

|||λh|||h =
(
‖uλ1,h

1,h − P1(u
λ2,h

2,h )‖21
2
,Γ1

+ ‖pλ2,h

2,h − P2(p
λ1,h

1,h )‖21
2
,Γ2

)1/2
. (4.7)

Lemma 4.1. Let (3.12) and Assumptions 2.1 be satisfied. If the discrete spaces
Vi,h and Qi,h, for i = 1, 2, are suitably chosen to guarantee the well-posedness of the
discrete problems (4.4), then ||| · |||h is indeed a norm on Λh.

Proof. We only have to prove that |||λh|||h = 0 implies λh = 0.
We observe that |||λh|||h = 0 implies that the solution of (4.4) with f1 = 0 and

f2 = 0 satisfies (λ1,h =)u
λ1,h

1,h = P1(u
λ2,h

2,h ) on Γ1 and (λ2,h =)p
λ2,h

2,h = P2(p
λ1,h

1,h ) on Γ2,
i.e. it is the solution of

A1,h(u
λ1,h

1,0,h, p
λ1,h

1,h ;v1,h, q1,h)=−B1,h(E1,h(λ1,h);v1,h, q1,h) ∀(v1,h, q1,h)∈V0
1,h×Q1,h

u
λ1,h

1,h = u
λ1,h

1,0,h + E1,h(λ1,h)

λ1,h = P1(u
λ2,h

2,h )

A2,h(u
λ2,h

2,h , p
λ2,h

2,h ;v2,h, q2,h) = −B2,h(λ2,h;v2,h) ∀(v2,h, q2,h)∈V2,h×Q2,h

λ2,h = P2(p
λ1,h

1,h ).

(4.8)

In matrix form (4.8) reads




A1 B1 0 0
0 I −P1 0
0 0 A2 B2

−P2 0 0 I




︸ ︷︷ ︸
G




U1

λ1

U2

λ2


 =




0
0
0
0


 , (4.9)

where:
- Ui ∈ RNΩi contains the d.o.f. of both velocity and pressure in Ωi;
- λi ∈ RNΓi contains the d.o.f. of the control function on Γi;
- Ai is the matrix associated with the bilinear form Ai,h;
- Bi is the matrix associated with the bilinear form Bi,h;
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- Pi are the matrices that perform the projection/interpolation of (uj , pj) (only for the
part involving either the velocity d.o.f. in the Darcy domain or the pressure
ones in the Stokes domain) to Γi.

Clearly λh = 0 is a solution of (4.8). We have to prove that the unique solution of
(4.8) is the null one. To this aim we prove that the rows of G are linearly independent.
We split the matrix G in 2 × 2 blocks Gij (i, j = 1, 2) of size Ni × Nj , as in (4.9),
and we indentify four blocks of rows: G1 = [A1, B1, 0, 0], G2 = [0, I, −P1, 0],
G3 = [0, 0, A2, B2], and G4 = [−P2, 0, 0, I].

Since the Stokes and Darcy subproblems are well-posed by hypothesis, blocks Gii

are non-singular, and all the row-blocks G1, . . . , G4 are full rank. Moreover, in view
of the definition of G, it is easy to verify that: the rows of G1 and G2 are linearly
independent, as well as those of G3 and G4, those of G1 and G3, and those of G2 and
G4. It remains to prove that the rows of G2 and G3 are linearly independent, as well
as those of G1 and G4. Let us consider an arbitrary row vi of G2 and an arbitrary
row wj of G3. We can write them as

vi = [0 . . . 0, 0 . . . 1 . . . 0, −P1, 0 . . . 0],

wj = [0 . . . 0, 0 . . . 0, (A2)j1 . . . (A2)jNΩ2
, (B2)j1 . . . (B2)jNΓ2

].

Let α, β ∈ R, then αvi + βwj = 0 immediately implies α = 0 and thus β = 0. In
view of the arbitrary choice of vi in G2 and wj in G3, it follows that all the rows of
G2 and G3 are linearly independent. By using the same arguments, it holds that the
rows of G1 and G4 are linearly independent, so G is full rank.

The following theorem is the counterpart of Theorem 3.5 and it ensures the exis-
tence and uniqueness of the solution of the minimization problem (4.6).

Theorem 4.2. Let (3.12) and Assumptions 2.1 be satisfied. If moreover the
discrete spaces Vi,h and Qi,h, for i = 1, 2, are suitably chosen to guarantee the well-
posedness of the discrete problems (4.4), then the discrete minimization problem (4.6)
has a unique solution λh ∈ Λh satisfying the Euler-Lagrange equation

〈J ′
h(λh),ηh〉 = (u

λ1,h,f1
1,h − P1(u

λ2,h,f2
2,h ),u

η
1,h

1,h − P1(u
η2,h

2,h )) 1

2
,Γ1

+(p
λ2,h,f2
2,h − P2(p

λ1,h,f1
1,h ), p

η2,h

2,h − P2(p
η

1,h

1,h )) 1

2
,Γ2

= 0 ∀ηh ∈ Λh,
(4.10)

where (u
λ1,h,f1
1,h , p

λ1,h,f1
1,h ) and (u

λ2,h,f2
2,h , p

λ2,h,f2
2,h ) are the solutions of (4.4). Moreover,

∃c ∈ R+ independent of the discretization s.t. |||λh|||h ≤ c
(
‖u0,f2

2,h ‖ 1

2
,Γ1

+ ‖p0,f11,h ‖ 1

2
,Γ2

)
.

Proof. The proof is as in Theorem 3.5 with:

πh(λh,ηh) =
1

2
(u

λ1,h

1,h − P1(u
λ2,h

2,h ),u
η

1,h

1,h − P1(u
η2,h

2,h )) 1

2
,Γ1

+
1

2
(p

λ2,h

2,h − P2(p
λ1,h

1,h ), p
η2,h

2,h − P2(p
η

1,h

1,h )) 1

2
,Γ2

(a bilinear, continuous and coercive form on Λh w.r.t. the norm ||| · |||h), and

Lh(ηh) = −1

2
(u0,f1

1,h − P1(u
0,f2
2,h ),u

η
1,h

1,h − P1(u
η2,h

2,h ) 1

2
,Γ1

−1

2
(p0,f22,h − P2(p

0,f1
1,h ), pη2

2,h − P2(p
η

1,h

1,h )) 1

2
,Γ2

(a linear and continuous functional on Λh w.r.t. the norm ||| · |||h). Since u0,f1
1,h = 0 on

Γ1 and p0,f22,h = 0 on Γ2, Jh(ηh) = πh(ηh,ηh)− 2Lh(ηh)+
1
2‖u

0,f2
2,h ‖21

2
,Γ1

+ 1
2‖p

0,f1
1,h ‖21

2
,Γ2

.
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The Euler-Lagrange equation (4.10) and the stability estimate follow by noticing
that 〈J ′

h(λh),ηh〉 = 2πh(λh,ηh) − 2Lh(ηh), for any λh,ηh ∈ Λh, that is λh is the
unique solution of

πh(λh,ηh) = Lh(ηh) ∀ηh ∈ Λh. (4.11)

The Euler-Lagrange equation (4.10) can be reformulated in an equivalent way
by a set of interface conditions that will be fundamental in designing the optimality
system associated with the minimization problem (4.6). We prove such equivalence
in the following theorem.

Theorem 4.3. Let the assumptions of Theorem 4.2 be satisfied. λh is the solution
of (4.10) if and only if

(u
λ1,h,f1
1,h − P1(u

λ2,h,f2
2,h ),η1,h) 1

2
,Γ1

= 0 ∀η1,h ∈ Λ1,h,

(p
λ2,h,f2
2,h − P2(p

λ1,h,f1
1,h ), η2,h) 1

2
,Γ2

= 0 ∀η2,h ∈ Λ2,h.
(4.12)

Correspondingly, Jh(λh) = 0.
Proof. Let us define the linear map ψh : Λh → Λh such that

ηh =

[
η1,h

η2,h

]
7→
[

(u
η

1,h

1,h , p
η

1,h

1,h )

(u
η2,h

2,h , p
η2,h

2,h )

]
7→
[ P1(u

η2,h

2,h )

P2(p
η

1,h

1,h )

]
= ψh(ηh). (4.13)

λh = 0 is clearly the only fixed point of ψh thanks to Lemma 4.1, thus the map
ψ̃h : Λh → Λh:

ψ̃h(ηh) = ηh − ψh(ηh) =

[
η1,h − P1(u

η2,h

2,h )

η2,h − P2(p
η

1,h

1,h )

]
=

[
u
η

1,h,f1
1,h − P1(u

η2,h

2,h )

p
η2,h,f2
2,h − P2(p

η
1,h

1,h )

]

is injective and therefore surjective. This implies the equivalence between (4.10) and
(4.12). Moreover, the interface conditions (4.12) hold also in strong form, i.e.,

u
λ1,h,f1
1,h |Γ1

= P1(u
λ2,h,f2
2,h ), p

λ2,h,f2
2,h |Γ2

= P2(p
λ1,h,f1
1,h ), (4.14)

hence Jh(λh) = 0.

4.1. Convergence analysis. The following theorem states the convergence of
the discrete solution of (4.6) to the solution of (2.2).

Theorem 4.4. Let (3.12) and Assumptions 2.1 be satisfied, and λ, λh be the

solutions of (2.2) and (4.6), respectively. There exists C̃ > 0 depending both on the
geometry and on the model parameters s.t.

|||λ− λh||| ≤ C

(
inf

η
1,h∈Λ1,h

‖λ1 − η1,h‖ 1

2
,Γ1

+ inf
η2,h∈Λ2,h

‖λ2 − η2,h‖ 1

2
,Γ2

)

+ sup
η

1,h∈Λ1,h

‖pη1,h,f1
1 − P2(p

η
1,h,f1

1,h )‖ 1

2
,Γ2

+ sup
η2,h∈Λ2,h

‖uη2,h,f2
2 − P1(u

η2,h,f2
2,h )‖ 1

2
,Γ1
.

Proof. Let σh = λh − ηh, for any arbitrary ηh ∈ Λh. Recalling the definition of
π, that λ and λh are the solutions of (3.24) and (4.11), respectively, that Λh ⊂ Λ, the
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strong interface conditions (4.14) and noticing that u
λ1,h,f1
1 |Γ1

= u
λ1,h,f1
1,h |Γ1

= λ1,h

and p
λ2,h,f2
2 |Γ2

= p
λ2,h,f2
2,h |Γ2

= λ2,h, it holds

|||σh|||2 = π(σh,σh) = π(λh,σh)− π(ηh,σh) + π(λ,σh)− L(σh)

−1

2

[
(u

λ1,h,f1
1,h − P1(u

λ2,h,f2
2,h ),u

σ1,h

1 − u
σ2,h

2 ) 1

2
,Γ1

+ (p
λ2,h,f2
2,h − P2(p

λ1,h,f1
1,h ), p

σ2,h

2 − p
σ1,h

1 ) 1

2
,Γ2

]

= π(λ − ηh,σh) +
1

2
(u

λ1,h

1 − u
λ2,h

2 ,u
σ1,h

1 − u
σ2,h

2 ) 1

2
,Γ1

+
1

2
(p

λ2,h

2 − p
λ1,h

1 , p
σ2,h

2 − p
σ1,h

1 ) 1

2
,Γ2

+
1

2
(u0,f1

1 − u0,f2
2 ,u

σ1,h

1 − u
σ2,h

2 ) 1

2
,Γ1

+
1

2
(p0,f22 − p0,f11 , p

σ2,h

2 − p
σ1,h

1 ) 1

2
,Γ2

−1

2

[
(u

λ1,h,f1
1,h − P1(u

λ2,h,f2
2,h ),u

σ1,h

1 − u
σ2,h

2 ) 1

2
,Γ1

+ (p
λ2,h,f2
2,h − P2(p

λ1,h,f1
1,h ), p

σ2,h

2 − p
σ1,h

1 ) 1

2
,Γ2

]

= π(λ − ηh,σh)

+
1

2
((u

λ1,h,f1
1 − u

λ2,h,f2
2 )− (u

λ1,h,f1
1,h − P1(u

λ2,h,f2
2,h )),u

σ1,h

1 − u
σ2,h

2 ) 1

2
,Γ1

+
1

2
((p

λ2,h,f2
2 − p

λ1,h,f1
1 )− (p

λ2,h,f2
2,h − P2(p

λ1,h,f1
1,h )), p

σ2,h

2 − p
σ1,h

1 ) 1

2
,Γ2

= π(λ − ηh,σh)−
1

2
(u

λ2,h,f2
2 − P1(u

λ2,h,f2
2,h ),u

σ1,h

1 − u
σ2,h

2 ) 1

2
,Γ1

−1

2
(p

λ1,h,f1
1 − P2(p

λ1,h,f1
1,h ), p

σ2,h

2 − p
σ1,h

1 ) 1

2
,Γ2

≤
(
|||λ− ηh|||+

1

2
‖uλ2,h,f2

2 − P1(u
λ2,h,f2
2,h )‖ 1

2
,Γ1

+
1

2
‖pλ1,h,f1

1 − P2(p
λ1,h,f1
1,h )‖ 1

2
,Γ2

)
|||σh|||.

Then, in view of the triangular inequality, it holds for any ηh ∈ Λh

|||λ− λh||| ≤ |||λ − ηh|||+ |||σh|||

≤ 2|||λ − ηh|||+
1

2
‖uλ2,h,f2

2 − P1(u
λ2,h,f2
2,h )‖ 1

2
,Γ1

+
1

2
‖pλ1,h,f1

1 − P2(p
λ1,h,f1
1,h )‖ 1

2
,Γ2

≤ 2|||λ − ηh|||+ sup
η2,h∈Λ2,h

‖uη2,h,f2
2 − P1(u

η2,h,f2
2,h )‖ 1

2
,Γ1

+ sup
η
1,h∈Λ1,h

‖pη1,h,f1
1 − P2(p

η
1,h,f1

1,h )‖ 1

2
,Γ2
.

By Lemma 3.3, the first contribution in the last inequality becomes

|||λ− ηh|||2 =
1

2
‖uλ1−η

1,h

1 − u
λ2−η2,h

2 ‖21
2
,Γ1

+
1

2
‖pλ2−η2,h

2 − p
λ1−η

1,h

1 ‖21
2
,Γ2

≤
[
‖uλ1−η

1,h

1 ‖21
2
,Γ1

+ ‖uλ2−η2,h

2 ‖21
2
,Γ1

+ ‖pλ2−η2,h

2 ‖21
2
,Γ2

+ ‖pλ1−η
1,h

1 ‖21
2
,Γ2

]

≤
[(
1 + µ2C2

1C
2
3

)
‖λ1 − η1,h‖21

2
,Γ1

+
(
1 + ‖α‖2C1C2

2C
2
4

)
‖λ2 − η2,h‖21

2
,Γ2

]

≤ C̃2
[
‖λ1 − η1,h‖ 1

2
,Γ1

+ ‖λ2 − η2,h‖ 1

2
,Γ2

]2
.

The thesis follows from the arbitrarity of ηh.

4.2. Optimality system. The following optimality system (OS) is associated
with the Euler-Lagrange equation (4.10): find the state solutions (ui,h, pi,h) ∈ Vi,h ×
Qi,h, the auxiliary solutions (wi,h, qi,h) ∈ Vi,h ×Qi,h and the control variable λh =
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(λ1,h, λ2,h) ∈ Λ1,h × Λ2,h satisfying

State Problems: find u1,0,h ∈ V0
1,h, p1,h ∈ Q1,h and u2,h ∈ V2,h, p2,h ∈ Q2,h :





A1,h(u1,0,h, p1,h;v1,h, q1,h) = −B1,h(E1,hλ1,h;v1,h, q1,h) + F1,h(v1,h, q1,h)

∀(v1,h, q1,h) ∈ V0
1,h ×Q1,h

u1,h = u1,0,h + E1,hλ1,h,

(4.15)

A2,h(u2,h, p2,h;v2,h, q2,h) = −B2,h(λ2,h;v2,h) + F2,h(v2,h, q2,h)

∀(v2,h, q2,h) ∈ V2,h ×Q2,h;
(4.16)

Auxiliary Problems : find w1,0,h ∈ V0
1,h, s1,h ∈ Q1,h and w2,h ∈ V2,h, s2,h ∈ Q2,h :





A1,h(w1,0,h, s1,h;v1,h, q1,h) = −B1,h(E1,h((u1,h − P1(u2,h));v1,h, q1,h)

∀(v1,h, q1,h) ∈ V0
1,h ×Q1,h

w1,h = w1,0,h + E1,h((u1,h − P1(u2,h)),

(4.17)

A2,h(w2,h, s2,h;v2,h, q2,h) = −B2,h((p2,h − P2(p1,h);v2,h)

∀(v2,h, q2,h) ∈ V2,h ×Q2,h;
(4.18)

Interface Equations:
∫

Γ1

(u1,h − P1(u2,h −w2,h))η1,h = 0, ∀η1,h ∈ Λ1,h
∫

Γ2

(p2,h − P2(p1,h − s1,h))η2,h = 0, ∀η2,h ∈ Λ2,h.
(4.19)

Remark 4.1. In view of the strong conditions (4.14), for computational con-
venience in (4.19) we use the L2(Γi) inner products instead of the H1/2(Γi) ones.

Theorem 4.5. The optimality system (OS) (4.15)–(4.19) has a unique solution
whose control component λh coincides with the unique solution of (4.10).

Proof. Existence. First we notice that (4.15)–(4.16) coincide with (4.4). Let λh be

the solution of (4.10), then the associated states (u
λ1,h,f1
1,h , p

λ1,h,f1
1,h ) and (u

λ2,h,f2
2,h , p

λ2,h,f2
2,h )

satisfy (4.15) and (4.16), respectively. In view of Theorem 4.3, the solutions (w1,h, s1,h)
and (w2,h, s2,h) are null and (4.19) are satisfied. Then there exists at least one solu-
tion of (OS).
Uniqueness. In view of the linearity of both the Stokes and the Darcy equations,
it suffices to prove that, if f1 = 0, f2 = 0, then the solution of (4.15)–(4.19) is
the null one. From (4.19) it follows that (u1,h − P1(u2,h)) = −P1(w2,h) on Γ1

and (p2,h − P2(p1,h)) = −P2(s1,h) on Γ2, therefore, by the same arguments used
in the proof of Lemma 4.1, the auxiliary system (4.17)–(4.18) has the unique solution
wi,h = 0 and si,h = 0 in Ωi, for = 1, 2. Then, by (4.19), we have u1,h = P1(u2,h)
on Γ1 and p2,h = P2(p1,h) on Γ2. Again proceeding as before, it follows ui,h = 0 and
pi,h = 0 in Ωi, and then λ1,h = 0 and λ2,h = 0.

4.3. Algebraic formulation of the optimality system. System (OS) (4.15)–
(4.19) has ten unknown functions: the primal state variables ui,h and pi,h, the dual
state variables wi,h and si,h, for i = 1, 2, and the control variables λ1,h, λ2,h.
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Let us introduce the following arrays:

u1 = [u0
1,h(xj)], p

1
= [p1,h(xj)], w1 = [w0

1,h(xj)], s1 = [s1,h(xj)],

u2 = [u2,h(xj)], p
2
= [p2,h(xj)], w2 = [w2,h(xj)], s2 = [s2,h(xj)],

λ1 = [λ1,h(xj)], λ2 = [λ2,h(xj)], f i = [Fi,h(ϕi,ℓ, ψi,ℓ)],

while Ai, Bi, and Pi are the matrices defined in Lemma 4.1.
Let MΓi

i be the (d− 1)-dimensional mass matrix associated with the interface Γi, and

M
Γi

i = diag(MΓi

i , . . . ,M
Γi

i︸ ︷︷ ︸
d

), and set

A =

[
A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
, MΓ =

[
M

Γ1

1 0

0 M
Γ2

2

]
, P =

[
0 P1

P2 0

]
,

u =




u1

p
1
u2

p
2


 , w =




w1

s1
w2

s2


 , λ =

[
λ1

λ2

]
, f =

[
f1
f2

]
.

The algebraic counterpart of OS (4.15)–(4.19) reads




A 0 B

−BP A B

−M
Γ
P M

Γ
P M

Γ






u
w
λ


 =




f
0
0


 , (4.20)

and the Schur-complement system w.r.t. the control variable λ reads

Sλ = ψ (4.21)

where ψ = M
Γ(I+ (I− PA

−1
B)PA−1f , and S is the Schur-complement matrix

S = M
Γ

(
I−
[
−P P

] [ A 0
−BP A

]−1 [
B

B

])
. (4.22)

Since the mass matrix M
Γ is not singular, we can scale the system by left-

multiplying the last row of (4.20), or equivalently both sides of (4.21), by (MΓ)−1.
This operation can in fact be regarded as (left) preconditioning system (4.21) by the
matrix M

Γ.
The solution of the Schur-complement system (4.21) can be efficiently computed

by Krylov methods (specifically, we will use Bi-CGStab [48]). We first compute the

right-hand side of (4.21) as in Algorithm 4.1. Then, given the array λ(k) at the kth

iteration of Bi-CGStab, the matrix vector product χ(k) = Sλ(k) as in Algorithm 4.2.
Algorithm 4.1. Given f1 and f2, compute ψ.
1. Solve (4.15) and (4.16) using homogeneous Dirichlet data on the interfaces

Γ1 and Γ2 and right-hand sides f1 and f2, respectively;
2. solve the dual problems (4.17) and (4.18), store the solutions in (ui, pi) and

(wi, si), i = 1, 2;

3. compute ψ(k) =

[ −P1(u2 −w2)
−P2(p1 − s1)

]
.



THE ICDD METHOD FOR STOKES DARCY COUPLING 19

Algorithm 4.2. Given λ(k), compute χ(k) = Sλ(k).

1. Solve (4.15) and (4.16) using λ
(k)
1 and λ

(k)
2 as Dirichlet data on the interfaces

Γ1 and Γ2, and null right hand sides f1 and f2, respectively;
2. solve the dual problems (4.17) and (4.18), store the solutions in (ui, pi) and

(wi, si), i = 1, 2;

3. compute χ(k) =

[
λ
(k)
1 − P1(u2 −w2)

λ
(k)
2 − P2(p1 − s1)

]
.

5. Numerical results. We consider some 2D test cases in which the computa-
tional domain represents a vertical section of a 3D volume. The coordinates in the
plane are x and z. For simplicity, we consider matching meshes in Ω12 and the same
polynomial degrees for velocity and pressure in the Stokes and Darcy subdomains. Dif-
ferent discretizations can be adopted inside different subdomains and non-matching
grids can be designed on the overlap, as done in [15] for the elliptic-elliptic coupling.

Our aim is twofold. On the one hand we want to numerically assess the robustness
of ICDD versus the discretization parameters (h and p) as well as versus the overlap
thickness δ (see Test 1 in Section 5.1). The Bi-CGstab method with a given stopping
tolerance ǫ is used to solve the Schur complement system (4.21). On the other hand,
we want to analyze the robustness of the ICDD method with respect to variations
of the physical properties in the porous medium and to compare numerical solutions
obtained by ICDD with those computed by a Sharp Interface (SI) approach based on
the interface conditions (see, e.g. [17])

u1 ·n = u2 ·n, −(T1(u1, p1)n)·n = p2, −(T1(u1, p1)n)·τ =
αBJµ√
τTκτ

u1 ·τ , (5.1)

assigned on the sharp interface Γ between two non-overlapping subdomains (that
we continue to name Ω1 and Ω2, even if they not coincide with those of the ICDD
approach, see Fig. 2.1, right), n is the normal unit vector to Γ directed outward of Ω1,
τ represents a set of linear independent unit tangential vectors to Γ with τ · n = 0,
and αBJ is a dimensionless coefficient depending on the geometrical characteristics
of the porous medium. Condition (5.1)3 is the BJS condition [1, 46, 29, 34, 13, 45]
that establishes proportionality between the tangential component of the flux and
that of the free velocity. It represents an approximation of the experimental law of
Beavers–Joseph (see [1, 32])

−(T1(u1, p1)n) · τ =
αBJµ√
τ Tκτ

(u1 − u2) · τ on Γ. (5.2)

Note that (5.2) is in fact a coupling condition whereas (5.1)3 is not.

From now on, the acronym SI-BJS will identify the sharp interface approach
recalled just now, using the three conditions (5.1).

5.1. Test 1. Let us consider the Stokes-Darcy coupling (2.1) with κ = κI and
non-homogeneous boundary conditions chosen in such a way that the exact solution
reads

u1(x, z) = u2(x, z) =

[
−κ
µ

π

2
e

π
2
x sin

(π
2
z
)
;−κ

µ

π

2
e

π
2
x cos

(π
2
z
)]

p1(x, z) = p2(x, z) = e
π
2
x sin

(π
2
z
) (5.3)
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Table 5.1
Test 1. ICDD iterations vs the mesh size h for different FEM discretizations. The exact

solution is given in (5.3). The overlap thickness is fixed δ = 0.4.

h stabilized stabilized stabilized P2 − P1

Q1 −Q1 P1 − P1 P2 − P2 (Stokes-compatible)
1/5 8 4 4 4
1/10 8 4 4 4
1/20 7 4 4 4
1/40 7 4 4 4
1/80 7 4 4 4

Table 5.2
Test 1. Estimated convergence orders vs the mesh size h for different discretizations. The exact

solution is given in (5.3).

Convergence orders for eu,1 ep,1 eu,2 ep,2
stab. Q1 −Q1 1.715 1.810 1.513 1.575
stab. P1 − P1 1.002 1.553 1.086 0.999
stab. P2 − P2 2.009 2.004 1.595 1.991

P2 − P1 (Stokes compat.) 2.000 1.999 1.963 1.000

in Ω = (0, 1)× (0, 2) and with κ = 1/10 and µ = 1. The overlapping subdomains are
Ω1 = (0, 1) × (1 − δ/2, 2) and Ω2 = (0, 1)× (0, 1 + δ/2), with δ > 0, and the meshes
are uniform and structured in both subdomains.

In Tables 5.1–5.2 we report, respectively, the number of ICDD iterations required
to solve system (4.21) up to tolerance ǫ = 10−9 and the convergence rates with respect
to h (in the range [1/80, 1/5]) relative to the following errors:

eu,1 = ‖u1 − u1h‖H1(Ω1), ep,1 = ‖p1 − p1h‖L2(Ω1),
eu,2 = ‖u2 − u2h‖L2(Ω2), ep,2 = ‖p1 − p2h‖H1(Ω2).

(5.4)

The results of Table 5.3 refer to discretizations with stabilized Qp −Qp elements.
The numerical results of Tables 5.2–5.3 show that the theoretical convergence

orders of hp−FEM are achieved by ICDD solutions, as stated in Theorem 4.4 , thanks
also to the equivalence between the norm ||| · ||| and the canonical norm in H1/2 stated
in Lemma 3.4.

Here, since the exact solution (5.3) is infinitely smooth, algebraic convergence of
order p with respect to h and exponential convergence with respect to p are observed
for Qp −Qp (p ≥ 1) in both Stokes and Darcy domains.

In Table 5.4 we report the number of ICDD iterations required to solve system
(4.21) up to tolerance ǫ = 10−9 versus the overlap thickness δ. Different situations
are considered. The results of the first five rows refer to fixed uniform and structured
discretizations in either simplexes or quads; those of the second block are obtained
again by considering uniform and cartesian grids, but the mesh size h varies and
δ = h; those of the last row are obtained by designing a quasi-uniform mesh of quads
of maximum size h = 1/5 outside the overlap Ω12, and a strip of flattened quads of
height equal to δ and width equal to h = 1/5 in Ω12. In this example, the quality of
the numerical solution is not affected by the choice of the overlap thickness δ, since
the test solution does not feature internal layers.

The results of Tables 5.1, 5.3 and 5.4 show that the number of ICDD iterations is
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Table 5.3
Test 1. ICDD iterations, infimum of the cost functional Jh (4.6) and errors (5.4) vs the

polynomial degree p for stabilized Qp−Qp discretization in both Stokes and Darcy subdomains. The
exact solution is given in (5.3). The overlap thickness is fixed δ = 0.4 = 4h.

p #it inf Jh eu,1 ep,1 eu,2 ep,2
1 6 3.851e-18 4.9476e-02 2.9216e-01 7.5562e-02 5.9257e-02
2 7 4.800e-21 1.1310e-03 2.7244e-03 9.5293e-03 8.2701e-03
4 6 6.118e-21 1.6159e-07 2.1171e-07 8.4074e-07 8.0511e-07
6 6 4.934e-22 1.9260e-11 1.2030e-11 1.0879e-10 9.8985e-11

Table 5.4
Test 1. ICDD iterations versus the overlap thickness δ.

fixed h = 0.04 δ = 5h 4h 3h 2h h
stab. P1 − P1 #it 6 8 10 14 21
stab. P2 − P2 #it 6 8 11 21 28

P2 − P1 (Stokes compat.) #it 6 8 9 11 20
fixed h = 0.04 δ = 10h 8h 6h 4h 2h
stab. Q1 −Q1 #it 7 7 8 8 9
stab. Q4 −Q4 #it 5 5 5 6 8

h = δ = 1/3 1/6 1/12 1/25
stab. P1 − P1 #it 4 8 14 22
stab. P2 − P2 #it 5 10 20 41

P2 − P1 (Stokes compat.) #it 4 6 9 21
h = δ = 2/9 2/17 2/33 2/65 2/129

stab. Q1 −Q1 #it 7 8 9 10 14

uniform mesh in Ω \ Ω12, h = 0.2. One strip of quads of size δ × h in Ω12

stab. Q4 −Q4 δ = 1.e− 2 2.e− 3 1.e− 3 2.e− 4 1.e− 4
#it 11 32 44 60 67

independent of the discretization parameters h and p, while it depends on the overlap
thickness δ; indeed #it = O(δq), for some q between −1/2 and −1. A similar behavior
has been observed when ICDD has been applied to elliptic problems in [15] and to
the Stokes equations in [16].

5.2. Test 2: Reproducing the Beavers–Joseph experiment. This simple
test case mimics the experiment presented by Beavers and Joseph in their seminal
paper [1]. We consider the rectilinear flow of a viscous fluid through a 2D parallel
channel formed by an impermeable upper wall and a permeable lower wall. The latter
defines a nominal surface for the permeable material. A uniform pressure gradient
is maintained in the longitudinal direction in both the channel and the permeable
media. Following the classification introduced by Levy and Sanchez-Palencia [35],
this test involves “near parallel flows”, i.e. flows for which ∇p in the porous domain
is parallel to the nominal interface and the velocity inside the porous domain is much
smaller than in the fluid domain.

We set Ω = (0, 0.25)× (−0.075, 0) (in meters). Given the overlap thickness δ > 0
and zΓ = −0.055, the overlapping subdomains are Ω1 = (0, 0.25) × (zΓ − δ, 0) and
Ω2 = (0, 0.25)× (−0.075, zΓ), so that Γ1 = (0, 0.25)×{zΓ − δ}, Γ2 = (0, 0.25)×{zΓ},
and the overlap is thought to be embedded in the Darcy domain. The fluid is water
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with density ρ = 103 [kg/m3] and dynamic viscosity µ = 10−3 [kg/(m s)]. The
porous medium is characterized by its intrinsic permeability κ [m2], that we suppose
homogeneous and isotropic, i.e. κ = κI, where κ > 0 and I is the identity tensor. To
guarantee a uniform pressure gradient we set f1 = (1, 0)t [kg/(m2 s2)], we impose a
parabolic inflow on the left-hand side: u1 = (−103z(z + 0.055), 0)t [m/s] if −0.055 ≤
z ≤ 0, u1 = (0, 0)t [m/s] otherwise, and T1(u1, p1)·n = (0, (−2z−0.055))t [kg/(m s2)]
on the right-hand side. In the Darcy domain we impose an external force f2 = 0 and
the following boundary data: u2 · n2 = 0 on the bottom horizontal side, p2 = 0.25
[kg/(m s2)] on the left vertical side {0} × (−0.075,−0.055) and p2 = 0 on the right
one {0.25} × (−0.075,−0.055).

The choice of δ affects the Stokes solution computed by the ICDD method. At
the same time it is known (see, e.g., [46, 40, 30]) that an internal layer of thickness
O(

√
κ) = O(ε) occurs between the fluid and the porous domains. We therefore set

δ = c
√
κ, where c > 0 is a suitable constant, that may depend on the geometry of

the porous medium. With this choice, the minimization of ‖u1 − u2‖ on Γ1 imposed
by the ICDD method not only implies the continuity of the normal component of the
velocity (5.1)1 on Γ1, but also the fulfillment of a Beavers–Joseph-like condition (5.5).
In fact, let us set ui = (ui, vi)

t, for i = 1, 2. In this case condition (5.2) reduces to

∂u1
∂z

(z+Γ ) =
αBJ√
κ
(u1(z

+
Γ )− u2(z

−
Γ )), (5.5)

where z+Γ and z−Γ are suitable points close to zΓ such that z+Γ ∈ Ω1 and z−Γ ∈ Ω2.
Now we approximate the derivative on the left of (5.5) by a first-order finite

difference scheme with step size δ = z+Γ − z−Γ :

u1(z
+
Γ )− u1(z

−
Γ )

δ
≃ αBJ√

κ
(u1(z

+
Γ )− u2(z

−
Γ )), (5.6)

and we choose

δ =

√
κ

αBJ
. (5.7)

By looking at z+Γ (respectively, z−Γ ) as the vertical coordinate of the interface Γ2 (re-
spectively, Γ1) and by using (5.7), we conclude that the interface condition u1(z

−
Γ ) =

u2(z
−
Γ ) (that we impose in the ICDD method) can be regarded as an approximation

of the Beavers–Joseph condition (5.5).
The idea of using an interfacial region of thickness δ ≃ √

κ/αOW has been consid-
ered in [40, 41], where αOW is a suitable constant depending on the porous medium.
However, in that case the authors solve a Stokes problem with an additional term
featuring a variable porosity in such a region, a Darcy model with Brinkman correc-
tion in the porous domain and impose (for this test case) the continuity of both the
tangential velocity and its normal derivative at the interfaces. As a matter of fact,
ICDD forces the continuity of both components of the velocity on the lower interface
Γ1 and the continuity of the pressure on the upper one Γ2, but the Stokes and the
Darcy solutions may not coincide on the overlap. The parameter αBJ depends on the
geometry of the porous material. Its characterization is beyond the aim of this paper;
for simplicity we consider αBJ = 1.

After setting δ =
√
κ = ε, we compute numerical solutions of this test case for

κ = 10−6, 10−8, 10−10. Larger values of κ would lead to a meaningless coupling since
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Fig. 5.1. Test 2. Profiles of u (top), v (bottom left), and p (bottom right) at x = 0.15625
for κ = 10−6I and SI-BJS approach (black line), ICDD with δ = 10−3 (light blue). The top-right
picture is a zoom of the top-left one around the sharp interface zΓ. The dashed line represents the
first component of the Stokes velocity in the overlap region.

Table 5.5
Test 2. Relative maximum norm of the distance between SI-BJS and ICDD solutions at the co-

ordinate x = 0.15625. eu(x) = ‖uSI−BJS −uICDD‖L∞(I)/‖uSI−BJS‖L∞(I), ev(x) = ‖vSI−BJS −
vICDD‖L∞(I)/‖vSI−BJS‖L∞(I), ep(x) = ‖pSI−BJS − pICDD‖L∞(I)/‖pSI−BJS‖L∞(I), where
I = {x} × (−0.075,−0.055) in the Darcy domain and I = {x} × (−0.055, 0) in the Stokes domain

κ Stokes domain Darcy domain
eu(x) ev(x) ep(x) eu(x) ev(x) ep(x)

10−6 2.277e-03 5.339e-01 2.870e-03 2.868e-02 4.936e-01 3.014e-03
10−8 2.628e-05 7.469e-03 1.154e-04 4.884e-02 4.314e-01 1.111e-04
10−10 1.058e-05 1.364e-03 1.478e-05 4.920e-02 4.224e-01 3.597e-05

the characteristic length of the pores would become comparable with the characteristic
length xs = 0.005 of the Stokes domain (about the height of the channel). The solution
of this problem is quite independent of the x variable, so we analyze its behavior at
the fixed abscissa x = 0.15625.

In Figure 5.1 we show the SI-BJS and ICDD solutions computed at x with κ =
10−6 [m2]. The SI-BJS solution is obtained by decomposing Ω with nominal interface
in zΓ = −0.055, while the ICDD solution is found by setting zΓ1

= zΓ − δ, zΓ2
= zΓ,

and overlap thickness δ = ε = 10−3 (computed by (5.7)).

For smaller values of κ, the differences between the SI-BJS and ICDD solutions
are reported in Table 5.5, where eu(x), ev(x) and ep(x) are the relative difference in
L∞-norm between the SI-BJS and ICDD solutions at x = 0.15625, for z < zΓ (Darcy
domain for sharp interface approach) and z > zΓ (Stokes domain for sharp interface
approach). The results of Table 5.5 show that, when δ is chosen as in (5.7), the ICDD
and SI-BJS solutions match very well. In all these cases, the results in Table 5.6
confirm the theoretical analysis in [1], [46], and [30], for which the order of magnitude
of both components of the Darcy velocity is about O(κ) = O(ε2), while the tangential
component of the Stokes velocity at the interface behaves like O(

√
κ) when κ→ 0.
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Table 5.6
Test 2. Values of the first (ui, i = 1, 2) and second (vi, i = 1, 2) component of the velocity at

(x, zΓ) with x = 0.15625 and zΓ = zΓ2
. v1 6= v2 since ICDD imposes continuity of v on the interface

Γ1. Values of v2 of the ICDD solution match well the corresponding values of the SI-BJS solution.

κ ICDD solution SI-BJS solution
u1 u2 v1 v2 u1 u2 v1 = v2

10−6 5.30e-02 8.95e-04 2.94e-05 3.20e-05 5.13e-02 8.70e-04 6.32e-05
10−8 5.48e-03 9.89e-06 3.29e-07 1.45e-07 5.46e-03 9.40e-06 1.85e-07
10−10 5.50e-04 9.98e-08 2.36e-08 1.65e-09 5.50e-04 9.49e-08 1.95e-09
10−12 5.50e-05 1.01e-09 2.06e-09 1.30e-11 5.50e-05 9.50e-10 1.98e-11
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Fig. 5.2. Test 2. Profiles of u, v, and p (top) at x = 0.15625 for κ = 10−8I, computed by
SI-BJS (black line) and ICDD (colored) with δ = 10−4: lower overlap (light blue), medium overlap
(dark blue), and upper overlap (magenta). The bottom left and middle pictures are zooms of the
first component of the velocity around the interface and inside the Darcy domain. The bottom-right
one is a zoom of the second component of the velocity in the porous domain. Dashed lines inside
the overlap refer to the Stokes solutions.

We fix now the permeability κ = 10−8 [m2] and the thickness overlap δ = 10−4,
but we consider three decompositions which differ one another for the position of the
overlap with respect to the position zΓ of the nominal interface Γ of SI-BJS:
- lower overlap, for which zΓ1

= zΓ − δ and zΓ2
= zΓ;

- medium overlap, for which zΓ1
= zΓ − δ/2 and zΓ2

= zΓ + δ/2;
- upper overlap, for which zΓ1

= zΓ and zΓ2
= zΓ + δ.

In Figure 5.2 we show the corresponding solutions at x = 0.15625, while in Table
5.7 we show the relative errors between the ICDD and SI-BJS solutions in the L∞−
norm.

The ICDD solution obtained with the lower overlap is the closest to the SI-BJS
solution, however, differences among ICDD solutions with different overlaps are very
small.

5.3. Test 3: Cross-flow membrane filtration. This case addresses the cou-
pling of Stokes and Darcy flows in a cross-flow membrane filtration setting. The data
for this test case are taken from [24]. The domain is Ω = (0, 0.015) × (−0.0075, 0)
(in meters). Given the overlap thickness δ > 0 and zΓ = −0.0055, the overlapping
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Table 5.7
Test 2. Relative maximum norm of the distance between the SI-BJS and ICDD solutions on

the cut x = 0.15625 for κ = 10−8 [m2]. The overlap (of fixed thickness) is located in three different
positions around the nominal interface Γ of the sharp interface approach.

overlap Stokes domain Darcy domain
eu(x) ev(x) ep(x) eu(x) ev(x) ep(x)

lower 2.628e-05 7.469e-03 1.154e-04 4.884e-02 4.314e-01 1.111e-04
medium 3.587e-03 1.707e-02 5.614e-03 1.965e-02 4.386e-01 5.647e-03
upper 7.220e-03 3.173e-02 1.133e-02 3.050e-02 4.362e-01 1.137e-02

subdomains are Ω1 = (0, 0.015) × (zΓ − δ, 0) and Ω2 = (0, 0.015) × (−0.0075, zΓ).
The domain Ω1 represents a part of channel closed on the top side where the fluid
can flow through the vertical sides, while Ω2 represents a vertical filter. The fluid
is water, the porous medium will be characterized by its isotropic intrinsic perme-
ability κ= κI. We suppose that the fluid is subject to the gravitational force, thus
f1 = f2 = (0,−ρg)t [kg/(m2 s2)], where ρ is the density of the water and g the grav-
ity acceleration. The fluid enters into the domain Ω1 through the vertical left-hand
boundary, where we impose a parabolic inflow, on the top side of the domain Ω1 we set
the no-slip boundary conditions u1 = 0, while the fluid may leave the domain through
the vertical right-hand boundary (denoted by ∂ΩN

1 ). Following the notations given
in (2.1), the boundary data on ∂ΩN

1 ∪ ∂ΩD
1 can be summarized as follows: u1 = 0 on

(0, 0.015)×{0} and on {0}× (−0.0055− δ/2,−0.005), u1 = (−16 ·103z(z+0.005), 0)t

on {0} × (−0.005, 0), and T1(u1, p1) · n1 = 9.8ρzn1 on {0.015} × (−0.0055− δ/2, 0).

Concerning the boundary conditions for the porous domain, we impose u2 ·n2 = 0
on the vertical sides ∂ΩN

2 to represent that an impervious material is present outside
the domain, while we set p2 = −ρgz on the bottom horizontal side ∂ΩD

2 to account
for the presence of a stationary fluid below the porous domain. The amount of flux
filtering through the interface depends on the permeability of the porous media and
on the boundary data imposed on the bottom horizontal side on the pressure. Ac-
cording to the classification proposed by Levy and Sanchez-Palencia [35], this test
is numbered among “near normal flows”, for which ∇p2 has small projection on the
nominal interface and the order of magnitude of ∇p2 is greater than that of ∇p1. To
our knowledge, it has been neither experienced nor proved that either the Beavers–
Joseph (5.2) or the Beavers–Joseph–Saffman (5.1)3 conditions correctly describe this
coupling. However, the latter condition is used in the literature (see, e.g. [34, 24]).
We aim at comparing the ICDD and SI-BJS approaches, studying both the quality
of the solution and the associated computational costs. We consider several types of
isotropic and homogeneous porous media characterized by different permeabilities.

In Figures 5.3 and 5.4 we show the hydrodynamic pressure p̃2 = p2+ρg(z−z0) and
the velocity field corresponding to κ = 10−7 [m2] and κ = 10−13 [m2], respectively.

In Fig. 5.5 we plot the profiles of u, v, and p̃ at x ∈ {3.75e−3, 7.5e−3, 1.125e−2}
when κ = 10−7. Also in this test case we observe the close correspondence between the
ICDD and SI-BJS solutions. A quantitative comparison of the two solutions provides
differences that behave like in Test 1 (see Table 5.5) and shows that the tangential
component of the Darcy velocity behaves like O(κ), while that of the Stokes velocity
like O(

√
κ), as in the case of “near parallel flows”.

In Table 5.8 we report the number of ICDD iterations required to satisfy the
stopping test on the residual up to a tolerance ǫ = 10−9, the infimum of the cost
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Fig. 5.3. Test 3. Hydrodynamic pressure and velocity field computed with κ = 10−7 [m2] and
δ = 3 · 10−4. For a better insight, the arrows in the right picture have been scaled by 10.
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Fig. 5.4. Test 3. Hydrodynamic pressure and velocity field computed with κ = 10−13 [m2] and
δ = 3 · 10−7. For a better insight, the arrows in the right picture have been scaled by 10.

functional Jh attained at convergence, and the norms

eu,Ω12
= ‖u1 − u2‖L2(Ω12)/|Ω12|, ep,Ω12

= ‖p1 − p2‖L2(Ω12)/|Ω12|, (5.8)

that measure the gap between Stokes and Darcy solutions on the overlap, normalized
with respect to the size of the overlap (which is proportional to δ). We see that the
gap on the velocity decays as κ, while that on the pressure is independent of κ. δ is set
according to (5.7), by choosing αBJ = 1. The discretization is almost fixed: stabilized
Q4 − Q4 hp−FEM for both Stokes and Darcy equations. Outside the overlap, the
mesh is almost uniform, with grid size h = 2 · 10−3 and p = 4. The overlap is
discretized by one strip of flattened quad elements of size h× δ. In Table 5.8, we also
report the number of iterations required by Bi-CGstab to solve the Steklov-Poincaré
equation associated with the Sharp Interface formulation of the Stokes–Darcy coupling
with interface conditions (5.1), preconditioned by either the local Stokes Steklov-
Poincaré operator (Ss) or the local Darcy Steklov-Poincaré operator (Sd) (see [17]).
The convergence rate of ICDD is clearly less sensitive to the permeability than that
of the SI-BJS approach and it does not require designing a suitable preconditioner.

Computational cost, comparison with the sharp interface approach. As
said above, one ICDD iteration corresponds to one Bi-CGStab iteration to solve the
optimality system (4.15)–(4.19). Thus, it requires two matrix vector products (MVP),
and each MVP requires solving two Stokes problems (like (4.15) and (4.17)) and two
Darcy problems (like (4.16) and (4.18)).

Also the Steklov-Poincaré equation associated with the sharp interface approach
can be solved by a Preconditioned Bi-CGstab method. In this case one MVP costs
one Stokes plus one Darcy problem, while using the preconditioner costs one Stokes
or one Darcy problem. By comparing the number of iterations of Table 5.8, and in
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Table 5.8
Test 3. ICDD iterations number, infimum of the cost functional, and errors on the overlap

for different permeabilities. SI-BJS iterations number. Stabilized Q4 − Q4 discretization in both
subdomains.

ICDD SI-BJS #it
κ [m2] δ #it inf Jh eu,Ω12

ep,Ω12
P = Ss P = Sd

1.e− 7 3.e− 4 8 1.02e− 17 1.49e+ 0 5.47e− 4 13 17
1.e− 9 3.e− 5 5 6.49e− 20 3.24e− 2 6.07e− 4 32 5
1.e− 11 3.e− 6 5 3.09e− 20 3.22e− 4 8.23e− 4 33 4
1.e− 13 3.e− 7 5 4.29e− 20 3.23e− 6 3.94e− 4 33 4
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Fig. 5.5. Test 3. Profiles of u (left), v (center), and hydrodynamic pressure p̃ (right), for

the SI-BJS solution (black line) and the ICDD one (colored lines) at x = 3.75e − 3 (light blue),
x = 7.5e − 3 (dark blue), x = 1.125e − 2 (magenta) when κ = 10−7I. The thickness overlap for
ICDD is δ = 3 · 10−4

view of the fact that one ICDD iteration costs a little more than one SI-BJS iteration,
we conclude that the computational costs of ICDD and SI-BJS are comparable.

Nevertheless, the memory storage required by ICDD is less than the one required
by SI-BJS. As a matter of fact, in ICDD, the Stokes matrices are the same for both
primal and dual problems (and the same happens for Darcy), while in the case of
SI-BJS, the preconditioner (either Stokes or Darcy) does not coincide with the matrix
of the primal problem, in view of the different boundary conditions at the interface
that characterize the direct local Steklov-Poincaré operator or its inverse (see [17] for
a more detailed description of this approach).

Conclusions. In this paper the heterogeneous coupling between Stokes and
Darcy equations by the ICDD method has been studied. The coupling has been for-
mulated as an optimal control problem for which the well-posedness, the discretization
and the convergence (of the discrete solution to the continuous one) have been ana-
lyzed. Several 2D test cases have shown both efficiency and robustness of this method,
and that the ICDD solution is physically reasonable and comparable with the solu-
tion obtained by the classical Sharp Interface approach with Beavers–Joseph–Saffman
condition (SI-BJS).

The ICDD method features several interesting properties that make it preferable
to other existing coupling methods like the one based on the SI-BJS approach.

i) When the overlap thickness δ is chosen comparable to the characteristic length
scale of the pores ε ∼ √

κ, the ICDD solutions are very close to the SI-BJS ones, for
both “near parallel flows” (classical test case of BJ) and “near normal flows”.

ii) The ICDD computational cost is comparable with that of SI-BJS, provided
that the latter is preconditioned in an optimal way.

iii) Simplicity in handling Dirichlet interface conditions is another strong feature
of ICDD, whereas interface conditions of SI-BJS involve both normal and tangential
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derivatives and they must accurately set up to take into consideration possible corners
as well as non-straight interfaces.

iv) The convergence rate of ICDD iterations is independent of the discretization
parameters. When the permeability is large, the number of iterations of ICDD is
#it ≃ O(δq) with −1 ≤ q ≤ −1/2. However, since δ ∼ √

κ, the previous estimate is
not penalizing, because when κ is large, also δ is large.
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Galerkin formulation of the Stokes problem accommodating equal-order interpolations.
Comput. Meth. Appl. Mech. Engrg., 59:85–99, 1986.

[26] O. Iliev and V. Laptev. On numerical simulation of flow through oil filters. Computing and
Visualization in Science, 6(2-3):139–146, 2004.

[27] O. Iliev and D. Vasileva. On a local refinement solver for coupled flow in plain and porous
media. In Numerical Methods and Applications, volume 4310 of Lecture Notes in Computer
Science, pages 590–598. Springer Berlin Heidelberg, 2007.

[28] A.S. Jackson, I. Rybak, R. Helmig, W.G. Gray, and C.T. Miller. Thermodynamically con-
strained averaging theory approach for modeling flow and transport phenomena in porous
medium systems: 9. Transition region models. Advanced in Water Resources, 42:71–90,
2012.

[29] W. Jäger and A. Mikelić. On the boundary conditions at the contact interface between a porous
medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23:403–465, 1996.
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