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POSITION DEPENDENT RANDOM MAPS IN ONE AND
HIGHER DIMENSIONS

WAEL BAHSOUN AND PAWEL GORA

ABSTRACT. A random map is a discrete-time dynamical system in which one
of a number of transformations is randomly selected and applied on each it-
eration of the process. In this paper, we study random maps with position
dependent probabilities on the interval and on a bounded domain of R™. Suffi-
cient conditions for the existence of an absolutely continuous invariant measure
for random map with position dependent probabilities on the interval and on
a bounded domain of R™ are the main results of this note.

1. INTRODUCTION

Let 71,79, ..., 7Tk be a collection of transformations from X to X. Usually, the
random map T is defined by choosing 7, with constant probability pg, pr > 0,
25:1 pr = 1. The ergodic theory of such dynamical systems was studied in [9] and
in [8] (See also [7]).

There is a rich literature on random maps with position dependent probabilities
with 71, T2, ..., T being continuous contracting transformations (see [10]).

In this paper, we deal with piecewise monotone transformations 7y, 7o, ..., Tk and
position dependent probabilities px(z), k = 1,..., K, pr(z) > 0, Zle pr(z) = 1,
i.e., the pg’s are functions of position. We point out that studying such dynamical
systems was first introduced in [4] where sufficient conditions for the existence
of an absolutely continuous invariant measure were given. The conditions in [4]
are applicable only when 71,7, ...,7x are C? expanding transformations (see [4]
for details). In this paper, we prove the existence of an absolutely continuous
invariant measure for a random map T on [a, b] under milder conditions ( see section
4, Conditions (A) and (B)). Moreover, we prove the existence of an absolutely
continuous invariant measure for a random map T on S, where S is a bounded
domain of R™ ( see section 6, Condition (C)) .

The paper is organized in the following way: In section 2, following the ideas
of [4], we formulate the definition of a random map T with position dependent
probabilities and introduce its Perron-Frobenius operator. In section 3, we prove
properties of the Perron-Frobenius operator of T'. In section 4, we prove the exis-
tence of an absolutely continuous invariant measure for 7" on [a, b]. In section 5, we
give an example of a random map T which does not satisfy the conditions of [4];
yet, it preserves an absolutely continuous invariant measure under conditions (A)
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and (B). In section 6, we prove the existence of an absolutely continuous invariant
measure for T on a bounded domain of R™. In section 7, we give an example of a
random map in R™ that preserves an absolutely continuous invariant measure.

2. PRELIMINARIES

Let (X,B,\) be a measure space, where A is an underlying measure. Let 7y :
X — X, k=1,..., K be piecewise one-to-one, non-singular transformations on a
common partition Pof X : P ={I,.... L, }and 7%, = 7% |1, i = 1,..,q, k=1,.., K
(P can be found by considering finer partitions). We define the transition function
for the random map T = {7, ...7k; p1(x), ...px (z)} as follows:

(2.1) Pz, A) =Y pr(x)xa(mi(@)),

where A is any measurable set and {py(z)} , is a set of position dependent
measurable probabilities, i.e., Zlepk(x) =1, pg(z) > 0, for any z € X and
x4 denotes the characteristic function of the set A. We define T'(z) = ()
with probability px(z) and TV (z) = Tky © Tky_, © ... © Tk, (¥) With probability
Dien (Thin 1 0 0Thy (2)) Py (Then_5 0. 0T, () -+ - Piy (). The transition function
P induces an operator P, on measures on (X,B) defined by

We say that measure p is T-invariant iff P,y = pu, ie.,
K

(23) =Y [ ). A€,
k=177 (A)

If 11 has density f with respect to A, the P, u has also a density which we denote
by Prf. By change of variables, we obtain

RN —1 -1 1
- ZZApk(Tk7i$)f(Tk7i m)md)\(x)

where Jy, ; is the Jacobian of 7 ; with respect to A. Since this holds for any mea-
surable set A we obtain an a.e. equality:

(2.5) (Prf)()=>" th;ix)f(r;ﬁx)—_l

or

XTk (11) (x)

(2.6) (Prf)(@) =) Pr (o1f) (2)
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where P, is the Perron-Frobenius operator corresponding to the transformation
Tr (see [1] for details). We call Pr the Perron-Frobenius of the random map T
The main tool in this paper is the Perron-Frobenius of T" which has very useful
properties.

3. PROPERTIES OF THE PERRON-FROBENIUS OPERATOR OF 1T’

The properties of Pr resemble the properties of the classical Perron-Frobenius
operator of a single transformation.

Lemma 3.1. Pr satisfies the following properties:
(i) Pr is linear;

(i) Pr is non-negative; i.e., f >0 = Prf > 0;
(ii) Prf = f < mu= f- X is T-invariant;

(iv) |Prflli < ||f|l1, where ||.||1 denotes the L' norm;
(v) Pror = Pr o Pg. In particular, P¥ f = Prw f.

Proof. The proofs of (i)-(iv) are analogous to that for single transformation. For the

proof of (v), let T'and R be two random maps corresponding to {71, 72, ..., Tk'; P1, P2, -+, PK |
and {(1,Ca, ..., CL; 71,72, .o, 7L} Tespectively. We define {7} | and {(;}£, on a
common partition P. We have

K K
(PTf Pr <ZPTk pkf>:ZZP<l TZPTI\ pkf))

k=1 =1 k=1
L K ¢

=3 3> GNP eI X (1)
=1 k=11i=1 J lz(Cz,i )

1

1
x ——— X (1) (G )X
JT,k,j(Tk,gl' ° Cl,il) JC,l,i(Cl,i ) ! : )

K L
- ZZPTWQ (pe(G)71f) = Prorf.

4. THE EXISTENCE OF ABSOLUTELY CONTINUOUS INVARIANT MEASURE ON |[a, ]

Let (I,%,)) be a measure space, where A is normalized Lebesgue measure on
I=]ab]. Let 7, : I — I, k=1,..., K be piecewise one-to-one and differentiable,
non-singular transformations on a partition P of I : P = {I1,...,I;} and 7; =
Tk |, @ = 1,..,9, kK = 1,..., K. Denote by V(:) the standard one dimensional
variation of a function, and by BV (I) the space of functions of bounded variations
on I equipped with the norm || - ||pv = V() + || || 1.

Let gi(z) = \3’,{53\7 k=1,...,K. We assume that

Condition (A): Zle ge(z) <a <1,z €l and
Condition (B): g, € BV(I), k=1,...,K .
Under the above conditions our goal is to prove:

(4.1) ViPrf < AVif + B| fl
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for some n > 1, where 0 < A < 1 and B > 0. The inequality (4.1) guarantees the
existence of a T-invariant measure absolutely continuous with respect to Lebesgue
measure and the quasi-compactness of operator Pr with all the consequences of
this fact, see [1]. We will need a number of lemmas:

Lemma 4.1. Let f € BV(I). Suppose 7 : I — J is differentiable and 7'(x) # 0,

v el Setp=1"" and let g(x) = \r/((m))| € BV(I). Then

Vi(f(@)g(#)) < (Vif+ sup [(Vig + sup 9)

Proof. First, note that we have dropped all the &, ¢ indices to simplify the notation.
Then, the proof follows in the same way as in Lemma 3 of [9)]. O

Lemma 4.2. Let T satisfy conditions (A) and (B). Then for any f € BV (I),
(4.2) ViPrf < AVif + Bl f|1,

where

A= 30z+1n<12ax ZVI Jk;

and
K
B =200t e ) Vi

where 8 = maxi<;<q(A(1;)) L.

Proof. First, we will refine partition P to satisfy additional condition. Let n > 0
be such that S5 (gr(x) + ex) < a whenever |ex| <7, k = 1,...,K. Since gp,
k=1,..., K are of bounded variation we can find a finite partition K such that for
any k=1,..., K

gk (@) — ge(y)| <,
for z, y in the same element of K. Instead of the partition P we consider a join

P Vv K. Without restricting generality of our considerations, we can assume that
this is our original partition P. Then, we have

(4.3) e Z sup gr(x

We have VI(PTf) = VI(Eszl P, (prf)). We will estimate this variation. Let
¢kz—7k k=1,....,K,i=1,...,q. We have

K K gq
Vi (Z Pfk(pkf)> (ZZJ" Dh.i) 9k (Ph,i) X (1 ))
k=1

k=1 1i=1
q

K
(4.4) <03 U ai-n)llgr(ai-a)| + 1 f(ai)llgr(aq)]]

k=1 i=

—

+ Z Ve (i) [ (01,0) gk (Pri)]-
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First, we estimate the first sum on the right hand side of (4.4):

] =
MQ

[1f(ai—1)llgr(ai—1)] + | f(ai)l|lgr(a:)|]

1

bf Qq— 1 <Z|gk aj—1 >+|f az (ZL@I@ a; )]
(4.5) =1 ,
o <Z |f(ai-1 |+|f(al)|)>

i=1

Sl
Il

Il
i
= &

IN

q

o (Z (Vf,if +(A (Ii))‘l/li fdA>) =a(Vif+8lflh)-

i=1

IN

We now estimate the second sum on the right hand side of (4.4). Using Lemma
4.1 we obtain'

q K q
ZVm [ (k) gn(or)] <D0 (Vzif+8111pf) (Vzigk +s?pgk>

k=1i=1 k=1 i=1
q

(4.6) Z <2V1 f+ﬁ/ fdA (IE<X V1, gk +s>1pgk>>
129 i

=1

K
< @Vif + BlIf ) < 53 ng+a>.

Thus, using (4.5) and (4.6), we obtain

K K
(4.7) ViPrf < (3a + 1r£1?,§xq; vzigk> Vif + <2ﬁa + ﬁlrgiagq; vzigk) £l

O

In the following two lemmas we show that constants o and maxi<i<q Zle g
decrease when we consider higher iterations 7™ instead of T. The constant
obviously increases, but this is not important.

Lemma 4.3. Let T be a random map which satisfies condition (A). Then, for
rel,

(4.8) 3 Pul®) N

we{1,2,.... K}V

where Ty (x) = Thy © Thy_y © 0 Ty () and pu(x) = pry (Thy_, © -+ 0 7k, (2)) -
Pkn_1 (TkN—2 O OTpy (.13)) © Pk (x)? deﬁne random map .

Proof. We have
TN('I) = Tkn O Thny_1 © """ O Thky (1‘)
with probability
Pkn (Tk?N—l O 0Tk (ZE)) : pk?N—l(TkN—Q 00Tk (1‘)) © Pk (I)
The maps defining TV may be indexed by w € {1,2,..., K}. Set

Tw(z) = Tky OTkny_1 © """ O Tk (ZC)
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where w = (k1, ..., kn), and
Pw(®) = Plon (Thw—1 0+ 0 Ty () Phiy—y (T =y © 0 Thy (T)) -+ - Py ().
Then,
T0y(2) = Ty (Thy—y @+ 0 Toey (2)) Tk, (T _y © 0 Ty () -+ 7, (@)

Suppose that T satisfies condition (A). We will prove (4.8) using induction on N.
For N =1, we have

(4.9) y oz wl@)

/
wef{l,2,...,K} |T“’(x)|

by condition (A). Assume (4.8) is true for N — 1. Then,

(4.10)

Pu(t) i P 7 (2))
|77,

T ()] Tk IT’ Tk(ﬂf))l

we{l,2,...,K}N we{l,2,. ,K}N T k=1

s P’f 3 o) | N1 o
=1 |Tk we{1,2,...,K}N-1 |Tm(7'k($))|
O
Lemma 4.4. Let g, = %’ where Ty, and py, are defined in Lemma 4.3, w €

{1,..., K}". Define

W1 = max ZVI ks

1<i<

and

W, = max Z Vigw,

(n)
JEP we{l,...,.K}n

where P™ is the common monotonicity partition for all T,,. Then, for all n > 1
(4.11) W, < na"" Wy,
where « is defined in condition (A).

Proof. We prove the lemma by induction on n. For n = 1 the lemma is true by
definition of W,,. Assume that the lemma is true for n, i.e.,

(4.12) W, < na™ Wy,
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Let J € P and 29 < 21 < ... < a1 be a sequence of points in JJ. Then
(4.13)

-1
ZZ 9w (i) —gu(z) =D Y 9w (@j4+1) — guw (@)

w j=0 J=0 we{l,...,K}n+1

Zlgw Tk (@541)) 9k (2501) — 9w (Th (7)) gr(25)]
K}n k=1

Z
< Z Z|9— Tr(2541)) 9k (Tj41) — g (T (2541)) gk (25)]

j=0we{l,..., K} k=1
l
+

> Z 9w (7 (2+1)) 9k (25) — g (Th(25)) gx (2;)]

-1 K
<Y grlwie) —gr@)l > gwlmk(rin)
=0 k=1 Te{L,...,K}n
-1 K
+ 3 k() D lew(m(ei)) — gw(mi()]
J=0 k=1 well,... . K}
-1 K
<a™ Y Y lgr(wien) — gr(x)]
=0 k=1
-1

+ad > gw(mkl(wi) — gwlri(z)))]

Ji=0we{l,...,K}»
< a"Wy + aW,, < a"Wi 4+ na"Wyp = (n+ 1)a"Wh.
We used condition (A) and lemma 4.3. O
Theorem 4.5. Let T' be a random map which satisfies conditions (A) and (B).

Then T preserves a measure which is absolutely continuous with respect to Lebesgue
measure. The operator Pr is quasi-compact on BV (I), see [1].

Proof. Let N be such that Ay = 3o + Wy < 1. Then, by Lemma 4.3,
Z gu(x) <a®, xel.
we{l,...,K}N

We refine the partition PV) like in the proof of Lemma 4.2, to have

max E Sup gu < aN
JePN
we{l,... ., K}V

Then, by lemma 4.2, we get

(4.14) 1PF fllsv < An|lflsv + Bl fl1,
where By = Bn (22" + Wy), Bn = max epn (A(J))™. The theorem follows by
the standard technique (see [1]). O

Remark 4.6. Tt is enough to assume that condition (A) is satisfied for some iterate
T m > 1.
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Remark 4.7. The number of absolutely continuous invariant measures for random
maps has been studied in [6]. The proof of [6], which uses graph theoretic methods,
goes through analogously in our case; i.e., when T' is a random map with position
dependent probabilities.

5. EXAMPLE

We present an example of a random map 7" which does not satisfy the conditions
of [4]; yet, it preserves an absolutely continuous invariant measure under conditions

(A) and (B).

Example 5.1. Let T be a random map which is given by {71, m9;p1(x), p2(2)}
where

] 2z for()gxg%
(5-1) Tl(x)_{ x fori<a<i

B a:—i—% forOSxS%.
(5-2) TQ(m){Qm—l for%<x§1’
and
53) w={7 Pro=es<s
' ) = 3 for%<x§1’
L foro<z<i
_ ST =3
(5.4) pz(m)—{ % for%<x§1

Then, Zi:l gr(z) = 2 < 1. Therefore, T satisfies conditions (A) and (B). Con-
sequently, by theorem 4.5, T preserves an invariant measure absolutely continuous
with respect to Lebesgue measure. Notice that 71,75 are piecewise linear Markov
maps defined on the same Markov partition P : {[0,3],[3,1]}. For such maps
the Perron-Frobenius operator reduces to a matrix (see [1]). The corresponding

matrices are:
0 1
(55) PTI( >, PT?(l l)
2 2
2

Their invariant densities are f;, = [0,2] and f,, = [2,0]. The Perron-Frobenius
operator of the random map 7T is given by:

If the invariant density of T'is f = [f1, f2], normalized by fi + fo = 2 and satisfying
equation fPr = f, then fi = % and f» = 3.

O W=
[

—_

ol o=
[SSIICHIN

6. THE EXISTENCE OF ABSOLUTELY CONTINUOUS INVARIANT MEASURE IN R"

Let S be a bounded region in R™ and A,, be Lebesgue measure on S. Let 7 :
S — S, k=1,.., K be piecewise one-to-one and C?, non-singular transformations
on a partition P of S': P ={S1,....,5}tand 7, =7 |s,, i =1,....,¢, k=1,..., K.
Let each S; be a bounded closed domain having a piecewise C? boundary of finite
(n — 1)-dimensional measure. We assume that the faces of 05; meet at angles
bounded uniformly away from 0. We will also assume that the probabilities py(x)
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are plGCGWlbe C' functions on the partition P. Let DT,“( ) be the derivative

matrix of Tk L at 2. We assume:
Condition (C)

1@?222” )| D7 (i) < o < 1.

Let sup,er, (s ||DT];i (7)|| == ok, and sup,¢g, pr(x) := mx,i. Using smoothness
of DT];Z-l’S and py’s we can refine partition P to satisfy
Condition (C’):

K

ergé( Ok,iTh; <0 <1
k=1~ "~

Under this condition, our goal is to prove the existence of an a.c.i.m. for the

random map T = {7y, ..., Tk; D1, ---, Pk }- The main tool of this section is the multi-

dimensional notion of variation defined using derivatives in the distributional sense

(see [3]):
V() = [ DA =supd [ div()ira g = (o1,000) € CHR" R},

where f € L1(R") has bounded support, Df denotes the gradient of f in the distri-
butional sense, and C}(R™, R™) is the space of continuously differentiable functions
from R” into R™ having a compact support. We will use the following property of
variation which is derived from [3], Remark 2.14: If f = 0 outside a closed domain
A whose boundary is Lipschitz continuous, f4 is continuous, fing(a) is C', then

V(f) = /W) IDF A, + /8 1 fldxa,

where A,—1 is the n — 1-dimensional measure on the boundary of A. In this section
we shall consider the Banach space (see [3], Remark 1.12),

BV(S) = {f € L1(S5) : V(f) < +oo},

with the norm || f|lsvy = V(f) + || fll1. We adapt the following two lemmas from
[5]. The proofs of Lemma 6.1 and Lemma 6.2 are exactly the same as in [5].

Lemma 6.1. Consider S; € P. Let x be a point in 0S; and y = 7(x) a point in
O(7i(84)). Let Jy; be the Jacobian of s, at x and Jlgﬂ- be the Jacobian of Tyss,
at x. Then

0
chi

)

< Ok.

— 2

Ik

O

Let us fix 1 < ¢ < q. Let Z denote the set of singular points of 05;. Let

us construct at any x € Z the largest cone having a vertex at x and which lies

completely in S;. Let #(x) denote the angle subtended at the vertex of this cone.
Then define

B(S:) = min(z).
Since the faces of 95; meet at angles bounded away from 0, 5(S;) > 0. Let a(S;) =

/24 B(S;) and
a(S;) = | cos(a(S;))].
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Now we will construct a C! field of segments L,, y € 9S;, every L, being a
central ray of a regular cone contained in S;, with angle subtended at the vertex y
greater than or equal to 3(5;).

We start at points y € Z, where the minimal angle 5(5;) is attained, defining L,
to be central rays of the largest regular cones contained in S;. Then we extend this
field of segments to C* field we want, making L, short enough to avoid overlapping.
Let 6(y) be the length of L, y € 0S;. By the compactness of 0.5; we have

6(S;) = inf 6(y) >0

y€DS;
Now, we shorten L, of our field, making them all of the length §(S;).

Lemma 6.2. For any S;, i =1,...,q, if f is a C' function on S;, then

1 1
[ i) < 5 (7 [ 100+ Vi)

Our main technical result is the following :

Theorem 6.3. If T is a random map which satisfies Condition (C), then
o
V(Prf) <o(l+1/a)V(f) + (M + =)l fl1,

where a = min{a(S;) : i = 1,...,q} > 0, 6 = min{6S,,: i = 1,...,q} > 0,
pr(x)) and M = Zf:l maxi<i<q M,i-

ki

Tk

)

My ; = sup,cg, (Dpr(x) —

Proof. We have V(Prf) < Zle V(P (prf)). We first estimate V(Py, (prf)). Let
,1 -
Fioy = 2002 0D 0 Ry = mi(S), i = 1y yq, k=1, K. Then,

’ Ti,i(7h 1)

(6.1)

/Rn | DPr, (prf)||dAn < zq:/ ID(Frixr,)
<32 ([ e

Now, for the first integral we have,

/ ID(Fi) v |dA, = / |DFrap)lldA
R R;

pe(Ti}) . pr(Te i)
< [ 1t ))mncﬂ [ st <7sz< ))w

i

< [ IDserhID 2, + [ s

A+ / ||Fk,i<DxRi>|dAn).
R'IL

——t _dx,
( kf)

< op i / IDflldA, + M, / 1]l
Sq', Si,
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For the second integral we have,

(6.3)
/ [ Fe,:(Dx R, )
Rn

pk( ) k K
dA, = —d)\n = d)\n
o= [ DI s = [ 15 e

0
ki < 0,;. Using Lemma 4.2, we get:

ki
X / |f‘d)\n71
aS;

< Ok,iThi Ve, (f) + Ok,iTh,i / \fldAn.
a ad S:

By Lemma 4.3,

[ 1Fea(Dxn)
R™

(6.4)

Using Condition (C’), summing first over 4, we obtain

maxi<; Ok.iTk.
V(Pri(pef) = (max opimeq)(14+1/a)V (f)+(max My i+ =2 B £,

1<i<q ab

and then, summing over k we obtain

V(Prf) < o(l+1/a)V(f) + (M + — )||f||1

d

Theorem 6.4. Let T be a random map which satisfies condition (C). If o(1 +
1/a) < 1, then T preserves a measure which is absolutely continuous with respect
to Lebesgue measure. The operator Pr is quasi-compact on BV (S), see [1].

Proof. The proof of the theorem follows by the standard technique (see [1]). O

7. EXAMPLE IN R?

In this section, We present an example of a random map which satisfies condition
(C) of theorem 6.3 and thus it preserves an absolutely continuous invariant measure.

Example 7.1. Let T be a random map which is given by {71, 72;p1(x), p2(2)}
where 71,7 : I? — I? defined by:

(7.1)
(355‘1,21‘2) for (.’L‘l,l‘g) €5 = {O < Jil,l‘g 3}
(3x1 — 1,2a9) for (x1,20) € So = {% <21 < 2;0< 2y < 1}
(3x1 — 2,2m9) for ($1,IL‘2)€S3—{3<$1<10<LL‘2§§}
(3x1,310 — 1) for (xl,m2)€S4—{0<a:1<3,3<x2§§}
Tz, 22) =< (Bx1 — 1,320 — 1) for (x1,x9) 655—{3 <x1,x2 3}
(3x1 — 2,329 — 1) for (a:l,:rz)ESg—{3<a:1<1 <332<3}
(321,329 — 2) for (z1,20) € Sy ={0<m; < 12 <y <1}
(3x1 — 1,329 — 2) for (wl,m2)6582{1<w1§% i<:132<1}
(3x1 — 2,312 —2) for (w1,22) € Sg ={5 <x1 < 1; g<x2§1}
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(321, 3x2) for (x1,29) € 51
(2 — ?)Il7 3$2) for (131,:172) €Sy
(3z1 — 2,3x2) for (z1,22) € S3
(3x1,320 — 1) for (z1,22) € Sy
(72) 7'2(;171,:132) = (2 — 321, 3x0 — 1) for (.’El,xg) S 55 s
(31‘1 — 2,319 — 1) for (w17x2) € Sg
(31‘1,3.’1)2 — 2) for (.’L’l,xg) € Sy
(2 — 321,329 —2) for (x1,22) € Ss
(3x1 — 2,322 —2) for (z1,22) € So
and
(7.3)
0.215 for ($1,.732) s 0.785 for (Il,ﬂig) €S
0.216 for (1‘1, 2) € Sy 0.784 for (fL‘l,xz) € Sy
0.216 for (:L‘l, 2) € S3 0.784 for ({L‘l,xg) € S3
0.216 for ([L‘l, 2) €5y 0.784 for (3;‘1,332) €5,
pl(m) = 0.215 for (Tl, 2) € Sy s pg(.’E) = 0.785 for (371,332) € Sy
0.216 for (z1,x2) € Sg 0.784 for (z1,z2) € Sg
0.216 for (z1,x2) € S7 0.784 for (z1,22) € S7
0.216 for (1'1, 2) € Sy 0.784 for (1’1,1‘2) € Sy
0.215 for (.Tl, 2) € Sy 0.785 for (.%‘1,(132) € Sy
The derivative matrix of (11,;) !, is

O wl=

o ()

and the derivative matrix of (12,)7!, is

1 9
(7.5) ( ) or ( 30 ).
0 3
Therefore, the Euclidean matrix norm, ||D(ry;) 7" is ‘/_ */_3 and the Euclidean

matrix norm, || D(72;)7"|| is @ Then

= O
N~~~

O wl=
wik O

max

1202 4 D7 (T (@) < 0.216=2= + 0,785

zpk VI | 7852

For this partition P, we have a = 1, which implies

2
o(1+1/a) = 2(0. 21()'@ +0. 785£) ~ 0.9998 < 1.

Therefore, by theorem 6.4, the random map T admits an absolutely continuous
invariant measure. Notice that 71,7 are piecewise linear Markov maps defined
on the same Markov partition P = {S1,S2,...,S9}. For such maps the Perron-
Frobenius operator reduces to a matrix and the invariant density is constant on the
elements of the partition (see [1]). The Perron-Frobenius operator of the random
map T is represented by the following matrix

(7.6) M =TI My + 1l My,



POSITION DEPENDENT RANDOM MAPS IN ONE AND HIGHER DIMENSIONS 13

where M;, My are the matrices of Pr, and P, respectively, and II;, IIy are the
diagonal matrices of p;(z) and po(x) respectively. Then, M is given by

(7.7)

1011111 0 0 o0
O T A T A S
AR A A
5 5 65 5 5 5 900
AN S S S S A T G
f ¢ 2 2 92 9 ¥ 9 39
M=pldox | 5 5 5 5 5 5 5§ 7 7
i1 1 1 1 1 1 1 1
9 3 9 3 9 5 9 9 3
SR SR (R SN (R S (R G
S (R S A G SR S G
9 9 9 9 9 9 9 9 9
i1 1 1 1 1 1 1 1
3 5 9 5 9 5 9 95 3
RN coeaaaa bbb
- = == == = == = = = c ¢ ¢ ¢ ¢ ¢c¢
S GRS S S GRS SR S G c ¢ c ¢ ¢ ¢ d d d
? 2 2 2 2 2 2 9?2 9
x| EEE R R R R R G
= = = = = = = = = | =1 € € e e e e e e e
paic S GRS S S GRS SR S G e e e e e e e e e
SO (R (N R S S N A |
= = = = = = = = = e e e e e e e e e
SR SR GO SN GRS GRS S A e e e e e e e e e
SR GRS S S G SR S G e e e e e e e e e
9 9 9 9 9 9 9 9 9

where p; = (0.215,0.216, 0.216,0.216,0.215,0.216, 0.216, 0.216, 0.215),
po = (0.785,0.784,0.784,0.784, 0.785, 0.784, 0.784, 0.784, 0.785), Idy is 9 x 9 identity

matrix and

a = 0.12306
b = 0.087222
c=0.12311
d = 0.087111
e=0.11111.

The invariant density of T' is

(78) f:(f17f27f37f47f57f67f77f87f9)7 fi:f|5ia i:1727"'597

normalized by

(7.9) htfatfstfatfstfotfrtfs+fo=09,
and satisfying equation fM = f. Then, fi = fo=fa=fa=fs=fs = ﬁ and
fr=fs = fo =222

REFERENCES

1. Boyarsky, A. and Goéra, P., Laws of Chaos , Brikhduser, Boston, 1997.

2. Dunford, N., and Schwartz, J. T, Linear Operators, Part I: General Theory, Interscience Publ.
Inc., N.Y., 1964.

3. Giusti, E., Minamal Surfaces and Functions of Bounded Variations , Brikhaiiser, Boston,
1984.

4. Goéra, P. and Boyarsky, A., Absolutely continuous invariant measures for random maps with
position dependent probabilities, Math. Anal. Appl., 278 ,(2003), 225-242.

5. Goéra, P. and Boyarsky, A., Absolutely continuous invariant measures for piecewise expanding
C? transformations in RN, Israel Jour. Math., Vol. 67, No. 3, 1989, 272-286.

6. Gora, P., Graph theoretic bound on number of a.c.i.m for random transformations, Proc.
Amer. Math. Soc., 118, 401-410.




14 WAEL BAHSOUN AND PAWEL GORA

7. Kifer, Y., Ergodic Theory of Random Transformations, Brikhauser, Boston, 1986.

8. Morita, T., Random iteration of one-dimensional transformations, Osaka J. Math. (1985),
22, pp. 489-518.

9. Pelikan, S., Invariant densities for random maps of the interval, Proc. Amer. Math. Soc., vol.
281, , (1984), pp. 813-825.

10. Stenflo, O, Uniqueness of invariant measures for place-dependent random iterations of func-
tions, IMA Math. Appl. 2002, 132, 13-32.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF VICTORIA, PO BOX 3045
STN CSC, VICTORIA, B.C., V8W 3P4, CANADA
E-mail address: wab@math.uvic.ca

DEPARTMENT OF MATHEMATICS AND STATISTICS, CONCORDIA UNIVERSITY, 7141 SHERBROOKE
STREET WEST, MONTREAL, QUEBEC H4B 1R6, CANADA
E-mail address: pgoravax2.concordia.ca



