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Abstract. This paper investigates the interrelated price online inven-
tory problems in which decisions as to when and how much to replenish
must be made in an online fashion to meet some demand even without
concrete knowledge of future prices. The objective of the decision maker
is to minimize the total cost with the demands met. Two different types
of demand are considered carefully, which are linearly related demand to
price and exponentially related demand to price. In this paper, the prices
are online with only the price range variation known in advance, which
are interrelated with the preceding price. Two models of price correla-
tions are investigated. Namely an exponential model and a logarithmic
model. The corresponding algorithms of the problems are developed and
the competitive ratio of the algorithms are also derived by the solutions
of linear programming.
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1 Introduction

In recent years, online problem and competitive algorithm theory have received
increasing attention. With the Economic Order Quantity (EOQ) model proposed
by Wilson [1] in 1934, the inventory theory has gradually developed. In the classi-
cal inventory problems, prices are generally assumed to be a constant or follow a
probability distribution. Serel [2] studied the optimal ordering and pricing prob-
lem based on the interrelated demand and price in the rapid response system.
Banerjee and Sharma [3] studied the inventory model with seasonal demand in
two potentially replaceable market. Sana [4] put the EOQ model generalized to
the case of perishable products with sensitive demand to price. Lin and Ho [5]
studied the optimal ordering and pricing problem of the joint inventory model
with sensitive demand to price based on the quantity discount. Kalymon [6] s-
tudies the problem with price dependency on previous prices where also demand
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is uncertain. Webster and Weng [7] studied the ordering and pricing problem
of the fashion product′s supply chain which is consist of producer and seller,
and random demand is sensitive to price in the supply chain. Ali and Masinga
[8] presented a nonlinear programming model that can handle random demands
and incorporate price change for optimal order quantities. Shu, Li and Zhong [9]
considered an inventory control problem with stochastic demand in which the
demand mean and variance are assumed known for each market. Liu, Song and
Wu [10] investigated a single-period inventory problem with discrete stochastic
demand. Yang, Wee, Chung and Huang [11] studied the product pricing and
material replenishment strategy with price-sensitive demand. Sicilia et al. [12]
studied an inventory model for deteriorating items with shortages and time-
varying demand. Drezner and Scott [13] derived approximate formulas for the
optimal solution for the particular case of an exponential demand distribution
for the stochastic inventory model.

The price online inventory problem [14] is challenging where the decision
maker, or a retailer, must decide when and how much to purchase without
knowing future prices. The price online inventory problem can be seen as an
extension of the time series search problem and the financial one-way trading
problem [15-19], in which a decision maker wants to purchase L units of product
through a sequence of n sellers v1, v2, . . . , vn arriving online, and he needs to
decide the fraction to purchase from each vi at the then-prevailing market price
pi. His objective is to minimize the cost. It is easy to solve the off-line version
of the problem; if the decision maker knows all the future prices, he can simply
wait for the lowest price and then purchase all his product at that price.

Specifically, in our price online inventory problem, there is a buyer who has L
units of product to be purchased, and there is a sequence of sellers v1, v2, . . . , vn
arriving. When a seller vi arrives, the unit price pi is revealed and the buyer
needs to decide the amount xi of product to be purchased to vi at price pi, and
the objective is to minimize

∑
i pixi subject to

∑
i xi ≤ L. This optimisation

problem is challenging because: (1) the buyer has no control of the prices, which
fluctuates with time, and (2) the future prices are uninformative, i.e., when
vi arrives, any price pj where j > i is unknown, and (3) he needs to decide
the amount of product to be purchased to a seller vi as soon as vi arrives.
Larsen and Wohlk [14] considered a real-time version of the inventory problem
with continuous deterministic demand and involved the fixed order cost, the
inventory cost, obtained algorithmic upper and lower bounds of the competitive
ratio whereas the gap grows with the complexity of the modes. The inventory
problem considered in [20] is a demand online inventory problem where the
decision maker only knows the upper bound and lower bound of the daily demand
and decides how many products should be prepared everyday. Ma and Pan [21]
considered the online inventory problem with the assumption that the decision
maker has the knowledge of the same upper and lower bounds of all prices.

We apply the competitive ratio to evaluate the performance of algorithm. An
arbitrary online algorithm ALG is referred to as r−competitive, if for an arbi-
trary input price instance I has ALG(I) ≤ r · OPT (I), where ALG(I) denotes



the cost of the online algorithm ALG, and OPT (I) is the cost of the optimal
off-line algorithm OPT . The competitive ratio of ALG algorithm is defined as
the minimum r, which satisfies the above inequality.

To improve Larsen and Wohlk′ work for a real-time inventory problem [14],
we focus on two main facts of one inventory system, the price and the demand.
The impacts of price, the price-related patterns and the relevant algorithms are
discussed. In the Chinese stock market, the stock prices of today are known to
be bounded in the interval from 90% to 110% of yesterday′s closing price. So
we modify the assumptions and assume that the variation range of each price
is interrelated with its preceding price. In the inventory system there are some
certain demands for the items, since there are some retailers and customers. The
demand is negative correlated to the price because customers are more willing
to purchase cheaper products. The problems considered in this paper become
more practical than the problems in [14,21]. Two relationships and prices of
demands considered, linear relation and exponential relation[23-25]. For every
kind of demand, two types of price interrelation, exponential and logarithmic
interrelations are considered, respectively[18-19].

2 Problem Statement

This paper considers an inventory problem in which the decision maker, a retail-
er, should decide when and how much to purchase every day without knowing
future prices during the purchasing process. U is the storage capacity, which
must be reached when the purchasing process is over. Additionally, the initial
inventory is zero. The objective of the decision maker is to minimize the total
cost with the demands met. In order to generalise the model, we consider dif-
ferent price variation ranges. That is, the price has its own variation range and
the range is variable.

Let n denote the number of purchasing days. Denote byDi and pi the demand
and the price of the ith day. Let θ1 and θ2 denote the parameters of price
variation ranges. We make some basic observation on the values of θ1 and θ2. If
1 ≤ θ1 or θ2 ≤ 1, implying that the price sequence is monotonously increasing
or decreasing respectively, the optimal solution can be obtained by selecting the
first or last price for the problems, respectively. So we just focus on the case
where 0 < θ1 ≤ 1 ≤ θ2. Let p denote the initial price, where p1 ∈ [θ1p, θ2p].
As in the Chinese stock market, the stock prices follow the exponential model
with θ1 = 0.9 and θ2 = 1.1. In the currency trading, the logarithmic-growth
model was considered by Zhang, Zhang and Xu[19]. The following two price
interrelation models are considered.

– The exponential model[18]: pi ∈ [θ1pi−1, θ2pi−1], 2 ≤ i ≤ n.

– The logarithmic model[19]: pi ∈ [θ1p1 ln i, θ2p1 ln i], 2 ≤ i ≤ n.



3 The Competitive Analysis for Linearly Related
Demand

For the inventory problem, the demand is assumed to have a negative linear
relation with price. Without loss of generality, we assume Di = ai − bipi as in
the reference[23].

3.1 The Competitive Analysis of the Exponential Model

Now a linear programming problem with variables {r, s1, s2, ..., sn} as follows is
investigated, where the second and third constraint conditions are transformed
by the range of the total purchase quantity at the end of the jth day (j =
1, 2, ..., n) and the relationship between the demand and price and the price
correlation in the exponential model. The assumption of exponential model is
pi ∈ [θ1pi−1, θ2pi−1] for every 2 ≤ i ≤ n, and there exists one positive p ∈
[θ1p, θ2p] with θ1 ≤ 1 ≤ θ2. The linear programming problem is given.

min r

s.t. Hi(s1, s2, ..., sn) ≤ r i = 1, 2, ..., n

U +

n∑
i=1

(ai − biθi2p) ≤
n∑
i=1

si ≤ U +

n∑
i=1

(ai − biθi1p) (I)

j∑
i=1

(ai − biθi2p) ≤
j∑
i=1

si ≤ U +

j∑
i=1

(ai − biθi1p) j = 1, 2, ..., n− 1

si ≥ 0 i = 1, 2, ..., n

where Hi(s1, s2, ..., sn) =

s1

θ
i−1
1

+
s2

θ
i−2
1

+...+
si−1
θ1

+si+si+1θ2+...+snθ
n−i
2

U+
n∑
j=1

(aj−bjθj2p)
.

Lemma 1. The solution to the linear programming problem (I) exists.

Proof. It only needs to prove that there exists {r′, s′1, s′2, ..., s′n} such that

Hi(s
′
1, s
′
2, ..., s

′
n) ≤ r′, i = 1, 2, ..., n (1)

U +

n∑
i=1

(ai − biθi2p) ≤
n∑
i=1

s′i ≤ U +

n∑
i=1

(ai − biθi1p), (2)

j∑
i=1

(ai − biθi2p) ≤
j∑
i=1

s′i ≤ U +

j∑
i=1

(ai − biθi1p) j = 1, 2, ..., n− 1 (3)

s′i ≥ 0, i = 1, 2, ..., n. (4)



We construct it as follows. Let s′1 = U + a1− b1θ1p and s′i = ai− biθi1p for every

2 ≤ i ≤ n. It is obvious that s′i ≥ 0 for 1 ≤ i ≤ n and
n∑
i=1

s′i = U+
n∑
i=1

(ai−biθi1p).

And
j∑
i=1

s′i = U +
j∑
i=1

(ai − biθi1p) holds for 1 ≤ j ≤ n− 1. With the assumption

θ1 ≤ θ2, {s′1, s′2, ..., s′n} = {U + a1 − b1θ1p, a2 − b2θ21p, ..., an − bnθn1 p} satisfies
the inequalities (2), (3) and (4). In addition, for any i = 1, 2, ..., n, we get

Hi(s
′
1, s
′
2..., s

′
n)

=

U+a1−b1θ1p
θi−1
1

+ ...+
ai−1−bi−1θ

i−1
1 p

θ1
+ ai − biθi1p+ (ai+1 − bi+1θ

i+1
1 p)θ2 + ...+ (an − bnθn1 p)θn−i2

U +
n∑
j=1

(aj − bjθj2p)
.

Because θ1, θ2, U, n, p, ai(1 ≤ i ≤ n) and bi(1 ≤ i ≤ n) are all known parameters,
the values of Hi(s

′
1, s
′
2, ..., s

′
n) = Hi(U + a1 − b1θ1p, a2 − b2θ21p, ..., an − bnθn1 p)

can be calculated for all 1 ≤ i ≤ n. Let r′ = max
1≤i≤n

Hi(U + a1 − b1θ1p, a2 −

b2θ
2
1p, ..., an − bnθ

n
1 p). It is clear that Hi(U + a1 − b1θ1p, a2 − b2θ

2
1p, ..., an −

bnθ
n
1 p) ≤ r′ for all 1 ≤ i ≤ n. From the above analysis, there exists {r′, s′1, s′2, ..., s′n} =

{ max
1≤i≤n

Hi(U+a1−b1θ1p, a2−b2θ21p, ..., an−bnθn1 p), U+a1−b1θ1p, a2−b2θ21p, ..., an−

bnθ
n
1 p} satisfying the inequalities (1), (2), (3) and (4). Thus, the solution of the

above linear programming problem (I) exists.

The online algorithm of this model is designed according to the solution to
the linear programming problem (I), denoted by SLP1.

Algorithm SLP1

– Step 1: Solve the linear programming problem (I), and let {r>, s>1 , s
>
2 , ..., s

>
n }

be the solution.

– Step 2: Define s>i to be the quantity of units for purchasing at period i for
every 1 ≤ i ≤ n.

Theorem 1. The competitive ratio of SLP1 algorithm is r>.

Proof. Let σ = p1, p2, ..., pn be an arbitrary price sequence. Without loss of
generality, we assume that the lowest price in σ is pi. Obviously, the optimal

solution OPT (σ) ≥ (U +
n∑
j=1

Dj)pi and SLP1(σ) =
n∑
j=1

s>j pj hold.

For pj ∈ [θ1pj−1, θ2pj−1] when 2 ≤ j ≤ n, then pj ≤ pi
θi−j1

for j = 1, 2, ..., i,

and pj ≤ θj−i2 pi for j = i+ 1, i+ 2, ..., n. From SLP1(σ)
OPT (σ) ≤

n∑
j=1

s>j pj

(U+
n∑
j=1

Dj)pi

, one can



get

SLP1(σ)

OPT (σ)
≤

s>1
θi−1
1

pi +
s>2
θi−2
1

pi + ...+
s>i−1

θ1
pi + s>i pi + s>i+1θ2pi + ...+ s>n θ

n−i
2 pi

(U +
n∑
j=1

Dj)pi

≤
s>1
θi−1
1

+
s>2
θi−2
1

+ ...+
s>i−1

θ1
+ s>i + s>i+1θ2 + ...+ s>n θ

n−i
2

U +
n∑
j=1

(aj − bjθj2p)

= Hi(s
>
1 , s

>
2 , ..., s

>
n )

Combining the optimal solution to the linear programming problem (I), the
above inequality can be re-written in the following way.

SLP1(σ)

OPT (σ)
≤ Hi(s

>
1 , s

>
2 ..., s

>
n ) ≤ r>, i = 1, 2, ..., n,

where r> is the minimum one satisfying the above inequality. Hence, r> is the
competitive ratio of the algorithm SLP1.

3.2 The Competitive Analysis of the Logarithmic Model

The assumption of logarithmic model is pi ∈ [θ1p1 ln i, θ2p1 ln i] for 2 ≤ i ≤ n,
and there exists one positive p satisfying p1 ∈ [θ1p, θ2p] with θ1 ≤ θ2.

Let

K1(s1, s2, ..., sn) =
s1 + s2θ2 ln 2 + ...+ snθ2 lnn

U + a1 − b1θ2p+
n∑
j=2

(aj − bjθ22p ln j)
, (5)

Ki(s1, s2, ..., sn) =
s1 + s2θ2 ln 2 + ...+ snθ2 lnn(

U + a1 − b1θ2p+
n∑
j=2

(aj − bjθ22p ln j)

)
θ1 ln i

, i = 2, 3, ..., n.

(6)

Before giving the competitive ratio, a linear programming problem with vari-
ables {r, s1, s2, ..., sn} is considered, in which the constraint conditions 2 to 4 are
transformed by the range of the total purchase quantity at the end of the jth



day (j = 1, 2, ..., n) in the logarithmic model.

min r

s.t. Ki(s1, s2, ..., sn) ≤ r i = 1, 2, ..., n

a1 − b1θ2p ≤ s1 ≤ U + a1 − b1θ1p

a1 − b1θ2p+

j∑
i=2

(ai − biθ22p ln i) ≤
j∑
i=1

si ≤ U + a1 − b1θ1p+

j∑
i=2

(ai − biθ21p ln i),

j = 2, ..., n− 1 (II)

U + a1 − b1θ2p+

n∑
i=2

(ai − biθ22p ln i) ≤
n∑
i=1

si ≤ U + a1 − b1θ1p+

n∑
i=2

(ai − biθ21p ln i)

si ≥ 0 i = 1, 2, ..., n

Lemma 2. The solution to the linear programming problem (II) exists.

The online algorithm of this model is designed according to the solution to
the linear programming problem (II), denoted by SLP2.

Algorithm SLP2

– Step 1: Solve the linear programming problem (II), and let {r̂, ŝ1, ŝ2, ..., ŝn}
be the solution.

– Step 2: Define ŝi to be the quantity of units for purchasing at period i for
every 1 ≤ i ≤ n.

Theorem 2. The competitive ratio of SLP2 algorithm is r̂.

Proof. Let σ = p1, p2, ..., pn denote an arbitrary price sequence. Without loss
of generality, we assume that the lowest price in σ is pi. For i = 1, OPT (σ) ≥(
U + a1 − b1θ2p+

n∑
j=2

(aj − bjθ22p ln j)

)
p1 and SLP2(σ) =

n∑
j=1

ŝjpj hold. With

the assumption of pj ∈ [θ1p1 ln j, θ2p1 ln j] for 2 ≤ j ≤ n, pj ≤ θ2p1 ln j holds for
every j = 2, 3, ..., n. Then

SLP2(σ)

OPT (σ)
≤

n∑
j=1

ŝjpj(
U + a1 − b1θ2p+

n∑
j=2

(aj − bjθ22p ln j)

)
p1

≤ ŝ1p1 + ŝ2θ2 ln 2p1 + ...+ ŝnθ2 lnnp1(
U + a1 − b1θ2p+

n∑
j=2

(aj − bjθ22p ln j)

)
p1

=
ŝ1 + ŝ2θ2 ln 2 + ...+ ŝnθ2 lnn

U + a1 − b1θ2p+
n∑
j=2

(aj − bjθ22p ln j)

= K1(ŝ1, ŝ2, ..., ŝn)



For 2 ≤ i ≤ n, we haveOPT (σ) ≥

(
U + a1 − b1θ2p+

n∑
j=2

(aj − bjθ22p ln j)

)
pi

and SLP2(σ) =
n∑
j=1

ŝjpj . By the assumptions of this model, pi ≥ θ1p1 ln i holds

for i = 2, 3, ..., n and pj ≤ θ2p1 ln j holds for j = 2, 3, ..., n. Then

SLP2(σ)

OPT (σ)
≤

n∑
j=1

ŝjpj(
U + a1 − b1θ2p+

n∑
j=2

(aj − bjθ22p ln j)

)
pi

≤ ŝ1p1 + ŝ2θ2 ln 2p1 + ...+ ŝnθ2 lnnp1(
U + a1 − b1θ2p+

n∑
j=2

(aj − bjθ22p ln j)

)
θ1p1 ln i

=
ŝ1 + ŝ2θ2 ln 2 + ...+ ŝnθ2 lnn(

U + a1 − b1θ2p+
n∑
j=2

(aj − bjθ22p ln j)

)
θ1 ln i

= Ki(ŝ1, ŝ2, ..., ŝn)

Combining the above two cases, we obtain

SLP2(σ)

OPT (σ)
≤ Ki(ŝ1, ŝ2, ..., ŝn) ≤ r̂, i = 1, 2, ..., n,

where r̂ is the minimum one satisfying the above inequality. Hence, r̂ is the
competitive ratio of the algorithm SLP2.

4 The Competitive Analysis for Exponentially Related
Demand

In this inventory problem, the demand is assumed to have a negative exponential
relation with price. Without loss of generality, we assume Di = ai exp(−bipi)
from the references [23-25].

4.1 The Competitive Analysis of the Exponential Model

Firstly, a linear programming problem with variables {r, s1, s2, ..., sn} as fol-
lowing is investigated, in which the second and third constraint conditions are
transformed by the range of the total purchase quantity at the end of the jth



day (j = 1, 2, ..., n) .

min r

s.t. Mi(s1, s2, ..., sn) ≤ r i = 1, 2, ..., n

U +

n∑
i=1

ai exp(−biθi2p) ≤
n∑
i=1

si ≤ U +

n∑
i=1

ai exp(−biθi1p) (III)

j∑
i=1

ai exp(−biθi2p) ≤
j∑
i=1

si ≤ U +

j∑
i=1

ai exp(−biθi1p) j = 1, 2, ..., n− 1

si ≥ 0 i = 1, 2, ..., n

where Mi(s1, s2, ..., sn) =

s1

θ
i−1
1

+
s2

θ
i−2
1

+...+
si−1
θ1

+si+si+1θ2+...+snθ
n−i
2

U+
n∑
j=1

aj exp(−bjθj2p)
.

Lemma 3. The solution to the linear programming problem (III) exists.

The online algorithm of this model can be designed according to the solution to
the linear programming problem (III), and denoted by SLP3.

Algorithm SLP3

– Step 1: Solve the linear programming problem (III), and let {r∗, s∗1, s∗2, ..., s∗n}
be the solution.

– Step 2: Define s∗i to be the quantity of units for purchasing at period i for
every (1 ≤ i ≤ n).

Theorem 3. The competitive ratio of SLP3 algorithm is r∗.

Proof. Let σ = p1, p2, ..., pn be an arbitrary price sequence. Without loss of
generality, we assume that the lowest price in σ is pi. Obviously, OPT (σ) ≥
(U+

n∑
j=1

Dj)pi and SLP3(σ) =
n∑
j=1

s∗jpj hold. For 2 ≤ j ≤ n, pj ∈ [θ1pj−1, θ2pj−1]

holds, then we have pj ≤ pi
θi−j1

for j = 1, 2, ..., i and pj ≤ θj−i2 pi for j = i+ 1, i+

2, ..., n. From SLP3(σ)
OPT (σ) ≤

n∑
j=1

s∗j pj

(U+
n∑
j=1

Dj)pi

, one can get

SLP3(σ)

OPT (σ)
≤

s∗1
θi−1
1

pi +
s∗2
θi−2
1

pi + ...+
s∗i−1

θ1
pi + s∗i pi + s∗i+1θ2pi + ...+ s∗nθ

n−i
2 pi

(U +
n∑
j=1

Dj)pi

≤
s∗1
θi−1
1

+
s∗2
θi−2
1

+ ...+
s∗i−1

θ1
+ s∗i + s∗i+1θ2 + ...+ s∗nθ

n−i
2

U +
n∑
j=1

aj exp(−bjθj2p)

= Mi(s
∗
1, s
∗
2, ..., s

∗
n)



Combining the optimal solution to the linear programming problem (III), the
above inequality can be rewritten in the following.

SLP3(σ)

OPT (σ)
≤Mi(s

∗
1, s
∗
2, ..., s

∗
n) ≤ r∗, i = 1, 2, ..., n,

where r∗ is the minimum one satisfying the above inequality. Hence, r∗ is the
competitive ratio of the algorithm SLP3.

4.2 The Competitive Analysis of the Logarithmic Model

Let

Q1(s1, s2, ..., sn) =
s1 + s2θ2 ln 2 + ...+ snθ2 lnn

U + a1 exp(−b1θ2p) +
n∑
j=2

aj exp(−bjθ22p ln j)
, (16)

Qi(s1, s2, ..., sn) =
s1 + s2θ2 ln 2 + ...+ snθ2 lnn(

U + a1 exp(−b1θ2p) +
n∑
j=2

aj exp(−bjθ22p ln j)

)
θ1 ln i

, i = 2, 3, ..., n.

(17)
Before giving the competitive ratio, a linear programming problem with vari-

ables {r, s1, s2, ..., sn} is considered, in which the constraint conditions are trans-
formed by the range of the total purchase quantity at the end of the jth day
(j = 1, 2, ..., n) .

min r

s.t. Qi(s1, s2, ..., sn) ≤ r i = 1, 2, ..., n

a1 exp(−b1θ2p) ≤ s1 ≤ U + a1 exp(−b1θ1p)

a1 exp(−b1θ2p) +

j∑
i=2

ai exp(−biθ22p ln i) ≤
j∑
i=1

si j = 2, ..., n− 1

j∑
i=1

si ≤ U + a1 exp(−b1θ1p) +

j∑
i=2

ai exp(−biθ21p ln i) j = 2, ..., n− 1 (IV )

U + a1 exp(−b1θ2p) +

n∑
i=2

ai exp(−biθ22p ln i) ≤
n∑
i=1

si

n∑
i=1

si ≤ U + a1 exp(−b1θ1p) +

n∑
i=2

ai exp(−biθ21p ln i)

si ≥ 0 i = 1, 2, ..., n

Lemma 4. The solution to the linear programming problem (IV ) exists.

The online algorithm of this model can be designed according to the solution to
the linear programming problem (IV ), and is denoted by SLP4.

Algorithm SLP4



– Step 1: Solve the linear programming problem (IV ), and let {r̄, s̄1, s̄2, ..., s̄n}
be the solution.

– Step 2: Define s̄i to be the quantity of units for purchasing at period i for
every 1 ≤ i ≤ n.

Theorem 4. The competitive ratio of SLP4 algorithm is r̄.

Proof. Let σ denote an arbitrary price sequence. Without loss of generality, we
assume that the lowest price in σ is pi. For i = 1,

OPT (σ) ≥

(
U + a1 exp(−b1θ2p) +

n∑
j=2

aj exp(−bjθ22p ln j)

)
p1

and SLP4(σ) =
n∑
j=1

s̄jpj hold. For 2 ≤ j ≤ n, pj ∈ [θ1p1 ln j, θ2p1 ln j], then

pj ≤ θ2p1 ln j holds for every j = 2, 3, ..., n.

SLP4(σ)

OPT (σ)
≤

n∑
j=1

s̄jpj(
U + a1 exp(−b1θ2p) +

n∑
j=2

aj exp(−bjθ22p ln j)

)
p1

≤ s̄1p1 + s̄2θ2 ln 2p1 + ...+ s̄nθ2 lnnp1(
U + a1 exp(−b1θ2p) +

n∑
j=2

aj exp(−bjθ22p ln j)

)
p1

=
s̄1 + s̄2θ2 ln 2 + ...+ s̄nθ2 lnn

U + a1 exp(−b1θ2p) +
n∑
j=2

aj exp(−bjθ22p ln j)

= Q1(s̄1, s̄2, ..., s̄n)

For 2 ≤ i ≤ n, OPT (σ) ≥

(
U + a1 exp(−b1θ2p) +

n∑
j=2

aj exp(−bjθ22p ln j)

)
pi

and SLP4(σ) =
n∑
j=1

s̄jpj hold. By the assumptions of this model, we get pi ≥



θ1p1 ln i and pj ≤ θ2p1 ln j hold for i = 2, 3, ..., n and j = 2, 3, ..., n. Then

SLP4(σ)

OPT (σ)
≤

n∑
j=1

s̄jpj(
U + a1 exp(−b1θ2p) +

n∑
j=2

aj exp(−bjθ22p ln j)

)
pi

≤ s̄1p1 + s̄2θ2 ln 2p1 + ...+ s̄nθ2 lnnp1(
U + a1 exp(−b1θ2p) +

n∑
j=2

aj exp(−bjθ22p ln j)

)
θ1p1 ln i

=
s̄1 + s̄2θ2 ln 2 + ...+ s̄nθ2 lnn(

U + a1 exp(−b1θ2p) +
n∑
j=2

aj exp(−bjθ22p ln j)

)
θ1 ln i

= Qi(s̄1, s̄2, ..., s̄n)

Combining the above two cases, one can obtain

SLP4(σ)

OPT (σ)
≤ Qi(s̄1, s̄2, ..., s̄n) ≤ r̄, i = 1, 2, ..., n,

where r̄ is the minimum one satisfying the above inequality. Hence, r̄ is the
competitive ratio of the algorithm SLP4.

5 Conclusions

This paper investigates two models for the interrelated price online inventory
problem with two kinds of demand. The corresponding algorithms are designed
and the competitive ratios are derived for the exponential and the logarithmic
model with the daily demand, respectively. In the future, it is interesting to
consider the problem where both the price and demand are online. It is also
challenging to investigate the online inventory problem where the price informa-
tion is updated in real time.
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