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Abstract

In this paper, we study the existence, uniqueness and the probabilistic representation of
the weak solutions of quasi-linear parabolic and elliptic partial differential equations (PDESs)
in the Sobolev space H; (R9). For this, we study first the solutions of forward-backward
stochastic differential equations (FBSDEs) with smooth coefficients, regularity of solutions
and their connection with classical solutions of quasi-linear parabolic PDEs. Then using
the approximation procedure, we establish their convergence in the Sobolev space to the
solutions of the FBSDES in the space L2(R%:R?) @ L2(R%:RF) @ L2(R4RF*?). This gives
a connection with the weak solutions of quasi-linear parabolic PDEs. Finally, we study the
unique weak solutions of quasi-linear elliptic PDEs using the solutions of the FBSDEs on
infinite horizon.

Keywords: forward-backward stochastic differential equations; weak solutions; quasi-linear
partial differential equations; probabilistic representation; parabolic; elliptic; infinite horizon.

1 Introduction

In this paper, we study the existence, uniqueness and the probabilistic representation of solu-
tions of systems of quasi-linear second order parabolic (or elliptic) partial differential equations
(PDEs). Consider the following parabolic type PDEs:

%u + ZLu+ f(t,z,u,0"(t,x,u)Vu) =0, u(T,z) = h(x), (1.1)

where w : [0, 7] x R? — R* with u(t) being in an appropriate Sobolev space, which will be made
clear later, and .Z is a second order differential operator defined by
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Quasi-linear PDEs arise in many physical and engineering problems and have been subject to
intensive studies ([4], [9], [10], [I4]). Due to the complexity of the equations, there are many
difficulties in both analytic and probabilistic approaches.
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The aim of this work is to study the weak solutions of (1.1)) through a probabilistic approach
by studying the forward-backward stochastic differential equations (FBSDEs):

S S
X0 = 4 / b(r, X1%, Y5 dr + / o(r, X%, Y55 dW,,
¢ t
T T (13)
VI =h(X5T) + / f(r, Xbe ybe 708 dr — / ZHdW,, 0<t<T.
S S
It is well-known that a solution of a linear parabolic (or elliptic) PDEs can be formulated as the
expectation of a functional of the solutions of some stochastic differential equations, known as
the Feynman-Kac formula. By introducing a kind of backward stochastic differential equations
(BSDEs), Pardoux-Peng [20, 2I] and Peng [24] obtained a probabilistic interpretation for a
semi-linear parabolic (or elliptic) PDEs. The probabilistic interpretation:

u(t,z) = YH* (1.4)

establishes the connection between the classical and viscosity solutions of PDEs and the solutions
of BSDEs (or FBSDEs), and provides a new insight into studying non-linear PDEs. Probabilistic
representation of weak solutions of semi-linear PDEs in a Sobolev apace was studied by Barles-
Lesigne [0], Bally-Matoussi [5] and Zhang-Zhao [31], 32, [33] 34], and for Hamilton-Jacobi-Bellman
equations by Wei-Wu-Zhao [27]. For the quasi-linear case, there are a few results about the
viscosity solutions (Pardoux-Tang [23], Wu-Yu [28]). As far as we know, this paper is the
first result on FBSDEs in Lg(Rd; RY) ® L%(Rd;Rk) ® L%(Rd;RkXd) and their connection with
quasi-linear PDE (1.3)) in the Sobolev space H (R9).

FBSDESs were first considered by Antonelli who obtained an existence and uniqueness result
over a small time duration by using the Contraction Mapping Method ([1]). Ma-Protter-Yong
introduced the Four Step Scheme and proved the existence and uniqueness under some regularity
assumptions on the coefficients and non-degeneracy of the forward equation in [I5]. Several other
results on a more general form of FBSDEs (o allowed to depend on z) are given by Hu-Peng
[11], Peng-Wu [26], based on stochastic Hamiltonian systems, under certain monotone conditions.
Yong [29] generalized these results by introducing a more flexible type of monotone condition.
Using homotopic technique, Yong developed a Continuation Method in [30]. Recently, Ma-Wu-
Zhang-Zhang [16] integrated all these existing methods, and provided a unified approach.

Comparing all these works on FBSDESs, the balance between the regularity of the coeflicients
and the time duration is still a challenging problem. In fact, under Lipschitz conditions, one
can only get an existence and uniqueness result over a small time duration (local result) by
using a Contraction Mapping Method (e.g. Delarue [§]). For an arbitrary time duration (global
result), one should consider more complicated assumptions by the Four Step Scheme or the
Continuation Method. In this work we use a purely probabilistic method to study the FBSDESs
instead of applying a PDEs approach. The advantage is that we can push the probabilistic
method to solve FBSDEs beyond what analytic methods can offer, e.g. the infinite horizon
case (Section . Our approach does not depend on results of PDEs. In Section [2| by using a
Contraction Mapping Method, we give a global result under either of two classes of monotone-
Lipschitz conditions. Meanwhile, the Continuation Method (Hu-Peng [11], Peng-Wu [26], Yong
129, 30]) can deal with some general FBSDEs (o can depend on z). However, one cannot obtain
the regularity of yh* (Lemmas and i when o depends on z, which is a necessary step
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to connect with PDEs. On the other hand, the conditions from our method are weaker than
conditions offered by the Continuation Method when o is independent of z. Moreover, our result
on infinite horizon FBSDEs gives the solutions of quasi-linear PDEs.

The difficulty of solving FBSDE lies in the coupling between the forward and backward
equations. It is a circular dependence of solutions of both equations, which need to be solved
simultaneously rather than one after another. Such a difficulty was also pointed out in Pardoux-
Tang [23]. We will construct mappings based on a monotonicity assumption. In fact, such
assumptions were used in many other works such as Hu-Peng [I1], Pardoux-Tang [23], Peng-
Shi [25], Peng-Wu [26]. In Delarue [§], he assumed globally Lipschitz conditions with o being
non-degenerate with the help of the PDE method. But our work mainly uses the probabilistic
method to solve the FBSDEs and we do not need o being non-degenerate. A monotonicity
condition is given in a weak sense and weak solutions of PDEs are obtained by solving FBSDEs
in a function space.

In this paper, we study the solutions of PDE in both classical sense (Section [3|) and
in the sense of weak solutions in a Sobolev space (Section . The latter is the main purpose
of this paper. To do this, we need to study the classical solutions and use an approximation
procedure to obtain weak solutions. Moreover, the norm equivalence result (Lemma , which
plays an important role in this analysis, is new for FBSDEs. Finally, let us consider the following

FBSDESs on the infinite horizon when all the coefficients in ([1.3) are independent of t,

s s
Xt —at [ vy [ o v,
) ! ! [e%9) [e9) (15)
e—KSYStJ — / e—K'r‘f(Xi,l" }/T‘t,cc’ Zﬁ’x)dr + / KG_KT}/;t’IdT' _ / C_Ker,’xdWr.
s s s

Backward doubly stochastic differential equations (BDSDEs) and BSDEs of infinite horizon were
studied by [31], 32, [34] and the stationary solutions for semi-linear stochastic partial differential
equations (SPDEs) and PDEs were obtained. It is easy to see that the stationary solutions of
parabolic PDEs turn out to be the solutions of elliptic type PDEs. Having this in mind, we
extend results in [31] to FBSDE by the Picard iteration procedure and prove that Yf’x is
independent of ¢ and gives the weak solutions of the following quasi-linear elliptic PDEs:

Lu+ f(zx,u,0"(z,u)Vu) = 0. (1.6)

2 FBSDEs on finite horizon

Let (2,7 ,P) be a probability space, and T" > 0 be fixed. Let {W;,0 < ¢t < T} be a d-
dimensional standard Brownian motion on (,.%#,P), and N denote the P-null sets of .%. For
t <s<T, wedefine s =c{W, — Wyt <r <s}VN, Fs=Fs.

Definition 2.1. Let S be a Banach space with norm | - ||s and Borel o-field .. For K € RT,
we denote by M>~K([0,00);S) the set of By+ ®@ F/.-measurable random processes {$(s)}s>0
with values on S satisfying

(1) ¢(s) : @ = S is Fs-measurable for s > 0;
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(@) [|o(s )HM? ~K([0,00);S :E[fo G_KSHQZS(S)HédS] < 00.

Also we denote by S>75([0,00);S) the set of Br+F |/ -measurable random processes {1(s)}s>o0
with values on S satisfying

(7) Y(s) : Q@ — S is Fs-measurable for s > 0 and s — P(s,w) is continuous in S, P-a.s.;
(50) 19 B g.mp) = El5upyzg e ¥ [0(s)]12] < o0
Similarly, for K € R*, we can also define spaces M?%(]0,0);S), S>%(]0,0);S). When
K =0, and finite horizon [0, 7], we simply denote them by M?2([0,7];S) and S?([0,T];S).

Remark 2.2. In this paper, we always take the chach space S to be Hilbert space L2(Rd Rk)
space with the inner product <u1,u2>L2 = Jpaui(z) - uz(x)p~H(z)dz, a p-weighted L* space (or
P

weighted Sobolev space). Here p(x) = (1+ |z|?)4, ¢ > 2, is a weight function and ui(x) - uz(z) is
the inner product of the Euclidean space RE. It is easy to see that p(x) : R* — R is a continuous
positive function satisfying [ga |z[Pp~(z)dx < 0o for any p € (2,2q — 1).

Now we consider the FBSDEs with finite horizon [t,T], for 0 <t < T,

Xt —at [Cbr X v 2+ [ ol Xt )W,
t t

T T
VI =h(X5F) + / fr, XEE V5B Z5)dr — / ZHdW,, t<s<T,
S S

where the functions b : [0,7] x R? x RF x R¥*d — RI 5 : [0,T] x R? x RF — RIxd_ £ .
[0,T] x RY x R* x Rkxd — RE b : RY — RF. We also assume that b, o, f and h are Borel
measurable functions, Xf’m = z is the initial point in R?, and for 0 < s < ¢, we regulate X =g

Definition 2.3. The process (X', Y., Z) € S%([0,T]; L2(R%RY)) ® S2([0,T]; L2(R%; R*))
® M2([0,T];L§(Rd;RkXd)) is called a solution of Eq. if for any p € COR%RY) and
@ € CYO(RYRF),

.
Xt"“"- o(z)dx —/ x-p(x d:v—i—/ / (r, Xﬁ’x,YTt’x,Zﬁ’x) - (x)dzdr
R4 R4

/ /Rd r, X5 YR - p(x)dadW,,
T
Ly ptade = [ ) pdes [ [ Xt v 2 ployduar

T
/ </ Zﬁ’m¢(x)dx,dWr> P—a.s.
s R4

In this section, we consider two classes of monotone-Lipschitz conditions to study FBSDE
(2.1) over an arbitrary time duration. Denote g = (b, 0, h). Assume

(A.1): There exist constants L > 0, u > 0 satisfying 2u — K — 2L? — 7L — 1 > 0 where
K > 2L3 + L? + 5L + 1 such that for any ¢ € [0,T], X1, X3 € L%(Rd;Rd), Y1,Ys € L,%(Rd;]Rk),
Zy,Zy € L/%(Rd;]RkXd), the function g and f satisfy

Hg(tv X1 (1‘), Yl(x)7 Zy (2?)) - g(t, XQ(x)’ }/Q(w)v ZQ(Z))H%%

(2.2)
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< L(IXa () = Xa(2)l[7; + [Yi(2) = Ya(@)lIZ2 + 121 () — Za(2)lI72):
1F(t, X1(2), Ya(2), Z1(2)) — f(t, Xa(2), Yi(2), Za(2))II7,
< L(IX1(2) = Xa(@)|I2; + 1 Z1(2) = Za(2)I122);

[1£(2,0,Y1(2),0)[[7; < L+ [M(@)]IZp);
(M(2) = Ya(2), f(t, X1(2), Yi(x), Z1() = f(t, X1(2), Ya(2), Z2(2)) 1 < —pVi(2) = Ya(@)I|Z5.

And for any t € [0,7], (z,2) € R x R¥*?_ the function v — f(t,z,v,2) is continuous.

(A.2): The function g = (f,o,h) satisfies the Lipschitz condition in the same sense as in
(A.1), b(t,z,y, z) is uniformly Lipschitz continuous w.r.t. (y,z) in the same sense as in (A.1).
There exists a constant p > 0 with 2u— K — L —max {4L + 1, 2L2} > 0, where K > 2L?+7L+1,
such that

(Xi1(2) = Xa(2), b(t, X1 (x), Yi(@), Z1(x)) = b(t, Xo(2), Yi(2), Z1(2))) 15 < —p| X1 (2) — Xa(@)z2,

1b(t, X1 (), 0,013, < L(L+ |1 X1 (2) 13,).

And for any t € [0,T], (y, z) € R¥ x RF*4 the function x + b(t, x,y, z) is continuous;
(A.3): The following holds

T
| 0050.0.008 + (5, 0.0) P+ £(5.0,0.0)2) ds < v,
0

where the Euclidean norm of # € R? is denoted by |z|, and the matrix norm of z € RF*? by
|z|| :== \/tr(zz*).

Before we give the existence and uniqueness results of FBSDE ([2.1)), we prove the following
lemma as a preparation.
Lemma 2.4. Under conditions (A.1) (or (A.2)) and (A.3), if there exists (X.(-),Y.(-), Z.(+))
e M2([t, T); LA(R% RY) @ M2([t, T); LR RF)) @ M2([t, T]; L(R% RF*Y)) satisfying (2.9) for
E< s ST, then (X.(), Y.()) € S2([t, T); LARG RY) @ S2([t, T LA(RG RY)), and (X,(2), Yi(a), Z(a))
s a solution of .

Proof. In the following, we only prove our result under the conditions (A.1) and (A.3), the
other one can be done similarly. The proof is similar to [31]. Let us first see Y;(-) is continuous
with respect to s in L%(Rd; RF). Since (X,(z), Ys(x), Zs(x)) satisfies (2.2) for t < s < T, therefore

s+As
X @) Vi), 2o @) drp @)

s+As 2
/ 7, (2)dW,

o~ Hx)da.
For the stochastic integral part, it is trivial to see that for 0 < As < T — s,

[ Wessalo) - Vi@Po @de < G,
R4 R

+Cp
Ra

2 2

< sup
0<As<T—s

a.s..

s+As s+As
/ < Zp(x),dW, > / < Zp(x),dW, >
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s

Davis-Gundy’s inequality and Z.(-) € M?([t,T]; L} R?; R¥*4)) " So by the dominated conver-
2
SN2 @), awy)

2
imas—0— [pa fSS+AS (Z(2),dW,)| p~Y(x)dz =0 for t < s <T. So Ys(-) is continuous w.r.t. s
in L/%(Rd; RF). Similarly, we can check that X,(-) is continuous w.r.t. s in LIQJ (R4 R%). From con-
ditions (A.1), (A.3) and (X.(-),Y.(-), Z.(-)) € M?([t, T]; L3(R%; RY)) @ M2([t, T); L2(R% R¥)) @
M?([t, T); L%(Rd; R**)) we have that for a.e. € R b(r, X,.(z), Y;(2), Z,(2)), o (r, X, (), Ve ())
and f(r, X, (x), Y, (x), Z,(x)) are mean square integrable. We use the generalized It6’s formula to

v (Xo(x)) and Yo (Ye(2)) s ov(2) = 2T pp<pensy +2M (2= M) gz 0y —2M (24+M) Ipe _apy,
take the spatial integration p~!(x)dz on both sides and apply stochastic Fubini theorem. Then
we have

2
And we can deduce that [, Supgeas<r_s ‘IS+AS (Zy(z), dWﬁ‘ p~L(x)dz < 0o a.s. by Burkholder-

(
gence theorem, limas— 0 fRd p‘l(x)dac = 0 a.s.. Similarly we can prove

ek (Xs(@)) p~ ! (z)da
< / dac+/ y Vhy (X () b(r,0,0,0)p ! (x)dxdr

/”¢M

T z),Yr(x)) —o(r,0, 207N (@) dxdr ) o(r,0, 207N x)dxdr
Rduauxr( ) Vi) = ol 0.0) P )dadr+2 [ [ ot 0.0)2p 7! (@)dad
([ vt
Rd

Y (Ya(x)) p~ ' (2)da
Rd

(b(r, X, (), Y, (2), Z(z)) — b(r,0,0,0)) p~ (2)dzdr

+2/
° -1
v X, o X a), Yol () 0
and
T
< [ ow @) 7 @dat [ 0k () £0.0.¥, (). 00 @) dndr
T
[ 0 5@ (0 X @) V@), Z0(0) = F0.0.Y,(2).0) 7 @)

N /ST < e Vi (Ye(x)) Zr(x)p_l(x)da:,dWT> .

Noting that [¢}, (X,(z)) |* < 4|X,(x)|? and using Burkholder-Davis-Gundy’s inequality and the
Cauchy-Schwarz inequality, we have

E sup [ ur (Xa(a)) o (@)
t<s<T JRd
T
2 -1 2 -1 2
< /Rdxp ()dm—!—C’E/ / |b(r,0,0,0)|“p ()dmdr%—C]E/t | X () |“dr
vOB [ [ (5@ + @l + 12 5 @i

T T
+CE [ | (X @P + V@) o @)dedr + CE [ 0(0.0) ar
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+CE\/ (s el o iae) ([ ot o) votalioagas ) an

T
< /w%l(az)dHCE/ (16(r,0,0,0)[> + [|o(r, 0,0)|1?) dr
R t

T
+OF [ | (X @F + V@) + 12,@)?) 5 @) dadr

1
+-E sup W’M ‘2 1
5 t<s<T
Since (X.(-),Y.(:), Z.(-)) € M?([t,T}; LA(R%: RY)) @ M2([t, T]; L2(R% RF)) @ M2([t, T]; L2(R% RM7)),
taking the limit as M — oo and applying the monotone convergence theorem, we have E sup, < <p fRd
[Xs(2)]?p~ " (z)dx < oo. Due to gy (M(Xr(2))) < [h(Xr(2))|* and [ (Y(2)) [* < 4[Y, ()],
by the similar estimate we have

E sup Uu (Ya()) p~H(z)de < CLE sup | X(2)?p~ " (z)dz + C|h(0)?
t<s<T JR4 t<s<T JR?

T
OB [ [ (X + @)+ 12,@)P) o7 o) dadr

1 2 _
+5E sup WJM )} p~ ! (x)du.
t<s<T

Similarly, taking M — oo, we can see that Esup,<,cp [pa |Yr(2)|[?p e < o0o. So (X.(-),Y.(+))
e S2([t,T]; L2(R% RY)) ® 52([t,T];L3(Rd;Rk)) follows. That is to say (X.(-),Y.(*),Z.(})) is a
solution of ([2.1)). O

Now we present the existence and uniqueness results.

Theorem 2.5. Under conditions (A.1) and (A.3), has a unique solution.

Proof. The proof is based on a contraction mapping from M2~ ([t, T7; L%(Rd; R @M 2K ([t, T7;
L2(R%GRF) @M~ 5 ([t, T); L2(R%; RF*4)) to itself. From this, we obtain a unique M?([t, T; L2(R%;
RY)) ® Mz([t,T];L%(Rd;Rk)) ® M2([t, T];L%(Rd;RkXd))-valued solution since the two norms
| Va2 —x i) and || - [[az2 (7)) are equivalent. By Lemma 2.4 we know that the solution is
in S2([t, T]; L2(R% RY)) @ S2([t, T); L2(R%G RF)) @ M2([t, T); LA(RY RF*4)) as well.

Before we prove the theorem, let us introduce the method to construct the solution
(XY, Z8) € MP( T); Ly (RGRY) @ MP([t,T); Ly(RGRY) @ MP([t, T); Ly(RY RF)).
Consider the BSDE

T T
Vi = h(XET)+ / flr, XE® Y 760 dr — / ZHdW,, (2.3)
S S
where X" is a diffusion process given by the solution of the SDE

Xt = x—i—/ b(r,Xﬁ’x)dr+/ o(r, XL%)dW,. (2.4)
t t
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Observe that the functions b and o are time-dependent, so the forward SDE is different from
those in [5], [22] [31]. However, there exists a unique solution for SDE (2.4) (see [I§] or [12]).
For BSDE (2 , we can use a similar method as in the proof of Theorem 3.5 in [31] to prove that
there exists a unique solution (Y., Z"") € M?([t, TY; L2(R%GR%)) @ M2([t, T]; L2(R% RF¥4)).

Step 1: Construct the following mapping

2 MAPTR([E, T LERERY) x M> 7K ([t, T); L2(REGRE)) x M>~5([t, T); Ly (R RM))
— M>7R([t, T]; L2RYRY)) x M>5([t, T); L2REGRY)) x MK ([t, T; L (RY RF*)),
(X, Yh, 20 e (KB, Y8, 20,

Given (XU YE* Zb%), (XL*, V", ZE") is defined as follows: for any s € [t,T],
S S
X = w [ X2+ [ ol X YW, (2.5)
t t
and
Vi = h(XET)+ / flr, XE® V0" 78 dr — / ZHdW,. (2.6)
S S

We will prove that the map Z is a contraction. To this end, consider (X.t",Y.t", Z.t"), (U.t"7 7408 Wt)
€ M>~R([t, T); Ly (R RY)) x M=K ([t, T); Ly(REGRF)) x M>~R([t, T]; L2 (R%G R ). Set

(X0, V1, 20 = S(X0, Y0, 20, (0, V0 7Y = S(U, Vi ),

Applying Itd’s formula to e 5| X5" — UL"|2, taking spatial integration p~!(z)dz on both
sides, applying stochastic Fubini theorem and taking expectation we get

T
E/Rd e ETIXL — U )2p Y (v)da + K]E/ /Rd e K\ xte — gbe 2l (z)dadr
t

T
B[ eIl XY = ol D Vi) B (@) dade
+2E/ / —Kr th Utr
Rd
b(r, XE", Y5, ZET) — b(r, UL, VIS, #57)) p~ (x)dadr. (2.7)
The first term on the RHS of (2.7)) can be estimated by the Lipschitz condition. The second one

can be estimated by using the Cauchy-Schwarz inequality, the Lipschitz condition and Young’s
inequality. It turn out that

B /Rd e M Xy = UpPp~ (@)de + K[| X5 = UM (32 - (1)
o TR .
< (BL+ )HXt = U pe-w ey + (E A+ DIV = VIR ok oy

- :
+ZHZt A H?\JZ*K([LT};L%)' (2.8)
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For BSDE ({2.6), applying It&’s formula to e_K8|Yst’m - Vf’w|2, we have

T
R e e Y B B A A
t R4

Rd
T — —
- IE/ / e Kriyte vt (x)dxdr
t Jrd

_ _ 2 T _ _
= E/ e‘KT’h(X;}’r) — h(TE") p_l(:r)dx—i—QE/ / e Kr{yte —yhe,
R4 t R4

f(?”, X1€7x> W7$7 Zﬁ,x) - f(?", Uﬂx: V;t,a:’ Vﬂ_rt’x»p_l(x)dxdr. (2'9)

Note that, we can also have following estimate from (2.7))
E/ efKT]Xéix — U%x|2p71(x)daz
Rd
< L+ L + )HXt U-t"”%/[2,—K([t,T};L2) (L + *)”Yt Vt"||?\/[2,—K([t,T];Lg)

10 .
A W.t’ ez 77,82)-

By the Lipschitz condtion and the above result, the first term on the RHS of (2.9) can be
estimated as

_ _ 2
B [ T n) - o[ o @)
R4

< LE/ e KXy — U™ P! (w)da
Rd

1., 5. =, 1
< QL +I17+ §)HX-t’ —Ub ”?\42,71(([@’1“};[/’2)) + (L% + §>HY-t ([t,T:L2)
1 . 12
5125 =V ey

And we can use the monotonicity condition and the Lipschitz condition of f, the Cauchy-Schwarz
inequality and Young’s inequality to estimate the second term. It turn out that (2.9) gives

St 7t 112 Sttt 2
12 = P2 s oy = KNIV =Vl xe gy

10— = 1
< (2L3 + L% + i)HXt’ - Ub ”%42,—[(([15,’1“};[/’2)) + (L2 + §)Hyt

(£THLY)
+%Hzt - Wt"”?wsz([t,T};Lg) +(=2p+50) |V — Vt7.H?\42v*K([t,T};L%)
J%HXt" L T %HZt" — W per i) (2.10)
Step 2: Now let us construct the contraction mapping. To simplify notation, we denote

A — ||Xt Ut ||M2 K([t T] L2 ||Xt

K (R THLR)’
B = HYt Vt ”M2 K([t T} LQ — Hyt Vt.H?\JQ’_K([t,T];L%)’
C=\2z" - @2y C = 125 =V R e ysrz) (2.11)
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Then ([2.8) and (2.10]) lead to
19 - _ .3 3
(K—2L3—L2—5L—2—0)A+(2M—K—5L)B—|— C§(1+L+L2)B+ZC.

O W~

It turns out that

K—-2I3—12—-5L—1\ _ 2u—K—-5L\ - - 1 4 4
( . 0 ) g4 (2850 B+C<5{(1+3L+L2)B+c}.

— 16 3

5

5

We assume 1 + %LJr %LQ < W and K —2L3 — L? — 5L — % > (, then we have

5

K—2L3—[?2—5L -1\ _ 4 4 . - _
( ; 20 A+(1+§L+§L2)B+C

5

1 K—2[3—-12—5L -1 4 4
5{( - WNA+(1+-L+-L)B+Cy.

< =
- 16 3 3

5

Thus the map Z is a contraction from M2~ ([t, T]; L2(R%; RY)) x M2~ K([t, T]; L2(R%; R¥)) x
M>=E([t,T); L%(Rd; RF>4)) into itself. Note that the two norms ||-|| ps2.—x (s 7 .y and ||+ a2,
are equivalent. Consequently, Banach’s fixed point theorem leads to that has a unique solu-
tion (X', Y, Z1") € M?([t, T); LA(R%; RY)) @ M2([t, T]; LA(R%GRF)) @ M2([t, T); L2(RY; RF*4)),
By Lemma the solution (X, Y, Z") is in S3([t, T]; L2(R% RY)) @ S%([t, T; L2(R% R¥))
® M?([t, T); L3(R: RF*9)) as well.

Finally, for s € [0, ], we regulate X" =z, and (2.1)) is equivalent to the following,
t
X =g, YE =Y}® +/ F(r,,Y®,0)dr, Z% = 0. (2.12)
S

Here Ytt’x is an .Z;-measurable random vector, and therefore is deterministic. In this case, (2.12))
is a simple BSDE. By a similar method, we can obtain process (X', Y, Z:) € S?([0, ¢; Lz(Rd; R%))
® S%([0,]; L?)(Rd; R*)) @ M2([0,1]; L%(Rd; R**)) is the unique solution of (2.12). To unify the
notation, we define (X%, Y&* Zb") = (X*,Y®, Z%) when s € [0,t] and extend the solution to
[0,T]. O

Theorem 2.6. Under conditions (A.2) and (A.3), has a unique solution.

Proof. 1t is natural to consider || || ps2.x ([, 7],.) norm to set up our contraction mapping since the
norms || - [|pz2.x (¢ 77,y and || - [[ar2(,77;) are equivalent as well. In this case, after applying Ito’s
formula to the forward equation, the coefficient of A is —K —5L — % which is definitely negative.
So we should introduce the monotonicity condition in (A.2) to cover this negative part, which
could be positive if p is big enough. On the other hand, the way we treat |h(Xth) - h(Ué:x)\Q is
also different from the one in the proof of Theorem In fact, we require 2u — K —2L? —L > 0
to enable us to estimate [h(X%") — h(U5")[?, so that the desired contraction can be obtained.
The proof is similar to that of Theorem [2.5 so we only give a sketch here.

Construct following mapping

2 MPR([ T L (RGRY) x MPE([E, T Ly (RGRY)) x MR ([¢, T); L2 (R RM))
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2,K . 72(mpd. od 2,K . 72(md. ok 2K . 72(md. phkxd
— MER(t, T) L(RE RY) x M5 ([, T LERERY) x M2 (1, T LIRS R ),
(X,t"jY.t", Zt) — (X_zf,-7yt,-7 Z,t"),
there the mapping is exactly the same as in the proof of Theorem
For forward SDE 1' applying Itd’s formula to e |X'§m - Uﬁ’x|2, taking integration

p~1(x)dx, applying stochastic Fubini theorem and taking expectation, using the Cauchy-Schwarz
inequality, monotone-Lipschitz condition (A.2) and Young’s inequality, we have
vl 7t - Yt 7t
IE/Rd KT X — UL 2 p (v)de + (2p — K — 5L)| X5 — U? H?MQ,K([LT];L%)
1 t, £ 112 Lo £ 112
s (T PIVY =V ey + 7127 = P2 e gz (2.13)

For BSDE 1) we apply It6’s formula to eK5|}7st’m — Vst’x|2. In order to estimate the term
_ _ 2
E [, X7 ‘h(Xfp"'”) — (T4

p~Y(z)dz, we need the following result that is different from (2.13

E/R X" = U™ Pp (@)de + (2p — K =207 = D)| X5 = UV |3 o g )

1 t.. ton2 1 t, t, (|2
< (LA gV =V e orysngy + 57 127 = P e 1 2)-

As 2y — K —2L? — L >0, so

_ _ 2
E / KT R(XE) — B o ()i
R4

L oyt vt Lot t|2
< GHIIVY = VERpa ey + 5127 = 70 i)

Similarly, we can use the Cauchy-Schwarz inequality and Young’s inequality to estimate the
other terms. Finally, from BSDE (2.6, we have

[

aex (i) T KNV =V Rz
< GV =V R + 512 = 7 B s
FLIYS = VIl gy + %”Xt = UYIpe iri)
+é”37-t" — VR ez + %HZ-t" — W g i) (2.14)

Now we construct the contraction mapping. We adopt the similar notation as in (2.11)) with a
replacement of the space M2~ X ([t, T); LZ) by MK ([t,T; L%). Then 1) and 1} lead to

1 1. - 4
(2~ K =5L — 2)A+ (K ~5L - )B+ ¢

.3 3
CS(Z+L+L2)B+ZC.

501
Asl—i—%L—i—%Lngand2,u—K—5L—%>0,Sowehave

ot
SN
alis

3

ou—K—5L—1L\ _ 4 4 o o
(“ _ 5>A+(1+3L+L2)B+C
5
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= 16 3773

1 o2 — K —5L — 1L 4 4
5{(” - 5>A+(1+L+L2)B+C}.
5

Thus the map E is a contraction from M*X([t, T]; L2(R%;RY)) x M2K([t, T]; L2(R: RY)) x
M2E([t,T7; L/Q)(Rd; R¥*4)) into itself. Note that the two norms || - a2k 1) and (|- a2
are equivalent. Consequently, Banach’s fixed point theorem leads to that (2.1)) has a unique solu-
tion (X, Y, Z) € M2([t, T); Ly(R R7)) @ MP([t, T); L3 (R% RY)) @ M([t, T; L (R R¥4)).
Finally following a similar proof of Theorem [2.5|we can extend this result from [t, T to [0,T]. O

3 Regularity of solutions

The purpose of this section is to find the unique classical solution of parabolic PDE (|1.1]
through the results of FBSDE . For this, we strengthen our conditions in LIQJ sense to the
pointwise sense and study the regularity of the solution of FBSDE (]1.3)), and show that u(t,x)
in which is expressed in terms of the solution of FBSDE (|1.3]) solves quasi-linear parabolic
PDE . Note when the function b depends on z, the regularity problem has not been solved.

Let us first repeat some notation. For r € N, C"(R™;R"), C’l’:b(Rm; R™) denote respectively
the set of functions of class C" from R™ into R”, the set of C"-functions whose partial derivatives
of order less than or equal to r are bounded (and hence the function itself grows at most linearly
at infinity). And we set the following conditions:

(B.0): For any s € [0,T], b(s,-,-) € Cib(Rd x R¥;RY): o(s,-,-) € C’l?:b(]Rd x RF; RIx4).
f(s,--,-) € C’l?:b(Rd x RF x RF*4. RFY: b € Cﬁb(Rd;Rk).
(B.1): Denote g = (b,0,h). Assume there exists a constant L > 0 such that for any
t €10,T], x1,22 € RY, y1, 140 € €RF, 21, 29 € RFX
l9(t, 1, 91) — g(t, 22, 90)|* < Llo1 — 22> + g1 — 2?),
[f(t 21,91, 21) = (622,91, 22) [ < L(lzn — waf? + |21 — 22%),
[£(,0,,0)[* < L(L+ [yf*).

There exists positive constants p, Cr, and C}, with Cr, C only depending on L, such 2u >
K + Cp, and K > C} such that

<y1 - y27f(t7x7y17z) - f(t,x,y2,2)> < _M|y1 - y2|27

(B.2): Function g = (f, 0, h) satisfies the Lipschitz condition in the sense of (B.1), b(t,x,y)
is uniformly Lipschitz continuous w.r.t. y in the sense of (A.1). Moreover, there exists positive
constants p, Cr, and C7, where Cr,, C only depending on L, with 2p > K + Cf, and K > C
such that

(@1 — 2,b(t, 21, 31) = b(t, 22,31)) < —plar — x2l*, [b(t,21,0)]* < L(1 + |21]?).

(B.3): For some constant p > 2,

T
/ (1b(s,0,0)[" + [lo(s, 0, 0)|[” + [ £(s.0,0,0)[7) ds < oo,
0
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Lemma 3.1. Under conditions (B.1) (or (B.2)) and (B.3), FBSDE (1.3) has a unique so-
lution (ng,th Zﬁ’ Jo<s<r. Moreover, there exists Cp,Lu1 > 0 depending on p, L, p and T
such that

T £
E sup |[XY*P+E sup \Y”|p+IE</ | Z5 2d7~> < Cprur(l+ |zP). (3.1)
0

0<s<T 0<s<T

Proof. By using a similar method to that of the proof of Theorem [2.5) - or Theorem [2 , it is
easy to see that, for any ¢ € [0, 7], z € RY, FBSDE has a unique solution (X“*, Y"* Z5)
€ S2([0, T); R%) ® S%([0, T]; R*) @ M?([0, T]; RF*4). In the following, we only consider conditions
(B.1) and (B.3). The result still holds under conditions (B.2) and (B.3).

Step 1: First we apply 1to’s formula to (| X2%|2)Z to yield that

S
| = |zfP +p /t | XEEP2 (X0 b(r, X2, V07) ) dr
p s Xt p—2 xte yte Qd
+5t‘r’”0—(r?rvr)”r
S
—I—g(p —2) / | X (go* (r, X PP, V) XET, XET) dr
+p/ | XL (XD o (r, XET, V) AW, ) (3.2)

As the stochastic integral has zero expectation, using Holder’s inequality and Young’s inequality,
we can deduce that

T T
BIXUP < [of + G [ (XD + [P)dr + GE [ (1b0.0,0)1 + lo(r,0,0)]7)dr
t t

IN

T
Cpu (11al? + B [ (X0 4 2o ar).
t

Moreover, the last term in (3.2) can be estimated by the Burkholder-Davis-Gundy inequality as
follows

S
pE sup ‘/ | Xpo P
t

t<s<T (X7 o (r, X0, Y, 5)dW,)

IN

T
OpE\// (XE L P2 o (r, X, YT |
t

T
< CpE\/ sup | X[ / X272 ||o (r, X0, V00| 2dr
0 t

<r<T
C T T
< Yp qp |xtopsc LNE/ (X5 4 Y7 P) dr—l—CpE/ lo(r,0,0)[Pdr.
N o<s<T ¢

Here we can choose N such that % < % Therefore, from 1} we have

T
E sup | XD*P < Cp (1 + |z P + E/ (| X7 + [ybo1P) dr) : (3.3)
t<s<T t
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Next, we apply Ito’s formula to (|Y,"*]2)% to have

’Ytgt’x

p [T p T
P D [z P+ B -2 [V (2 2 v

T
= Ih(X?I)Iprp/ VTPV f(r, Xp2, Y00, Z00)) dr

s

T
b [ ez, (3.4)
S

By Holder’s inequality and Young’s inequality, we have that

T T
BV < Cou (L laP +E [ (X0 4 vp) ar) + 28 [ [vep-2zie o
t t

8
Taking s =t in (3.4)), immediately we have

p T
be [ vtz ar

T T
< G (141l 4B [ (X Py ar) 4 B8 [ ez P
t t

From above two inequalities we have that

T T
Bl + 5 [ 2 Par < G (14 P 4B [ (X4 v ar).
t t

By the Burkholder-Davis-Gundy inequality, we have

T
E sup |[YS“P <Cpp <1 + |z P +IE/ (| X" P + [Y,b"P) dr> : (3.5)
t<s<T t
From (3.3) and (3.5)), we obtain
T
E sup |XE*P +E sup |[YS4P < Cp (1 + [z|P —HE/ (| X7 + [Y,0"P) dr) . (3.6)
t<s<T t<s<T t

Step 2: To estimate EftT (|Xﬁ’“’”|1’ + |YTt7x|P> dr, we apply Ito’s formula to e PX7|X,|P and

e PET|Y, [P for a.e. 2 € RY. Note that the stochastic integral has zero expectation, so we have
T
Ee *T|X3:°|P + KE / e | X Pdr
t
T
e K z|P +pE/ e KT xtwp=2 (X" b(r, X", Y57 dr
t
1 L 2 t tay (|2
—nr X |p— x x
+gplo = DE [ e IXE 2 ol X0 V) Py (37)

and

T

T
1
Be KUY~ KE [ e s+ ol - VB [ Ry p2 2 Par
t t




Quasilinear PDEs and FBSDEs: Weak Solutions 15

T
= Be "Xz + pE / e KT PTR(YEE, f(r, XY, 25 dr, (3.8)
t
Denote
p_2 2 1
v o= p,u—K—4pL—176—E—L(p—1) (1+E)—§—L(p—1)(1+€)
[ 1
iz + L(p— 1)(1+5)] (1+¢e)L%,
p 1 2 1 =
B: = K—4pL—§—|—§—6—L(p—1) (l+€)—§—L(p—1)(l—|-€)
Coprza 2 oL e :
_2pL +4L 4L+5+L(p 1)*(1+¢)| (1+¢)Lx.

From (3.7) and (3.8)), using a similar method as in the proof of Theorem we have that

T
vE / e K |Xﬁ’x
t

T
Pdr + BE / e K|y bepdr
t

p + EefKt‘Y;t,z‘|p

1 T
+ (oo -1 - ) B [ ey 2 P 4 e
t

T
< Cpre Kt +Cy 1 / K dr. (3.9)
t

Here note %p(p —-1) - 1% > 0. In addition, if we assume that 2u > K + L? 4+ 10L + 1 and
K > 4L3 + L? 4 10L + 1, then there exists a constant p € (2,00) such that 7,3 > 0 and (3.9)
immediate leads to

T
E/ e—Kr|X£,ac
t

Note that

T T
Pdr —I—E/ e BTy Pdr < Cpp e M alP + O ,L,“/ e Krdr.
t ¢

T T
e "R / (I P+ [V o P) dr <E / e K (|Xp
t t

Py \Yrt’x|p) dr.

So we have

IN

T T
B[ (X0 V) dr < Gy D al 4 Gy [ ey
t

t
Cp,Lpur(1+[2[7). (3.10)

IA

From (3.6) and (3.10) we have

E sup |XP+E sup |YIUP < Cprur(l+|zfP).
t<s<T t<s<T

Following a similar procedure as in Step 2 of the proof of Theorem [2.5] we can extend our result
from s € [t,T] to s € [0,T] so that

E sup [X°P+E sup [Y)P < Cpppr(l+ [2fP).
0<s<T 0<s<T
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Finally, we consider
r t 2 t 2 t,x)2
X X
/0 |z \Pdr = |R(XE) — Ve

T T
w2 [ (pn e v 2 vty e -2 [ (2 i),
0 0

Hence

T 3
B ([ 121 )
0

T 5 T p
< CpE<h(Xfp’x)\p+Dfot’wlp+‘ / (zt0 Yheaw,)| + /0 (F(r, X7, V1%, Z5%), Y1) dr >

0

1 T % T
< G swp (X 41V + 35 ([1zPar) 46, [ iro.0.0par
0<s<T 0 0
P 1 T t,x (|2 %
0

So (3.1)) follows. O

Remark 3.2. In Step 2 of the proof of Lemma alternatively, we can use the Gronwall
inequality to obtain the same result . But the key estimate to make it work is (@) We
can rewrite the forward SDE part in as follows,

T T
X=X [ Xy [ ot xpe v aw.
S S

Note that the forward SDE is from s to T. We apply Ito’s formula to (|X5"12)% and (|Y;""|2)%
from s to T, and use a similar approach as in the proof in Lemma to obtain

T
EIXCP + BV +E [ Ve zi s
S
T
< oo (1 +BXEP 4B [ (X )
S
To estimate E]Xfp’ﬂp, following we have that
T
Ee KT|XEP < Cpp e S|P + Cpr / e Krdr,
t
which leads to

E|X5"

T
P < Cp,L,#e_K(t_T)’$|p + Cp,L,ueKT/ e Hrdr < CL,u(l + |z[P).

) dr> |

Therefore we have

T
E|X'*P 1+ B[YS < Cyppr (1 ol B [ (X
S
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By the Gronwall inequality, we have
EIX")P + EYSTP < Cprpr(L+[alf).
And the rest of the proof is exactly the same as that in Lemma[3.1]

Lemma 3.3. For any t,t' € [0,T), z,2’ € R%, let (X, Y&™, Zv)o<s<r and (Xg’xl,YStl’x/,
Zﬁl’gcl)ogsggr stand for the solutions of associated to the initial conditions (t,x) and (t',2').
Then under conditions (B.1) (or (B.2)) and (B.3), there exist a constant Cp .7 > 0 only
depending on p, L, i and T such that

T 2
E sup |X5% — XI¥P+E sup mtw—ﬁ’@'l”w( / !\Zﬁ“—zﬁ':x’Her)
0<s<T 0<s<T 0
P

< Cprprle =o'+ Cprpr(l+ |2 +[2'P)]t — /]2 (3.11)
Proof. Fort <t' <s<T,
! ! t/ tl
Xbe XU =g o / b(r, X1*, Y1) dr +/ o(r, X5 Y5 dW,
t t
S
[ (00 X0 ) bl X0 0 )
t/
S
+ [ (ot Xt v — o X ) ) aw,
t/

T
Vi Y b)) - [ (2t - 20w,

T
+ / (£ X0, Y0, 20) = flr X0 Y1 20) ) .
S

§
We apply Ito’s formula to (| X5% — X2%'|2)% then we have
i
= Jz—a|P+p / ' Xte — xthe|p-2 <Xﬁ’x — XU b(r, X5, Yf’”")> dr
t

S
e [0 = X 2 (X0 X bl XY — bl XY V)

t/
o= 1) [ 10 = X o X ) P
t

S
=) [ = X P2 X Y0 = o XU V) P

t/
e [0 = X R (X = X (e, X V)W)
t

S
+p/ ‘Xﬁ7w - X’It”/’z/‘p_2 <X’It’7z - Xﬁl’m/7 (U(T’ Xﬁ’m’ }/Tt’x) - O-(r’ Xﬁl’m/7 }/tf't/’l‘/)) dWT’>
t/

=: G1+4+ G+ G3+ G4+ G5+ Gg + Gr. (3.12)
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By using Hoélder’s inequality, Young’s inequality and the Burkholder-Davis-Gundy inequality,
the third, the fifth and the seventh terms on the RHS of (3.12]) can be estimated as follows,

T
E[G3+G5] +E sup [G7] < Cp,LE/ (‘Xﬁ’x—Xﬁ/’xl‘p‘f‘ ‘YTt,x _Yrt/,x/|P> dr
t

t<s<T

1 ! !
+=E sup | X0 — X7 P+ Cppr(1+ |z + |2/ |P).
t<s<T

For the the second, the fourth and the sixth terms on the RHS in (3.12)), we need the following
estimates. By Cauchy-Schwarz inequality and Lemma we have that

p
t 2
E ( [ ot X:@,Wnr?dr)
t

t t
< E( / 2o (r, X1, Y) — o (r,0,0)|2dr + / 2||a<r,o,o>||2dr>
t t

V4 P
2 ! 2
< CprE (14 sup | X572+ sup [YH7|? / dr
t<s<T t<s<T t

< Cprpr(l+ |zt —1]>. (3.13)

[NJiS)

Similarly,

+ p
E( / ’b<ﬁXﬁ“,W’x>\dr> < Cprpr(1+ |2P)[t —t'|5. (3.14)
t

Now we consider the second, the fourth and the sixth terms on the RHS in (3.12)). By Young’s
inequality and (3.14)), the second term can be estimated as

IN

t/
E[G2) pE ( / |X£’I—Xﬁ”x’|pHb(r,Xﬁ’”,W’x)\dr)
t

1 .y 4
JE (| L sup (xte - xtept| | / Ib(r, X%, V0) dr
N (<r<T ¢

1. e ' g ¢
< (p-1(5)7E sup |[XI*— XI7P 4+ NVE (/ |b<7‘vXﬁ"”“"7Yi’x)’>
t

t<s<T

IN

p

1 / /
< ZE sup [XDT— XD 4+ Cpppr (14 |2t — )2,
8 t<s<T

Here we can choose N big enough such that (p — 1)(%)ﬁ < %. Similarly, by 1} the fourth
and the sixth terms are

1 ! !
E[G4 +E sup [Gs] < =E sup |[X5% — X\%' P 4 Cppr(1+ [zP) |t —t]2.
t<s<T t<s<T

Therefore, from (3.12)) we have

E sup [X\" = XD < 20w — )P+ Cpppr(L+ |2 + |27t - /]2 (3.15)
t<s<T
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T
B [ (X0 - XLy - v an
t

Next, we apply It6’s formula to (|Y;"" — Yf/’m/|2)g. Since the procedure is almost the same as
the proof of Lemma |3.1] we will not give any detail here. But we have that

E sup V7 =Y/ < Cpulo =/l + Crpr(L+ ol + |a/1)|t = ¥
t<s<

T
+C, LB / (\X}ﬁ’x — XU gy Y;’@’V’) dr. (3.16)
t

Following the similar procedure as in Step 2 of the proof of Lemma (3.1} we can find a constant
p € (2,00) such that

/ ! / /
E sup ]Xﬁ” — X; 2P+ E sup \Yistz — Y;t 2P
0<s<T 0<s<T
p

< Cprprle =o'+ Cprpr(L+ |zl + )]t =],

and
T , g P
B < / |zbe — zE szr) < Cprprle — 2P+ Cprpr(l+ |zlP + 2/ |P)[t — 1'%,
0
So (3.11)) follows. O

Now we study the regularity of Yf’x with respect to x, including the continuity with respect
to t and differentiability with respect to z.

Theorem 3.4. Under conditions (B.0), (B.1) (or (B.2)) and (B.3), {X5"; (s,t) € [0,T]%,z €
R} and {YI7; (s,t) € [0,T)?, x € R4} have versions in C%02(]0,T]2 x RY).

Proof. First, by Lemma and Kolmogorov’s continuity theorem, we have (¢,z) — X5 is aus.
continuous for ¢ € [0,7],z € R%. Moreover, Since X:* € S2([0,T];R¥), so s — X% is a.s.
continuous for s € [0,7],z € R% So we conclude that {X5";s,t € [0,7]2, 2 € R?} has an a.s.
continuous versions. The continuity of Y follows.

Next, we will consider the continuity of VYS" wort. 2. Without losing generality, in the
following proof, we assume t' > t. Set

SR = (r XET KL = XE) Y A - Y, 20 A2 - 20

and

t,x+le; t,x
) X5 i Xb
iyt A ‘S s
AIXS - l )
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where [ € R\ {0}, {e1, €2, ..., eq} is an orthonormal basis of R%. And AV and AiZy" can be
defined similarly. Then by the mean value theorem, we have for t < s <T

AJXET =e; + // b’ S ALXET 4 (b, (D t‘“)NY”)d)\dr
/ / (SEADAIXE + (o (zf;jv’)A;‘Y,fvx) AW,

| | | r (3.17)
AYE = / h <X%””+/\ZA}X$> AJXFTAN — / A ZLE AW,
0 s

T 1
* / /0 (f HERDAIXE + (S DAY + (fé(Eiji’l)A;Zﬁx) ddr,

where 0% = (7‘, XET 4+ AAIXE® Y5 4+ MAIY Zhe 4 AlA;‘Zf:f”).

Now we investigate this new type of AJFBDSDEs (3.17). Note (B.0) and (B.1) imply that
A’FBDSDES 7)) satisfies the correspondlng monotone-Lipschitz assumptions. By using a sim-
1lar method as in the proof of Theorem. has a unique solution (AZXﬁ v AlYt v AZZt Jo<s<T-
And by Lemma [3.3] we have that, there exists C’ > (0 only depending on p, L, p and T Such that

T £
E sup |A’X“|p+E sp |Nytfyp+1a</ ||A;Z§’mH2ds>
0<s<T 0

T
|l|_pE sup <|X§,$+l€i _ X?x|p 4 |Y:St7$+l€i _ Y;t7:v|p> +E </ ||Z§,x+l€i N
0<s<T 0

P
2
2ds>
U7 (Cryrla + lei — o)

<
< C. (3.18)

Finally, we consider
° ! YA 1) . ;o
AIXLT = A X]T = /0 (et AIXE = b () A XL ) dadr
t/
s 1
ol ] s Tl i '
e[ (gt e ) v
1
/ (b ( tzl)Athac + b/( tm,l)A%Y;t,ac) d)\dr
0
(L SERDALXE — oS YAf ) ara,
<U;(Et7x,l)A;Xt T (Et 'l ) ;/Xf’ﬂ) d)\dWT
t/ 1 ‘ A
+/t /0 (G;(EZZK’Z)A;X;EJ + U;(Zi:f\’l)A%Knt’x) d)\dWT’
and

1
AP — ALY = / W (XET+ NATXE) AXGdA
0
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1
- / n (XtT’”” +/\Z’A§X}’w> LXET AN
0
T 1 t.x.l ; 'l . ’
[0 ] (nEshaint - el X ) avar
/ / ShEhALXET — f;(zj:f’vl’)A;‘/X;’vﬂc’) dAdr
/ / tzl AthJJ _ f;(Zi:’;/’l/)A%,vaz/> d\dr

N / (A; Zt0 Al Zﬁ’@’) aw,.

s

By a similar procedure of Lemma [3.3] there exists C' > 0 only depending on p, L, u and T such
that

. . ’ . . W
E sup |AIXS* — ALXYA' P 4R sup |AIYVES — ALY P
0<s<T 0<s<T

T z
+E ( / AL ZE® — f,Zﬁl’x'Hst)
tAL

< Cle=a'P+CU=TP+CA+ [z’ + |27 + 1P + [Pt —#

[NIiS]

(3.19)

Here we only calculate the following term, others can be calculated similarly,

!

S
E / ALXET = AL X PR AIXE - AL XL
t/

/1 (v(mh i — e Ay XL ) ax)dr
0

S
< C,E / |AIXET — ALXE Pdr + C R / / BL(EEEN (ALXET — AL XYY dA[Pdr
t
+C E/ / b/ titl o b/ (Zf’f/,l/)) ,lL-/Xil,x/dAV’dT
t/
S
= CpE/t/ AL — AL X Pdr CPE/t, ATXET — AL X" Pdr
s 1 ! ol Jr p S ) )
—i—C’p E/ </ yziﬁ,l _ Eif ) Pd/\) dr E/ |A’,Xﬁ T ’2pdr
t/ 0 t/
S
< GE [ |AIXI - A X0 par
tl
+CE sup |XET - XUP 4 G sup [XpoHe - XU e
t'<r<s t'<r<s
_|_Cp]E sup |Y;t7x _ Y;t/ﬂ?, ’p 4 CPE sup ‘Y;t,x-‘rlei N vat’,x’-‘,—l’eqp
t'<r<s t'<r<s
T ; ; ! !
< C,E / |AXE — ALXE Py
t

+Clw— 2P+ ClL =P+ C(1+ [afP + [P + 1] + [Pt — /|5
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Now using Kolmogorov’s continuity theorem, it immediately follows from (| - ) that for any
t,s € [0,T)2 z € R?, the mappmg z — X s as. differentiable, and the partial derivatives

= lim;_,0 4] X b , has a version which are a.s. continuous

with respect to (s,t,m). The contlnulty of the first order derivative of Y& with respect to z
follows. By a similar procedure, the existence of continuous second order derivatives of X 7 and
Y5 with respect to x can be proved. ]

Corollary 3.5. Under conditions (B.0), (B.1) (or (B.2)) and (B.3), for any t € [0,T], the
mappings r — Xf’m and xr — Yf’x, are of class C? a.s., i.e. the functions and their derivatives
of order one and two are continuous in (t,x) a.s..

1 tax _ 9xL*®
Corollary 3 6. Under conditions (B.0), (B.1) (resp. (B.2)) and (B.3), (VX" = 52—,

VYt = &E ,VZt”T 82 Jo<s<T i the unique solution of the following VFBDSDEs,

S S
VXLT =1+ /t o (r, X2, Y0P )V X PP AW, + /t oy (r, X0, Y0P ) VY SR AW,
S S
+ / b (r, X0, VI ) VX dr + / by, (r, X0, PP ) VY, dr
t t

VYL =h/ (XL ) VXEY — / VZLE AW, (3.20)

/ fulr, X020 Y00 ZEO\N X dr + ) (r, X0, VY ZEE)V Y dr

" / £, X02, Y0, 7409 254y,

Proof. The Corollary follows easily from the result of Theorem and the definition of partial
derivatives,

t, t, t
0Xs™ _ lim AL XD®, oY~ ONY” 025"

= lim AiZb*,
&Ui 1—0 8@ l—> 1=s

8a:i 1—0
It is easy to check that (3.20|) satisfies the corresponding monotone-Lipschitz assumptions.,
Therefore (VX" VY,V ZE%)o<s<r is the unique solution. O

Next we use the Malliavin calculus to express Z as the Malliavin derivative of Y. Then
we compare the VFBDSDEs with the Malliavin differential form to give a formula
relating Z with the gradients of Y and X. Let us recall the notion of the derivation on the Wiener
space. Denote by H the set of random variables ¢ of the form: £ = go(W(hl) W(h )) where
¢ € C°(R") is a polynomial function, Ay, ..., h, € L2([0,T],R?) and W (h fo i(t), dWy) .
The random variable £ has a derivative {Drg ;7 € [0,T]} defined as

D, E S Wi(hp)hi(t), 0<r <T.
For such a &, we define its 1,2-norm as

T
|12, = E(€?) + E / D& 2dr.
0
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And we define the Sobolev space: D'2 £ HII'.2 as the completion of H under the norm || - ||12.
From [17], we know that the “derivation operator” D. extends as an operator from D' into
L2(Q; L2([0, T],R%)). It turns out that the components (Xi™,Vi™®, Zt™") take values in D'2
under the assumptions in this section.

Proposition 3.7. Under conditions (B.0), (B.1) (or (B.2)) and (B.3), for any 0 <t <s <
T, xR (X7, V0", Z5%) € LA([t, T); (D)%) @ L2([t, T); (DV2)%) @ LA([t, T); (DV2)F*?), and
a version of {DTXé’x,DrYst’x,DrZﬁ’x; t<r<T,t<s<T} is given by
(i) D, X" =0, DYS" =0, D, 2 = 0. r € [0,T]\ (t,5];
(ii) For any t < r < T, {DrXﬁ’z,Dri/;t’$,DTZ§’$;r < s < T} is the unique solution of the
following differential form of FBSDFEs with respect to Wiener process.

S S
DX =o(r X0% Y1) 4 [ X YD X 4 [ X YD, Y

s T

5 S
+/ 0u(1, X7, Y27 ) Dr X AW + / oy (r, XE" YO DY AW,
" T

D th h/( t(E)D th / D Ztar;dW +/ f T7Xt$’}/;t7I7Z7t_7I)DTX7t_,Z‘d7_

+/ fo(m, XE5 Y, ZE%)D Y”d7+/ fi(r, XbE Y e, 255D, 2  dr.
S

(3.21)
Moreover, {DSYSt’Jc,t < s < T} is a version of {Zﬁ’x,t <s<T}.

Proof. First, we will show that (X%, Y'%*, Zb®) € L2([t, T]; (D"2)) @ LA([t, T]; (D)%) L3 ([t, T);
(D1:2)k*d) . Recall the iteration procedure for FBSDEs

S S
X <ot b X N [ o XN N,

T T
R R BT R e L At
S S

When N=1, we let Y& = 0, then the above FBSDEs becomes a BSDE in [21]. From results in
210 and 22] (xtolyhel Ziehy e L2([t T); (DV2)4) @ L2 ([t T); (DV2)F) @ L2([t, T]; (D2)kx4)
and holds. For N=2, we can subject (X.t"r’l, yhol Z.t’w’l) into above FBSDESs, and show
(X-t’w’ ,Y.t’x’Q,Zt’z’z) e L2([t, T]; (D)) @ L*([t, T]; (D'2)%) @ LA([t, T]; (D"?)**) and
holds. By this iterative procedure and boundedness of the derivatives of functions, we can easily
show that (D, XY D, YN D,z is a Cauchy sequence in L? sense, and its limit denoted
by (DTXé’x,DTKf’I,DTZ;’I) satisfies forany r < s <T.

Finally, we consider the following equation

S S
vie = v [ iz [ 2
t t

Fort <r <s<T, we have

S S
DY = 2 = [ X 2D X ar = [ X Y 2Dt
r r
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S s
_/ FLr, Xp®, Y0, Zp%)Dr Zyp dr + / D, ZL"dW.
r r

It is easy to see that DTY;’I = Zﬁ’z a.s. at »r = s. This means that

tr A q: t,x __ r7tx
DY, —;%Drn =2Z;% a.s.

O

Proposition 3.8. Under conditions (B.0), (B.1) (or (B.2)) and (B.3), {Z\"0 <t <s <
T,z € R} has an a.s. continuous version which is given by:

2% = IV (VXET) (s, X07, V).
In particular Zf’x = V}Qt’xa(t, x, Ytt’x).

Proof. First, we will show that {DSY;’E} pocesses an a.s. continuous version. For this, re-
call Corollary [3.6, we have (VX5 VY™ VZi")g<s<r solves VFBDSDEs (3.20) of which the
forward equation can be written as

VXLT =V XL 4 / ol (1, XET YOV X AW, + / o, (1, X220 YR )VY PP dW,
S " S " (322)
+ [ b Xt v 4 [ X Y VY

Comparing (3.21)), (3.20)) and (3.22)), by the uniqueness of solution of (3.21)) and the linearity of
the equataion, we have

D, X" = VX (VXRT) o (r, X500, Y1),
and
D,YI = VY (VXE) o (r, XETYET), t<r<s<T. (3.23)

Thus the continuity of D,Y" follows from that of VY™, VX5®, X5 and Y&°. Finally, using
the Proposition and B.23), we have ZL" = DY = VYEY(VXET) Lo (s, X%, V™). The
continuity follows from the continuity of {DsYst’z;t < s < T}. This gives the first part of the
proposition. The second part easily follows when s = t. O

Proposition 3.9. Under conditions (B.1) (or (B.2)) and (B.3), has a unique solution

t,x t,x t,x
(X,'f’x7 Yrt’x, Zﬁ’x)tgrgT, then for anyt < s < T, Xﬁ’Xs = Xﬁ’x, YTS’XS =Y and Zf’XS = zb®
for any r € [s,T] a.s..

Proof. Note if (1.3) has a unique solution (X}, Y,"*, Zi™)icp<r, then for t < s < r < T, it is

t,x t,x t,x
easy to check that (Xf Xs ,YTS’XS ,Zf’XS ) is the solution of the following equations

T

T
XX =Xt 4 / b, XX VX ) + / o, XX VX aw,,
t,x tyj T t,x t,x ’ t,x T t,x (324)
VI h ) [ X e 2 Y [ 2w,
T

,

By the uniqueness of the solutions of FBSDEs, it follows from comparing with (1.3]) that for any
t,x t,x t,x

se[t,T], X = X", 2% =y and 25 = Zb" for any r € [s,T) a.s.. O
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Now we can link FBSDE with the classical solution of quasi-linear PDE ((1.1). The
idea follows from [2I] for BSDEs and the classical solution of semi-linear PDEs. We never-
theless include a complete proof for the convenience of reader. First, we give the probabilistic
representation of solution of quasi-linear parabolic PDEs in terms of FBSDEs.

Theorem 3.10. Under conditions (B.1) (or (B.2)) and (B.3), if u € C%2([0,T] x R4 RF)
solves PDE , then u(t,z) = Y'", where (X5*, Y, Zv%)o<s<r is the unique solution of
FBSDE (T.3).

Proof. Tt suffices to show that <X§’I,u(t, XU7), 0% (s, X0 u(s, X07))Vu(s, XE0)t < s < T)
solves FBSDE ([L.3)). Let t =tp < t1 <ty < .. <t, =T,

|
—

n

[U(ti, Xp) = ultisn, Xféfl)]

S =
|l
_ O

M

[ (ti’Xli" ) —ulti, X t+1 ] +Z[ ulti, X t+1 u(t”l’Xli’i)}

=0
n— tit1 n—l it+1
= _Z Lu(ti, XI) ds—Z/ ti, X0", u(ts, X0™)) Vu(t;, X07)dW,
i=0 v ti
n—1 tiv1 "
—|—Z/t [Zu(s X +1)
=0 "%

£ (5 X070 uls, X070 (5, XE7uls, X07,)) Vuls, X027, ) Jds.

Here we applied It6’s formula to u(t;, -) to calculate u(t;, Xt m) — u(t;, X} +1) (note the fact that
u(t;,) € C2(R%RF)), and compute u(t;, X} +1) w(tiv1, X ) from the PDE . Finally, by
the fact that u € C%2([0, T x R%; R¥) and the monotone- Llpschltz assumptlons we let the mesh
size go to zero to obtain

T
s, XE) = ROXE) = [ (X0l X0, 0 (1 X2, XE) Vo, XE)) dr
S

T
- / o (r, X5% u(r, X0%)) Vu(r, X5%)dW,,

where <X§ Ju(s, X0, *(s,Xﬁ’”C,u(s,Xﬁ’x)) Vu(s, X2")) solves the FBSDE 1' By the
uniqueness of solutions of FBSDEs, <u(s, X5, 0% (s, XE" u(s, X0))-Vu(s, Xﬁgg)) = (Y, Zt%).
In particular, u(t, z) = Y;"**. O

We can also prove the converse part to Theorem which means the solutions of FBSDEs
give the unique classical solutions of a quasi-linear parabolic PDEs.

Theorem 3.11. Under conditions (B.0), (B.1) (or (B.2)) and (B.3), {u(t,z) £ Y;"*;0 <
t < T,z € R%} is of class CV2([0,T] x R R¥), and solves the PDE .
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Proof. From Theorem u(t, ) € CO2([0,T] x R%:RF), where u(t,z) = Y;**. Let h > 0 be

. . t+h,X,
such that t + h < T. By the flow property in Proposition Ytz_g; =Y,,, ™. Hence

u(t+h,x) —u(t,z) = u(t+h,z)—ut+hX5) +ult+h X;5) —ut,)
t+h

= — Lu(t + h, X1")ds
t

t+h
_ / 0" (t+ by X1 u(t + by X57)) Vu(t + b, X27)dWW,
t
t+h

t+h
[ sex e zinas s [ ziaw,
t t

Here we applied Itd’s formula to u(t + h, ) to calculate u(t + h,z) — u(t + h, X%, ). Note here

t+h
h,X5"
u(ti,-) € CHR%LRF)). Moreover, u(t + h, X/5,) — u(t,z) = ijh B A (I
satisfies FBSDE (1.3). Now let t =tg < t; < ... < t, =T. We have
nol et
u(l,z) —u(t,z) = - / (Lutivr, XIT) + f(s, X7, Y Z5%)) ds
i=0 't

n—1 tiv1
+ Z/ (25" = o* (tigr, X2 utivr, X20%)) Vultivy, X&) dWs.
i=0 7t

We take a sequence t = tff < ¢ < ... <t = T such that lim, oo sup;<,_;(t}}; —t}') = 0.

Proposition [3.8 and the fact that Y3** and VY" are uniformly continuous w.r.t. (s,t,z) a.s.
suggest that

T
u(t,z) = h(x)—i—/t [(Lu(s,x) + f(s,z,u(s,x),0"(s,z,u(s, x))Vu(s,x))]ds.

Hence u(t,z) € C12([0,T] x R%;R*) and satisfies PDE (1.1)). O

Remark 3.12. For the existence and uniqueness, we can allow b and o involving z although in
the paper we only deal with the case when b involving z. Our method still works for o involving
z, but the Lipschitz constant has to be small. For the reqularity of the solutions, we can not deal
with the case when b and o involving z. The main difficulty arise in the LP estimate in the proof

of reqularity. In particular, if b and o involve z, e.g. b and o are Lipschitz continuous in z as
well, then the estimation (3.3) becomes:

E sup ]X§7x|p
t<s<T

T
< o <1+\x|p+E/ (1xt"
t

T
P [Y0R) dr + IE/ \X,’f””[pz\Zerr) :
t
Therefore (3.6) will become

E sup |X.*IP+E sup |[Y27|P

t<s<T t<s<T
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T T
< Gy (1+|x|p+E [ oxee s ey ar e [ \Xﬁ@|p—2|zr|2dr).
t t

The extra term essentially can only be estimated by

T T T
E / | XL [P~ Z,)%dr < C(E / | XE*Pdr + E / | Z,[Pdr).
t t t

But we can not get the estimate for ]EftT |Zy|Pdr. That is the reason that we did not involve z
inbando.

4 Weak solutions for quasi-linear parabolic PDEs

For smooth coefficients, the PDE (|1.1)) has a unique classical solution (see Theorem 3.11). In
this section, we relax our assumptions and study the weak solution of PDE (|1.1]) in the Sobolev
space. First we define the solution in the Sobolev space:

Definition 4.1. A process u is called a weak solution (solution in L%(Rd;Rk)) of PDE
if (u,0"Vu) € M2([0,T];L2(Rd;Rk)) ® MQ([O,T];L%(Rd;RkXd)) and for an arbitrary ¥ €
Ce™([0,T] x RLRY),

/tT /Rdu(s,x)(‘)s‘l’(s,m)dxds%— /R ult, D)Vt w)de /R (T, 2y (T, 2)d
+ /tT /Rd o (5,2, u(s, ) Vu(s, 2)0" (s, 2, u(s, 2)) VU(s, z)dads
+/tT /Rdu(s,:c)dw ((b_ A)q,(m)) dnds
- /tT S (B3 u(52),0% (5,2,u(s,2)) Vuls,2)) U(s, z)dwds. (4.1)

Here A; 2 Z?:l 8%1- (00%);; (s, u(s,x)), and A= (A, Ay, .., Ay

Note this definition can be easily understood if we note the following integration by parts
formula: for @1, o2 € C2(R%),

- [ Zer@ais =3 [ @ Ve)@(e Ve @i+ [

2 [ er(@)div (6~ D) (@)

We assume:

(C.0): For any s € [0,T], b(s,-,-) € Cllf(]Rd xRE;RY): f(s,-,-,-) € Cl{;)a(Rd x RF x RFxd. RF);
h e P (RERF); a(s, -, -) € O (RY x R¥; R*?) for some a € (0,1), where €/} denote the set
of Cllb—functions whose first derivative is Holder continuous of order oo. Assume o is bounded.

(C.1): Condition (B.1), but 2u > K+Cp, K > C7 is changed to gqu > K+Cq 1, K > C 1,
where Cy 1,,C! ; only depending on g and L. Here ¢ > 2 is the power of the weight function p

(see Remark .



28 C.R. Feng, X.C. Wang, H.Z. Zhao

(C.2): Condition (B.2), but 2u > K+Cp, K > C7 is changed to gqu > K+Cq 1, K > C 1,
where Cq7L,C(’]7L only depending on ¢ and L.

(C.3): For some p € (2,2¢g — 1),

T
/ (1b(s,0,0)[" + [lo(s, 0, 0)[|” + | £(5.0,0,0)[7) ds < oo,
0

The following norm equivalence result (Lemma is key to link the weak solution of quasi-
linear PDE (|1.1]) with the solution of FBSDE (|1.3]). Relevant works for flows generated by SDEs,
when BSDEs are not involved, were obtained in [13], [5], [31]. We extend their results to the
FBSDEs case. For this, we need following lemmas.

Lemma 4.2. Under conditions (C.1) (or (C.2)) and (C.3), for any p € [2,00), there exists a
constant Cy 1, 7 > 0 only depending on p, L, u and T" such that the solutions of FBSDE
satisfies

T £
E sup |X'*P+E sup !Kf“\’”rE( / HZﬁ“szr) < Cpppr(1+ |2P)
0<s<T 0<s<T 0

and

I3

T 2
E sup |X0*— X!"P4+E sup mt’z—ﬁ'@'l”+E< / HZi’m—Zﬁ’@’lM
0<s<T 0<s<T 0

< Cprurle — 2P+ Cprur(l+ |zl + [/ |P)|t — ¢/|5.

Proof. The proof follows from Lemma and Lemma Note from Lemma we can
find a constant p € (2,00) such that and hold. This is enough for the regularity
properties in Section [3] But in this section, we need an estimation of the weighted function
p(X) =1 +|XY2), ¢>2in Lemma Therefore, we have to strengthen our assumption
for pin (C.1) and (C.2) such that the constants Cy r, and Cj ; are not only depend on L but
also on gq. ]

Lemma 4.3. Under conditions (C.0), (C.1) (or (C.2)) and (C.3), there exists a constant
Cr.ur > 0 only depending on L, p and T' such that

T
E sup VXL +E sup ||V}{f"’”H2+IE/ IV Z5*|2dr < Cpoar (4.2)
0<s<T 0<s<T 0
Proof. The proof follows from Corollary and (3.18). O

In order to prove the norm equivalence result, we have to estimate the determinant of the
Jocobian matrix of XY, the inverse flow of X2*. We show the existence of X5V first.

Theorem 4.4. Under conditions (C.0), (C.1) (or (C.2)) and (C.3), X is the solution
defined in the forward equation in FBSDE , then the map Xt RY 5 RY s homeomorphism
a.s.. This is to say that the map X5 is one-to-one and onto , S0 its inverse map exists. Moreover,
the inverse map, denoted by XE R 5 RY, s also continuous a.s..
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Proof. We will first consider the one-to-one property of map X5, For this we need some esti-
mates in the following. For any negative p, there exists a constant Cj, 1, 7 > 0 only depending
on p, L, p and T such that

/ /
E sup | X0 — XD P+ E sup |YP" =~ YI P < Cprur
0<s<T 0<s<T

x—'P. (4.3)

To prove this, let us recall Step 2 in the proof of Lemma We apply Ité’s formula to
e_K’"|an’m _ XL [P and e_K7”|Y7«t’m _yb® P to get

T T
VE / e K| Xbr — X1 Pdr + BE / e Kyt — v Py
t t

1 4 / :
+(Gpo—- L) B [ vzt - 2 P
+E KT XET — X5 P 4 Be KUy — Yo' |p

T
< Cpre Bz —2/|P + Cp’L/ e Krdr,
t

where v and (3 are defined in (3.9). For any negative p, it is easy to see that 7, 5 and %p(p—l) —1&
are positive. So following the rest of the proof of Lemma we can show that (4.3 holds for

any negative p. Set '™V = m Using the estimates (4.2), 1) and following the proof

of Lemma 4.1 (see [12], pp. 224-225), then there exists a constant C

pLuT = 0 only depending
on p, L, u and T such that for any § > 0

t/7 /7 ! _
E|TE™ — TP < Cpprd (e =2/ 4y P
llal? + P+ g+ WP~ + 15— o1B)) (44)
holds for all z,y,z’,3 € R? such that |z —y| > 6 and |2’ —¢/| > . As a result, we can use (4.4)

and the idea of [12] (pp. 225) to show the one-to-one property of map X&'

We will next consider the onto property of the map X.. For this, let R¢ = RY U{oc}
be the one point compactification of RY. Set Z = |z|~2? and T%" = m if x#0, and

%" =0 if 2 =0. Then there is CI/;»L“%T > 0 only depending on p, L, u and T such that
B —F55P < 0o (o= a1t —t)f s — 8. (45)
The proof follows from estimates (4.2), (4.2) and Lemma 4.2 (see [12], pp. 225-226). Using (4.5))

and the idea of [12] (pp. 226-227) we can show the onto property of map X%

So far, we show that the map X% is one-to-one and onto a.s.. Consequently, its inverse map
X5 exists. Moreover, due to the fact that X. is one-to-one and continuous, the continuity of
the inverse map XL easily follows. O

Lemma 4.5. (Norm Equivalence Principle) Assume conditions (C.0), (C.1) (or (C.2)) and
(C.3). Let X5 be the solution of forward equation in FBSDE , p be a weighted function.
Then there exist constants c¢,C > 0 such that for every s € [t,T], ¢ € L})(Rd;]Rk)),

e [ @iz <] [ o] <o [ p@ipean (4:6)
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and for every ¥ € LL([t,T] ® R% R)),

c/tT /Rd U (s, o) |p(x)dads

IN

EUT (s, X0 pla)drds

c/ / 10 (s, 2)|p(x)dwds. (@7)

Here ¢ and C depend on T, L, u, p and the bounds of the first order derivatives of b,o,h and
f, but do not depend on the initial value x.

IN

Proof. First, we take p(x) := (1 + |z|?)?, ¢ > 2. We claim that there exist constants ¢, C' > 0
such that

J(X")p(X:)

<C, WyeR! t<s<T (4.8)
plx

c<E

Here X5Y is the inverse flow of X%, J (X;y) = det VX%V is the determinant of the Jocobian
matrix of XY, The existence of X5¥ is given in Theorem

Now we prove (4.8)). Assume that T'— h < ¢t < T for some small o > 0. We substitute
A~ oty
z = X5 into FBSDE 1) (see [12], pp. 234-237), with XA — xb o XY = y, then

S N N S ~ ~
Xty =y - / b(r, X0 YRRy — / o(r, X052 Y X" aw,,
t t
(4.9)
YR = (xR / U X S g gy / .
S

S

iy
Here ft (r, XtX YTt’XS VAW, = ft (r, Xﬁw,Yt AW, |, Xt Others can be treated simi-
larly. We differentiate with respect to y in in order to get

S S
>, / t, X5V X5 t,Xbv / t, X5V o, XDV t, Xty
VXY = I—/ by (r, X Yo% )VX s dr — by(r,Xr s YR )WY DR dr
t t
* t, X5V o, XEY t, Xty * t, X5V o, XEY t, X5y
— | o, X7 Y ) VXD dW, — [ oy (r, X7 Y0 ) VY e d W,
t ¢

= I+ J(y). (4.10)

When we consider the upper bound, we can use the Cauchy-Schwarz inequality,

JRE)p(XEY) o ? | [ & [ t
E p(y)] < E‘J(Xsy)‘ o) < /C + CE|JL(y)Il?
When s — t are small enough,
‘J(X;,y)f = |det (1 + J4(y))
< LT () +o (17w [
< 3 (14T (W) [P+ o (174w 1))
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< C+ T[Ty (i (y)]) -

For the lower bound, we note J(X%Y) > 1 — ¢||[Jt(y)||. Similarly,

e | py—
| VEI

o EAC.650 70,6501 I 76 0}
p(y) p(y)

It is obvious that both the upper and lower bounds relate on the estimates of E|[J!(y)||?,

oty |2 oty . oty |2 ot .
E ‘%‘ and E {p (/f;) )]. First calculate E ’p (ﬁfv) )’ and E {p (p)&g) )}. From 1} applying

It6’s formula to (1 + | X5Y[2)?, we have

N s oty _ Y by Y
(R = @) =20 [ X P S vy
t
S ~ ~ ~ ~
~2q [ (U X R o, X YR,
t

S N N N N
—q(2q 1) / (14 [XEX"12)a-2 X052 o (r, X055 | 2

= (14 |y>)?+ Si(y). (4.11)
It turns out that
St (14 | Ry 1St(y)|
— < < AL A . 4.12
T+ Pe S ArpPe = @ e (4.12)

From (4.9), using a similar method as in the proof of Lemma for ¢ > 2, r € [s,T], there
exist positive constants ¢, ¢; and co only depending on ¢, L, ;o and T' such that

ot >t
E sup (1+[XEX )7+ E sup (1+ (V127 < e(1+ [y*)2.
s<r<T s<r<T

Similarly

ot ot ot
E sup (1+ X057+ E sup (14 V07127 < o1+ [y]H)? + E[YSY 2 < 2¢(1 + [y?)e.
t<r<s t<r<s

So

s >t ot q
BISI) < al [ (L1 R dr < s - 1+ P
t
Therefore (4.12)) leads to

l—c(s—t)<E

(+ Py o) | STt (413

(1+ |f<£’y|2>q] e [p(X?%

T T 2
Using similar estimates, E ’p (ji;) )" can be easily estimated as
. . 2
1 Xty 2\2q Xt,y
l—cy(s—t) <E % _ g |PX) <1+ cy(s —t). (4.14)
(1+ [yl?)a p(y)
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For E|J¢ (2)||?, we consider (4.10), apply It6’s formula and use a similar method as in the proof
of Lemma [4.3] Then there exists a constant ¢z > 0 only depending on L, i, T" and the bounds
of the first order derivatives of b, 0, h and f such that

by oty
Etgup (VX512 + VYT P) < es.
r<

So

Ell T (y)lI* < es(s — ). (4.15)

From the result of (4.13)), (4.14) and (4.15]), the upper bound and the lower bound can be

estimated as

J(X")p(X:")

Blow < E
p(y)

< Bup-

Here Bjoy = 1—ci(s—t) —cy/ca(s —t)\/1 + c3(s — t) and By, = /C + 03(5 —t)y/1+ca(s — t).
If s —t small enough, the lower bound 1 — ¢ (s —t) —cy/ca(s — t)y/1 + c3(s — t) > 0. Therefore,
we can take h small enough such that | . holds for T — h < s <T. Note that ¢ and C does
not depend on the 1n1t1al value y. So we use the flow property Xt Y= X o XY NVE<r<s<T
(using Proposition in order to drop the restriction T'— h < t < T and so extend the
inequality to the whole of [t, T1.

t,x

Finally, we prove 1 , using the change of variable y = X¢, conditional expectation with

Y by
respect to .%; 5, and noting that % is .#: s measurable, we get

B| [ lexioaas] = [ & [ o)ty >Wr%,s”dy
L

ot ot
By ,CSE[%} <C, Ve ecRY t<s<Tforanyyc R sc [t,T], we

prove (4.6). Moreover, for function (s,x) +— ¥(s,z) we consider x — ¥(s,z) by the same way
as above, integrate with respect to s € [t,T] to get (4.7)). So the lemma is proved. O

Next, we will use the idea of [5], [31] to give a unique weak solution of PDE via the
solution of FBSDE (/1.3)). The outline of the proof is as follows: firstly, we construct a smoother-
ized FBSDE with C*° functions (0™, 0™, f™ ™) — (b,0, f,h) as m — oo, and their
solution (X', Vi, Zim) — (X2, Y5, Z5) in M2([0,T); L2(R% RY)) @ M2([0, T); L2(RY; R*)) @
M2([0,T7; Lz(Rd RF*4)) as m — co. Secondly, by Theorem um(t,x) = Yfm is the classical
solution of the corresponding smootherlzed PDE (4.17). Meanwhile, u™(t, ) also satisfies the
weak formulation of smootherized PDE . Finally, by the norm equivalence result (Lemma
and the convergence of Y.f;ﬁ to Y.t" as m — oo we can show that the weak formulation of
smootherized PDE (4.19) converges to the weak formulation of PDE , and u(t,x) is the

weak solution of PDE ([1.1)).
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Let the mollifier K; be defined as: K,(z) := Cgexp (ﬁ) when |z| < 1 and Ky(z) =0,

when |z| > 1, where Cy is chosen so that [y, Kq(z)dz = 1. Denote KJ'(z) := m?Kq(mz).
Suppose that ¢ : R — R is a Holder-continuous function with exponent v € (0,1) and let us
define for each m > 0,
o) = [ K(x—a')(a)da.
R4
As a result, ¢ is a C*° function, and Hoélder-continuous with exponent . Moreover, ¢™ — ¢
uniformly on R as m — oo. Similarly, we define

K (x) = K"z — 2")h(2')da,

Rd

) = [ K- KE - ol )iy
R4 xRk

b (r,x,y) = / KMz — 2K (y — y)b(r, 2,y )dx'dy
R4 xRk

) = [ K= K= e — e dy 4
XRF xRFX

It is easy to see that, (b, 0™, f™, h"™)men are C°° smooth functions such that for any ¢ € [0, 77,
r € RY y € R¥ 2 € RFXD (bm o™ ™ h™)(t,2,y,2) — (b0, f,h)(t,z,y,2) as m — oco. From
the definition, one can easily check that A™, ™, ¢™ and f™ also satisfy the monotone-Lipschitz
condition which is independent of m. From Theorem or Theorem the smootherized
FBSDEs ) i

Xl =t [V Xt i+ [ X Vi aw,

t t

t . . (4.16)

v =)+ [ e Xt iz~ [ zgnaw,

S S

has a unique solution (X5, Vi, Zim )i<s<r € M2([0,T); L2(RY RY)) @ M2 ([0, T); L2(R% RF))
M?([0,T); L (R REY)).

Remark 4.6. In , the functions h™, b™, o™ and f™ satisfy the monotone-Lipschitz
condition, in which the monotone-Lipschitz constants are independent of m. We can easily check
that the corresponding estimates in Lemmal[].3 hold, in which the constants are also independent
of m. Moreover, from Lemma we can verify Esupy<<p HVKf% 1> < Cpar, where Cp 1 is
independent of m. Therefore EHVY?%H%% is uniformly bounded.

Lemma 4.7. Under conditions (C.1) (or (C.2)) and (C.83), (X', Y, Zhm) — (X2, ¥, 25
in M?([0, T]; LZ(R%:RY)) @ M2([0, T]; L3(R RY)) @ M2([0, T; L3 (R R¥)) as m — oo.

Proof. Applying It6’s formula to e_K5|X§jfn — Xﬁ’x|2 and e_K5|Ysi’;fL — Yst’z|2, using a similar
estimate as in the proof of Thoerem and the fact that (b™,0™, f™ ™) — (b,0, f,h) as
m — 0o, we have

9 1 1 1
K—-2L3—L?-5L— — — — — — — —)|| XL — XL*
( 20 Ni N N4)H mm o

2
M2=E([0,T];L7)
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3 1 1 1
2 ) ) 2
+(2u— K — L* — 6L — 1N N E)Hyf,nﬁ - WIHM%K([O,T];L,%)
4 1
+(5 - E)HZ%I - Zﬁ’ﬂﬁ\/f?ﬁK([o,T];Lg)

IA

NlP™(X7") = h(X2")II2s

N[0 (r, X0, V,5) = b(r, X7, nt’x)||?\42,fK([o,T];Lg)

N7 (r, X Y Z57) — [ XY 25 s o

ENG 0™ XE7 Y1) — o X Y B oz

—- 0 as m — oo

N%’N%JN%NN% small enough such that N%r, < %, N%’ + N%; + N%) < i

tem yrtem b bon yrtem by
and 3= + 7 + N% < 55. Eventually, we have (X', Y.", Z0n") — (X", Y20, Z00") in

M?([0,T]; L2(R%:R)) @ M2([0, T]; L2(REGRF)) @ M2([0, T); L3 (R R¥>)) as m — oc. O

Here we can choose

Lemma 4.8. Under conditions (C.0), (C.1) (or (C.2)) and (C.3), (NX5,, VY5,V Z5) —
(VXD VYD vz in M2([0,T); LA(REG RY))@M2([0, T]; L2(RY RF)) @ M2 ([0, T]; L2(RY RE*4))
as m — 0o, where (VXﬁ’x, VYst’x, VZE’I) is the solution of VFBSDE and (VX;%,

VY5 N ZE) is the solution of the smootherized V FBSDEs (with coefficients (6™, o™, f™ h™)).

Proof. From Corollary it is easy to check that (VXE;%, VY;}%, VZﬁjfn) is the unique solution
of the smootherized VFBSDEs. Following the same procedure of the proof of Lemma [1.7, we
can also show that (VX'j,, VY5, VZ5,) — (VXD VY, VZE) in M*([0,T); L2(R%; RY)) @
M?([0,T]; LA(R%: RF)) @ M2([0, T; LA(R% RF*4)) as m — oo. O

Theorem 4.9. Assume conditions (C.0), (C.1) (or (C.2)) and (C.3). Let (X" YI" 7b%)
be the solution of FBSDE . If we define u(t,z) = Y;"", then o*(t,z,u(t,z))Vu(t, z) exists
for a.e. t € [0,T], x € R, and u(s, Xi") = Y&, o*(s, X0 u(s, X2"))Vu(s, X0") = ZL* for
a.e. s€[t,T], € R? a.s..

Proof. Thanks to the structure of smootherized FBSDE 1) (X;;fn, Y;t;fl, Zﬁffn) is the unique
solution of (4.16)) and f™, b™, o™, h™ are C*° functions. From Theorem the following

smootherized PDEs has a unique solution ™ (¢, x) = th;fl

o™ (t, x)+ L u™ (t,x) + f(E x, u (t x), (6) (E z,u (E ) Vu (t,x)) = 0,
(4.17)
u™(T,z) =h"(x),
where
1 & 52 d 0
& :2“2::1(0 (o) )ig b2, (0. 2)) +;bi (b, u™ (t,2)) 5 -

And also from Proposition and Proposition (3.9 we have

(s, X)) = YEE, (™) (s, XED, u (s, XEL) V™ (s, X0 = 2% (4.18)

s,m> s,m?
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Moreover, u(t, x) also satisfies the following weak formulation of PDE (4.19): for any smooth
test function U e C2*°([0,T] x R%; RF),

T
/ / u™(s, )0V (s, z)drds —|—/ u™(t,x)¥(t, z)dr — / R () (T, z)dx
t R4 Rd R4
1 T
+/ / o* (s,x,u™(s,x)) VU(s,z)drds
2 t R4
T ~
+ / u™ (s, x)div ((bm — A™)W (s, a:)> dxds
t JR4
T
= / (s, z,u™(s, ), (6™)" (s,x,u(s,x)) Vu™(s,x)) U(s, x)dzds. (4.19)
t JR4
Here A" = Zle % (a™(0™)"); ; (s, z,u(s, x)), and A™ = (AT", A7, ..., A7")". Note that um, €

C12? (see Theorem [3.11)), and it is also not difficult to prove that Vu™ (s, -) and the second order
derivative V2u™(s,-) are bounded uniformly in m.

For any mi, mo € N, by Lemma we have

T
| (s.) = w0 s
0

T
< [ Bl (s, X05,) — 0 . X0 s
0
T 0 0 0
< CE /0 (Il (s, X055, = (s, X0, )l + 1™ (s, X05,) = ™ (5, X0, |2 ) ds
T
< CE [ (I¥55, ~ Yl + IX%5, — X2, 13) ds
0
T
< CE /0 (1, = Y2l g + 100, = Y2 1 + 11X 0, — X0 1 + |1X07 = X048, l112 ) ds
T
1
< OmiE [ (I8 - eI + Y0, - YOl
0 0 2 0 0 2
HIX 0, = X072, + 1X0T — X053, ) ds
— 0, (4.20)

when mj, mg — oo, where C is a generic constant. Therefore u™(-,-) is a Cauchy sequence in
MY([0,T); LA(R% RF)), denoted by a(-,-) € M'([0,T]; LA(R% RF)) its limit. So

T
/ |lu™(s,z) — a(s,x)HL%ds —0 as m— oo. (4.21)
0

Define u(t,#) = Y;**. Then by Proposition and Fubini theorem, we have u Is,Xﬁ’z) =

t,x
YE&T — v for ae. s € [t,T), z € R? as.. By 1) | , Lemma and (4.21)), we have

T
/ lu(s, 2) — (s, )| p2ds
O P
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1z + llu™(s,@) = (s, 2)]|3) ds

) — a(s,x)HLg) ds

T
< 2 (Juts.o) - "0z + " (s,0) s, )]z ds
0
T
< CE [ (luls, X07) — " (5, X0 13+ " (5,2) — (s, o)1) ds
0
T
< B [ (o, X0%) — a5, X050 13 + 0 (5, X05) = (s, X073
0
+u" (s, x) — ﬁ(s,a:)HL%)ds
T
< CE [ (Juls. X0%) = (s, X32) p + |07 - X0,
T
= B [ (IO - Yl + 107 — X0y +
0
— 0,

as m — oo. Hence u(t,z) = a(t, z) for a.e. t € [0,T], x € R?

(4.22)

Similarly, we can show that (o™)* (¢, x, u™(t, z))Vu™(t, z)) is a Cauchy sequence in M ([0, T';
L%(Rd; R¥)). For my, ms € N, by Lemma o™(t,-,) is bounded uniformly in m and Lipschitz
continuous, the first and second order derivative of u"™(t, -) are bounded uniformly in m, we have

T
/0 |(a™)* (s, x,u™ (s, 2))Vu" (s, 2) — (6™2)* (s, 2, u™?(s,2)) Vu™ (s,x)]\Lgds

(s, Xih,

(S, Xt,x

s,m1
(s,

NVu™ (s, X502 )

$,m1

)Vue(s, XL

§,m1

T
/ 1(0™)*(s, Xb2, um™
0

—(0"2)* (s, X, » u™

T
| (e . xtg
0

— 0m2)*(s,Xﬁjﬁl2, u'™? (s,

S,m2
H[(0™2)* (5, Xy w2 (s, X, ) ) VU2 (s,

(
)
—(a™2)* (s, X2 u™2(s, XbE
)
(

Xt,l‘

s,m1

IN

NVu™ (5, X0 )

$,m1

X )Vu™2 (s, X0t

Xt,:r )

S,1M2

V™2 (s, X0¥

s,m1

Xt,l‘ )

S,mi

)V (s, X52

s,mq

$,m2) $§,M2
H(0™2) (8, Xy, u™ (5, X, ) ) VU™ (s,

(s,Xt’w

s,mi
oz + Ve (s, X22

S,ma

o O_mg)*(S’Xt,x umg

T
c /O (I

O/OT(r
C/OT(|

_ Zt,z‘

s,m2

Zt,x

s,m1

IA

Xt@

s,m2

t,x
- Xs:mg

+I X

s,m1 HL% + Hum2(57

t,x t,x
- Zs:mg - Xs:mg

Zt,:E

s,m1

IN

Iz + X225, I3 )ds

_ Zt,l‘

S,ma

Zt,a:

s,m1

IN

— 25z + 11287 oz + IXE2,

—

) —u™2(s, X5F

- X + | X5

)l rads

S,mg)”L%

ez

)z )ds

) — Vu (s

t,x
s Xy,

s,ml)HL%

)3 )ds

s,mq

_ Xt,:v

S,ma

l13)ds

when my, my — oo and C is a generic constant. So there exists a limit in M*([0, T7; L%(Rd; RF))
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of (™)*(t, z,u™(t,z))Vu"(t,x)) and similarly to (4.22)) and the above calculation, the limit is
oc*Vu,

T
/ |(a™)* (s, x,u™ (s, 2))Vu™(s,x) — c* (s, x, u(s,x))Vu(s,:U)HLgds =0 as m— 0.
0

Finally, we show that o*(s, X2, u(s, Xo"))Vu(s, Xe®) = Z0" for ae. s € [t,T], x € R? as..
This can be proved by the following

T
B [ o (s, X1, uls, X)) Vs, XE7) = 28|z
t

T
< E/ (HU*(S»Xﬁ”’ﬂU(SaXﬁ’r))VU(S,Xﬁ’m)—(Um)*(saXﬁjﬁwum(SaXﬁjﬁ@))Vum(SvXﬁj%)HLg
t

(™) (s, X, w™ (5, Xom))Vu™ (s, Xo7) = Zamlloz + 1265, — Zﬁ’mHLg)ds

— 0, as m — oo.
O

Theorem 4.10. Assume conditions (C.0), (C.1) (or (C.2)) and (C.3). Define u(t,z) = Y;"",
where (X5", Y5, Z7) is the solution of FBSDE . Then u(t, ) is the unique weak solution
of PDE with u(T, ) = h(z). Moreover, u(s, Xo™) = Y&, o*(s, X2 u(s, Xo*))Vu(s, Xo7)
= ZV" for a.e. s € [t,T], z € R? a.s..

Proof. From Theorem [£.9] we only need to verify that u is the unique weak solution of PDE

(1.1) with w(7T,z) = h(z). By Lemma

/OT (Hu(s, x)”%g + Ha*(s,x,u(s,x))Vu(s,x)H%%) ds

IN

T
CE [ (lu(s. X993 + o (5, X2, u(s, X29) Vu(s, X0) 1) ds
0

T
CE [ (12713 + 120755 ds < .

So (u(s,x),0*(s,z,u(s,x))Vu(s,x)) € Mz([O,T];Lg(Rd;Rk)) ® MQ([O,T];Lz(Rd;]RkXd)). Now
we verify that u(t,z) satisfies with w(7T,x) = h(x) by passing the limit in L%(d:cds) to
(4.19). We only show the convergence of the last term. By Lipschitz condition, the fact that
Mt x,y,2z) = f(t,z,y,z) in L/QJ sense as m — oo, and the convergences in Theorem for
any U e Co([0,T] x RY)

T
‘ /t y (s, z,u™(s,x), (6™)" (s,z,u™(s,2)) Vu""(s,x)) U(s, x)dxds
T 2
—/t y f(s,z,u(s,z),0" (s,z,u(s,z)) Vu(s,x)) ¥(s, ac)d:cds‘
T
< Cp/t ™ (s,z,u™(s,x), (™) (s,z,u™(s,2)) Vu"(s,x))

—f™(s,z,u(s,x), 0" (s,z,u(s,z)) Vu(s,x)) HQLgds
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T
—}—Cp/t W™ (s, z,u(s,z), 0" (s,z,u(s,x)) Vu(s, z))

—f(s,z,u(s,z),0" (s,z,u(s,z)) Vu(s,x)) H%I%ds

4 2
< G [ (I~ uts ol
t

+[| (™) (s, z,u™(s,x)) Vu™(s,x) — " (s, z,u(s, z)) Vu(s, x)H%g)ds

T
—i—C’p/t W™ (s,z,u(s,z), 0" (s,z,u(s,x)) Vu(s,z))

—f(s,z,u(s,x),0" (s,x,u(s,z)) Vu(s, z)) H%ds —0, as m — oo.
Therefore u(t,z) satisfies (4.1)), so is a_weak solution of with (7, x) = h(x). Con-
versely, it is easy to prove that if PDE has a weak solution u(t,z), then u(s, X%) = Y,
o* (s, X% u(s, Xo™))Vu(s, X%) = Z4™ is the solution of FBSDE by similar approxima-
tion method as we know that the smooth systems have such a relation. Thus we have the one
to one correspondence between the solutions of the PDE and the FBSDE and the uniqueness of
PDESs follows from the uniqueness of solutions of FBSDEs. O

5 Infinite horizon FBSDEs and quasi-linear elliptic PDEs

In this section, we study the unique weak solution of elliptic type PDE ((1.6) through the
stationary solution of infinite horizon FBSDE (|1.5)). First, we consider a more general infinite
horizon FBSDEs,

S S
X0 =g +/ b(r, X1¥, Y5 Z5)dr +/ o(r, X5, Y5 dW,,
t t

o0 o0 [e.9]
e_KSY;t’w :/ e_KTf(T, X;E,ac’ Y;,t’x, Zﬁ’x)d’l“ + / KG_KTY;‘t’md’I“ _ / e—KTZ;E,xdWT’
S S S
(5.1)
for s > t. Here the functions b : [0,00) x R x R¥ — R? 5 : [0,00) x R? x RF — RIx4,
f:]0,00) x RY x RF x R¥*4 — R*¥. We also assume that b, ¢ and f are measurable functions
with respect to the Borelian o-fields. We assume:
(D.1): Condition (A.1), t € [0,T] is changed to t > 0, and 2u — K —2L?> — 7L — 1 > 0 with
K >2L3+ L*+ 5L + 1 is changed to 2t > K + 81 L + 1 with K > 5L + 1.

(D.2): Integrability conditions:
/ ™" (|b(5,0,0,0)* + [l (s, 0, 0)[[* + [ £(5,0,0,0)[*) ds < oo,
0

Before we study FBSDE ([5.1)), let us recall some results for BSDEs case.

Remark 5.1. Zhang-Zhao ([31)]) considered the following finite horizon BSDEs with terminal
value of Y being h = 0,

S S
Xt ::z—i—/ b(r,Xﬁ””)dr—k/ o(r, XE")YdW,,
t t
vien = [* gt xim vien zemyr - [ 2w,
S

S



Quasilinear PDEs and FBSDEs: Weak Solutions 39

the unique solution of above finite BSDEs for each n € N, is also a Cauchy sequence in
the space S>~K M M?~K([0, 0); Lz(Rd;Rk)) ® M?~K([0,00); L?)(Rd;RkXd)). The limit of this
sequence, denoted by (Yst’x, Zﬁ’x), is a unique solution of following BSDFEs with infinite horizon,

xte :x—f-/ b(r, Xf’m)dr—l—/ o(r, XL dW,,
t t

efKS}/:gt,:E :/ efKT‘f( th Yt:l: th d?”-i-/ Ke™ Krytl‘dr / efKrzﬁ,xdWT‘

(5.3)
Here the functions satisfy the same conditions as those in FBSDE .

For the infinite horizon BSDEs (5.3)), we have

Theorem 5.2. Under conditions (D.1) and (D.2), BSDEs (5.3) has a unique solution, i.e.
there exists a unique process (XU, Y, Z) € §2=K N M>~K ([0, 00); L2(Rd RY)) @ S% Kﬂ
M2=E(]0, 00); LQ(Rd RF)) @ M?% K([O 00); LQ(Rd RF>*)) satisfying the integral form of (.)

Proof. Note that the SDE in is slightly different from that in [31]. In both cases the SDE
can be solved (see [I8] or [12]). For the infinite horizon BSDE in (5.3, we can use a similar
method as in the proof of Theorem 5.1 in [3I] to prove that there exists a unique solution
(Y5, 21) € 2K O MP7H([0, 00); LYRERY)) @ M>7H([0, 00); LE(RERMY)).

It is easy to see that SDE in has a unique solution X" € MQ’_K([O,T];L%(]Rd;Rd)).
~1(x)dz on both

Then applying 1to’s formula to e_K5|X£’x
sides and applying stochastic Fubini theorem, we have

IE/ e WXL Pp~ (@) de + (K — L)E / / e KTXE 27 (@) dadr
R4 R4

< / “Etp2p dm—i—C’/ Ky
Rd
As s — oo, we have
[o.¢]
IE/ / e
t JRd
By the B-D-G inequality,

E sup / e 15| XL 12 p~ (z)da
Rd

t<s<T
T T
< CPE/ / e_KT\Xﬁ’ﬂzp_l(x)dxdr—i—/ e_Kt:CQp_l(:c)dx—l—C/ e K7 dr.
t JR4 R4 t

As T — oo, we have

2p7 N (x)dzdr < oco.

Esup/ K xte 127 (g)de < oo
s>t JRd

So Xi* e S2 KM E([t, oo);L%(]Rd;Rd)). Following a similar procedure as in Step 2
of the proof of Theorem we can extend our result from [t,00) to [0,00). So X' €
52K ([0, 00); L2(RY: BY). =
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Now we consider the infinite horizon FBSDE (5.1)),

Theorem 5.3. Under conditions (D.1) and (D.2), has a unique solution, i.e. there exists
a unique process (XU Y, ZP) € 27K N M2~K([0, 0); L%(Rd;Rd))Q@SQ’*K N M?>=5(]0, 00);
LZ(Rd;Rk)) ® M*=K([0,00); Lz(Rd;RkXd)) satisfying the spatial integral form of .

Proof. We use the Contraction Mapping Method. Consider the map

2 MPTR([t 00); LI(RGRY)) x M7 ([t 00); L (R RY)) x MP 7R ([t,00); L2 (R RMY))
— M>7E([t, 00); LR R)) x M> 7 ([t, 00); L2(RYG RY)) x M> 7K ([t, 00); L2(RY RF?)),
(X Y8 Z8) s (X Y 20,

Given (Xé’x, Y, Zﬁ“), (X';’x, Y, Zﬁx) is defined as follows: for any s > 0
S S
X = o [ W XY 2+ [l X Y (5.4)
t t

and

oo o0 o0
e Hsyte — / e KT f(r, XbT Y 750 dr 4 K/ e Krytedy / e KT Zbeaw,. (5.5)
s t s

The existence and uniqueness of (X;’x, 1_7;’9_3, Z_ﬁx) were given by Theorem Similarly (U, V, #)
can be defined in the same way as (X,Y,Z) from (U,V,#’). Now applying Itd’s formula to
e K5 X0T — UL 12 and e 55|V — V7|2 and following the similar procedure as in the proof of

Theorem [2.5] we have

9. 5t Fr. St Tt
(K — 5L — ?O)HXt’ - U.t’ H?\/[?a—K([t,T];Lg(dx)) + (2/1« - K- 5L)HY-t7 - Vt H?\JQv_K([t,T];L%(dI))
T A

1 . 12 1 , ,
S (1 + I/)”th7 - Vt7 HMZ*K([t,T];L%(da;)) + Z”Zt7 - Wt7

2 KT 5ty it 2 LKt gt T2
MK (i3 ay) B X = Ur Lo + B VY = Vil an

‘?\/[2»*K([t,T];L,%(dx))' (5.6)

Now let us construct the contraction mapping. We adopt the similar notation as in (2.11]) with
a replacement of the space M2~ ([t,T7; L2) by M>=E([t, 00); L2). Now we take the limit as
T — oo in (j5.6)), we have

9 - _ 4 1 1

K-5L— —)A+2u—K-5L)B+-C<(-+L)B+-C.

( 5 20) + (2 5L) +5C_(4+ ) +4C

If we assume 1+4L<WandK—5L—2%>0, then we have,
5
K—5L— 3\ - _ K—5L— 2\ -
(420)A+(1+4L)B+C§156{<42O>A+(1+4L)B+C}.
5 5

So the map Z is a contraction from M2~ K([t, oo);L%(Rd;Rd)) XMQ’_K([t,oo);Lf,(Rd;Rk))
x M>=K([t, 00); L%(Rd; R**4)) into itself. Consequently, || has a unique solution (X.t", Yl Zt)
in M>~F([t, 00); LR RY)) @ M=K ([t, 00); Ly (R%RY)) @ M>~F([t, 00); LY(RE RFX4)).
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Finally, applying Itd’s formula to e 5| X5%|2 and e~ ¢|v]" |2, taking integration p~!(z)dz,

applying the stochastic Fubini theorem and using the B-D-G inequality, we have

E sup / e K| X120~ (2)de + E sup / e K|y 12p7 (2)da
t<s<T JRd t<s<T JRd

T
< GE [ [ eI IXEP R 4 127 ) o7 )

T
—i—/de_Kthp_l(a:)dx—i—CL,M/ e KT,
R t

As T — oo,

Esup/ e 9 X2 2 7 (2)da +Esup/ e Ko yhe 2 pl(2)de < oco.
s>t JRd s>t JRA

Therefore, (X%, Y:®) € S2~K M M>~K([t, 00); LA(R%G RY)) @ S27K N M27K([t, 00); L2(R%G RF)).
Following a similar proof of Theorem we can extend this result from [t,00) to [0,00). [

Now we desire to study the quasi-linear elliptic PDE through its corresponding infinite
horizon FBSDE . So far, a more general form of infinite horizon FBSDE (5.1) with time
dependent functions has been studied and the existence and uniqueness result has been obtained.
In the following we consider FBSDE where coefficients are independent of time. If FBSDE
has a unique solution, then for an arbitrary 7', we have

T T
Vi =Yt 4 / f(XEr vhe 78 dr — / ZHEdW,, 0<s<T. (5.7)
In Section {4, we deduced the following PDEs associated with FBSDE ([5.7) in the weak sense
T
u(t,z) = (T, x) —I—/ [(Lu(s,z) + f(z,u(s,x), 0" (z,u(s, z))Vu(s, z))|ds. (5.8)
t

Here u(T, ) = Y, "

Definition 5.4. A process u is called a weak solution of a quasi-linear elliptic type PDE (@
if (u,0*Vu) € L%(]Rd;Rk) ® LZ(Rd;RkXd) and for an arbitrary ¥ € O (R4 RF),

1 * *
2/Rda (z,u(z)) Vu(z)o (x,u(x))V\If(ar)dx—i-/

y u(zx)div <(b - A)W(m)) dx

= y f(zyu(x),o” (s,z,u(z)) Vu(z)) U(x)dz.

Here Aj £ 330 | 9 (00%), ; (z,u(x)), and A = (Ay, A, ..., Ag)*.

To find the weak solution of , first we study the stationary property of the infinite
horizon FBSDE (/1.5)). By using the connection between and proved in Section such
that u(t,-) = Y;', we can transfer the stationary property from Y;"" to u(t,-). Since u(t,-) is a
deterministic function, together with the stationary property, immediately we have that u(t, -)
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is independent of t. Therefore, the quasi-linear parabolic PDE (5.8) turns into a quasi-linear
elliptic type PDE (/1.6]), where u is the weak solution of such a PDE. Consider

(E.0): Functions b(-,-) € CH*(R4 x R¥;R%); f(-,-,-) € OL¥(R? x RF x RF*4RF); o(.,-) €
CHY (R x R¥; R?*?) for some a € (0,1).
(E.1): Denote g = (b, o). Assume there exists a constant L > 0 such that for any =, x;,z2 €
RY, y,y1,y2 € € R¥, 21,29 € RMY,
lg(t,x1,91) — g(tx2,90)[* < L(lzy — 22 + [y1 — 92f?),
’f(tﬂxlayazl)_f(t7x27y722)’2 < L(|$1—$2’2+||21—22||2).

For ¢ > 2, where ¢ is the exponent in the weight function p, there exist positive constants p, Cy 1,
and C’C’I’L, where CqJJ,Cq’L only depending on ¢ and L, satisfying gqu > K + C,; 1 and K > C(’L
such that

(1 — 2, f(@, 01, 2) — f(@,2,2)) < —plyr — wal*, 1£(0,4,0)[* < L1+ [y[*).
Theorem 5.5. Under condition (E.1), has a unique solution (X;’m, Yst’x, Zﬁ’x). Moreover

Esup/ e_pKS|X§’”"|pp_1(a:)d:E+Esup/ e PRy b2 Pl (1) da < oo. (5.9)
R4 R4

s>0 s>0

Proof. Since the condition (E.1) is stronger than conditions (D.1) and (D.2) in Theorem|[5.3] so
there exists a unique solution (X2*, Y/ Zb%) of 1} We only need fo prove E[supszg Jpa e PES
(|X5° P)p~1(z)dxr] < oco. Applying Itd’s formula to e PE"| X, [P and e PE"|Y,|P for a.e.
x € R? and following a similar procedure as in the proof of Lemma we have

o/E / / e PKT| X P p Y () dadr + B'E / / e PRIy P o (@) ddr
Rd d

+{2p<p } | ez @deds

< Gy [ (O.0F + 000+ 10.0.0) o~ (2 + C, [ e altp (@)
R4 R4

Wherea—(K 4pL —i—%—a—L( 1)2(1+5)—l)andﬂ’ (pp — K — 4pL—1;62—5—
L(p—1)*(1+¢)—3) are posmve from condition (E.1). Thus there exists a constant Cy, 1, only
depending on p, L and p such that

o [o@)
E/ / e_pKT|Xﬁ’$|pp_1(:n)dxd7“+E/ / e PRI P (1) dadr
t R t Rd
o0
4B [ [ ey 2t B (a)dodr
t R4

< Cp,L,u/ (16(0,0)[” + [[#(0,0)|” + [ £(0,0,0)[") Pl(if)deGC,L,u/ e afPp~! (x)da
R4 Rd
< . (5.10)

Next, by the B-D-G inequality, the Cauchy-Schwarz inequality, the Young inequality and (5.10)),
we can obtain another estimation

Esup /Rd e PESXL P () da + Esup /Rd e PRV 0P~ () da
s> 2
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< Gprp /Rd (16(0,0) + [lo(0, 0)[[P + [ £(0,0,0)[") p~" (w)da
+C ,L,;LE/ / e_pKT|Xﬁ’m|pp_1($)dxd7“+ Cp,L,,u]E/ / e—pKr|Yrt,x|pp—1(x)dl,dr
0 Rd 0 Rd

o
i [ [ R 22 e + Cpa [ R )
0 Rd Rd

< 0Q.

The desired result is obtained. O

Theorem 5.6. Assume conditions (E.0), (E.1) and let u(t,-) 2 Y}, where (X', Y, Z"") is
the solution of (1.5). Then for an arbitrary T and t € [0,T), u(t,-) is a weak solution of (5.8).
Moreover, u(t,-) is a.s. continuous with respect to t in L%(Rd;ﬂ%k).

Proof. Let (Y&%),50, (Y2'®)s0 be the solutions of (1.5) with ¢ and #' respectively. First we
claim that, for an arbitrary T > 0, ¢,t' € [0, T,

Beup /R e PREY e — Y (2)da < Cylt’ — ]2
§2

To see this, set

= X; T Xﬁ,x, Y/s — Ygt T }/St,x7 Zs — Z;f T Z;,x7
8) = bXDT V) —b(XE7 V), 5(s) = o(X00,Y) — o (XE7, V),
(3) _ f(Xg@’ }/;t/7;1}, Z;l’x) _ f(X;’x,Y;t’x, Z;,:E)’ s Z 0.

P
|

by

From Theorem 5.5, we have (5.9). Applying Itd’s formula to e PX7| X, |P and e PE7|Y,|P for a.e.
x € R? and following a similar procedure as in the proof of Lemma we have

o0 o0
E/ / epK’"]X'T]ppl(x)dxdr—i—E/ / e PET|Y, Pp~ Y (z)dxdr
t R4 t R4
[o.¢]
+E/ / e PN P2 Z, 2 (@) dadr < Cpplt’ — 12
t R4
Also by the B-D-G inequality, we have

Esup/ epKS|XS]pp1(:1:)dx+Esup/ e PRV, Pp (z)de < CLW]t’—t\%.
s>0 JRA s>0 JRA

As a result, we have

p

, 2
E <S1i%) Ad e—2KS|}/;t K }/;t’x‘Qp_l(.’I})d.’I))
2
p—2

’ 2
< Cp,E sup/ e PEs|yle _ytepp=l(z)de / pH(z)dx < Cpult - t)%.
5>0 JRd Rd
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Noting p > 2, by Kolmogorov’s continuity theorem, we have t — Y5 is a.s. continuous for

1
t € [0,T] under the norm (sup,sq fpa € 55| |2p~!(z)dz)>. Without losing any generality,
assume that ¢ > ¢. Then we have

1
. - ! - § i - l
lim 2Ky Y Pp N a)de ) < lim (sup [ e 2y
t'—t Rd =t \s>0 Jrd

a.s.. Notice t' € [0,T], so

1
2
2p1(x)d:c> =0,

lim (/ Y -y 2 (@ )da:) =0 as. (5.11)

t'—t

Since Y € S2K N M2~K([t, 00); L2(R% R¥)), Y, is continuous w.r.t. ¢/ in L2(R% RF). This
is to say for each t,

lim (/ Y5 — YR (@ )dz>2 —0 as. (5.12)

t'—t

By (5.11) and (5.12)
lim (/ ‘Yz’,x _ Y;t’x’Zpl(J})dx>
t'—t \ JRd

1
2 2
< lim </ Y~y 12 (o )dm) + lim (/ V" =Y )dx) =0 a.s.
t'—t t'—t

Therefore, for an arbitrary 7' > 0, 0 < ¢t < T, define u(t,-) = Ytt", then u(t,-) is a.s. continous
w.r.t. tin L%(Rd; RY). Moreover, recall the results in Sectionand Section [4f it is easy to check
that u(t,z) is a weak solution for (5.8]). O

[N

We now construct the measurable metric dynamical system through defining a measurable
and measure preserving shift. Let 6; : Q@ — Q.¢ > 0, be a measurable mapping on (Q2,.%,P),
defined by 6; o Wy = Wy — Wy, Then for any s,t > 0, (i) P - 0{1 = P; (i1) 6p = I, where I
is the identity transformation on Q; (iii) 65 o 0; = 6s44. Also for an arbitrary .%-measurable
¢ :Q — H, where H is a Hilbert space, set

00 p(w) = o(B(w)).
Theorem 5.7. Assume conditions (E.0) and (E.1). Let u(t,-) £ Y;"', where (X", Y, Z")
1s the solution of . Then u(t,-) is the weak solution of quasi-linear elliptic PDE @

Proof. The main idea of the proof follows [31]. Note that the backward equations of ([1.5]) is
equivalent to

T T
viT =yt 4 / f(XE® b Z6%)dr — / ZE AW, Jim e KTYr =0 as. (5.13)
S

S
First we will prove that (Xﬁ’x, Yst’w, Zﬁ’x)szo is a "perfect” stationary solution of 1 , l.e.

to _ yitrx tx _ yttrz to _ ot
QTOXS _Xs—i—r ’ QTOYS _}/s—&—r ’ HTOZS _ZS+T :
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Here the integral w.r.t. Brownian motion W is a standard It6’s integral, 6, is a shift with respect
to W. Note for any {h(s, ) }s>0 being an .#s-measurable and locally square integrable stochastic
process with values in L%(]Rd; R?Y), for an arbitrary T >0 and 0 <t < T,

T T+r _
6, o / h(s,-)dWg = 0, 0h(s—r,-)dWs, (5.14)
t t+r
and
T _ T+r B
0, o / h(s,-)ds = / 0,0 h(s—r,-)ds. (5.15)
t t+r

From (E.1) and (X", Y"", Z) € S27K N\ M27K([0, 00); L2(R%G RY)) @ S2K N M2K([0, 00);
L%(Rd;Rk)) ® MQ’_K([O,oo);L?,(Rd;RkXd)), it is easy to see that b,o, f are locally square

integrable. Now applying 6, on both sides of (5.13]), by (5.14) and (5.15)), we know that
(0, o X5 9.0 Yst’m, 0, o Z;’x) satisfies

s+ s+r
0, 0 X1* =z + / b(0, 0 X7 0, 0 YO Ydu + / o0y 0 X0¥ 0, 0 YT )dW,,
t+r t+r
T+r T+r
0,0 Y1 =0, 0 V" + / f(Or0 XE" 0,0V " 0, 070" Ydu — / 0,0 Z" AW,
s+r s+r
lim e K(T+)g, o Yﬁx =0 a.s..
On the other hand, from ([5.13), it follows that
( s+r s+r
X0 =z + / bX T Y ) du + / o(X T YA AW,
t+r t+r
t+r,x t+r,x td t+r,x t+rx pt4rax td t+r,x (5. 17)
Yrs—i—r :YT+T + n f(Xu ’ 7Yu ' ’Zu ’ )du o N Zu FdWy,
ST ST
lim e K(T+7) YTti:’x =0 a.s.

T—o00

By the uniqueness of the solution of in the space S5 M M2~X([0,0); L%(Rd;Rd)) ®
S2-K N M%=E(|o, oo);L%(Rd;]Rk)) ® M?*~K([0,00); L%(]Rd;]RkXd)), it follows from comparing
l) and that for any » > 0 and ¢ > 0, in the space L%(Rd;Rd) ® L%(Rd;Rk) ®
L%(Rd;RkXd), for all s > t,

O 0 Xt =X G oYh =YHT 6,028 =2 as. (5.18)

By the perfection procedure ([2],[3]), we can prove above identities (5.18)) are true for all
s > t, r >0, but fixed t > 0 a.s. In particular, for any ¢ > 0, in the space L%(Rd;Rd) ®
L2(RGRF) @ L2(R% RF¥)

0,0V =Y, for all r>0 as. (5.19)
So we get from (5.19) that in the space L%(Rd;Rd) ® L?)(Rd;Rk) ® Lf)(Rd;RkXd)

Opou(t,)=u(t+r-), for all r>0, t>0, a.s.
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From Theorem we know that u(t,-) £ Y;" is the continuous weak solution of (5.8). But u is
now deterministic. This means u(t+r,-) = u(t,-) for all £,7 > 0. So u(t, -) is independent of time
t and (5.8) immediately turns to be ([1.6). Therefore u is the weak solution of the quasi-linear

elliptic PDE (1.6)). O

Remark 5.8. As for the uniqueness of the solution of elliptic PDE @, the idea is to show
that a solution of the PDE is also the solution of infinite horizon FBSDE . This one-to-one
correspondence will give the uniqueness of elliptic PDE following the uniqueness of the solution
of the infinite horizon FBSDE. For this, we need to verify the reqularity of the solution of BSDE
for sufficiently smooth coefficients following the idea of Section 3. In this case, the one-
to-one correspondence follows from Ité’s formula. Then we use the approximations by FBSDFEs
and PDEs with smooth coefficients and prove the desired convergence following the procedure of
Section 4. However, due to the length of the paper, we will not include the full argument here.
For the viscosity and classical solutions of the semilinear elliptic PDEs and related BSDEs, we
refer to [7] and [19].
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