
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Multiple-cluster detection test for purely temporal disease clustering:Multiple-cluster detection test for purely temporal disease clustering:
integration of scan statistics and generalized linear modelsintegration of scan statistics and generalized linear models

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1371/journal.pone.0207821

PUBLISHER

© The Authors. Published by Public Library of Science (PLoS)

VERSION

VoR (Version of Record)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International
(CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

LICENCE

CC BY 4.0

REPOSITORY RECORD

Takahashi, Kunihiko, and Hideyasu Shimadzu. 2019. “Multiple-cluster Detection Test for Purely Temporal
Disease Clustering: Integration of Scan Statistics and Generalized Linear Models”. figshare.
https://hdl.handle.net/2134/36197.

https://lboro.figshare.com/
https://doi.org/10.1371/journal.pone.0207821


RESEARCH ARTICLE

Multiple-cluster detection test for purely

temporal disease clustering: Integration of

scan statistics and generalized linear models

Kunihiko TakahashiID
1*, Hideyasu ShimadzuID

2

1 Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan,

2 Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, United

Kingdom

* kunihiko@med.nagoya-u.ac.jp

Abstract

The spatial scan statistic is commonly used to detect spatial and/or temporal disease clus-

ters in epidemiological studies. Although multiple clusters in the study space can be thus

identified, current theoretical developments are mainly based on detecting a ‘single’ cluster.

The standard scan statistic procedure enables the detection of multiple clusters, recursively

identifying additional ‘secondary’ clusters. However, their p-values are calculated one at a

time, as if each cluster is a primary one. Therefore, a new procedure that can accurately

evaluate multiple clusters as a whole is needed. The present study focuses on purely tem-

poral cases and then proposes a new test procedure that evaluates the p-value for multiple

clusters, combining generalized linear models with an information criterion approach. This

framework encompasses the conventional, currently widely used detection procedure as a

special case. An application study adopting the new framework is presented, analysing the

Japanese daily incidence of out-of-hospital cardiac arrest cases. The analysis reveals that

the number of the incident increases around New Year’s Day in Japan. Further, simulation

studies undertaken confirm that the proposed method possesses a consistency property

that tends to select the correct number of clusters when the truth is known.

Introduction

Whether the distribution of disease spreads randomly or clusters around particular epicenters,

this has been a crucial concern in epidemiological studies. Any indication of disease clustering

at an early phase of outbreak offers valuable insights into preventing us from a worse pandemic

scenario or may provide us with clues to the etiology of the disease [1, 2]. A well-known monu-

mental work would be one carried by John Snow, a British physician, in identifying the source

of a cholera outbreak in Soho, London, during the middle of 19th century. He identified a

water supply pump as the source of the epidemic by mapping the number of cholera victims

which delineated a cluster around the pump [3].

Although the extent to which disease distributes is often discussed in a spatial context, like

Snow’s map, there is parallel to purely temporal events which also attract attention from a
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broad public today. For example, identifying the threat of emerging infections or the risk of

bioterrorist attacks is a critical role of surveillance systems, the main focus of which is to moni-

tor the incidence or prevalence of specific health problems over time within a well-defined

population [4].

To identify meaningful clusters, in other words, to investigate a regional or temporal ten-

dency in the presence of certain diseases, whether the disease risk is relatively high to other

surrounding regions or subsequent time periods, a number of statistical tests have been pro-

posed and are widely used [5]. These tests are classified based on their purpose. For example,

focused tests have been developed to detect the existence of a local cluster around a predeter-

mined point source, while general tests search for clusters without any preconceived assump-

tions about their location [6]. The general test framework further consists of two types of tests.

Global clustering tests, such as those developed by Moran [7], Whitemore et al [8], Oden [9],

Tango [10], Rogerson [11] and Bonetti and Pagano [12], detect the presence of clusters in a

study area without determining the statistical significance of individual clusters. On the other

hand, cluster detection tests (CDTs), such as those proposed by Besag and Newell [6], Turnbull

et al. [13], Kulldorff and Nagarwalla [14], Kulldorff [15, 16], Tango [17, 18], Duczmal and

Assunção [19], Tango and Takahashi [20, 21], Takahashi et al. [22], and Jung [23], possess the

flexibility to accommodate spatial, temporal, or spatio-temporal data, and enables the determi-

nation of whether a disease pattern is completely random over the space of study without prior

information while indicating regions or time periods with high disease prevalence.

The scan statistic is one of the most powerful elements of the CDT since it is based on a

concrete statistical framework—i.e., the maximum likelihood ratio; examples include the cir-

cular scan statistic [15] along with the SaTScan software [24] and the flexibly shaped scan sta-

tistic [20] implemented in the FleXScan software [25]. These have widely been applied to

important challenges in various fields such as the epidemiology of cancer and other diseases,

infectious disease surveillance, parasitology, psychology, ambulance logistics, medical imaging,

genome-wide association analyses, and drug and vaccine development [24, 26–28].

A shortcoming of these approaches is, however, the fact that most of them focus on ‘single’

cluster detection while investigating the extended study space or period within which more

than one cluster is expected. To detect more than one cluster, the ordinary scan statistic proce-

dure, including the circular and flexibly shaped ones, is iteratively applied after the identifica-

tion of the first (primary) cluster; additional, mutually exclusive ‘secondary’ clusters are then

sequentially detected by the likelihood ratio statistic—we hereafter refer to this conventional

procedure as the secondary-cluster procedure. The procedure can only evaluate these clusters

one by one, and each corresponding p-value is calculated as if the cluster were the primary

one. This fact indicates that the current approach does not provide an accurate assessment of

the selected multiple clusters.

In the present work, we construct a general test procedure that enables the simultaneous

evaluation of multiple clusters, focusing on a purely temporal Poisson model. Combining gen-

eralized linear models (GLMs) and the ordinary scan statistic procedure, the new testing

framework stands directly on the full-likelihood principle that can easily be amalgamated with

an information criterion approach to select clusters via GLMs. This procedure becomes, as will

be described in a later section, a natural extension of scan statistic—i.e., the conventional sec-

ondary-cluster procedure, and can accurately evaluate multiple clusters as a whole. An applica-

tion study adopting the proposed procedure is then discussed in the context of a real-world

example—i.e., temporal data on the daily incidence of out-of-hospital cardiac arrest cases in

Japan [28]. The results are compared to those obtained by the secondary-cluster procedure.

The consistency property of the proposed procedure, a desirable property, whether it tends to

select the correct number of clusters is also examined via simulations studies.

Multiple-cluster detection test for purely temporal disease clustering

PLOS ONE | https://doi.org/10.1371/journal.pone.0207821 November 21, 2018 2 / 15

Funding: KT acknowledges the support by Japan

Society for the Promotion of Science (JSPS)

KAKENHI Grant Number 17K00046. https://www.

jsps.go.jp/english/e-grants/.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0207821
https://www.jsps.go.jp/english/e-grants/
https://www.jsps.go.jp/english/e-grants/


Methods

In this section, we first present an overview of the ordinary scan statistic framework imple-

mented in SaTScan and FleXScan for a single-cluster detection and then describe the conven-

tional secondary-cluster procedure for the multiple-cluster detection proposed by Kulldorff

[15] using a Poisson GLM as described in Jung [23]. We then propose a new test procedure

that simultaneously evaluates multiple clusters using both GLMs and an information

approach. We also show that the new procedure encompasses the secondary-cluster procedure

as a special case.

Ordinary scan statistic for single-cluster detection and secondary-cluster

procedure

A study space (area or time period) G consists ofm segments, each of which corresponds to

the smallest element of the space; this can be a county, month, or day depending on the type of

data. The number of cases within segment i—i.e., Yi—is presumed to follow an independent

Poisson distribution, with an expected value μi—i.e., Yi|μi* Poisson(μi), which is henceforth

denoted in lowercase as yi, i = 1, 2, . . .,m. Let W denote the set of all potential scanning zones

(the sets of connected segments) of any size, construction of which relies on an employed scan-

ning method. Assuming the window w (2W) as a hot-spot cluster in which the number of

cases, yi, is higher than in other parts of the study space, the expected number of cases can be

modelled as

log mi ¼ logðyim0
i Þ ¼ aþ bzi þ log m0

i ; ð1Þ

with the indicator variable zi = 1 if i 2 w and zi = 0 otherwise (i =2 w). For those segments that

fall into a hot-spot cluster (w), a parameter of model (1) becomes θi = θw = exp(α + β) for β�
0. On the other hand, for those that fall outside the cluster (�w), the parameter is

yi ¼ y�w ¼ expðaÞ. The constant term m0
i ≔m0

i ðxiÞ is often modelled as a function of other

covariates xi, such as demographic or environmental factors; this yields the null model—i.e.,

the expected number of cases if there is no cluster in the study space such that β = 0. The null

model is therefore log mi ¼ a0 þ log m0
i .

The likelihood function of model (1) is generated as follows: fiðyijz;ψÞ ¼ f ðyijm0
i ; z;ψÞ is

the probability function of Yi = yi given the location of hot-spot window, z≔ z(w) = (z1,

z2, . . ., zm), and the parameters ψ = (α, β) and m0
i . The probability function f ðyijm0

i ; z;ψÞ
can be expressed as either f ðyijm0

i ; z; ywÞ for i 2 w or f ðyijm0
i ; z; y�wÞ for i 2 �w, w \ �w ¼ ;.

Hence, the conditional log likelihood function is

lðψjzÞ≔ log f
Qm

i¼1
fiðyijz;ψÞg ¼ log

�Qm
i¼1
f f ðyijm0

i ; z; ywÞg
zi f f ðyijm0

i ; z; y�wÞg
1� zi
�
. This leads

to the following statistical hypothesis test to detect a single cluster:

H0 : yw ¼ y�w for 8w 2W; H1 : yw > y�w for 9w 2W:

The null hypothesisH0 states that there is no cluster—i.e., z = 0, whereas the alternative

hypothesisH1 asserts that there is a hot-spot window w—namely, z = z(w)—in which the

underlying disease risk is higher than in the other parts of the study space. It is important to

note that the two hypotheses can also be expressed in equivalent forms with respect to β asH0:

β = 0 for 8w andH1: β> 0 for 9w.

The maximum log likelihood ratio (LLR) for a given w is

LLRðwÞ ¼ lðψ ¼ ða; bÞjz ¼ zðwÞÞ � lðψ ¼ ða0Þjz ¼ 0Þ ð2Þ

and the conventional scan statistic is defined as max w2WLLRðwÞ. A window w� that attains

Multiple-cluster detection test for purely temporal disease clustering
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max w2WLLRðwÞ—i.e., max w2W lðψjz ¼ zðwÞÞ—, is identified as the most likely (primary)

cluster. The Monte Carlo method is commonly used to evaluate statistical significance. A large

number of random datasets are generated under the null hypothesis, and the test statistic is

then calculated for each dataset; the upper or lower percentiles provide a Monte Carlo-based

p-value.

The described procedure above was intended to identify only the primary cluster, w�
1
¼ w�.

For multiple cluster detection, Kulldorff [15] extended its use; the procedure was repeatedly

used to identify other clusters, namely ‘secondary’ clusters, w�
2
, w�

3
, . . ., among which there

were no overlaps—i.e., w�k \ w
�
k0 ¼ ; for k 6¼ k0 and consequently, their LLRs always followed a

descending order, LLRðw�
1
Þ > LLRðw�

2
Þ > � � � > LLRðw�kÞ > � � �. The statistical significance of

secondary clusters was evaluated in the same way as that of the most likely cluster; i.e., the log-

likelihood ratio of each secondary cluster was compared to the maximum log-likelihood ratio

calculated from randomly generated data sets. This procedure is simple and easy to use,

although it is limited by the fact that it only evaluates clusters individually as if each one were

the primary cluster, and does not assess multiple clusters as a whole.

A new framework for multiple-cluster detection test procedure

To construct a new procedure, we first show here that the multi-cluster model can be formu-

lated in the form of mixture Poisson GLMs and then derive the likelihood function. This new

formulation recognizes the cluster selection problem as a model selection problem for which

we can embrace the information criterion paradigm. To choose an appropriate number of

clusters, we then propose a new criterion delivered from the likelihood function in the same

manner as BIC. The computational aspect of the proposed methods is reasonably straightfor-

ward utilizing existing statistical software although, some technical details are explained at the

end of this section.

Multiple cluster model and its likelihood. Assuming that there are K clusters [w = (w1,

w2, . . ., wK)] in a space G, each mutually exclusive window wk contains a set of adjacent seg-

ments as a cluster—i.e., wk \ wk0 ¼ ; for k 6¼ k0. Note that K = 0 and K = 1 indicate that there is

no cluster and a single cluster in the study space, respectively. The expected number of cases μi
of segment i can be modelled as an extension of (1) as follows:

log mi ¼ logðyim0
i Þ ¼ aþ

XK

k¼1

bkzki þ log m0

i ð3Þ

for K� 1 and log mi ¼ a0 þ log m0
i for K = 0. Here, the indicator variable zki = 1 if i 2 wk and

zki = 0 otherwise. Note that βk> 0.

Recalling the notation in the previous section, f ðyijm0
i ; z;ψÞ is the probability function of

Yi = yi given z≔ z(w) = (zki)—which is now a K ×mmatrix—and the parameters ψ = (α, β1,

β2, . . ., βK). The conditional log likelihood function can be written as

lðψjzÞ≔ log ½
Qm

i¼1

QK
k¼0
ff ðyijm0

i ; z;ψÞg
zki �, where z0i = 1 if i =2 [Kk¼1

wk, and z0i = 0 otherwise.

We assume z to be randomly selected in accordance with a probability function h(z). The com-

plete (full) log likelihood function of ψ is then expressed as:

lðψÞ ¼ log LðψÞ ¼ log
Ym

i¼1

YK

k¼0

ff ðyi; zkijm
0

i ;ψÞg
zki

" #

¼ lðψjzÞ þ log fhðzÞg

where L(ψ) is the likelihood function of ψ. The maximum log likelihood ratio statistic LLR(w)

(2) is equivalent to the maximum of l(ψ) for K = 1 with h(z), which assumes a constant proba-

bility under the alternative hypothesis H1.

Multiple-cluster detection test for purely temporal disease clustering
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Candidates of multiple clusters w. The multiple-cluster model (3) depends on the choice

of z—i.e., w among a large number of combinations of sets in W. Although the choice is,

indeed, a search problem in a general context, we here focus on extending the secondary-clus-

ter procedure due to its natural interpretation. We are interested in evaluating whether each of

candidate clusters is able to reject the null hypothesis on its own strength, significance in other

words, in terms of the likelihood statistic value. In some sense, it is like a regression analysis

where each variable is entered in a separate regression model and then evaluated without

adjusting for other variables [29]. Thus, we adopt the conventional scan statistic approach to

select candidate clusters. First, the primary cluster w�
1

is selected as candidate w1 in w; then,

with a pre-defined maximum number of candidates, among which there are no overlaps—i.e.,

Kmax (� 1)—(Kmax − 1) secondary clusters, w�
2
;w�

3
; . . . ;w�Kmax , are selected one by one, regard-

less of their significance. In practice, we predefine the maximum number of candidates (e.g.,

Kmax = 10, 20, . . .) or a P-value threshold, ps, (e.g., ps< 0.5, 0.8, 1.0). It should be noted that

Kmax = 1 corresponds to detection of a single cluster using the conventional scan statistic pro-

cedure. Candidate selection may differ depending on the scanning method that is adopted

(e.g., circular, flexible, etc.).

Selecting an appropriate K and significance test. To select an appropriate number of

clusters, K(� Kmax), we propose a new information criterion approach that chooses K in favor

of the largest marginal likelihood,ML(y, z) =
R

exp {log L(ψ)} g(ψ)dψ, where g(ψ) is a prior

probability function of parameter ψ. This can be achieved by the same manner in deriving the

Bayesian information criterion (BIC). Applying the Taylor expansion and Laplace approxima-

tions to the integral above [30], the log marginal likelihood is approximated as

� 2 logMLðy; zÞ � � 2
Xm

i¼1

XK

k¼0

zkiflog f ðyijm
0

i ; z; ψ̂Þg � 2 log ðhðzÞÞ

þ q logmþ log jJðψ̂Þj � q logð2pÞ � 2 logðgðψ̂ÞÞ

where ψ̂ is the maximum likelihood estimator of ψ,

Jðψ̂ Þ ¼ �
1

m
@

2lðψjzÞ
@ψ@ψ 0

jψ¼ψ̂

and q = K + 1. The model evaluation criterion can then be obtained by omitting terms with an

order less than O(1) with respect to the large sample sizem; that is,

CðKÞ ¼ � 2lðψ̂ jzÞ � 2 logðhðzÞÞ þ ðK þ 1Þ logm; ðK � 1Þ: ð4Þ

To select an appropriate number of clusters, K, we define a relative difference statistic based on

the criterion C(K) as

RDCðKÞ ¼ ðC0 � CðKÞÞ=C0;

where C0 = C(0), the criterion under the null model. Appropriate multiple clusters are selected

from the set of candidates ~w ¼ ðw1;w2; . . . ;wKÞ with respect to maxK RDC(K). It should be

noted that there is a clear link to the conventional cluster detection approach: the candidate

cluster ~w attains maxw LLR(w) if K = 1 under Kmax = 1.

To calculate the proposed criterion (4), the probability function h(z) needs to be speci-

fied; for purely temporal cases, we recommend to use h(z) = (1/m)K as an approximation

of the probability of selecting locations w when the window size is relatively very small,

#{i|i 2 w}�m, with respect to the whole data size m. Hence, a temporal cluster selection

Multiple-cluster detection test for purely temporal disease clustering
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criterion is given as

CðKÞ ¼ � 2lðψ̂ jzÞ þ ð3K þ 1Þ logm ðK � 1Þ:

The statistical significance of appropriate models is evaluated by the Monte Carlo hypothe-

sis testing procedure in the same manner as with the standard scan statistic. Under the null

hypothesis, a large number of random datasets are generated; however, for each of these, maxK

RDC(K) is instead calculated as a test statistic.

Computation. All the numerical computation can easily be carried out by R [31] using

the glm function that fits model (3) and then calculates the log-likelihood ratios. The Monte

Carlo-based p-value [32] is computed in the following way. First, we calculate the observed test

statistic based on the observed data set. Second, we compute the same statistic for a large num-

ber Nrep of data sets which are simulated independently under the null hypothesis of no clus-

tering. The simulated p-value is obtained from the rank of the statistic among Nrep + 1 values

of the statistic. If this rank is R, then p-value = R/(Nrep + 1). The Monte Carlo simulated p-

value is not necessary the same value all the time due to the randomly simulated data. In other

words, another independent set of Nrep realisations will result in a slightly different p-value.

However, a larger number of replications Nrep consequently provides a more stable p-value.

The number of replication Nrep is usually set as 999 or 9,999.

Application and simulation data

To illustrate how the proposed procedure performs in detecting temporal multiple-clusters,

we apply it to real-world data, the daily out-of-hospital cardiac arrest (OHCA) cases in Japan

and compare the results with those obtained from the conventional secondary-cluster proce-

dure. Further, the consistency of the proposed procedure is also investigated via a simulation

study. The aspect of consistency, whether the proposed procedure tends to select the correct

number of clusters when the truth is known, is an essential part in evaluating the performance

of the proposed framework and the desired property as a reliable procedure.

An application: Detecting temporal clusters in daily incidence of out-of-

hospital cardiac arrest cases

As an example, the Japanese OHCA data for the period of 2005–2011 (2,260 days) were stud-

ied and a total of 701,651 cases (MNC; male con-cardiac cases) were analyzed following a

previous work [28]. The expected number of OHCA cases m0
i on day i in model (3)—that is,

the null expectation with no cluster—was estimated by a Poisson regression model for the

observed OHCA cases yi, while accommodating the following five factors into the model:

year, month, day of the week, holidays, and temperature, in two-by-two stratification by sex

(male/female) and the etiology of arrest (cardiac/non-cardiac). For more details see Takaha-

shi and Shimadzu [28].

To determine whether OHCA incidence showed specific temporal clustering patterns, we

calculated the scan statistic implemented with the restricted likelihood ratio [18, 21], which was

an improved version of Kulldorff’s standard scan statistic [15]. We set two default arguments of

the program: the maximum temporal length of a cluster was 20 days and the pre-specified sig-

nificance level for a restriction was α1 = 0.2. The significance level of the test was set as 0.05,

and the p-value was calculated from 999 replications of the Monte Carlo hypothesis test.

Data and data accessibility. Daily ambulance records of OHCA cases were obtained

from the All-Japan Utstein registry data of cardiopulmonary arrest patients provided by the

Fire and Disaster Management Agency (FDMA). This was a nationwide and population-based

registry system of OHCA cases available since 2005, in accordance with the Utstein guidelines.

Multiple-cluster detection test for purely temporal disease clustering
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Since all the records were made anonymous by FDMA, according to the informed consent

guidelines in Japan, we were exempt from obtaining informed consent from each patient to

use this dataset. All the data set used in the present study is public data and available from the

Ministry of Internal Affairs and Communications, Japan upon request at fdma-goiken@ml.

soumu.go.jp, referring to the All-Japan Utstein registry data 2005–2011.

Simulation studies

We carried out simulation studies to assess the performance of the proposed framework in

detecting multiple clusters from time-series data. The purpose of it is to check if the proposed

framework possesses a consistent property that tends to select the correct number of clusters

when the truth is known. Here, the expected count of daily OHCA MNC cases from the null

hypothesis served as an example time series. We assumed six periods [A–F; Table 1], during

which the incidence of OCHA cases—that is, the relative risk (RR) of OCHA—was set at a

high value, and we introduced seven scenarios with different RR for each of the periods

[Table 2]. For example, Scenario S2.1 had three cluster periods (A–C) for which the RR was set

as 2.0; for the remainder of the time series, including periods D–F, the RR was 1.0, indicating

that there was no cluster. We generated 1000 datasets for each scenario and compared the esti-

mated power calculated from the two cluster detection tests with the significance level of 0.05.

Results

An application: Detecting temporal clusters in daily incidence of out-of-

hospital cardiac arrest cases

Fig 1 shows the number of observed cases yi and the expected counts m0
i under the null hypoth-

esis for male non-cardiac cases (MNC) with 185,819 cases.

Table 1. Assumed cluster periods with expected counts under the null model in simulation studies.

period # days expected counts

A 2006/01/01–03 3 (115.10, 131.43, 122.34)

B 2005/01/01–03 3 (103.08, 108.53, 124.18)

C 2005/04/01–03 3 (76.44, 77.10, 84.35)

D 2005/02/01 1 (87.27)

E 2007/01/01–05 5 (127.77, 117.05, 114.54, 99.36, 100.34)

F 2007/04/01–05 5 (84.83, 81.85, 78.47, 79.52, 82.61)

https://doi.org/10.1371/journal.pone.0207821.t001

Table 2. Assumed relative risks in simulation studies.

scenario # clusters # days Relative Risk (RR)�

A B C D E F

S0 0 0

S1 1 3 1.5

S2.1 3 9 1.2 1.2 1.2

S2.2 3 9 1.3 1.3 1.3

S2.3 3 9 1.5 1.5 1.5

S2.4 3 9 2.0 2.0 2.0

S3.1 6 20 2.0 2.0 2.0 2.0 2.0 2.0

S3.2 6 20 1.3 1.5 2.0 2.0 1.3 2.0

� All the blanks should read as Relative Risk (RR) is 1.

https://doi.org/10.1371/journal.pone.0207821.t002
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The conventional secondary-cluster procedure first detected the most likely cluster of 2-day

length and then seven other secondary clusters (Table 3). It should be noted that since random

numbers were used in the Monte Carlo procedure, our p-values slightly differed from those

previously reported [28].

We then applied our proposed framework to the same data. Candidate clusters were

selected with a threshold p-value ps< 1.0, which was equivalent to setting Kmax = 25 for the

observed data. The suggested multiple cluster model had eight clusters, K = 8 [C0 = 17433.89,

C = C(8) = 17041.46, RDC(8) = 0.02251].

Fig 2 shows the null distribution of RDC(K) generated by the Monte Carlo-simulated data

with 999 replications; this was similar to the results obtained by the secondary-cluster proce-

dure. However, the proposed procedure calculated a p-value of 0.001 for the multiple-cluster

model from the upper fifth percentile of the statistic RDC5% = −0.00025. The selected multiple-

cluster model by the proposed procedure is shown in Table 4.

Fig 3 shows the value of the proposed criterion C for each K calculated from the observed

data along with other criteria such as −2log likelihood, Akaike information criterion (AIC),

and Bayesian information criterion (BIC). Our criterion C reached the minimum value—i.e.,

maxK RDC(K)—at K = 8, unlike the other criteria that monotonically decreased with an inflec-

tion point at around K = 8.

Fig 1. The black solid line represents the daily out-of-hospital cardiac arrest (OHCA), male non-cardiac cases (MNC), in Japan from 1

January 2005 to 10 March 2011 (m = 2, 260 days); total 185,819 cases, and maximum and minimum of daily counts were 244 and 43,

respectively. Grey line overlays the null expected counts (Takahashi and Shimadzu [28]).

https://doi.org/10.1371/journal.pone.0207821.g001

Table 3. Detected significant temporal clusters in daily incidence of out-of-hospital cardiac arrest (OHCA), male non-cardiac cases (MNC), by the secondary-cluster

procedure.

rank cluster clustered period cases expects RR p-value ps
1 w1 2010/01/01—2010/01/02 423 232.43 1.82 0.001

2 w2 2005/01/01—2005/01/02 381 211.61 1.80 0.001

3 w3 2011/01/01 228 111.40 2.05 0.001

4 w4 2008/12/31—2009/01/03 630 444.54 1.42 0.001

5 w5 2006/01/01 207 115.10 1.80 0.001

6 w6 2008/01/01—2008/01/04 614 446.72 1.37 0.001

7 w7 2007/01/01—2007/01/02 344 244.83 1.41 0.001

8 w8 2011/01/02—2011/01/06 711 589.98 1.21 0.011

RR: relative risk

https://doi.org/10.1371/journal.pone.0207821.t003
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Takahashi and Shimadzu [28] also investigated temporal clusters for other three groups

such as male cardiac (MC) with 224,661 cases, female non-cardiac (FNC) with 128,491 cases,

and female cardiac (FC) with 162,680 cases. Using the conventional secondary-cluster proce-

dure, nine clusters (MC and FNC) and seven clusters (FC) were identified at the significance

level ps< 0.05 based on maxLLR(w). On the other hand, our proposed procedure yielded six

clusters (MC and FNC) and five clusters (FC), both with p-value of 0.001. Most of the periods

excluded by the proposed procedure among the secondary clusters of the conventional proce-

dure were not around New Year’s Day with ps> 0.01.

Simulation studies

We generated 1,000 datasets for each scenario and compared the estimated power calculated

from the two cluster detection tests with the significance level 0.05. Table 5 shows the total

Fig 2. Histogram of the null distribution of RDC(K).

https://doi.org/10.1371/journal.pone.0207821.g002

Table 4. Detected multiple-cluster model by the proposed procedure.

clustered period coef. OR 95%CI p-value

intercept −0.006 0.0077

w1 2010/01/01—2010/01/02 0.605 1.831 (1.662, 2.012) < 0.0001

w2 2005/01/01—2005/01/02 0.594 1.812 (1.636, 2.000) < 0.0001

w3 2011/01/01 0.722 2.059 (1.803, 2.339) < 0.0001

w4 2008/12/31—2009/01/03 0.355 1.426 (1.317, 1.541) < 0.0001

w5 2006/01/01 0.593 1.810 (1.574, 2.068) < 0.0001

w6 2008/01/01—2008/01/04 0.324 1.383 (1.276, 1.500) < 0.0001

w7 2007/01/01—2007/01/02 0.346 1.414 (1.270, 1.569) < 0.0001

w8 2011/01/02—2011/01/06 0.193 1.213 (1.126, 1.304) < 0.0001

coef.: estimated coefficients; OR: odds ratio; 95%CI: its 95% confidence interval; and p−value: the p-value of the estimated coefficient.

https://doi.org/10.1371/journal.pone.0207821.t004
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power, which was calculated as the sum of rejection rates over the number of clusters with

K> 0. We calculated the sensitivity (Sen) and positive predictive value (PPV) of days detected

as significant, as well as their averages and the number of detection with Sen = 1 and PPV = 1

among 1, 000 sets.

For the null scenario S0, the total power—i.e. probability of type I error—was 0.049 for

both procedures and was very close to the significance level 0.05. In the single-cluster sce-

nario [S1 (RR = 1.5)], both procedures had a total power equal to 1.0 but ours performed

slightly better in the detection of a single cluster (K = 1). The total power for the three cluster

scenarios [S2 (i)–(iv)] varied depending on RR. The power was lower—almost 0.57—for

RR = 1.2, and increased to 0.991 for RR = 1.3. The total power for detection of K = 3 was also

low for RR = 1.2 and 1.3; notably, they were lower for the proposed procedure as compared

to the secondary-cluster procedure. On the contrary, the proposed procedure performed

better in detecting K = 3 for RR = 1.5 and 2.0. Lastly, for the scenario with six clusters (S3),

the total power was 1.0 for both procedures and all scenarios. The detection power of K = 6

clusters by the proposed procedure was slightly higher for scenario (i) with RRs of 2.0, while

the secondary-cluster procedure showed higher power for scenario (ii) with different RRs.

As such, the total power was almost the same for both procedures, and the detection power

in terms of selecting the correct number of multiple clusters varied according to the sce-

nario. The sensitivity of the secondary-cluster procedure was slightly higher than that of the

proposed procedure, although the latter performed better in terms of PPV and the number

detected with PPV = 1, suggesting that the secondary-cluster procedure tends to detect addi-

tional clusters.

Fig 3. Values of the proposed criterion C for each K, with other criteria, −2log likelihood (−2log L), AIC and BIC.

https://doi.org/10.1371/journal.pone.0207821.g003
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Discussion

We have proposed a general test procedure that enables the simultaneous evaluation of multi-

ple clusters as an extension of the conventional secondary-cluster procedure, focusing on a

purely temporal Poisson model. The Japanese OHCA data analysis has highlighted the most

advantageous aspect of the new procedure, that is, it can evaluate the p-value for the whole

multiple clusters, as opposed to the secondary-cluster procedure which cannot. This aspect

becomes a key to the detection of meaningful multiple clusters. Our procedure has detected

the equal or less number of clustered periods in the OHCA data, compared to ones of the sec-

ondary-cluster procedure [28]. This may seem to be a subtle difference although, it requires

more careful interpretation regarding the p-value reported by Monte Carlo simulated data.

Note that the individual p-values, ps, of the clustered periods commonly identified by both of

the procedures state high significance with ps = 0.001. On the other hand, for those clusters

being excluded by the proposed procedure indicate relatively large p-values. It is not difficult

to imagine that such p-values may vary due to Monte Carlo simulated data with 999 replica-

tions. This fact clearly suggests that our proposed procedure seems to be more robust and is

capable of detecting the genuinely significant clusters, which is not affected by the simulated

random data in this application.

Table 5. The power of the secondary-cluster and the proposed procedures in the simulation study, along with the sensitivity (Sen) and the positive predictive value

(PPV) of days detected significantly.

N.S.

(K = 0)

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 total

power

Sen

(avg�)

Sen

= 1

PPV

(avg�)

PPV

= 1

S0: null RR = 1.0

s-c proc. 0.951 0.049 0.049 — — — —

proposed proc. 0.951 0.049 0.049 — — — —

S1: one cluster (three days) RR = 1.5

s-c proc. 0.959 0.040 0.001 1.000 0.996 0.988 0.971 0.919

proposed proc. 0.994 0.006 1.000 0.996 0.988 0.986 0.954

S2.1: three clusters (nine days) RR = 1.2

s-c proc. 0.430 0.436 0.123 0.011 0.570 0.361 0.003 0.870 0.376

proposed proc. 0.426 0.531 0.043 0.574 0.313 0.000 0.878 0.405

S2.2: three clusters (nine days) RR = 1.3

s-c proc. 0.009 0.118 0.455 0.406 0.012 0.991 0.728 0.266 0.935 0.658

proposed proc. 0.009 0.315 0.469 0.206 0.001 0.991 0.605 0.140 0.946 0.734

S2.3: three clusters (nine days) RR = 1.5

s-c proc. 0.004 0.962 0.034 1.000 0.992 0.940 0.978 0.847

proposed proc. 0.011 0.984 0.005 1.000 0.990 0.934 0.984 0.872

S2.4: three clusters (nine days) RR = 2.0

s-c proc. 0.960 0.039 0.001 1.000 1.000 1.000 0.991 0.957

proposed proc. 0.990 0.010 1.000 1.000 1.000 0.997 0.987

S3.1: six clusters (20 days) RR = 2.0

s-c proc. 0.976 0.024 1.000 0.999 0.999 0.997 0.972

proposed proc. 0.002 0.989 0.009 1.000 0.999 0.997 0.998 0.987

S3.2: six clusters (20 days) RR = 1.3, 1.5, 2.0

s-c proc. 0.003 0.170 0.795 0.032 1.000 0.952 0.597 0.976 0.669

proposed proc. 0.012 0.276 0.704 0.008 1.000 0.934 0.526 0.979 0.699

� averages among the custers detected as K > 0; Sen = 1: #{Sen = 1}/1000; PPV = 1: #{PPV = 1}/1000; s-c proc.: secondary-cluster procedure.

https://doi.org/10.1371/journal.pone.0207821.t005
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Several studies have reported the detection of multiple clusters using scan statistics. In one

study proposing an adjusted p-value, a sequential approach is used [29]. Although it performs

with higher power than the conventional approach, the relative sizes of adjusted p-value for

secondary clusters are irrelevant to the order in which the clusters are sequentially detected;

that is, the k-th cluster may have a smaller p-value than the previously detected (k − 1)-th clus-

ter. Moreover, this procedure can only evaluate the significance of individual clusters but not

of multiple clusters as a whole.

In the spatial context, a multiple-cluster detection procedure using spatial scan statistics has

also been proposed [33, 34]. However, these methods are also unable to assess the significance

of multiple clusters as a whole. As a similar approach to us in terms of adopting a model selec-

tion procedure, Zhang et al. [35] have developed a generalized linear mixed model with Mor-

an’s I statistic and utilised a stepwise procedure that allows multiple-cluster evaluation,

accounting for random spatial effects. They have, however, concluded that the power is lower

than that of the standard scan statistic [35]. A recent study [36] proposed a multiple-cluster

detection procedure in the spatial context, adopting the quasi-likelihood approach that deals

with spatial correlation. One drawback is that quasi-likelihood is not able to produce the likeli-

hood or information criterion. This fact indicates that the quasi-likelihood approach still suf-

fers from the multiple testing problem, whereas our approach avoids the issue by utilising the

model selection framework with the proposed information criterion that stands on the full-

likelihood principle. We leave it for future work to undertake detail comparisons of these

quasi- and full-likelihood approaches in the multiple-cluster detection context.

We have proposed an information criterion procedure to select an appropriate number of

clusters for detection. This approach has been used for model selection in more general statisti-

cal modelling contexts—for instance, to estimate the number of multiple clusters [37, 38] and

finite mixture [39] models, for which traditional AIC and BIC are used. However, in specific

situations with large datasets, conventional information criteria including −2log likelihood,

AIC, and BIC were unable to accurately select an appropriate number of clusters and per-

formed poorly (Fig 3). The proposed criterion was derived from the marginal likelihood of the

multiple-cluster model (3) and accounted for the probability distribution of selected candidate

clusters. Our examples and simulations clearly demonstrate that the proposed criteria per-

formed well in terms of identifying ‘‘true’’ multiple-clusters assumed in simulation studies as

an appropriate multiple-cluster model.

A more conservative p-value is calculated by the secondary-cluster procedure as compared

to the primary cluster procedure [29, 40]. Consequently, the former identifies fewer significant

secondary clusters relative to true clusters. However, this was not the case in our simulation

study, which showed that the secondary-cluster procedure detected extra clusters. Our exam-

ple and simulation study demonstrated that the proposed framework performs well, although

there are outstanding challenges to be addressed by future work. Firstly, multiple-cluster detec-

tion depends on the scanning method that is initially used; we adopted the conventional sec-

ondary-cluster procedure to pre-select candidates for a GLM. Therefore, choosing the optimal

scan statistic with high detection accuracy is essential. Secondly, our illustration and simula-

tion were carried out only for purely temporal clustering, although the proposed procedure

can be applied to purely spatial and spatio-temporal cases with minor modifications. When

applied to such cases, choosing the correct probability function, h(z), is critical, and a detailed

evaluation along with various simulations is required. Thirdly, our proposed framework is

based on the likelihood ratio test statistic, but this is not the only option. For example, the sta-

tistical nature of Wald-based and other types of scan statistics have also been studied by other

researchers [41, 42]. Some comparison study would be useful for understanding the deviation

among those different scan statistics.
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Here, it is also worth noting about the account for dependence structures in time series

data. Although our likelihood approach assumes a (conditional) independent structure among

observations, the approach also shares the notion of partial likelihood [43] that can cope with a

dependence structure. It is known that under some reasonable conditions the partial likeli-

hood is able to resemble the amount of information the full joint likelihood possesses. See

Kedem and Fokianos [44] for the detail explanation and its theoretical elaboration in time

series analysis adopting the GLM framework.

In the spatial context particular, it has been pointed out that the original scan statistic tends

to produce more false-positives, when the data contain underlying overdispersion and/or spa-

tial correlation, for which some modification has been proposed in the single-cluster detection

test framework [45]. Further investigation on the utility of various multiple-cluster detection

test statistics accounting for dependence structureswill bring new insights into the future

research.

Conclusion

We have proposed a new testing framework for the simultaneous evaluation of purely tempo-

ral multiple-clusters, combining GLM and information criterion approaches that directly

stand on the likelihood principle. The framework can, thus, treat the cluster selection problem

as the model selection problem and provide a single p-value to evaluate the selected multiple

clusters as a whole. This feature is unique and beneficial compared to the conventional second-

ary-cluster procedure that recursively evaluates clusters one by one. Our simulation studies

have demonstrated that the new procedure also enables the estimation and evaluation of multi-

ple clusters with high detection power, possessing the consistency property that tends to select

the correct number of clusters when the truth is known.
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