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Abstract

A Feynman-Kac-type formula for a Lévy and an infinite dimensional Gaussian
random process associated with a quantized radiation field is derived. In partic-
ular, a functional integral representation of e−tHPF generated by the Pauli-Fierz
Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics is con-
structed. When no external potential is applied HPF turns translation invariant
and it is decomposed as a direct integral HPF =

∫ ⊕
R3 HPF(P )dP . The functional

integral representation of e−tHPF(P ) is also given. Although all these Hamilto-
nians include spin, nevertheless the kernels obtained for the path measures are
scalar rather than matrix expressions. As an application of the functional integral
representations energy comparison inequalities are derived.
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2 The Pauli-Fierz model with spin

1 Introduction

Functional integration proved to be a useful approach in various applications to quan-

tum field theory. For the case of a quantum particle linearly coupled to a scalar boson

field, the so called Nelson model, it gives a tool to proving existence or absence of a

ground state in Fock space [Spo98, LMS02a]. Furthermore, ground state properties can

be derived in terms of path measure expectations [BHLMS02], and the question how the

model Hamiltonian and its ground state behave under lifting the so called infrared and

ultraviolet cutoffs can also be treated by the same method [LMS02b, GL07a, GL07b].

Another problem studied by this approach is that of the effective mass [BS05, Spo87].

Some of these results have been obtained by functional integration only, thus sometimes

it offers a complementary method rather than a mere alternative.

In contrast with Nelson’s model, the Pauli-Fierz model describes a minimal cou-

pling of a particle to the quantized radiation field. The spectrum of the Pauli-Fierz

Hamiltonian has been extensively studied by a number of authors also using analytic

methods. In particular, the bottom of the spectrum of the Pauli-Fierz Hamiltonian

is contained in the absolutely continuous spectrum, no matter how small the coupling

constant is. Nevertheless, a ground state exists for arbitrary values of the coupling con-

stant without any infrared cutoff [BFS99, GLL01, LL03]. Functional integration is also

useful in studying the spectrum of the Pauli-Fierz Hamiltonian which was addressed

in the spinless case so far [BH07, Hir00a, Hir07, HL07].

The spinless Pauli-Fierz Hamiltonian is written as

ĤPF :=
1

2
(−i∇− eA )2 + V +Hrad (1.1)

on L2(R3) ⊗ L2(Q), where the former is the particle state space and the latter is

the state space of the quantum field, A stands for the vector potential, Hrad for the

photon field, and V is an external potential acting on the electron. These objects

will be explained in the following section in detail. The C0-semigroup e−tĤPF is defined

through spectral calculus. A functional integral representation of the semigroup e−tĤPF

can be constructed on the space C([0,∞); R
3) × QE, involving a process consisting of

3-dimensional Brownian motion (Bt)t≥0 for the particle, and an infinite dimensional

Ornstein-Uhlenbeck process on a function space QE for the field [FFG97, Hab98, Hir97].

One immediate corollary for the functional integral representation is the diamagnetic
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inequality [AHS78, Hir97]

inf σ(−(1/2)∆ + V +Hrad) ≤ inf σ(ĤPF). (1.2)

Using the fact that a path measure exists was also applied to proving self-adjointness

of ĤPF for arbitrary values of the coupling constant e [Hir00b, Hir02]. Furthermore,

whenever ĤPF has a ground state, the path measure can be used to prove its uniqueness

[Hir00a] as an alternative to the methods making use of ergodic properties of the

semigroup in [Gro72, GJ68]. Other applications for the study of the ground state

include [BH07, HL07].

The path measure of the coupled Brownian motion and Ornstein-Uhlenbeck process

can be written in terms of a mixture of two measures as the specific form of the

coupling between particle and field allows an explicit calculation of the Gaussian part.

The so obtained marginal over the particle is a Gibbs measure on Brownian paths

with densities dependent on the twice iterated Itô integral of a pair potential function

describing the effective field resulting from the Gaussian integration [Spo87, Hir00a,

BH07, GL07a].

Previous applications of rigorous functional integration to quantum field theory

covered, as far as we know, only cases when no spin was present in the model. In

this paper our main concern is to study by means of a Feynman-Kac-type formula the

Pauli-Fierz operator with spin 1/2. (1.1) is in this case replaced by

HPF :=
1

2
(~σ · (−i∇− eA ))2 + V +Hrad, (1.3)

where ~σ = (σ1, σ2, σ3) are the Pauli matrices standing for the spin (see details in the

next section). The random process of the particle modifies to a 3+1 dimensional joint

Wiener and jump process (ξt)t≥0 = (Bt, σt)t≥0, where the effect of the spin appears in

the process σt = σ(−1)Nt hopping between the two possible values of the spin variable

σ, driven by a Poisson process (Nt)t≥0. Our approach owes a debt to the ideas in

[ALS83], where a path integral representation of a C0-semigroup generated by Pauli

operators in quantum mechanics was obtained by making use of an R
3 × Z2-valued

process, with Z2 the additive group of order two. As we will see in the next subsection,

the Pauli operator is of a similar form as HPF, in fact both operators describe minimal

interactions. While in [ALS83] only a path integral representation of operators with

non-vanishing off-diagonal elements was constructed, we improve on this here since this

part of the spin interaction in general may have zeroes.
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Another model considered in the present paper is the so called translation invariant

Pauli-Fierz Hamiltonian which is the case of HPF above with zero external potential V .

Translation invariance yields a fiber decomposition HPF =
∫ ⊕

R3 HPF(P )dP with respect

to total momentum P tot, where the fiber Hamiltonian is given by

HPF(P ) :=
1

2
(~σ · (P − Pf − eA (0)))2 +Hrad, P ∈ R

3. (1.4)

Here Pf denotes the momentum operator of the field. While the translation invariant

Hamiltonian does not have any point spectrum, HPF(P ) under some conditions does

[Fro74, Che01]. In [Hir07] the functional integral representation of e−t ˆHPF(P ) for the

spinless fiber Hamiltonian is constructed, where

ĤPF(P ) :=
1

2
(P − Pf − eA (0))2 +Hrad, P ∈ R

3. (1.5)

Furthermore, uniqueness of the ground state of ĤPF(0) as well as the energy comparison

inequality

inf σ(ĤPF(0)) ≤ inf σ(ĤPF(P )) (1.6)

are shown.

Our main purpose in this paper is to extend the results on the spinless Hamiltonians

mentioned above to those with spin, i.e.,

(1) construct a functional integral representation of e−tHPF and e−tHPF(P ) with a scalar

kernel;

(2) derive some energy comparison inequalities for HPF and HPF(P ).

We stress that HPF and HPF(P ) include spin 1/2, nevertheless the kernels of their

functional integrals obtained here are scalar. (1) is achieved in Theorems 4.11 and 5.2,

and (2) in Corollaries 4.13 and 5.4 below.

Here is an outline of the key steps of proving (1) and (2). First we assume that the

form factor ϕ̂ is a sufficiently smooth function of compact support. Then we will see

that there exists a Pauli operator H0
PF(φ), φ ∈ Q, on L2(R3×Z2), which can be used

to define

H0
PF :=

∫ ⊕

Q

H0
PF(φ)dµ(φ). (1.7)

As it will turn out, for arbitrary values of the coupling constant e,

HPF = H0
PF +̇ Hrad (1.8)
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holds as an equality of self-adjoint operators (+̇ denotes quadratic form sum). Al-

though for weak couplings this results by the Kato-Rellich Theorem, it is non-trivial

for arbitrary values of e. Thus it will suffice to construct a functional integral rep-

resentation of the right hand side of (1.8). However, as was mentioned before, the

off-diagonal part of H0
PF(φ) may have in general zeroes or a compact support. In order

to prevent the off-diagonal part vanish we change H0
PF(φ) for H0 ε

PF(φ) by adding a term

controlled by a small parameter ε > 0. Then we work with

Hε
PF := H0 ε

PF +̇ Hrad (1.9)

and obtain the original Hamiltonian by limε→0 e
−tHε

PF = e−tHPF , where in fact

H0 ε
PF :=

∫ ⊕

Q

H0 ε
PF(φ)dµ(φ).

In particular, instead of for the semigroup e−tHPF , we construct the functional integral

representation of e−tHε
PF . By the Trotter-Kato product formula we write

e−tHε
PF = s− lim

n→∞
(e−(t/n)H0 ε

PFe−(t/n)Hrad)n (1.10)

and derive the functional integral of the Pauli-operator e−tH0 ε
PF(φ) by using that the

form factor ϕ̂ is chosen to be bounded and sufficiently smooth, with non-zero off-

diagonals. By making use of a hypercontractivity argument for second quantization

and the Markov property of projections, we are able to construct the functional integral

representation of e−tHε
PF . An approximation argument on ϕ̂ leads us then to our main

Theorem 4.11 for reasonable form factors.

The functional integral representation of e−tHPF(P ) is further obtained by a combi-

nation of that of e−tHPF and [Hir07]. Since the functional integral kernels are scalar,

we can estimate |(F, e−tHPFG)| and |(F, e−tHPF(P )G)| directly, and derive some energy

comparison inequalities.

Our paper is organized as follows. In Section 2 we discuss the Fock space re-

spectively Euclidean representations of the Pauli-Fierz Hamiltonian with spin 1/2 in

detail. Section 3 is devoted to discussing Lévy processes and functional integral rep-

resentations of Pauli operators. In Section 4 by using results of the previous section

and hypercontractivity properties of second quantization we construct the functional

integral representation of e−tHPF and derive comparison inequalities for ground state

energies. In Section 5 we derive the functional integral of e−tHPF(P ) and obtain energy
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inequalities for this case. In Section 6 we comment on the multiplicity of ground states

of a model with spin. Section 7 is an appendix containing details on Poisson point

processes and a related Itô formula adapted to our context.

2 Function space representation of the Pauli-Fierz

model with spin

2.1 Pauli-Fierz model with spin 1/2 in Fock space

We begin by defining the Pauli-Fierz Hamiltonian as a self-adjoint operator.

Fock space Let Hb := L2(R3×{−1, 1}) be the Hilbert space of a single photon, where

R
3 × {−1, 1} ∋ (k, j) are its momentum and polarization, respectively. Denote n-fold

symmetric tensor product by
⊗n

sym, with
⊗0

sym Hb := C. The Fock space describing

the full photon field is defined then as the Hilbert space

F :=
∞⊕

n=0

[
n⊗

sym

Hb

]
(2.1)

with scalar product

(Ψ,Φ)F :=
∞∑

n=0

(Ψ(n),Φ(n))⊗n
symHb

, (2.2)

and Ψ =
⊕∞

n=0 Ψ(n), Φ =
⊕∞

n=0 Φ(n). Alternatively, F can be identified as the set

of ℓ2-sequences {Ψ(n)}∞n=0 with Ψ(n) ∈ ⊗n
sym Hb. The vector Ω = {1, 0, 0, ...} ∈ F is

called Fock vacuum. The finite particle subspace Ffin is defined by

Ffin :=
{
{Ψ(n)}∞n=0 ∈ F | ∃M ∈ N : Ψ

(m)

= 0, ∀m ≥M
}
.

Field operators With each f ∈ Hb a photon creation and annihilation operator is

associated. The creation operator a†(f) : F → F is defined by

(a†(f)Ψ)(n) =
√
nSn(f ⊗ Ψ(n−1)), n ≥ 1,

where Sn(f1 ⊗ · · · ⊗ fn) = (1/n!)
∑

π∈Πn
fπ(1) ⊗ · · · ⊗ fπ(n) is the symmetrizer with

respect to the permutation group Πn of degree n. The domain of a†(f) is maximally

defined by

D(a†(f)) :=

{
{Ψ(n)}∞n=0

∣∣∣∣∣

∞∑

n=1

n‖Sn(f ⊗ Ψ(n−1))‖2 <∞
}
.
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The annihilation operator a(f) is introduced as the adjoint a(f) = (a†(f̄))∗ of a†(f̄)

with respect to scalar product (2.2). a†(f) and a(f) are closable operators, their closed

extensions will be denoted by the same symbols. Also, they leave Ffin invariant and

obey the canonical commutation relations on Ffin:

[a(f), a†(g)] = (f̄ , g)1, [a(f), a(g)] = 0, [a†(f), a†(g)] = 0.

Second quantization and free field Hamiltonian Although the free field Hamiltonian

HF

rad =
∑

j=±1

∫
|k|a†(k, j)a(k, j)dk

is usually given in terms of formal kernels of creation and annihilation operators, we

define it as the infinitesimal generator of a one-parameter unitary group since this

definition has advantages in studying functional integral representations. We use the

label F for objects defined in Fock space. This unitary group is constructed through a

functor Γ. Let C (X → Y ) denote the set of contraction operators from X to Y . Then

Γ : C (Hb → Hb) → C (F → F ) is defined as

Γ(T ) :=
∞⊕

n=0

[⊗nT ]

for T ∈ C (Hb → Hb), where the tensor product for n = 0 is the identity operator. For

a self-adjoint operator h on Hb, Γ(eith), t ∈ R, is a strongly continuous one-parameter

unitary group on F . Then by Stone’s Theorem there exists a unique self-adjoint

operator dΓ(h) on F such that Γ(eith) = eitdΓ(h), t ∈ R. dΓ(h) is called the second

quantization of h. The second quantization of the identity operator, N := dΓ(1) gives

the photon number operator. Let ωb be the multiplication operator f 7→ ωb(k)f(k, j) =

|k|f(k, j), k ∈ R
3, j = ±1 on Hb. The operator HF

rad := dΓ(ωb) is then the free field

Hamiltonian.

Polarization vectors Two vectors e(k,+1) and e(k,−1), k 6= 0, are polarization

vectors whenever e(k,−1), e(k,+1), k/|k| form a right-handed system in R
3 with (1)

e(k,−1) × e(k,+1) = k/|k|, (2) e(k, j) · e(k, j′) = δjj′, (3) e(k, j) · k/|k| = 0. We have

∑

j=±1

eµ(k, j)eν(k, j) = δµν −
kµkν

|k|2 ,
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independently of the specific choice of these vectors. One can choose the polarization

vectors at convenience since the Hamiltonians HF
PF defined below are unitary equivalent

up to this choice [Sas06].

Quantized radiation field Note that a♯(f) is linear in f , where a♯ = a, a†, thus formally

a♯(f) =
∑

j=±1

∫
f(k, j)a♯(k, j)dk. The quantized radiation field with ultraviolet cutoff

function (form factor) ϕ̂ is defined through the vector potentials

Aµ(x) :=
1√
2

∑

j=±1

∫
eµ(k, j)

(
ϕ̂(k)√
ωb(k)

a†(k, j)e−ik·x +
ϕ̂(−k)√
ωb(k)

a(k, j)eik·x

)
dk.

Here ϕ̂ is Fourier transform of ϕ. A standing assumption in this paper is

Assumption 2.1 We take ϕ̂(k) = ϕ̂(−k) = ϕ̂(k) and
√
ωbϕ̂, ϕ̂/ωb ∈ L2(R3).

Under Assumption 2.1 Aµ(x) is a well-defined symmetric operator in F . By k·e(k, j) =

0, the Coulomb gauge condition

3∑

µ=1

[∂xµ
, Aµ(x)] = 0,

holds on Ffin. By the fact that
∑∞

n=0 ‖Aµ(x)nΦ‖/n! < ∞ for Φ ∈ Ffin, and Nelson’s

analytic vector theorem [RS75, Th.X.39] it follows that Aµ(x)⌈Ffin
is essentially self-

adjoint. We denote its closure Aµ(x)⌈Ffin
by the same symbol Aµ(x).

Electron state space and Schrödinger Hamiltonian The Hilbert space describing the

electron is L2(R3; C
2). Let σ1, σ2, σ3 be the 2 × 2 Pauli matrices

σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
.

We have σασβ = δαβ + i
∑3

γ=1 ǫ
αβγσγ , where ǫαβγ is the totally antisymmetric tensor

with ǫ123 = 1. Then the electron Hamiltonian on L2(R3; C
2) with external potential V

is given by

Hp =
1

2

3∑

µ=1

(σµ(−i∇µ))2 + V. (2.3)

Here V acts as a multiplication operator and in some statements below it will be

required to satisfy one or both of the following conditions:

Assumption 2.2 Let V be
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(1) relatively bounded with respect to (−1/2)∆ with a bound strictly less than 1;

(2) supx∈R3 E
x
[
e−2

R t

0
V (Bs)ds

]
<∞, for all t ∈ (0,∞).

(1) above is a usual ingredient for self-adjointness of Schrödinger operators. In (2)

the expectation E
x is meant under Wiener measure for 3-dimensional Brownian motion

(Bs)s≥0 starting at x. It is in particular satisfied by Kato-class potentials which includes

Coulomb potential.

Pauli-Fierz Hamiltonian The state space of the joint electron-field system is

HF = L2(R3; C
2) ⊗ F . (2.4)

The non-interacting system is described by the total free Hamiltonian Hp⊗1+1⊗HF
rad.

To define the quantized radiation field A we identify HF with the set of C
2 ⊗ F -

valued L2 functions on R
3, i.e., HF ∼=

∫ ⊕

R3(C
2 ⊗ F )dx. Then we have by definition

Aµ =
∫ ⊕

R3(1 ⊗ Aµ(x))dx. Hence (AµF )(x) = Aµ(x)F (x) for F (x) ∈ D(Aµ(x)) and Aµ

is self-adjoint. Taking into account the minimal interaction −i∇µ 7→ −i∇µ − eAµ, we

obtain the Pauli-Fierz Hamiltonian

HF

PF :=
1

2

(
3∑

µ=1

σµ(−i∇µ ⊗ 1 − eAµ)

)2

+ V ⊗ 1 + 1 ⊗HF

rad (2.5)

with coupling constant e ∈ R, i.e.,

HF

PF =
1

2
(−i∇− eA)2 + V +HF

rad −
e

2

3∑

µ=1

σµBµ, (2.6)

where we omit the tensor product for convenience and write

Bµ(x) = − i√
2

∑

j=±1

∫
(k × e(k, j))µ

ϕ̂(k)√
ωb(k)

(
a†(k, j)e−ik·x − a(k, j)eik·x

)
dk.

In fact, Bµ(x) = (∇× A(x))µ, however, we regard A and B as independent operators

in this paper.

A first natural question is whether HF
PF is a self-adjoint operator.

Proposition 2.3 Under Assumption 2.1 HF
PF is self-adjoint on D(−∆)∩D(HF

rad) and

bounded from below. Moreover, it is essentially self-adjoint on any core of Hp +HF
rad.
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Proof: See [Hir00b, Hir02]. qed

A special case considered in this paper is the translation invariant Pauli-Fierz Hamil-

tonian obtained under V = 0. Then

eitP tot
µ HF

PFe
−itP tot

µ = HF

PF, t ∈ R, µ = 1, 2, 3,

where P tot denotes the total electron-field momentum

P tot
µ := −i∇µ ⊗ 1 + 1 ⊗ PF

fµ

and PF
fµ = dΓ(kµ) is the momentum of the field. By translation invariance the Hilbert

space HF and the Hamiltonian HF
PF can both be decomposed with respect to the

spectrum of P tot as
∫ ⊕

R3 HF (P )dP andHF
PF :=

∫ ⊕

R3 K(P )dP , with a self-adjoint operator

K(P ) labeled by P on HF (P ). It is seen that K(P ) and HF (P ) are isomorphic with

a self-adjoint operator resp. a Hilbert space. Define thus on C
2 ⊗ F the Pauli-Fierz

operator at total momentum P ∈ R
3 by

HF

PF(P ) :=
1

2
(P − PF

f − eA(0))2 +HF

rad −
e

2

3∑

µ=1

σµBµ(0). (2.7)

Then we have

Proposition 2.4 Under Assumption 2.1 HF
PF(P ), P ∈ R

3, is self-adjoint on the do-

main D(HF
rad)

⋂3
µ=1 D((PF

fµ )2), and essentially self-adjoint on any core of the self-

adjoint operator 1
2

∑3
µ=1(P

F
fµ )2 + HF

rad. Moreover, HF ∼=
∫ ⊕

R3 C
2 ⊗ FdP and HF

PF
∼=∫ ⊕

R3 H
F
PF(P )dP hold.

Proof: See [Hir06, LMS06]. qed

Here is an incomplete list of results on the spectral properties of the Pauli-Fierz

Hamiltonian. The existence of the ground state ofHPF is established in [BFS99, GLL01,

LL03] and that of HPF(P ) in [Fro74, Che01, HaHe06]. The multiplicity of the ground

state is estimated in [Hir00a, HS01, BFP05, Hir06], a spectral scattering theory and

relaxation to ground states are studied in [Ara83a, Spo97, FGS01]. The perturbation

of embedded eigenvalues is reduced to investigating resonances [BFS98a, BFS98b].

Energy estimates are obtained in [Fef96, FFG97, LL00] and the effective mass is studied

in [Spo87, CH04, HS05, Che06, BCFS06, HI07]. Related works on particle systems

interacting with quantum fields include [Ger00, BDG04, AGG04, LMS06, Sas06].
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2.2 Stochastic representation and spin variables in function

space

2.2.1 Stochastic representation

In this section we prepare the necessary items for aQ-representation ofHF
PF and explain

how to accommodate spin in this framework.

To introduce a Q-representation, we define a bilinear form and construct a Gaussian

random process with mean zero and covariance given in terms of this form. Define the

field operator Aµ(f̂) by

Aµ(f̂) :=
1√
2

∑

j=±1

∫
eµ(k, j)

(
f̂(k)a†(k, j) + f̂(−k)a(k, j)

)
dk

and the 3 × 3 matrix D(k), k 6= 0, by

D(k) :=

(
δµν −

kµkν

|k|2
)

1≤µ,ν≤3

.

Consider the bilinear form q0 : ⊕3L2(R3) ×⊕3L2(R3) → C given by the scalar product

q0(f, g) :=
3∑

µ,ν=1

(Aµ(f)Ω, Aν(g)Ω)F =
1

2

∫

R3

f̂(k) ·D(k)ĝ(k)dk.

Similarly to the representation of a Euclidean free field in terms of path integrals over

the free Minkowski field in constructive quantum field theory [Sim74, Th.III.6], we

introduce another bilinear form q1 to define an additional Gaussian random process.

Let q1 : ⊕3L2(R3+1) ×⊕3L2(R3+1) → C be

q1(F,G) :=
1

2

∫

R3+1

F̂ (k, k0) ·D(k)Ĝ(k, k0)dkdk0.

Note that D(k) is independent of k0 in the definition of q1. Use the label β for 0

or 1, let S (R3+β) be the set of real-valued Schwartz test functions on R
3+β and put

Sβ := ⊕3S (R3+β). The properties (1)
∑n

i,j=1 z̄izj exp(−qβ(fi − fj , fi − fj)) ≥ 0 for

arbitrary zi ∈ C and i = 1, ..., n, ∀n = 1, 2, ...; (2) exp(−qβ(g, g)) is strongly continuous

in g ∈ ⊕3L2(R3+β); (3) exp(−qβ(0, 0)) = 1 can be checked directly.

Let Qβ := S ′
β , where S ′

β is the dual space of Sβ , and denote the pairing between

elements of Qβ and Sβ by 〈φ, f〉β ∈ R. By the three properties listed above and the

Bochner-Minlos Theorem there exists a probability space (Qβ,BQβ
, µβ) such that BQβ
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is the smallest σ-field generated by {〈φ, f〉β, f ∈ Sβ} and 〈φ, f〉β is a Gaussian random

variable with mean zero and covariance given by

∫

Qβ

ei〈φ,f〉βdµβ(φ) = e−qβ(f,f), f ∈ Sβ. (2.8)

Although 〈φ,⊕3
µδµνf〉β is a Q-representation of the quantized radiation field with the

ultraviolet cutoff function f ∈ S (R3), we have to extend f ∈ Sβ to a more general

class since our cutoff is (ϕ̂/
√
ω)∨ ∈ L2(R3). This can be done in the following way.

For any f = fRe + ifIm ∈ ⊕3S (R3+β) we set 〈φ, f〉β := 〈φ, fRe〉β + i〈φ, fIm〉β. Since

S (R3+β) is dense in L2(R3+β) and the inequality

∫

Qβ

|〈φ, f〉β|2dµβ(φ) ≤ ‖f‖2
⊕3L2(R3+β)

holds by (2.8), we can define 〈φ, f〉β for f ∈ ⊕3L2(R3+β) by 〈φ, f〉β = s−limn→∞〈φ, fn〉β
in L2(Qβ), where {fn}∞n=1 ⊂ ⊕3S (R3+β) is any sequence such that s−limn→∞ fn = f

in ⊕3L2(R3+β). Thus we define the multiplication operator

(
A

β(f)F
)
(φ) := 〈φ, f〉βF (φ), φ ∈ Qβ, (2.9)

labeled by f ∈ ⊕3L2(R3+β) in L2(Qβ), with domain

D(A β(f)) :=

{
F ∈ L2(Qβ)

∣∣∣∣∣

∫

Qβ

|〈φ, f〉βF (φ)|2dµβ(φ) <∞
}
.

Denote the identity function in L2(Qβ) by 1Qβ
and the function A β(f)1Qβ

by A β(f)

unless confusion may arise. It is known that L2(Qβ) =
⊕∞

n=0 L
2
n(Qβ), with

L2
n(Qβ) = L.H.{:A β(f1) · · ·A β(fn):|fj ∈ ⊕3L2(R3+β), j = 1, 2, ..., n}.

Here L2
0(Qβ) = {α1Qβ

|α ∈ C} and :X: denotes Wick product recursively defined by

:A β(f): = A
β(f),

:A β(f)A β(f1) · · ·A β(fn): = A
β(f):A β(f1) · · ·A β(fn):

−
n∑

j=1

qβ(f, fj):A
β(f1) · · · Â β(fj) · · ·A β(fn):,

where X̂ denotes removing X.
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Next we define the second quantization Γββ′ in Q-representation as the functor

Γββ′ : C

(
L2(R3+β) → L2(R3+β′

)
)

→ C
(
L2(Qβ) → L2(Qβ′)

)
.

With T ∈ C (L2(R3+β) → L2(R3+β′

)), Γββ′(T ) ∈ C (L2(Qβ) → L2(Qβ′)) is defined by

Γββ′(T )1Qβ
= 1Qβ′

, Γβ(T ) :A β(f1) · · ·A β(fn): = :A β′

(Tf1) · · ·A β′

(Tfn):.

For notational simplicity we use Γβ for Γββ . For each self-adjoint operator h in

L2(R3+β), Γβ(eith) is a one-parameter unitary group. Then Γβ(eith) = eitdΓβ(h), t ∈ R,

for the unique self-adjoint operator dΓβ(h) in L2(Qβ). We write

Q := Q0, QE := Q1, µ := µ0, µE := µ1, A := A
0, A

E := A
1 (2.10)

in what follows, using the label E for “Euclidean” objects to distinguish from Fock

space objects. Thus it is seen that F , Aµ(f̂) and dΓ(h) are isomorphic to L2(Q),

A (⊕3
ν=1δµνf) and dΓ0(ĥ), respectively, where ĥ = FhF−1 and F denotes Fourier trans-

form on L2(R3). That is, there exists a unitary operator U : F → L2(Q) such that

(1) UΩ = 1Q,

(2) UAµ(f̂)U−1 = A (⊕3
ν=1δµνf),

(3) UdΓ(h)U−1 = dΓ0(ĥ).

The isomorphism U := 1 ⊗ U : HF → L2(R3; C
2) ⊗ L2(Q) maps HF

PF to a self-adjoint

operator on L2(R3; C
2) ⊗ L2(Q). Let

λ := (ϕ̂/
√
ωb)

∨, (2.11)

where f̌ denotes inverse Fourier transform of f . Set Aµ(λ(·−x)) := A (⊕3
ν=1δµνλ(·−x))

and Hrad := dΓ0(ω̂b) on L2(Q).

Finally we define HPF, the main object in this paper, by

HPF :=
1

2
(−i∇− eA )2 + V +Hrad −

e

2

3∑

µ=1

σµBµ, (2.12)

where Aµ :=
∫ ⊕

R3 Aµ(λ(· − x))dx and Bµ :=
∫ ⊕

R3 Bµ(λ(· − x))dx, with

Bµ(λ(· − x)) = A (⊕3
ν=1δνµ(∇x × λ(· − x))µ).

Here the self-adjoint operatorHPF is the Q-representation ofHF
PF, obtained through the

map UHF
PFU−1 = HPF. In this representation Aµ and Bν turn into the multiplication

operators Aµ and Bν , respectively.
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2.2.2 Spin variables in function space

In order to reduce (2.12) to a scalar operator, we introduce a two-valued variable σ.

Let Z2 := Z/2Z and [z]2 denote the equivalence class of z ∈ Z. Use the affine map

x 7→ 2x− 1 to arrive at the conventional variables {−1,+1} ∼= Z2. Addition modulo 2

gives (+1) ⊕Z2 (+1) = +1, (+1) ⊕Z2 (−1) = −1, (−1) ⊕Z2 (−1) = +1. Define

L2(R3×Z2) :=

{
f : R

3 × Z2 → C

∣∣∣∣∣ ‖f‖
2
L2(R3×Z2)

:=
∑

σ∈Z2

‖f(·, σ)‖2
L2(R3) <∞

}
.

The isomorphism between L2(R3; C
2) and L2(R3 × Z2) is given by

L2(R3; C
2) ∋

[
u(x,+1)
u(x,−1)

]
7→ u(x, σ) ∈ L2(R3 × Z2).

Let F =

[
F (+1)
F (−1)

]
∈ HF with F (±1) ∈ L2(R3) ⊗ L2(Q). Then since

HPF =
1

2
(−i∇− eA )2 + V +Hrad −

e

2

[
B3 B1 − iB2

B1 + iB2 −B3

]
,

our Hamiltonian can be regarded as the self-adjoint operator on

H := L2(R3×Z2) ⊗ L2(Q) (2.13)

defined by

(HPFF )(σ) =

(
1

2
(−i∇− eA )2 + V +Hrad + Hd(σ)

)
F (σ) + Hod(−σ)F (−σ) (2.14)

for σ ∈ Z2, where Hd and Hod denote the diagonal resp. off-diagonal parts of the spin

interaction explicitly given by

Hd := Hd(x, σ) := −e
2
σB3(λ(· − x)), (2.15)

Hod := Hod(x,−σ) = −e
2

(B1(λ(· − x)) − iσB2(λ(· − x))) . (2.16)

To investigate the translation invariant case let Pf := dΓ0(−i∇). The transla-

tion invariant Pauli-Fierz Hamiltonian HF
PF(P ) can also be mapped into a self-adjoint

operator on ℓ2(Z2) ⊗ L2(Q) defined by

(HPF(P )F )(σ) =

(
1

2
(P − Pf − eA (0))2 +Hrad + Hd(0)

)
F (σ) + Hod(0)F (−σ),

(2.17)

where F (±1) ∈ L2(Q), Aµ(0) := Aµ(λ(· − 0)), Hd(0) = Hd(0, σ) and Hod(0) =

Hod(0,−σ). In the following we will construct functional integral representations for

(2.14) and (2.17).
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3 A Feynman-Kac-type formula for jump processes

3.1 Pauli operators

In this section we consider the functional integral representation of the Pauli operator

in the context of quantum mechanics. The spin will be described in terms of a Z2-valued

Poisson point process. We start by reconsidering the path integral representation of the

Pauli operator established in [ALS83]. We turn the results of De Angelis, Jona-Lasinio

and Sirugue into precise statements and proofs, and add extensions and comments.

For a vector potential a we define the Pauli operator on L2(R3; C
2) by

h(a, b) :=
1

2
(−i∇− a)2 + V − 1

2

3∑

µ=1

σµbµ. (3.1)

Usually for Pauli operators b = ∇× a. However, for the remainder of this section we

treat a and b as not necessarily dependent vectors. We require them to satisfy the

following conditions:

Assumption 3.1 Let a = (a1, a2, a3) and b = (b1, b2, b3) be real valued with aµ ∈
C2

b(R
3) and bν ∈ L∞(R3), for µ, ν = 1, 2, 3.

Under Assumptions 2.2 and 3.1 h(a, b) is self-adjoint onD(∆) and bounded from below,

moreover it is essentially self-adjoint on any core of −(1/2)∆ as a consequence of the

Kato-Rellich Theorem. In a similar manner to the previous section, h(a, b) can also be

reduced to the self-adjoint operator h̃(a, b) on L2(R3×Z2) to obtain

(h̃(a, b)f)(σ) :=

(
1

2
(−i∇− a)2 + V − 1

2
σb3

)
f(σ) − 1

2
(b1 − iσb2)f(−σ). (3.2)

3.2 A 3 + 1 dimensional jump process

In order to construct a Feynman-Kac formula for e−th̃(a,b), in addition to the Brownian

motion we need a Poisson point process to take the spin into account. For a summary

of basic definitions and facts as well as notations we refer to the Appendix.

Let (Bt)t≥0 = (Bµ
t )t≥0, 1≤µ≤3 be three dimensional Brownian motion on (W,BW , P

x
W )

with the forward filtration Ft = σ(Bs, s ≤ t), t ≥ 0, where W = C([0,∞); R
3) and

P x
W is Wiener measure with P x

W (B0 = x) = 1. Let, moreover, (S,Σ, PP) be a prob-

ability space with a right-continuous increasing family of sub-σ-fields (Σt)t≥0, and

EP denote expectation with respect to PP. Fix a measurable space (M, BM). Let
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p : (0,∞) × S → M be a stationary (Σt)-Poisson point process, and D(p) ⊂ (0,∞)

denote its domain. Note that #D(p) is finite for each τ ∈ S. The intensity of p is

given by Λ(t, U) := EP[Np(t, U)] = tn(U) for some measure n on M, where Np denotes

counting measure on ((0,∞) ×M,B(0,∞) ×BM) given by

Np(t, U) := # {s ∈ D(p) | s ∈ (0, t], p(s) ∈ U} , t > 0, U ∈ BM,

with Np[0, U ] = 0, and B(0,∞) is the Borel σ-field of (0,∞). Then

EP[Np(t, U) = N ] =
Λ(t)N

N !
e−Λ(t).

Assume that n(M) = 1. Write

dNt :=

∫

M

Np(dtdm). (3.3)

Hence ∫ t+

0

f(s,Ns)dNs =
∑

r∈D(p)

0<r≤t

f(r,Nr). (3.4)

Since #{s ∈ D(p) | 0 < s ≤ t} < ∞, for each τ ∈ S there exists N = N(τ) ∈ N and

0 < s1 = s1(τ), ..., sN = sN (τ) ≤ t such that

∫ t+

0

f(s,Ns)dNs =

N∑

j=1

f(sj , Nsj
) =

N∑

j=1

f(sj, j).

Since EP[Nt] = t and EP[Nt = N ] = tNe−t/N !, the expectation of (3.4) reduces to

Lebesgue integral:

EP

[∫ t+

0

f(s,Ns)dNs

]
= EP

[∫ t

0

f(s,Ns)ds

]
=

∫ t

0

∞∑

n=0

f(s, n)
sn

n!
e−sds.

Write (Ω,BΩ, PΩ) := (W × S,BW × Σ, PW ⊗ PP) and ω := w × τ ∈ W × S. For

ω = w × τ , we put Bt(ω) := Bt(w) and p(s, ω) := p(s, τ).

Definition 3.2 The Z2-valued random process σt : Z2 × Ω → Z2 is defined by

σt := σ ⊕Z2 [Nt]2 = σ(−1)Nt , σ ∈ Z2.
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Here we have the paths [Nt]2 with values ±1 ∈ Z2 corresponding to the equivalence

classes. The electron and spin processes together give us finally the (3+1)-dimensional

R
3 × Z2-valued random process

(ξt)t≥0 := (Bt, [Nt]2)t≥0 = (Bt, σt)t≥0

on (Ω,BΩ, PΩ). Let Ωt = Ft × Σt, t ≥ 0. For notational convenience, we write

E
x,σ[f(ξ·)] :=

∫

Ω

f(x+B·, σ ⊕Z2 [N·]2)dPΩ =

∫

Ω

f(x+B·, σ·)dPΩ

as well as EΩ[f ] =
∫
Ω
fdPΩ, E

x[f(B·)] =
∫

W
f(x+B·)dP

0
W =

∫
W
f(B·)dP

x
W , E

σ[g(σ·)] =∫
S
g(σ·)dPP, and

∑
σ

∫
dx f(x, σ) :=

∑
σ∈Z2

∫
R3 dxf(x, σ).

3.3 Generator and a Feynman-Kac formula for ξt

Next we compute the generator of the process ξt and derive a version of the Feynman-

Kac formula.

Let σF be the fermionic harmonic oscillator defined by

σF :=
1

2
(σ3 + iσ2)(σ3 − iσ2) −

1

2
. (3.5)

Note that σF = −σ1. A direct computation yields

(f, e−t(−(1/2)∆+ǫσF)g) =
∑

σ

∫
dxE

x,σ[f̄(ξ0)g(ξt)ǫ
Nt ]. (3.6)

Thus the generator of ξt is given by

−1

2
∆ + σF

and by making use of the two-valued variable σ,

(
(−1

2
∆ + ǫσF)f

)
(σ) =

1

2
∆f(σ) − ǫf(−σ)

follows.

Proposition 3.3 [De Angelis, Jona-Lasinio, Sirugue] Suppose

∫ t

0

ds

∫

R3

(2πs)−3/2

∣∣∣∣log
1

2

√
b1(y)2 + b2(y)2

∣∣∣∣ e
−|y−x|2/(2s)dy <∞ (3.7)
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for all (x, t) ∈ R
3 × [0,∞). Then

(
e−th̃(a,b)g

)
(x, σ) = et

E
x,σ[eZtg(ξt)]. (3.8)

Here

Zt = −i
3∑

µ=1

∫ t

0

aµ(Bs) ◦ dBµ
s −

∫ t

0

V (Bs)ds

−
∫ t

0

(
−1

2

)
σsb3(Bs)ds+

∫ t+

0

W (Bs,−σs−)dNs,

∫ t

0

aµ(Bs) ◦ dBµ
s denoting Stratonovich integral and

W (x,−σ) := log

(
1

2
(b1(x) − iσb2(x))

)
.

Remark 3.4 We will prove Proposition 3.3 by making use of the Itô formula. In order

that Itô’s formula applies, however, the integrand in
∫ t+

0
. . . dNs must be predictable

with respect to the given filtration. σs is, though, right continuous in s for each

ω ∈ Ω, so we define σs− = limǫ↑0 σs−ǫ. Then σs− is left continuous and W (Bs,−σs−)

is predictable, i.e., W (Bs,−σs−) is Ωs measurable and left continuous in s for each

ω ∈ Ω. This allows then an application of Itô’s formula to
∫ t+

0
W (Bs,−σs−)dNs, for

more details see the Appendix.

Before turning to the proof of Proposition 3.3, we consider a simplified model. Let

U(·, σ) and W (·,−σ) be multiplication operators on L2(R3×Z2). Define the operator

K : L2(R3×Z2) → L2(R3×Z2) by

(Kf)(x, σ) := U(x, σ)f(x, σ) − eW (x,−σ)f(x,−σ). (3.9)

First we construct a functional integral for e−tK .

Proposition 3.5 Let U(x, σ) and W (x,−σ) be continuous bounded functions in x ∈
R

3, for each σ = ±1, such that U(x, σ) = U(x, σ), W (x,−σ) = W (x,+σ). Then K is

self-adjoint and

(e−tKg)(x, σ) = et
E

x,σ
[
g(x, σt)e

−
R t

0
U(x,σs)ds+

R t+
0

W (x,−σs−)dNs

]
. (3.10)
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Proof: The proof of the self-adjointness of K is trivial. Write

Ktg(x, σ) := E
x,σ
[
g(x, σt)e

−
R t
0 U(x,σs)ds+

R t+
0 W (x,−σs−)dNs

]
.

Note that for each (x, ω) ∈ R
3 × Ω,

∣∣∣∣
∫ t+

0

W (x,−σs−)dNs

∣∣∣∣ ≤ M

∫ t

0

dNs = MNt, (3.11)

where M = supx∈R3,σ∈Z2
|W (x,−σ)|. Then

‖Ktg‖ ≤ ‖g‖ etM ′

E
x,σ[eMNt ] = ‖g‖ etM ′

et(eM−1),

where M ′ = supx∈R3,σ∈Z2
E

x,σ[e−
R t
0 U(x,σs)ds], andKt is bounded. For each (x, ω) ∈ R

3×Ω

it is seen that
∫ t+

0
W (x,−σs−)dNs is continuous in a neighborhood of t = 0, since

#{0 < s < ǫ | s ∈ D(p)} = 0 for sufficiently small ǫ > 0, and then

∫ t+

0

W (x,−σs−)dNs =
∑

s∈D(p)

0<s≤t

W
(
x,−σ(−1)Ns−

)
= 0

for small enough t. Hence for g ∈ C∞
0 (R3 × Z2),

lim
t→0

‖g −Ktg‖2

≤ lim
t→0

∑

σ

∫
dxE

x,σ
[
|g(x, σ) − g(x, σt)e

−
R t
0 U(x,σs)ds+

R t+
0 W (x,−σs−)dNs |2

]
= 0

by dominated convergence. Since C∞
0 (R3×Z2) is dense in L2(R3×Z2), it follows that Kt

is strongly continuous at t = 0. Also, Kt has the following semigroup property. Since

Ns is a Markov process, for each (x, σ) ∈ R
3 × Z2, we have

(KsKtg)(x, σ)

= E
x,σ
[
e−

R s
0 U(x,σr)dr+

R s+
0 W (x,−σr−)dNr E

x,σs

[
e−

R t
0 U(x,σl)dl+

R t+
0 W (x,−σl−)dNlg(x, σt)

]]

= E
x,σ
[
e−

R s

0
U(x,σr)dr+

R s+
0

W (x,−σr−)dNr

×E
x,σ
[
e−

R s+t
s

U(x,σl)dl+
R (s+t)+

s
W (x,−σl−)dNlg(x, σs+t)

∣∣∣Ωs

]]

= E
x,σ
[
e−

R s

0
U(x,σr)dr+

R s+
0

W (x,−σr−)dNre−
R s+t

s
U(x,σl)dl+

R (s+t)+
s

W (x,−σl−)dNlg(x, σs+t)
]

= (Ks+tg)(x, σ).

Kt is thus a C0-semigroup, hence the Hille-Yoshida Theorem says that there is a closed

operator h in L2(R3×Z2) such that Kt = e−th, t ≥ 0. We show that h = K + 1.
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Put dXt := Xt − X0. By Itô’s formula, see Proposition 7.8 below, we have dσt =∫ t+

0
(−2σs−)dNs and dg(x, σt) =

∫ t+

0
(g(x,−σs−) − g(x, σs−)) dNs. Let

Yt := −
∫ t

0

U(x, σs)ds+

∫ t+

0

W (x,−σs−)dNs.

Then it follows that

deYt = −
∫ t

0

eYsU(x, σs)ds+

∫ t+

0

eYs−(eW (x,−σs−) − 1)dNs.

By using the product rule we get

d
(
eYtg(x, σt)

)

= −
∫ t

0

g(x, σs)e
YsU(x, σs)ds+

∫ t+

0

g(x, σs−)eYs−(eW (x,−σs−) − 1)dNs

+

∫ t+

0

eYs−(g(x,−σs−) − g(x, σs−)dNs

+

∫ t+

0

(g(x,−σs−) − g(x, σs−))eYs−(eW (x,−σs−) − 1)dNs

= −
∫ t

0

g(x, σs)e
YsU(x, σs)ds+

∫ t+

0

eYs−
(
g(x,−σs−)eW (x,−σs−) − g(x, σs−)

)
dNs.

Therefore

E
x,σ
[
eYtg(x, σt) − eY0g(x, σ0)

]
=

∫ t

0

E
x,σ[G(s)]ds, (3.12)

where G(s) = G(x, σ, s) is defined by

G(s) :=






−eYsg(x, σs)U(x, σs) + eYs−(g(x,−σs−)eW (x,−σs−) − g(x, σs−)), s > 0,

−g(x, σ)U(x, σ) + g(x,−σ)eW (x,−σ) − g(x, σ), s = 0.

Thus for each (x, ω) ∈ R
3 × Ω, G(s) is continuous in s at s = 0 and is bounded as

|G(s)| ≤ eMNsM ′|g(x, σ)|, with constants M and M ′. Dominated convergence gives

then

lim
s→0+

∑

σ

∫
dxE

x,σ[G(s)] =
∑

σ

∫
dxE

x,σ[G(0)].
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Hence

lim
t→0

1

t
(f, (Ktg − g))

= lim
t→0

1

t

∑

σ

∫
dx f(x, σ)Ex,σ[eYtg(x, σt) − eY0g(x, σ)]

= lim
t→0

1

t

∫ t

0

ds
∑

σ

∫
dx f(x, σ)Ex,σ[G(s)]

=
∑

σ

∫
dx f(x, σ)Ex,σ[G(0)]

=
∑

σ

∫
dx f(x, σ)

(
−U(x, σ)g(x, σ) + g(x,−σ)eW (x,−σ) − g(x, σ)

)

= (f,−(K + 1)g).

Since C∞
0 (R3 × Z2) is a core of K, h = K + 1 follows. qed

Proof of Proposition 3.3: We put U(x, σ) = −(1/2)σb3(x) and W (x,−σ) =

log[(1/2)(b1(x) − iσb2(x))]. Recall that

Zt = −i
3∑

µ=1

∫ t

0

aµ(Bs) ◦ dBµ
s −

∫ t

0

U(Bs, σs)ds+

∫ t+

0

W (Bs,−σs−)dNs −
∫ t

0

V (Bs)ds.

W (Bs,−σs−) is predictable and first we have to check that |
∫ t+

0
W (Bs,−σs−)dNs| is

finite for almost every ω ∈ Ω in order to apply Itô’s formula. Indeed,

∣∣∣∣E
x,σ

[∫ t+

0

W (Bs,−σs−)dNs

]∣∣∣∣

≤ E
x,σ

[∫ t

0

∣∣∣∣log

(
1

2

√
b1(Bs)2 + b2(Bs)2

)∣∣∣∣ dNs

]

= 2

∫ t

0

ds

∫

R3

(2πs)−3/2e−|y−x|2/(2s)

∣∣∣∣log

(
1

2

√
b1(y)2 + b2(y)2

)∣∣∣∣ dy

is finite by the assumption, hence |
∫ t+

0
W (Bs,−σs−)dNs| <∞, for almost every ω ∈ Ω.

Define St : L2(R3×Z2) → L2(R3×Z2) by

Stg(x, σ) = E
x,σ
[
eZtg(Bt, σt)

]
.

It can be seen that

‖Stg‖ ≤ V
1/2
M eM ′te(M−1)t/2‖g‖,
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where M ′ = supx∈R3 |b3(x)/2|, M = supx∈R3(b21(x) + b22(x))/4 and

VM := sup
x∈R3

E
x[e−2

R t

0
V (Bs)ds], (3.13)

which is finite by Assumption 2.2. Thus St is bounded. Since Zt is continuous at t = 0

for each ω ∈ Ω, dominated convergence yields

‖Stg − g‖ ≤
∑

σ

∫
dxE

x,σ[|g(x, σ) − g(Bt, σt)e
Zt|] → 0

as t → 0. The semigroup property of St follows from the Markov property of the

process (Bt, Nt), which is shown in a similar way as that of Kt in Proposition 3.5.

Thus St is a C0-semigroup. Denote the generator of St by the closed operator h. We

will see below that St = e−th = e−t(h(a,b)+1). From Proposition 7.8 it follows that

dg(Bt, σt) =
3∑

µ=1

∫ t

0

∂xµ
g(Bs, σs)dB

µ
s +

1

2

∫ t

0

∆xg(Bs, σs)ds

+

∫ t+

0

(g(Bs,−σs−) − g(Bs, σs−)) dNs,

and

deZt =
3∑

µ=1

∫ t

0

eZs(−iaµ(Bs)) ◦ dBµ
s +

∫ t

0

eZs(−V (Bs))ds

+
1

2

∫ t

0

eZs
(
(−i∇ · a)(Bs) + (−ia(Bs))

2
)
ds

+

∫ t

0

eZs(−U(Bs, σs))ds+

∫ t+

0

(
eZs−+W (Bs,−σs−) − eZs−

)
dNs.

By the product rule and the two identities above we have

d(eZtg(Bt, σt)) =

∫ t

0

eZs

[
1

2
∆xg(Bs, σs) + (−ia(Bs)) · (∇xg)(Bs, σs)

+

(
1

2
(−ia(Bs))

2 − V (Bs) − U(Bs, σs)

)
g(Bs, σs)

]
ds

+
3∑

µ=1

∫ t

0

eZs
(
∂xµ

g(Bs, σs) + (−iaµ(Bs))g(Bs, σs)
)
· dBµ

s

+

∫ t+

0

eZs−

[
(g(Bs,−σs−) − g(Bs, σs−))

+(g(Bs,−σs−) − g(Bs, σs−))(eW (Bs,−σs−) − 1)

+g(Bs, σ−s)(e
W (Bs,−σs−) − 1)

]
dNs.
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Take expectation on both sides above. The martingale part vanishes and by (7.3) we

obtain that

E
x,σ[eZtg(Bt, σt) − g(x, σ)] =

∫ t

0

E
x,σ[G(s)]ds,

where

G(s) := eZs

[
1

2
∆xg(Bs, σs) + (−ia(Bs)) · (∇xg)(Bs, σs)

+

(
1

2
(−ia(Bs))

2 − V (Bs) − U(Bs, σs)

)
g(Bs, σs)

]

+eZs−
(
(g(Bs,−σs−)eW (Bs,−σs−) − g(Bs, σs−)

)
,

with s > 0, and

G(0) :=

{
1

2
∆x − ia(x) · ∇x +

1

2
(−ia(x))2 − V (x) − U(x, σ) − 1

}
g(x, σ)

+eW (x,−σ)g(x,−σ)

= −(h(a, b) + 1)g(x, σ).

We see that G(s) is continuous at s = 0, for each ω ∈ Ω, whence

lim
t→0

1

t
(f, (St − 1)g) = lim

t→0

1

t

∫ t

0

ds
∑

σ

∫
dx f(x, σ)Ex,σ[G(s)]

=
∑

σ

∫
dx f̄(x, σ)Ex,σ[G(0)]

= (f,−(h(a, b) + 1)g).

Since C∞
0 (R3 × Z2) is a core of h(a, b), (3.8) follows. qed

Note that (3.7) is a sufficient condition making sure that
∫ t+

0

|W (Bs,−σs−)|dNs <∞, a.e. ω ∈ Ω. (3.14)

When, however, b1(x) − iσb2(x) vanishes for some (x, σ), (3.14) is not clear. This case

is relevant and Proposition 3.3 must be improved since we have to construct the path

integral representation of e−th̃(a,b) in which the off-diagonal part b1 − iσb2 of h̃(a, b) has

zeroes or a compact support. Since the generator of ξt is −(1/2)∆ + σF, as was seen

above, this then becomes singular. Take ǫ→ 0 on both sides of

(f, e−t(−(1/2)∆+ǫσF)g) =
∑

σ

∫
dxE

x,σ[f̄(ξ0)g(ξt)ǫ
Nt ]. (3.15)
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Then the right hand side of (3.15) converges to
∑

σ

∫
dxE

x[f̄(x, σ)g(Bt, σ)], see Remark

3.7 below. The off-diagonal part of h(a, b), however, in general may have zeroes. For

instance, aµ for all µ = 1, 2, 3 have compact support, and so does the off-diagonal part

in the case of b = ∇× a. Therefore, in order to avoid that the diagonal part vanishes,

we introduce

h̃ε(a, b)f(σ) :=

(
1

2
(−i∇− a)2 + V − 1

2
σb3

)
f(σ)

+

(
−1

2
(b1 − iσb2) + εψε

(
−1

2
(b1 − iσb2)

))
f(−σ), (3.16)

where ψε is the indicator function

ψε(x) :=

{
1, |x| < ε/2,
0, |x| ≥ ε/2.

(3.17)

We define ψε(K) for a self-adjoint operator K by the spectral theorem. In particular,

the identity

ψε(K) = (2π)−1/2

∫

R

ψ̂ε(k)e
ikKdk

holds. Thus | − 1
2
(b1 − iσb2) + εψε(−1

2
(b1 − iσb2))| > ε/2, which does not vanish for

any ε > 0.

Proposition 3.6 We have

(
e−th̃ε(a,b)g

)
(σ, x) = et

E
x,σ[eZε

t g(ξt)], (3.18)

and (
e−th̃(a,b)g

)
(σ, x) = lim

ε→0
et

E
x,σ[eZε

t g(ξt)], (3.19)

where

Zε
t = −i

3∑

µ=1

∫ t

0

aµ(Bs) ◦ dBµ
s −

∫ t

0

V (Bs)ds

−
∫ t

0

(
−1

2

)
σsb3(Bs)ds+

∫ t+

0

Wε(Bs,−σs−)dNs,

and

Wε(x,−σ) := log

(
1

2
(b1(x) − iσb2(x)) − εψε

(
−1

2
(b1(x) − iσb2(x))

))
.
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Proof: (3.18) is derived as in Proposition 3.3. Since e−th̃ε(a,b) converges strongly to

e−th̃(a,b) as ε→ 0, (3.19) follows. qed

Remark 3.7 We have the following cases.

(1) Let the measure of

Oε =
{
(x, σ) ∈ R

3 × Z2 | |(1/2)(b1(x) − iσb2(x))| < ε/2
}

be zero for some ε > 0. Then Proposition 3.3 stays valid.

(2) In case when the off-diagonal part identically vanishes, we have

lim
ε→0

E
x,σ
[
eZε

t g(ξt)
]

= lim
ε→0

et
E

x,σ
[
e−i

P3
µ=1

R t
0 aµ(Bs)◦dBµ

s −
R t
0 V (Bs)ds−

R t
0 (− 1

2
)σsb3(Bs)dsεNtg(ξt)

]

= E
x
[
e−i

P3
µ=1

R t

0
aµ(Bs)◦dBµ

s −
R t

0
V (Bs)ds−

R t

0
(− 1

2
)σsb3(Bs)dsg(Bt, σ)

]

= e−t( 1
2
(−i∇−a)2+V − 1

2
σ3b3)g(x, σ).

Here we used that as ε → 0 the functions on Kt := {ω ∈ Ω |Nt(ω) ≥ 1} vanish

and those on Kc
t := {ω ∈ Ω |Nt(ω) = 0} stay different from zero. Note that for

ω ∈ Kc
t , Ns(ω) = 0 whenever 0 ≤ s ≤ t, as Nt is counting measure. Clearly, then

the right hand side in the expression above describes the diagonal Hamiltonian.

(3) Since the diagonal part −(1/2)σb3(x) acts as an external potential up to the sign

σ = ±, heuristically we have the integral
∫ t

0
(−1/2)σsb3(Bs)ds in Zt. This explains

why
∫ t

0
log[(1/2)(b1(Bs) − iσsb2(Bs))]dNs appears in Zt. Consider TtF (x, σ) :=

E
x,σ[F (Bt, σt)e

R t
0 W (Bs,−σs−)dNs ]. Take, for simplicity, that W has no zeroes. Com-

pute the generator −K of Tt by Itô’s formula for Lévy processes to obtain

d
(
e

R t+
0 W (Bs,−σs)dNs

)
=

(
e

R t+
0 W (Bs,−σs−)dNs+W (Bt,−σt) − e

R t+
0 W (Bs,−σs−)dNs

)
dNt

= e
R t+
0 W (Bs,−σs−)dNs(eW (Bt,−σt) − 1)dNt. (3.20)

On the other hand, we have

d
(
e−

R t
0 V (Bs)ds

)
= e−

R t
0 V (Bs)ds(−V (Bt))dt. (3.21)

From this we obtain that e−t(−(1/2)∆+V )f(x) = E
x[e−

R t
0 V (Bs)dsf(Bt)]. Comparing

(3.20) and (3.21), it is seen that Itô’s formula gives the differential for continuous
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processes and the difference for discontinuous ones. From (3.20) it follows that

the generator K of Tt is given by

Kf(σ) =

(
−1

2
∆ − eW (x,−σ) + 1

)
f(−σ).

Thus e−tKF (x, σ) = et
E

σ[F (x, σt)e
R t
0 W (x,−σs−)dNs ] giving rise to the special form

of the off-diagonal part.

4 Functional integral representation of e−tHPF

4.1 Hypercontractivity and Markov property

In this section we discuss hypercontractivity and turn to the functional integral repre-

sentation of e−tHPF . Also, we derive a comparison inequality for ground state energies.

Let ‖F‖p =
(∫

Qβ
|F (φ)|pdµβ(φ)

)1/p

be Lp-norm on (Qβ, µβ) and (·, ·)2 the scalar

product on L2(Qβ). As explained in Section 2, Γβ(T ) for ‖T‖ ≤ 1 is a contraction

on L2(Qβ). It has also the strong property of hypercontractivity, i.e., for a bounded

operator K : L2(R3+β) → L2(R3+β′

) such that ‖K‖ < 1, Γββ′(K) is a bounded operator

from L2(Qβ) to L4(Qβ). Nelson proved the sharper result below.

Proposition 4.1 Let 1 ≤ q ≤ p and ‖T‖2 ≤ (q − 1)(p − 1)−1 ≤ 1. Then Γβ(T ) is a

contraction operator from Lq(Qβ) to Lp(Qβ), i.e., for Φ ∈ Lq(Qβ), Γβ(T )Φ ∈ Lp(Qβ)

and ‖Γβ(T )Φ‖p ≤ ‖Φ‖q.

Proof: See [Nel73]. qed

We factorize e−tHrad as is usually done. Let jt : L2(R3) → L2(R3+1), t ≥ 0, be

defined by

ĵtf(k, k0) :=
e−itk0

√
π

√
ωb(k)

ωb(k)2 + |k0|2
f̂(k), (k, k0) ∈ R

3 × R.

The range of jt, a ≤ t ≤ b, defines the σ-field Σ[a,b] of QE, and the projection E[a,b]

to the set of Σ[a,b]-measurable functions can be represented as the second quantization

of a contraction operator. By using the Markov property of the family of projections

E[··· ] and hypercontractivity of E[a,b]E[c,d] with [a, b] ∩ [c, d] = ∅, it can be shown that∫
QE

|JaF ||JbG||Φ|dµE < ∞ for F,G ∈ L2(Q) and Φ ∈ L1(QE). We will prove this for

the massless case in Corollary 4.4.
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The isometry jt preserves realness and j∗t js = e−|t−s|ωb(−i∇), s, t ∈ R, follows. Define

Jt := Γ01(jt), Jt : L2(Q) → L2(QE).

Hence J∗
t Js = e−|t−s|Hrad on L2(Q). The operator et := jtj

∗
t is the projection from

L2
real(R

3+1) to Ranjt. Define

U[a,b] := L.H.{f ∈ L2
real(R

3+1) | f ∈ Ranjt for some t ∈ [a, b]}

and let e[a,b] : L2
real(R

3+1) → U[a,b] denote orthogonal projection. Define the projections

on L2(QE) by Et := JtJ
∗
t = Γ1(et) and E[a,b] := Γ1(e[a,b]). Let Σ[a,b] be the minimal

σ-field generated by {A E(f) ∈ L2(QE) | f ∈ U[a,b]} and denote the set of Σ[a,b]-

measurable functions in L2(QE) by E[a,b]. The projection E[a,b] has the properties

below:

Lemma 4.2 Let a ≤ b ≤ t ≤ c ≤ d. Then (1) eaebec = eaec, (2) e[a,b]ete[c,d] =

e[a,b]e[c,d], (3) RanE[a,b] = E[a,b], (4) E[a,b]EtE[c,d] = E[a,b]E[c,d].

Proof: See [Sim74, Hir97]. qed

Lemma 4.2 implies that E[a,b] is the projection from L2(QE) onto E[a,b]. The fact

that E[a,b]EtE[c,d] = E[a,b]E[c,d] is called Markov property of the family Es. Let ωb,m =√
|k|2 +m2 with m ≥ 0. Define j

(m)
t , J

(m)
t , e

(m)
[a,b], e

(m)
t , E

(m)
[a,b], E

(m)
t and E (m)

[a,b] by jt,

Jt, e[a,b], et, E[a,b], Et and E[a,b] with ωb replaced by ωb,m, respectively. Then Lemma

4.2 stays true for e[a,b] and E[a,b] replaced by e
(m)
[a,b] and E

(m)
[a,b], respectively. Note that

Γ01(e
−tωb,m), m > 0, is hypercontractive but it fails to be so for m = 0.

Lemma 4.3 Let a ≤ b < t < c ≤ d, F ∈ E (m)
[a,b] and G ∈ E (m)

[c,d]. Take 1 ≤ r < ∞,

1 < p, 1 < q, r < p and r < q. Suppose that e−2m(c−b) ≤ (p/r − 1)(q/r − 1) ≤ 1

and F ∈ Lp(QE) and G ∈ Lq(QE). Then FG ∈ Lr(QE) and ‖FG‖r ≤ ‖F‖p‖G‖q. In

particular, for r such that

r ∈ [1,
2

1 + e−m(c−b)
] ∪ [

2

1 − e−m(c−b)
,∞),

we have ‖FG‖r ≤ ‖F‖2‖G‖2.

Proof: Let FN =

{
F, |F | < N,
0, |F | ≥ N,

and GN =

{
G, |G| < N,
0, |G| ≥ N.

Then |FN |r ∈ E (m)
[a,b],

|GN |r ∈ E (m)
[c,d], and it follows that

∫

QE

|FN |r|GN |rdµE =
(
E

(m)
[a,b]|FN |r, E(m)

[c,d]|GN |r
)

2
=
(
|FN |r,Γ1(e

(m)
[a,b]e

(m)
[c,d])|GN |r

)

2
.
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Note that Te := e
(m)
[a,b]e

(m)
[c,d] satisfies

‖Te‖2 = ‖e(m)
[a,b]e

(m)
b e(m)

c e
(m)
[c,d]‖2 ≤ ‖j(m)∗

b j(m)
c ‖2

= ‖e−|c−b|ωb,m‖2 ≤ e−2m(c−b) ≤ (p/r − 1)(q/r − 1).

Thus by Hölder inequality,

‖FNGN‖r
r ≤ ‖|FN |r‖q/r‖Γ1(Te)|GN |r‖s, (4.1)

where 1 =
1

s
+
r

q
. Since ‖Te‖2 ≤ (p/r − 1)(q/r − 1) = (p/r − 1)(s − 1)−1 ≤ 1, by

Proposition 4.1 it is seen that ‖Γ1(Te)|GN |r‖s ≤ ‖|GN |r‖p/r. Together with (4.1) this

yields

‖FNGN‖r ≤ ‖FN‖q‖GN‖p ≤ ‖F‖q‖G‖p. (4.2)

Taking the limit N → ∞ on both sides of (4.2), by monotone convergence the lemma

follows. qed

An immediate consequence is

Corollary 4.4 Let Φ ∈ L1(QE) and F,G ∈ L2(QE). Then, for a 6= b, (JaF )Φ(JbG) ∈
L1(QE) and ∫

QE

|(JaF )Φ(JbG)|dµE ≤ ‖Φ‖1‖F‖2‖G‖2. (4.3)

Proof: Let a < b, and r(m) =
2

1 − e−m(b−a)
and s(m) > 1 be such that

1

r(m)
+

1

s(m)
= 1,

i.e., s(m) = r(m)/(r(m) − 1). Without loss of generality we can assume that Φ is a real-

valued function. Truncate Φ as

ΦN :=






N, Φ > N,
Φ, |Φ| ≤ N,
−N, Φ < −N.

By Lemma 4.3

|(J (m)
a F,ΦNJ

(m)
b G)2| ≤

∫

QE

|(J (m)
a F )||ΦN ||(J (m)

b G)|dµE

≤ ‖ΦN‖s(m)‖(J (m)
a F )(J

(m)
b G)‖r(m)

= ‖ΦN‖s(m)‖J (m)
a F‖2‖J (m)

b G‖2

= ‖ΦN‖s(m)‖F‖2‖G‖2.
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Since s−limm→0 J
(m)
t = Jt in L2(QE) by s−limm→0 j

(m)
t = jt in L2(R3+1), and ΦN is a

bounded multiplication operator, we have

(|JaF |, |ΦN ||JbG|)2 ≤ ‖ΦN‖1‖F‖2‖G‖2 ≤ ‖Φ‖1‖F‖2‖G‖2. (4.4)

Since |ΦN | ↑ |Φ| as N → ∞, by monotone convergence |JaF ||Φ||JbG| ∈ L1(QE) and

(4.3) follow. This completes the proof. qed

4.2 Functional integral

As explained in Section 1, a key idea of constructing a functional integral representation

of e−tHPF is to use the identity

H =

∫ ⊕

Q

L2(R3×Z2)dµ(φ). (4.5)

We define the Pauli operator H0
PF(φ) in (4.7) for each fiber φ ∈ Q and set

KPF := Hrad +̇

∫ ⊕

Q

H0
PF(φ)dµ(φ), (4.6)

where +̇ denotes quadratic form sum. It is seen that HPF = KPF as a self-adjoint

operator. Using the path integral representation of Pauli operators discussed in Section

3, we can construct the functional integral representation of e−tH0
PF(φ) for each φ ∈ Q.

From this the path integral representation of e−tHPF can be derived through the identity

HPF = KPF and the Trotter product formula for quadratic form sums [KM78].

Define the Pauli operator H0
PF(φ) on L2(R3×Z2) by

(H0
PF(φ)f)(σ) :=

(
1

2
(−i∇− eA (φ))2 + V + Hd(φ)

)
f(σ) + Hod(φ)f(−σ), (4.7)

where

Hd(φ) = Hd(x, σ, φ) = −e
2
σB3(φ),

Hod(φ) = Hod(x,−σ, φ) = −e
2
(B1(φ) − iσB2(φ)).

To avoid that the off-diagonal part Hod(φ) vanishes, we introduce H0 ε
PF(φ) in a similar

manner as in h̃ε(a, b) above by

(H0 ε
PF(φ)f)(σ) :=

(
1

2
(−i∇− eA (φ))2 + V + Hd(φ)

)
f(σ) (4.8)

+ (Hod(φ) + εψε(Hod(φ))) f(−σ),



30 The Pauli-Fierz model with spin

where ψε is the indicator function given by (3.17). Since |Hd(φ) + εψε(Hd(φ))| ≥ ε/2

for all (x, σ) ∈ R
3 × Z2, we can define

W ε
φ(x,−σ) := log (−Hod(x,−σ, φ) − εψε(Hod(x,−σ, φ))) .

Lemma 4.5 Assume that λ ∈ C∞
0 (R3). Then for each φ ∈ Q, H0 ε

PF(φ) is self-adjoint

on D(−∆) ⊗ Z2 and for g ∈ L2(R3×Z2),

(e−tH0 ε
PF(φ)g)(x, σ) = E

x,σ[e−
R t

0
V (Bs)dseZt(φ,ε)g(ξt)],

where

Zt(φ, ε) = −i
3∑

µ=1

∫ t

0

Aµ(λ(· − Bs), φ)dBµ
s

−
∫ t

0

Hd(Bs, σs, φ)ds+

∫ t+

0

W ε
φ(Bs,−σs−)dNs.

Proof: Since λ ∈ C∞
0 (R3), we have

Aµ(φ) = Aµ(λ(· − x), φ) := 〈φ,⊕3
ν=1δµνλ(· − x)〉0 ∈ C∞

b (R3
x), φ ∈ Q.

Then H0 ε
PF(φ) is the Pauli operator with a sufficiently smooth bounded vector potential

A (φ), and the off-diagonal part is perturbed by the bounded operator εψε(Hod(φ)).

Hence it is self-adjoint on D(−∆)⊗Z2 and the functional integral representation follows

by Proposition 3.3. qed

Next we define the operatorKε
PF on H through H0 ε

PF(φ) and the constant fiber direct

integral representation (4.5) of H. Assume that λ ∈ C∞
0 (R3). Define the self-adjoint

operator H0 ε
PF on H by

H0 ε
PF :=

∫ ⊕

Q

H0 ε
PF(φ)dµ(φ),

that is, (H0 ε
PFF )(φ) = H0 ε

PF(φ)F (φ) with domain

D(H0 ε
PF) =

{
F ∈ H

∣∣∣∣
∫

Q

‖(H0 ε
PFF )(φ)‖2

L2(R3×Z2)dµ(φ) <∞
}
.

Set

Kε
PF := H0 ε

PF +̇ Hrad. (4.9)
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Let L2
fin(Q) :=

⋃∞
m=0{

⊕m
n=0 L

2
n(Q)

⊕∞
n=m+1{0}} and define the dense subspace

H0 := C∞
0 (R3 × Z2) ⊗̂L2

fin(Q), (4.10)

where ⊗̂ denotes algebraic tensor product. Also, define

Hε
PF := HPF +

[
0 εψε(− e

2
(B1 − iB2))

εψε(− e
2
(B1 + iB2)) 0

]
. (4.11)

Lemma 4.6 Let λ ∈ C∞
0 (R3). Then

(F, e−tHPFG) = lim
ε→0

(F, e−tKε
PFG). (4.12)

Proof: It is seen that Kε
PF = Hε

PF on H0, implying that Kε
PF = Hε

PF as a self-adjoint

operator since H0 is a core of Hε
PF [Hir00b, Hir02]. Moreover, Hε

PF → HPF on H0 as

ε → 0 and H0 is a common core of the sequence {Hε
PF}ε≥0. Thus s−limε→0 e

−tHε
PF =

e−tHPF , whence (4.12) follows. qed

By (4.12) it suffices to construct a functional integral representation for the expres-

sions at its right hand side and then use a limiting procedure. Set

H
E

d (x, σ, s) = −e
2
σB

E
3 (jsλ(· − x)), (4.13)

H
E

od(x,−σ, s) = −e
2

(
B

E
1 (jsλ(· − x)) − iσB

E
2 (jsλ(· − x))

)
. (4.14)

Lemma 4.7 As a bounded multiplication operator on L2(Q), for each (x, σ) ∈ R
3×Z2

Jsψε(Hod(x,−σ))J∗
s = Esψε(H

E
od(x,−σ, s))Es. (4.15)

Proof: Note that ψε(Hod(x,−σ)) is a function of the Gaussian random variable

Φ := Hod(x,−σ) = (−e/2)(B1(x) − iσB2(x)) of mean zero and covariance

ρ :=

∫

Q

Φ2dµ =
e2

4

∫

Q

(B1(x)
2 + B2(x)

2)dµ =
e2

8

∫ |ϕ̂(k)|2
ωb(k)

|k|2
(

2 − |k1|2 + |k2|2
|k|2

)
dk,

(4.16)

since

∑

j=±1

(k × e(k, j))µ(k × e(k, j))ν = |k|2
(
δµν −

kµkν

|k|2
)
.
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In general, for a given function g ∈ L2(R), g(Φ) is approximated by

gn(Φ) = (2π)−1/2

∫

R

ĝn(k)eikΦdk (4.17)

in L2(Q), where gn ∈ S (R) is such that gn → g as n→ ∞ in L2(R). This follows from

‖g(Φ) − gn(Φ)‖2
2 ≤ (2πρ)−1/2

∫

R

|g(x) − gn(x)|2dx. (4.18)

For the vector

F =

∫
f(k1, ..., kn)e

−i
Pn

j=1〈φ,hj〉0dk1 · · ·dkn

with f ∈ S (Rn) and hj ∈ ⊕3L2(R3), we have limn→∞ gn(Φ)F = g(Φ)F strongly by

(4.18). Since the set of vectors of form F are dense in L2(Q), as bounded multiplication

operators gn(Φ) strongly converge to g(Φ) as n → ∞. Thus there is a sequence

{ψn
ε (Φ)}∞n=1 such that

ψn
ε (Φ) = (2π)−1/2

∫

R

ψ̂ε

n
(k)eikΦdk (4.19)

with ψ̂ε

n ∈ S (R) and limn→∞ ψn
ε (Φ) = ψε(Φ) in strong sense. By (4.19)

Jsψ
n
ε (−Hod(x,−σ))J∗

s = (2π)−1/2

∫

R

ψ̂ε

n
(k)Jse

ikΦJ∗
s dk

= (2π)−1/2

∫

R

ψ̂ε

n
(k)Ese

ikΦsEsdk = Esψ
n
ε (−H

E
od(x,−σ, s))Es,

where Φ(s) = (−e/2)(BE
1 (jsλ(· − x))− iσBE

2 (jsλ(· − x))), and ψn
ε (H E

od(x,−σ, s)) con-

verges strongly to ψε(H
E

od(x,−σ, s)) with n→ ∞ as a bounded multiplication operator

on L2(QE), yielding (4.15). qed

The next statement is our key lemma.

Lemma 4.8 Let λ ∈ C∞
0 (R3), F ∈ E[a,b] and s 6∈ [a, b]. Then

(F, Jse
−tH0 ε

PFJ∗
sG) = et

∑

σ

∫
dxE

x,σ

[
e−

R t

0
V (Br)dr

∫

QE

F (ξ0)e
Xt(ε,s)EsG(ξt)dµE

]
.

(4.20)

Here

Xt(ε, s) = −ie
3∑

µ=1

∫ t

0

A
E

µ (jsλ(· − Br))dB
µ
r (4.21)

−
∫ t

0

H
E

d (Br, σr, s)dr +

∫ t+

0

W ε(Br,−σr−, s)dNr,
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and

W ε(x,−σ, s) := log
(
−H

E
od(x,−σ, s) − εψε(H

E
od(x,−σ, s))

)
(4.22)

Proof: First notice that the right hand side of (4.20) is bounded. By Corollary 4.4,

F (x, σ) = JlJ
∗
l F (x, σ) for some l ∈ [a, b] and EsG(Bt, σt) = JsJ

∗
sG(Bt, σt). We obtain

|r.h.s. (4.20)| ≤ EΩ

[
e−

R t
0

V (Br)dr
∑

σ

∫
dx ‖F (x, σ)‖2‖G(Bt + x, σt)‖2‖eXt(ε,s)‖1

]
.

(4.23)

We will prove in Lemma 4.9 below that there exists a random variable c = c(ω) such

that

(1) ‖eXt(ε,s)‖2
1 ≤ c, a.e. ω ∈ Ω,

(2) c is independent of (x, σ) ∈ R
3 × Z2,

(3) c is independent of Bµ
t , µ = 1, 2, 3,

(4) EΩ[c1/2] <∞.

By (4.23),

|r.h.s. (4.20)|

≤ EΩ




(
∑

σ

∫
dx ‖G(Bt + x, σt)‖2

2

)1/2(∑

σ

∫
dx ‖F (x, σ)‖2

2e
−2

R t
0 V (Br+x)drc

)1/2




≤ ‖G‖H EΩ



c1/2

(
∑

σ

∫
dx ‖F (x, σ)‖2

2e
−2

R t
0

V (Br+x)dr

)1/2




≤ ‖G‖H EΩ[c1/2] EΩ




(
∑

σ

∫
dx ‖F (x, σ)‖2

2e
−2

R t

0
V (Br+x)dr

)1/2




≤ ‖G‖H ‖F‖HV 1/2
M EΩ[c1/2] <∞, (4.24)

where we used (1) above in the second line, (2) in the third line, (3) in the fourth line,

Assumption 2.2 and (4) in the fifth line, and where VM is defined in (3.13).
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Next we prove (4.20). By Lemma 4.5 we have

(J∗
sF, e

−tH0 ε
PFJ∗

sG)

=

∫

Q

dµ(φ)((J∗
sF )(φ), e−tH0 ε

PF(φ)(J∗
sG)(φ))L2(R3;C2)

=

∫

Q

dµ(φ)
∑

σ

∫
dxE

x,σ
[
e−

R t

0
V (Br)dr(J∗

sF )(φ, ξ0)e
Zt(φ,ε)(J∗

sG)(φ, ξt)
]

=
∑

σ

∫
dxE

x,σ

[
e−

R t
0 V (Br)dr

∫

Q

dµ(φ)(J∗
sF )(φ, ξ0)e

Zt(φ,ε)(J∗
sG)(φ, ξt)

]
.

Here we used Fubini’s Theorem in the fourth line. Put

Zt(ε) = −ie
3∑

µ=1

∫ t

0

Aµ(λ(· − Bs))dB
µ
s −

∫ t

0

Hd(Bs, σs)ds+

∫ t+

0

W ε(Bs,−σs−)dNs,

with W ε(x,−σ) := log (−Hod(x,−σ) − εψε(Hod(x,−σ))). Pick F,G ∈ H0. Given

that J∗
sF ∈ L2(QE) and eZt(ε)J∗

sG(Bt, σt) ∈ L2(QE), we rewrite as

(J∗
sF, e

−tH0 ε
PFJ∗

sG) =
∑

σ

∫
dxE

x,σ
[
e−

R t

0
V (Br)dr(F (ξ0), Jse

Zt(ε)J∗
sG(ξt))L2(QE)

]
.

The kernel Jse
Zt(ε)J∗

s is computed as follows. Divide it up into

Jse
Zt(ε)J∗

s = Jse
−ie

P3
µ=1

R t
0 Aµ(λ(·−Br))dBµ

r J∗
s︸ ︷︷ ︸

:=I

Jse
−

R t
0 Hd(Br ,σr)drJ∗

s︸ ︷︷ ︸
:=II

× Jse
R t+
0

W ε(Br ,−σr−)dNrJ∗
s︸ ︷︷ ︸

:=III

. (4.25)

We compute the three factors I, II, III separately. First, by [Hir97]

Js exp

(
−ie

3∑

µ=1

∫ t

0

Aµ(λ(· − Br))dB
µ
r

)
J∗

s

= Es exp

(
−ie

3∑

µ=1

∫ t

0

A
E

µ (jsλ(· −Br))dB
µ
r

)
Es.

Secondly, for ω ∈ Ω, there exist N = N(ω) ∈ N and s1 = s1(ω), ..., sN = sN(ω) ∈ (0,∞)
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such that on H0

Js exp

(∫ t+

0

W ε(Br,−σr−)dNr

)
J∗

s

= Js

N∏

i=1

(−Hod(Bsi
,−σsi−) − εψε(−Hod(Bsi

,−σsi−)))J∗
s

= Es

N∏

i=1

(
−H

E
od(Bsi

,−σsi−, s) − εψε(−H
E

od(Bsi
,−σsi−, s))

)
Es

= Es exp

(∫ t+

0

W ε(Br,−σr−, s)dNr

)
Es,

where we used that JsA (f1) · · ·A (fn)J∗
s = EsA

E(jsf1) · · ·A E(jsfn)Es as multipli-

cation operators, and that Jsψε(Hod(Bsi
,−σsi−))J∗

s = Esψε(H
E

od(Bsi
,−σsi−, s))Es by

Lemma 4.7. Finally, it can be seen that, similarly to III, factor II is computed on H0

as

Js exp

(
−
∫ t

0

Hd(Br, σr)dr

)
J∗

s = lim
n→∞

Js

n∏

i=0

exp

(
Hd(Bit/n, σit/n)

t

n

)
J∗

s

= lim
n→∞

n∏

i=0

Es exp

(
H

E
d (Bit/n, σit/n, s)

t

n

)
Es = exp

(
−
∫ t

0

H
E

d (Br, σr, s)dr

)
Es.

Putting all this together we get

(F, Jse
−tH0 ε

PFJ∗
sG) =

∑

σ

∫
dxE

x,σ

[
e−

R t
0 V (Br)dr

∫

QE

dµEF (ξ0)e
Xt(ε,s)EsG(ξt)

]
(4.26)

for F,G ∈ H0. By a limiting argument and the bound (4.24) it is seen that (4.26)

extends for F,G ∈ H, completing the proof. qed

Lemma 4.9 There exists a random variable c = c(ω) satisfying (1)-(4) in the proof of

Lemma 4.8.

Proof: Note that

‖eXt(ε,s)‖2
1 ≤ ‖e−

R t
0 H E

d (Br ,σr ,s)dr‖2
2 ‖e

R t
0 |W ε(Br ,−σr−,s)|dNr‖2

2.

We estimate the right-hand side of this expression. Since

∫ t

0

H
E

d (Br, σr, s)dr = B
E
3

(
−e

2

∫ t

0

σrjsλ(· − Br)dr

)
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and BE
µ (f) is a Gaussian random variable with mean zero and covariance
∫

QE

B
E
µ (f)BE

ν (g)dµE =
1

2

∫
f̂(k, k0)ĝ(k, k0)|k|2

(
δµν −

kµkν

|k|2
)
dkdk0, (4.27)

we have
∥∥∥e−

R t
0 H E

d (Br ,σr ,s)dr
∥∥∥

2

2
=
(
1QE

, e−2
R t
0 H E

d (Br ,σr ,s)dr1QE

)

= exp

(
4
1

2

(e
2

)2 1

2

∫ t

0

dr

∫ t

0

dlσrσl

∫

R3

|ϕ̂(k)|2
ωb(k)

e−ik·(Br−Bl)(|k1|2 + |k2|2)dk
)

≤ exp

((e
2

)2

t2
∫

R3

|ϕ̂(k)|2
ωb(k)

|k|2dk
)

:= c1 <∞. (4.28)

c1 is thus independent of (x, σ) ∈ R
3 × Z2. Next consider ‖e

R t
0
|Wε(Br ,−σr−,s)|dNr‖2

2. Set

BE
µ (t) := BE

µ (jsλ(· − Bt)) for notational convenience. For each ω ∈ Ω, there exists

N = N(ω) ∈ N and s1 = s1(ω), ..., sN = sN(ω) ∈ (0,∞) such that
∥∥∥e

R t

0
|W ε(Br ,−σr−,s)|dNr

∥∥∥
2

2
(4.29)

≤
(

1QE
, exp

(
2

∫ t

0

log

[ |e|√
2

√
BE

1 (r)2 + BE
2 (r)2 + ε2

]
dNr

)
1QE

)

2

=

(
1QE

, exp

(
2

N∑

i=1

log

[ |e|√
2

√
BE

1 (si)2 + BE
2 (si)2 + ε2

])
1QE

)

2

=

( |e|√
2

)2N
(

1QE
,

N∏

i=1

(
B

E
1 (si)

2 + B
E
2 (si)

2 + ε2
)
1QE

)

2

=

( |e|√
2

)2N N∑

m=0

ε2(N−m)
∑

combm

(1QE
, (BE

#)2 · · · (BE
#)2

︸ ︷︷ ︸
m-fold

1QE
)2

=

( |e|√
2

)2N N∑

m=0

ε2(N−m)
∑

combm

‖B
E
# · · ·BE

#︸ ︷︷ ︸
m-fold

1QE
‖2

2

≤
( |e|√

2

)2N N∑

m=0

ε2(N−m)2m (
√

2)2mm! ‖
√

|k|ϕ̂‖2m := c2, (4.30)

where
∑

combm
denotes summation over the 2m terms in the expansion of the product

∏m
i=1(B

E
1 (si)

2+BE
2 (si)

2), BE
# denotes one of BE

µ (si), µ = 1, 2, i = 1, ..., N , and we used

that |a+ ib+ε| ≤
√

2
√
a2 + b2 + ε2, a, b, ε ∈ R, in the first line, and the basic inequality

‖BE
µ (si)Ψ‖2 ≤

√
2‖
√

|k|ϕ̂‖‖N1/2
b Ψ‖2 in the sixth. Note that c2(ω) is independent of

(x, σ) ∈ R
3 × Z2 and Bµ

t . Set

c(ω) = c1c2(ω). (4.31)
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Then

EΩ[c1/2] ≤ e
1
2
(|e|/2)2t2‖

√
|k|ϕ̂‖2

∞∑

N=0

( |e|√
2

)N N∑

m=0

εN−m
√
m! 2m ‖

√
|k|ϕ̂‖m

N !
e−t <∞.

(4.32)

This completes the proof of claims (1)-(4) above. qed

Next we define the L2(R3+1)-valued stochastic integral
∫ t

0
jsλ(· −Bs)dB

µ
s by a lim-

iting procedure. Let ∆n(s) be the step function on the interval [0, t] given by

∆n(s) :=

n∑

i=1

t(i− 1)

n
1(t(i−1)/n,ti/n](s). (4.33)

Define the sequence of the L2(R3+1)-valued random variable ξµ
n : Ω → L2(R3+1) by

ξµ
n :=

∫ t

0

j∆n(s)λ(· − Bs)dB
µ
s , µ = 1, 2, 3.

This sequence converges, which is guaranteed by

EΩ[‖ξµ
n − ξµ

m‖2] = EΩ

[∫ t

0

‖j∆n(s)λ(· −Bs) − j∆m(s)λ(· −Bs)‖2ds

]

= 2E
x,σ

[∫ t

0

(
‖λ‖2 − (λ(· −Bs), e

−|∆n(s)−∆m(s)|ωbλ(· − Bs))
)
ds

]
→ 0

as n,m→ ∞.

Definition 4.10 We define
∫ t

0

jsλ(· −Bs)dB
µ
s := s− lim

n→∞
ξµ
n , µ = 1, 2, 3,

and set ∫ t

0

A
E
µ (jsλ(· − Bs))dB

µ
s := A

E
µ

(∫ t

0

jsλ(· −Bs)dB
µ
s

)
.

Now we are in the position to state the main theorem of this section.

Theorem 4.11 For every t ≥ 0 and all F,G ∈ H

(F, e−tHε
PFG) = et

∑

σ

∫
dxE

x,σ

[
e−

R t
0 V (Bs)ds

∫

QE

dµEJ0F (ξ0)e
Xt(ε)JtG(ξt)

]
(4.34)

and

(F, e−tHPFG) = lim
ε→0

et
∑

σ

∫
dxE

x,σ

[
e−

R t

0
V (Bs)ds

∫

QE

dµEJ0F (ξ0)e
Xt(ε)JtG(ξt)

]
. (4.35)
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Here

Xt(ε) = −ie
3∑

µ=1

∫ t

0

A
E

µ (jsλ(· − Bs))dB
µ
s

−
∫ t

0

H
E

d (Bs, σs, s)ds+

∫ t+

0

log
(
−H

E
od(Bs,−σs−, s) − εψε(H

E
od(Bs,−σs−, s))

)
dNs.

Proof: Notice that BE
µ (jsf), f ∈ L2(R3), s ∈ R, µ = 1, 2, 3, is a Gaussian random

variable with mean zero and covariance
∫

QE

B
E
µ (jsf)BE

ν (jtg)dµE =
1

2

∫

R3

f̂(k)ĝ(k)|k|2
(
δµν −

kµkν

|k|2
)
e−|t−s|ωb(k)dk.

Then similarly to (4.24) we obtain |r.h.s.(4.34)| ≤ ‖F‖H‖G‖HV 1/2
M E

x,σ[c1/2] < C, where

c is given by (4.31) and C is a constant independent of ε. Since e−tHε
PF → e−tHPF

strongly as ε→ 0, (4.35) follows from (4.34).

Now we turn to proving (4.34). Take λ = (ϕ̂/
√
ωb)

∨ ∈ C∞
0 (R3). Then by (4.24)

E
x,σ[e−

R t

0
V (Br)dreXt(ε,s)G(ξt)] ∈ H for G ∈ H, and

∥∥∥E
x,σ
[
e−

R t

0
V (Br)dreXt(ε,s)G(ξt)

]

H

∥∥∥ ≤ V
1/2
M E

x,σ[c1/2] ‖G‖H.

Remember that Xt(ε, s) was defined in (4.21) and VM in (3.13). Define the bounded

operator

(Sε
t,sG)(x, σ) := et

E
x,σ
[
e−

R t
0 V (Bu)dueXt(ε,s)G(ξt)

]
, H → H.

Set

XS,T (ε, s) = −ie
3∑

µ=1

∫ T

S

Aµ(jsλ(· − Bl))dB
µ
l

−
∫ T

S

Hd(Bl, σl, s)dl +

∫ T+

S

W ε(Bl,−σl−, s)dNl.

By making use of the Markov property of ξt we get

(Sε
t,rS

ε
s,lG)(x, σ)

= es+t
E

x,σ
[
e−

R t
0 V (Bu)dueX0,t(ε,r)E

Bt,σt

[
e−

R s
0 V (Bu)dueX0,s(ε,l)G(ξs)

]]

= es+t
E

x,σ
[
e−

R t
0 V (Bu)dueX0,t(ε,r)E

x,σ
[
e−

R s+t
s

V (Bu)dueXt,s+t(ε,l)G(Bs+t, σs+t) |Ωt

]]

= es+t
E

x,σ
[
e−

R s+t

0
V (Bu)dueX0,t(ε,r)+Xt,s+t(ε,l)G(Bs+t, σs+t)

]
. (4.36)
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Note that for s1 ≤ · · · ≤ sn,

exp
(
X0,t1(ε, s1) +Xt1,t1+t2(ε, s2) + · · ·+Xt1+···+tn−1,t1+···+tn(ε, sn)

)
∈ E[s1,sn]L

2(QE).

(4.37)

For operators Tj, j = 1, ..., N , write
∏n

i=1 Ti := T1T2 · · ·Tn. By using the identity

Hε
PF = Hrad +̇

∫ ⊕

Q
H0

PF(φ)dµ(φ), we have

(F, e−tHε
PFG) =

(
F, e−t(H0 ε

PF +̇ Hrad)G
)

= lim
n→∞

(
F,
(
e−(t/n)H0 ε

PFe−(t/n)Hrad

)n

G
)

= lim
n→∞

(
J0F,

(
n−1∏

i=0

Jit/ne
−(t/n)H0 ε

PFJ∗
it/n

)
JtG

)

= lim
n→∞

(
J0F,

(
n−1∏

i=0

Eit/nS
ε
t/n,it/nEit/n

)
JtG

)

= lim
n→∞

(
J0F,

(
n−1∏

i=0

Sε
t/n,it/n

)
JtG

)

= et lim
n→∞

∑

σ

∫
dxE

x,σ

[
e−

R t
0 V (Br)dr

∫

QE

dµEJ0F (x, σ)eXn
t (ε)JtG(ξt)

]
,

(4.38)

where we applied the Trotter-Kato product formula [KM78] to the quadratic form sum

in the second line, the equality J∗
s Jt = e−|t−s|Hrad in the third, Lemma 4.8 in the fourth,

(4.37) and the Markov property of the family of projections E[··· ] in the fifth, and (4.36)

in the sixth line. Moreover Xn
t (ε) = Y n

t (1) + Y n
t (2) + Y n

t (3, ε), with

Y n
t (1) := −ie

3∑

µ=1

n∑

i=1

∫ ti/n

t(i−1)/n

A
E(jt(i−1)/nλ(· − Bs))dB

µ
s

= −ieA E

(
⊕3

µ=1

∫ t

0

j∆n(s)λ(· −Bs)dB
µ
s

)
,

Y n
t (2) := −

n∑

i=1

∫ ti/n

t(i−1)/n

H
E

d (Bs, σs, t(i− 1)/n)ds = −
∫ t

0

H
E

d (Bs, σs,∆n(s))ds,

Y n
t (3, ε) :=

n∑

i=1

∫ ti/n+

t(i−1)/n

W ε(Bs,−σs−, t(i− 1)/n)dNs =

∫ t

0

W ε(Bs,−σs−,∆n(s))dNs,

and with W ε(x,−σ, r) defined in (4.22) and step function ∆n(s) given by (4.33). Fur-
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thermore, put

Yt(1) := −ieA E

(
⊕3

µ=1

∫ t

0

jsλ(· −Bs)dB
µ
s

)
,

Yt(2) := −
∫ t

0

H
E

d (Bs, σs, s)ds,

Yt(3, ε) :=

∫ t+

0

W ε(Bs,−σs−, s)dNs.

Then Xt(ε) = Yt(1) + Yt(2) + Yt(3, ε). We claim that

r.h.s. (4.38) = et
∑

σ

∫
dxE

x,σ

[
e−

R t

0
V (Bs)ds

∫

QE

dµEJ0F (ξ0)e
Xt(ε)JtG(ξt)

]
. (4.39)

Note that

∑

σ

∫
dxE

x,σ

[
e−

R t
0 V (Bs)ds

∫

QE

|J0F (ξ0)| |JtG(ξt)| |eXn
t (ε) − eXt(ε)|dµE

]

≤ ‖G‖H E
x,σ




(
∑

σ

∫
dx e−2

R t
0 V (Bs)ds‖F (x, σ)‖2

2 ‖eXn
t (ε) − eXt(ε)‖2

1

)1/2


(4.40)

and

‖eXn
t (ε)‖2

1 ≤
(
1QE

, |eY n
t (2)|21QE

) (
1QE

, |eY n
t (3,ε)|21QE

)
.

We continue by estimating the right-hand side above. It readily follows that

(
1QE

, e2Y n
t (2)1QE

)

= exp

(
e2

4

∫ t

0

ds

∫ t

0

drσsσr

∫

R3

|ϕ̂(k)|2
ωb(k)

e−ik(Bs−Br)(|k1|2 + |k2|2)e−|∆n(s)−∆n(r)|ωb(k)dk

)

≤ exp

(
e2

4
t2
∫

R3

|ϕ̂(k)|2|k|dk
)

= c1, (4.41)

and the estimate of
∥∥∥e

R t

0
W ε(Bs,−σs−,∆n(s))dNs

∥∥∥
2

2
goes as that of

∥∥∥e
R t

0
W ε(Br ,−σr−,s)dNr

∥∥∥
2

2

explained in (4.30), with BE
µ (jsi

λ(· − Bsi
)) replaced by BE

µ (j∆n(si)λ(· − Bsi
)). Then,

for each ω ∈ Ω,
∥∥∥e

R t
0 W ε(Bs,−σs−,∆n(s))dNs

∥∥∥
2

2
≤ c2(ω), with c2(ω) given in (4.30). Thus we

conclude that ‖eXn
t (ε)‖2

1 < c(ω), where c(ω) = c1c2(ω) and E
x,σ[c1/2] < ∞. Similarly,

‖eXt(ε)‖1 < C(ω) and E
x,σ[C1/2] < ∞ follows for a random variable C(ω). Note that

both c and C are independent of (x, σ) ∈ R
3 × Z2, B

µ
t and n. Thus by (4.40) and
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dominated convergence, it suffices to show that for almost every ω ∈ Ω, eXn
t (ε) → eXt(ε)

as n→ ∞ in L1(QE). We have

eXn
t (ε) − eXt(ε) = eY n

t (1)eY n
t (2)eY n

t (3,ε) − eYt(1)eY n
t (2)eY n

t (3,ε)

︸ ︷︷ ︸
:=I

+ eYt(1)eY n
t (2)eY n

t (3,ε) − eYt(1)eYt(2)eY n
t (3,ε)

︸ ︷︷ ︸
:=II

+ eYt(1)eYt(2)eY n
t (3,ε) − eYt(1)eYt(2)eYt(3)

︸ ︷︷ ︸
:=III

. (4.42)

We estimate I, II and III. Notice that

‖I‖1 ≤ ‖eY n
t (1) − eYt(1)‖2 ‖eY n

t (2)eY n
t (3,ε)‖2, (4.43)

By a minor modification of (4.28) and (4.30) it is seen that there is N = N(ω) such

that

‖eY n
t (2)eY n

t (3,ε)‖2
2 ≤ ‖|eY n

t (2)|2‖2‖|eY n
t (3,ε)|2‖2 (4.44)

≤ e4(e/2)2t2‖
√

|k|ϕ̂‖2

( |e|√
2

)4N 2N∑

m=0

ε2N−mm! 22m ‖
√

|k|ϕ̂‖2m

︸ ︷︷ ︸
:=c3

.

By the expression of Yt(1) in Definition 4.10

(
eY n

t (1), eYt(1)
)
2

= exp

(
−e

2

2
q1(̺

n
1 , ̺

n
1 )

)
,

with ̺n
1 = ⊕3

µ=1

∫ t

0

(j∆n(s)λ(· −Bs) − jsλ(· −Bs))dB
µ
s . Moreover,

E
x,σ [q1(̺

n
1 , ̺

n
1 )] ≤ 3

2
E

x,σ

[∫ t

0

‖j∆n(s)λ(· −Bs) − jsλ(· −Bs)‖2ds

]

≤ 3

2
E

x,σ

[∫ t

0

(
2‖λ‖2 − 2ℜ(λ(· − Bs), e

−|∆n(s)−s|ωbλ(· −Bs))
)
ds

]
→ 0

as n → 0. This implies that there exists a subsequence m such that for almost every

ω ∈ Ω, limm→∞(eY m
t (1), eYt(1))2 = 1 and thus ‖eY m

t (1) − eYt(1)‖2 → 0. We relabel this

subsequence by n. Then

lim
n→∞

‖I‖1 = 0 (4.45)

follows by (4.43) for almost every ω ∈ Ω.
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Next we estimate II. Since |eYt(1)| = 1, we have

‖II‖1 ≤ ‖eY n
t (2) − eYt(2)‖2 ‖eY n

t (3,ε)‖2

and ‖eY n
t (3,ε)‖2 ≤ c3(ω), see (4.44). A direct computation yields

‖eY n
t (2)‖2

2

= exp

((e
2

)2
∫ t

0

ds

∫ t

0

dsσsσr

∫
dk

|ϕ̂(k)|2
ωb(k)

e−ik(Bs−Br)(|k1|2 + |k2|2)e−|∆n(s)−∆n(r)|ωb(k)

)

→ exp

((e
2

)2
∫ t

0

ds

∫ t

0

drσsσr

∫
dk

|ϕ̂(k)|2
ωb(k)

e−ik(Bs−Br)(|k1|2 + |k2|2)e−|s−r|ωb(k)

)

= ‖eYt(2)‖2
2

and

(eY n
t (2), eYt(2))2

= exp

(
1

4

(e
2

)2
∫ t

0

ds

∫ t

0

drσsσr

∫
dk

|ϕ̂(k)|2
ωb(k)

e−ik·(Bs−Br)(|k1|2 + |k2|2)

×
(
e−|s−r|ωb(k) + e−|s−∆n(r)|ωb(k) + e−|r−∆n(s)|ωb(k) + e−|∆n(s)−∆n(r)|ωb(k)

))

→ exp

((e
2

)2
∫ t

0

ds

∫ t

0

drσsσr

∫
dk

|ϕ̂(k)|2
ωb(k)

e−ik·(Bs−Br)(|k1|2 + |k2|2)e−|s−r|ωb(k)

)

= ‖eYt(2)‖2
2

as n→ ∞. Thus

lim
n→∞

‖II‖2
1 ≤ lim

n→∞

(
‖eY n

t (2)‖2
2 − 2ℜ(eY n

t (2), eYt(2))2 + ‖eYt(2)‖2
2

)
c23 = 0 (4.46)

is obtained.

Finally, we deal with III. Since

‖eYt(1)eYt(2)eY n
t (3,ε) − eYt(1)eYt(2)eYt(3,ε)‖1 ≤ ‖eYt(2)‖2 ‖eY n

t (3,ε) − eYt(3,ε)‖2

and ‖eYt(2)‖2
2 ≤ e4(e/2)t2‖

√
|k|ϕ̂‖2

, it is enough to show that eY n
t (3,ε) → eYt(3,ε) in L2(QE).

By the definition of Y n
t (3, ε) we have

eY n
t (3,ε) =

n∏

i=1

exp

(∫ ti/n+

t(i−1)/n

W ε(Bs,−σs−, t(i− 1)/n)dNs

)
.

For each ω ∈ Ω there exists N = N(ω) ∈ N such that D(p) = {s1, ..., sN}, where p is

the point process defining the counting measure Nt, see (3.3). For sufficiently large n
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the number of sk contained in the interval (t(i − 1)/n, ti/n] is at most one. Then by

taking n large enough and putting (n(si), n(si) + t/n] for the interval containing si,

i = 1, ..., N , we get

eY n
t (3,ε) =

N∏

i=1

(
−H

E
od(Bsi

,−σsi−, n(si)) − εψε(H
E

od(Bsi
,−σsi−, n(si))

)
. (4.47)

Clearly, n(si) → si as n→ ∞. We want to show that

lim
m→∞

r.h.s. (4.47) =
N∏

i=1

(
−H

E
od(Bsi

,−σsi−, si) − εψε(H
E

od(Bsi
,−σsi−, si))

)
. (4.48)

Since H E
od(Bsi

,−σsi−, n(si)) converges strongly to H E
od(Bsi

,−σsi−, si) as n → ∞ in

L2(QE), we have by Lemma 4.12 below that in L2(QE)

lim
n→0

ψε(H
E

od(Bsi
,−σsi−, n(si))) = ψε(H

E
od(Bsi

,−σsi−, si)). (4.49)

Set I(n, i) := ψε(H
E

od(Bsi
,−σsi−, n(si))), I(∞, i) := ψε(H

E
od(Bsi

,−σsi−, si)), A(n, i) :=

H E
od(Bsi

,−σsi−, n(si)) and A(∞, i) := H E
od(Bsi

,−σsi−, si). Since these are commu-

tative as operators, the right hand side of (4.47) can be expanded as a finite sum

of functions of the form C(n) :=
∏

k

I(n,#)
∏

N−k

A(n,#), where # stands for one

of 1, ..., N . It suffices to show that each C(n) converges to C(∞) as n → ∞ in

L2(QE), where C(∞) is C(n) with n(si) replaced by si, i = 1, ..., N . Take, for example

C0(n) := I(n, 1) · · · I(n, k)A(n, k + 1) · · ·A(n,N). Then

C0(n) − C0(∞) = (4.50)

I(n, 1) · · · I(n, k) (A(n, k + 1) · · ·A(n,N) − A(∞, k + 1) · · ·A(∞, N))

+ (I(n, 1) · · · I(n, k) − I(∞, 1) · · · I(∞, k))A(∞, k + 1) · · ·A(∞, N).

Since I(n, i) is uniformly bounded in n, the first term at the right hand side of (4.50)

goes to zero as n → ∞ in L2(QE). The second term can be estimated in this way.

First note that

‖ (I(n, i) − I(∞, i))A(∞, k + 1) · · ·A(∞, N)‖2
2 =

(
A(∞, k + 1)2 · · ·A(∞, N)2, I(n, i) − I(∞, i)

)
2
.

Since limn→∞ ‖(I(n, i) − I(∞, i))2‖ = limn→∞ ‖I(n, i) − I(∞, i)‖ = 0 by (4.49), the

second term of the right hand side of (4.50) also converges to zero. Then C0(n) →
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C0(∞) as n → ∞ in L2(QE) follows, and hence (4.48). Since the right-hand side of

(4.48) equals eYt(3,ε), it is seen that limn→∞ ‖eY n
t (3,ε) − eYt(3,ε)‖2 = 0, and

lim
n→∞

‖III‖1 = 0. (4.51)

A combination of (4.45), (4.46) and (4.51) implies (4.39), and thus (4.34).

Now we extend (4.35) to form factors for which
√
ωbϕ̂, ϕ̂/

√
ωb ∈ L2(R3), through a

limiting argument. Let ϕ̂m ∈ C∞
0 (R3) satisfy ϕ̂m/

√
ωb → ϕ̂/

√
ωb and

√
ωbϕ̂m → √

ωbϕ̂

strongly in L2(R3) as m → ∞. For each ϕ̂m, (4.35) holds. Let Hε
PF(m) be Hε

PF with

ϕ̂ replaced by ϕ̂m. Thus Hε
PF(m) → Hε

PF as m → ∞ on the common core H0. Then

e−tHε
PF(m) → e−tHε

PF strongly in H as m → ∞. Define X
(m)
t (ε), Y

(m)
t (1), Y

(m)
t (2) and

Y
(m)
t (3, ε) by Xt(ε), Yt(1), Yt(2) and Yt(3, ε) with ϕ̂ replaced by ϕ̂m, respectively. It

is enough to see that eX
(m)
t (ε) → eXt(ε) in L1(QE). We divide eX

(m)
t (ε) − eXt(ε) in the

same way as (4.42) with Y n
t (i) replaced by Y

(m)
t (i). Then it suffices to show that

eY
(m)
t (i) → eYt(i) strongly in L2(QE), for almost every ω ∈ Ω as m→ ∞. First, we have

(eY
(m)
t (1), eYt(1))2 = exp

(
−e

2

2
q1(̺

m
2 , ̺

m
2 )

)
,

where ̺m
2 = ⊕3

µ=1

∫ t

0

(jsλm(· −Bs) − jsλ(· −Bs))dB
µ
s and λm = (ϕ̂m/

√
ωb)

∨. Further-

more,

E
x,σ[q1 (̺m

2 , ̺
m
2 )] ≤ 3

2
E

x,σ

[∫ t

0

‖jsλm(· − Bs) − jsλ(· − Bs)‖2ds

]

≤ 3

2
‖ϕ̂m/

√
ωb − ϕ̂/

√
ωb‖ → 0

as m→ ∞. Then there is a subsequence l such that (eY
(l)
t (1), eYt(1))2 → 1 as l → ∞ for

almost every ω ∈ Ω, and hence

lim
l→∞

‖eY
(l)
t (1) − eYt(1)‖2 = 0. (4.52)

We relabel l as m again. Secondly, we have

‖eY
(m)
t (2)‖2

2

= exp

((e
2

)2
∫ t

0

ds

∫ t

0

drσsσr

∫
dk

|ϕ̂m(k)|2
ωb(k)

e−ik·(Bs−Br)(|k1|2 + |k2|2)e−|s−r|ωb(k)

)
,

(eY
(m)
t (2), eYt(2))2

= exp

(
1

4

(e
2

)2
∫ t

0

ds

∫ t

0

drσsσr

∫

R3

dk
|ϕ̂(k) + ϕ̂m(k)|2

ωb(k)
e−ik·(Bs−Br)

× (|k1|2 + |k2|2)e−|s−r|ωb(k)
)
.



The Pauli-Fierz model with spin 45

From here

lim
m→∞

‖eY
(m)
t (2) − eYt(2)‖2

2 = lim
m→∞

(
‖eY

(m)
t (2)‖2

2 − 2ℜ(eY
(m)
t (1), eYt(1))2 + ‖eYt(2)‖2

2

)
= 0

(4.53)

follows. Finally we see that for each ω ∈ Ω, eY
(m)
t (3,ε)1QE

→ eYt(3,ε)1QE
as m → ∞ in

L2(QE). There exists N = N(ω) ∈ N, s1 = s1(ω), ..., sN(ω) ∈ (0,∞) such that

eY
(m)
t (3,ε) =

N∏

i=1

(
−H

E
od(Bsi

,−σsi−, si, m) − εψε

(
H

E
od(Bsi

,−σsi−, si, m)
))
,

where H E
od(Bsi

,−σsi−, si, m) is defined by H E
od(Bsi

,−σsi−, si) with ϕ̂ replaced by ϕ̂m.

Since H E
od(Bsi

,−σsi−, si, m) converges strongly to H E
od(Bsi

,−σsi−, si) as m → 0 in

L2(QE), by Lemma 4.12 we obtain

lim
m→0

ψε(H
E

od(Bsi
,−σsi−, si, m)) = ψε(H

E
od(Bsi

,−σsi−, si)) (4.54)

in L2(QE). Similarly to the proof of limn→∞ eY n
t (3,ε) = eYt(3,ε), we argue that

lim
m→∞

‖eY
(m)
t (3,ε) − eYt(3,ε)‖2 = 0. (4.55)

From (4.52), (4.53) and (4.55) we finally obtain (4.39), completing the proof. qed

It remains to show (4.49) and (4.54).

Lemma 4.12 We have

lim
n→∞

ψε(H
E

od(Bsi
,−σsi−, n(si))) = ψε(H

E
od(Bsi

,−σsi−, si)) (4.56)

lim
m→0

ψε(H
E

od(Bsi
,−σsi−, si, m)) = ψε(H

E
od(Bsi

,−σsi−, si)) (4.57)

strongly in L2(QE).

Proof: We show (4.57), the proof of (4.56) is similar. Put ηm = H E
od(Bsi

,−σsi−, si, m)

and η = H E
od(Bsi

,−σsi−, si). Let gn ∈ S (R) be such that gn → ψε as n→ ∞ in L2(R).

We have

‖ψε(η) − ψε(ηm)‖ ≤ ‖ψε(η) − gn(η)‖ + ‖gn(η) − gn(ηm)‖ + ‖gn(ηm) − ψε(ηm)‖.

It is readily seen that

‖ψε(η) − gn(η)‖2 ≤
∫

|ψε(x) − gn(x)|2(2πρ)−1/2dx (4.58)



46 The Pauli-Fierz model with spin

and

‖gn(ηm) − ψε(ηm)‖2 ≤
∫

|ψε(x) − gn(x)|2(2πρm)−1/2dx, (4.59)

where ρ is given by (4.16) and ρm is obtained by replacing ϕ̂ by ϕ̂m. Since ρm → ρ as

m→ 0, the left hand sides of (4.58) and (4.59) are bounded by C‖ψε − gn‖2 with some

constant C independent of m. Consequently, they both converge to zero uniformly in

m. We also see that

‖gn(η) − gn(ηm)‖ ≤ (2π)−1/2

∫

R

|ĝn(k)|‖eixη − eixηm‖dx. (4.60)

Since ‖eixη − eixηm‖ → 0 as m→ 0 for each n, the left hand side of (4.60) converges to

zero as m→ 0. This gives the lemma. qed

4.3 Energy comparison inequality

Write

inf σ(HPF) = E(A ,B1,B2,B3)

for the bottom of the spectrum of HPF. Then for the spinless Pauli-Fierz Hamiltonian

ĤPF we have inf σ(ĤPF) = E(A , 0, 0, 0) and the diamagnetic inequality E(0, 0, 0, 0) ≤
E(A , 0, 0, 0) is well-known to hold [AHS78, Hir97]. In this subsection we extend this

inequality to the case of the Hamiltonian with spin.

Define

H⊥
PF := Hp +Hrad −

[
e
2
B3

|e|
2

√
B2

1 + B2
2

|e|
2

√
B2

1 + B2
2 − e

2
B3

]
. (4.61)

Furthermore, to avoid zeroes of the off-diagonal part to occur we also define

H⊥ε
PF := H⊥

PF −



 0 εψε

(
|e|
2

√
B2

1 + B2
2

)

εψε

(
|e|
2

√
B2

1 + B2
2

)
0



 . (4.62)

Since the spin interaction is infinitesimally small with respect to the free Hamiltonian

Hp+Hrad, H
⊥
PF and H⊥ε

PF are self-adjoint on D(−∆)∩D(Hrad) and bounded from below.

Note that |Hod| = |e|
2

√
B2

1 + B2
2 and ψε(Hod) = ψε(|Hod|) = ψε(

|e|
2

√
B2

1 + B2
2). The

functional integral representation of e−tH⊥
PF is given by

(F, e−tH⊥
PFG) = lim

ε→0
(F, e−tH⊥ε

PFG)

= lim
ε→0

∑

σ

∫
dxE

x,σ

[
e−

R t

0
V (Bs)ds

∫

QE

dµEJ0F (ξ0)e
X⊥

t (ε)JtG(ξt)

]
,
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where

X⊥
t (ε) = −

∫ t

0

Hd(Bs, σs, s)ds

+

∫ t+

0

log
[
|H E

od(Bs,−σs−, s)| + εψε(|H E
od(Bs,−σs−, s)|)

]
dNs.

Corollary 4.13 For all t ≥ 0 and F,G ∈ H we have

|(F, e−tHPFG)| ≤
(
|F |, e−tH⊥

PF|G|
)

(4.63)

and

max






E(0,
√

B2
1 + B2

2, 0,B3)

E(0,
√

B2
3 + B2

1, 0,B2)

E(0,
√

B2
2 + B2

3, 0,B1)




 ≤ E(A ,B1,B2,B3). (4.64)

Proof: Since H⊥
PF is unitary equivalent with the Hamiltonian obtained on replacing e

by −e, we may assume that e > 0 without loss of generality. By the functional integral

representation of e−tHPF we have

|(F, e−tHPFG)| = lim
ε→0

|(F, e−tHε
PFG)|

≤ lim
ε→0

∑

σ

∫
dxE

x,σ

[
e−

R t
0 V (Bs)ds

∫

QE

dµE|J0F (ξ0)||JtG(ξt)|eX⊥
t (ε)

]

≤ lim
ε→0

∑

σ

∫
dxE

x,σ

[
e−

R t
0 V (Bs)ds

∫

QE

dµE(J0|F (ξ0)|)(Jt|G(ξt)|)eX⊥
t (ε)

]
,

= lim
ε→0

(|F |, e−tH⊥ε
PF |G|) = (|F |, e−tH⊥

PF|G|),

where we used |eXt(ε)| ≤ eX⊥
t (ε) and the fact that |JtG| ≤ Jt|G| as Jt is positivity pre-

serving. Thus (4.63) follows. From this, E(0,
√

B2
1 + B2

2 , 0,B3) ≤ E(A ,B1,B2,B3)

is obtained. Since E(A ,B1,B2,B3) = E(A ,B3,B1,B2) = E(A ,B2,B3,B1) by

symmetry, (4.64) follows. qed

5 Translation invariant Hamiltonians

In this section we assume that V = 0. In the previous section we derived the functional

integral representation of e−tHPF and e−tHε
PF . By using them we can construct the
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functional integral representation of the translation invariant Hamiltonian

HPF(P ) =
1

2
(P − Pf − eA (0))2 +Hrad −

e

2

3∑

µ=1

σµBµ(0).

Before going to do this, we show translation invariance of the operator Hε
PF defined in

(4.11).

Lemma 5.1 Hε
PF is translation invariant and it follows that

Hε
PF =

∫ ⊕

R3

Hε
PF(P )dP,

where

Hε
PF(P ) = HPF(P ) +

[
0 εψε(− e

2
(B1(0) − iB2(0)))

εψε(− e
2
(B1(0) + iB2(0))) 0

]
. (5.1)

Proof: Let Φ = Φ(x) = (−e/2)(B1(λ(· − x)) − iB2(λ(· − x))). Note that

Hε
PF = HPF +

[
0 εψε(Φ)

εψε(Φ̄) 0

]
,

where Φ̄ denotes the complex conjugate of Φ. The term HPF is translation invariant,

therefore we only show that so is ψε(Φ). We already know that there exists ψn
ε ∈ S (R)

such that ψn
ε (Φ) → ψε(Φ) strongly as a bounded multiplication operator when n→ ∞,

where ψn
ε (Φ) = (2π)−1/2

∫
R
ψ̂ε

n
(k)eikΦdk. Thus ψn

ε is translation invariant, since Φ is.

Hence ψε(Φ) is also a translation invariant bounded multiplication operator. The proof

for ψε(Φ̄) is similar.

Furthermore, HPF + ψn
ε (Φ) is decomposed as

HPF +

[
0 ψn

ε (Φ)
ψn

ε (Φ̄) 0

]
=

∫ ⊕

R3

(
HPF(P ) +

[
0 εψn

ε (Φ(0))
εψn

ε (Φ̄(0)) 0

])
dP.

Since ψn
ε (Φ(0)) and ψn

ε (Φ̄(0)) converge strongly to ψε(Φ(0)) and ψε(Φ̄(0)), respectively,

(5.1) follows. qed

Theorem 5.2 For t ≥ 0 and Φ,Ψ ∈ Z2 ⊗ L2(Q) we have

(Φ, e−tHε
PF(P )Ψ) = et

∑

σ∈Z2

E
0,σ

[
eiP ·Bt

∫

QE

dµEJ0Φ(σ)eXt(ε)Jte
−iPf ·BtΨ(σt)

]
(5.2)

and

(Φ, e−tHPF(P )Ψ) = lim
ε→0

et
∑

σ∈Z2

E
0,σ

[
eiP ·Bt

∫

QE

J0Φ(σ)eXt(ε)Jte
−iPf ·BtΨ(σt)dµE

]
. (5.3)
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Proof: It suffices to show (5.2). The idea of proof is similar to that of Theo-

rem 3.3 in [Hir06]. Set Fs(σ) = ρs ⊗ Φ(σ) and Gr(σ) = ρr ⊗ Ψ(σ), where ρs(x) =

(2πs)−3/2 exp(−|x|2/(2s)), s > 0, is the heat kernel, and Φ(σ),Ψ(σ) ∈ L2
fin(Q). We

have by Lemma 5.1, for ξ ∈ R
3,

(Fs, e
−tHε

PFe−iξ·P tot

Gr)H =

∫

R3

dP ((UFs)(P ), e−tHε
PF(P )e−iξ·P (UGr)(P ))Z2⊗F ,

where the unitary operator U : H → H is defined by

(UFs)(P ) = (2π)−3/2

∫

R3

e−ix·Peix·Pfρs(x)Ψ(σ)dx.

Hence we have

lim
s→0

(Fs, e
−tHε

PFe−iξ·P tot

Gr)H = (2π)−3/2

∫

R3

dP (Ψ, e−tHε
PF(P )e−iξ·P (UGr)(P ))Z2⊗F .

(5.4)

On the other hand, we have through the functional integral representation (4.35),

(Fs, e
−tHε

PFe−iξ·P tot

Gr)H =

∫

R3

ρs(x)Υ(x)dx,

where

Υ(x) =
∑

σ

E
x,σ

[
ρr(Bt − ξ)

∫

QE

J0Ψ(σ)eXt(ε)Jte
−iξ·PfΦ(σt)dµE

]
.

In Lemma 5.3 below we show that Υ is bounded and is continuous at x = 0. Thus

further we obtain that

lim
s→0

∫

R3

ρs(x)Υ(x)dx = Υ(0) =
∑

σ

E
0,σ

[
ρr(Bt − ξ)

∫

QE

J0Ψ(σ)eXt(ε)Jte
−iξ·PfΦ(σt)dµE

]
.

Hence, together with (5.4) we have

(2π)−3/2

∫

R3

dPe−iξ·P (Ψ, e−tHε
PF(P )(UGr)(P ))Z2⊗F

=
∑

σ∈Z2

E
0,σ[ρr(Bt − ξ)J0Ψ(σ)eXt(ε)Jte

−iξ·PfΦ(σt)]. (5.5)

Since (Ψ, e−tHε
PF(·)(UGr)(·))Z2⊗F ∈ L2(R3), by taking inverse Fourier transform on both

sides of (5.5) we arrive at

(
Ψ, e−tHε

PF(P )(UGr)(P )
)

Z2⊗F
(5.6)

= (2π)−3/2
∑

σ∈Z2

E
0,σ

[∫

R3

dξeiξ·Pρr(Bt − ξ)

∫

QE

J0Ψ(σ)eXt(ε)Jte
−iξ·PfΦ(σt)dµE

]
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for almost every P ∈ R
3. Since both sides of (5.6) are continuous in P , the equality

holds for all P ∈ R
3. Taking r → 0 on both sides of (5.6), we get the desired result.

qed

We conclude by showing the lemma used above.

Lemma 5.3 Υ is bounded and is continuous at x = 0.

Proof: The boundedness is trivial, we proceed to show continuity. We have

|Υ(x) − Υ(0)| ≤
∑

σ

E
0,σ
[
‖Ψ(σ)‖2‖Φ(σt)‖2‖eZx

t (ε) − eZ0
t (ε)‖1

]
, (5.7)

with

Zx
t (ε) = −ie

3∑

µ=1

∫ t

0

A
E

µ (jsλ(· − Bs − x))dBµ
s

︸ ︷︷ ︸
:=Zx

t (1)

−
∫ t

0

Hd(Bs + x, σs, s)ds

︸ ︷︷ ︸
:=Zx

t (2)

+

∫ t+

0

log [−Hod(Bs + x,−σs−, s) − εψε(Hod(Bs + x, σs−, s))] dNs

︸ ︷︷ ︸
:=Zx

t (3,ε)

.

By (5.7) it is enough to show that

lim
x→0

E
0,σ[‖eZx

t (ε) − eZ0
t (ε)‖1] = 0, (5.8)

similarly to the proof of Theorem 4.11. We estimate I, II, III below:

eZx
t (ε) − eZ0

t (ε) = eZx
t (1)eZx

t (2)eZx
t (3,ε) − eZ0

t (1)eZx
t (2)eZx

t (3,ε)

︸ ︷︷ ︸
:=I

+ eZ0
t (1)eZx

t (2)eZx
t (3,ε) − eZ0

t (0)eZ0
t (2)eZx

t (3,ε)

︸ ︷︷ ︸
:=II

+ eZ0
t (1)eZ0

t (2)eZx
t (3,ε) − eZ0

t (1)eZ0
t (2)eZ0

t (3,ε)

︸ ︷︷ ︸
:=III

. (5.9)

We have ‖eZx
t (2)eZx

t (3,ε)‖2 ≤ e4(e/2)2t2‖
√

|k|ϕ̂‖2

c3(ω) := c4(ω), where c3(ω) is given in

(4.44), and

‖eZx
t (1) − eZ0

t (1)‖2
2 = 2 − 2ℜ(eZx

t (1), eZ0
t (1)) = 2 − 2 exp

(
−e

2

2
q1(̺

x
3 , ̺

x
3)

)
,
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where ̺x
3 = ⊕3

µ=1

∫ t

0

js(λ(· −Bs − x) − λ(· −Bs))dB
µ
s . Moreover,

E
0,σ[q1(̺

x
3 , ̺

x
3)] ≤

3

2
E

0,σ

[∫ t

0

‖λ(· −Bs − x) − λ(· −Bs)‖2ds

]
→ 0

as x→ 0. Thus

lim
x→0

E
0,σ‖I‖1 ≤ lim

x→0
E

0,σ‖eZx
t (1) − eZ0

t (1)‖2‖eZx
t (2)eZx

t (3,ε)‖2

≤ lim
x→0

E
0,σ‖eZx

t (1) − eZ0
t (1)‖2E

0,σ[c
1/2
4 ]

≤ lim
x→0

E
0,σ[1 − e−(e2/2)q1(̺x

3 ,̺x
3 )]E0,σ[c

1/2
4 ]

≤ lim
x→0

E
0,σ[(e2/2)q1(̺

x
3 , ̺

x
3)]E

0,σ[c
1/2
4 ] = 0.

Next we estimate II. We have

(eZx
t (2), eZ0

t (2))2

= exp

(
e2

2

∫ t

0

ds

∫ t

0

drσsσr

∫
dk

|ϕ̂(k)|2
ωb(k)

e−ik(Bs−Br−x)(|k1|2 + |k2|2)e−|s−r|ωb(k)

)

→ ‖eZ0
t (2)‖2

2

as x → 0. Then from ‖eZx
t (2) − eZ0

t (2)‖2
2 = 2‖eZ0

t (2)‖2
2 − 2ℜ(eZx

t (2), eZ0
t (2)) → 0 it follows

that

lim
x→0

‖II‖2
1 ≤ c3 lim

x→0
‖eZx

t (2) − eZ0
t (2)‖2

2 = 0

for almost every ω ∈ Ω. Finally we estimate III. For each ω ∈ Ω, there exist N =

N(ω) ∈ N and s1 = s1(ω), ..., sN(ω) ∈ (0,∞) such that

eZx
t (3,ε) =

N∏

i=1

(
−H

E
od(x+Bsi

,−σsi−, si) − εψε

(
H

E
od(x+Bsi

,−σsi−, si)
))
.

Since H E
od(x + Bsi

,−σsi−, si) converges strongly to H E
od(Bsi

,−σsi−, si) as x → 0 in

L2(QE), we see that limx→0 ψε(H
E

od(x + Bsi
,−σsi−, si)) = ψε(H

E
od(Bsi

,−σsi−, si)) in

L2(QE). This can be proven in the same way as Lemma 4.12. Hence

lim
x→0

N∏

i=1

(
−H

E
od(x+Bsi

,−σsi−, si) − εψε

(
H

E
od(x+Bsi

,−σsi−, si)
))

=

N∏

i=1

(
−H

E
od(Bsi

,−σsi−, si) − εψε

(
H

E
od(Bsi

,−σsi−, si)
))

(5.10)
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follows. Thus we obtain limx→0 ‖eZx
t (3,ε) − eZ0

t (3,ε)‖2 = 0 as well as limx→0 ‖III‖1 ≤
limx→0 ‖eZx

t (3,ε) − eZ0
t (3,ε)‖2‖eZ0

t (2)‖2 = 0 for almost every ω ∈ Ω, proving (5.8). qed

From (5.3), we can derive energy inequalities in a similar manner to Corollary 4.13.

Write

inf σ(HPF(P )) = E(P,A ,B1,B2,B3),

and define

H⊥
PF(P ) =

1

2
(P − Pf)

2 +Hrad −
[

e
2
B3(0) |e|

2

√
B1(0)2 + B2(0)2

|e|
2

√
B1(0)2 + B2(0)2 − e

2
B3(0)

]
.

Corollary 5.4 For t ≥ 0

|(Φ, e−tHPF(P )Ψ)| ≤
(
|Φ|, e−tH⊥

PF(0)|Ψ|
)

(5.11)

and

max






E(0, 0,
√

B2
1 + B2

2 , 0,B3)

E(0, 0,
√

B2
3 + B2

1 , 0,B2)

E(0, 0,
√

B2
2 + B2

3 , 0,B1)




 ≤ E(P,A ,B1,B2,B3). (5.12)

Proof: Clearly, |e−iPf ·BtΨ| ≤ e−iPf ·Bt|Ψ|. Therefore

|(Φ, e−tHPF(P )Ψ)| ≤ et lim
ε→0

∑

σ∈Z2

E
x,σ

[∫

QE

(J0|Φ(σ)|)eX⊥
t (ε)(Jte

−iPf ·Bt|Φ(σt)|)
]
dµE

= r.h.s. (5.11).

(5.12) is immediate from (5.11). qed

6 Concluding remarks

It is known that HPF has degenerate ground states for weak enough couplings [HS01,

Hir06]. In this subsection we comment on the breaking of ground state degeneracy of

a toy model by using the functional integral obtained in Theorem 4.11.

Consider the self-adjoint operator on H with the spin interaction replaced by the

fermion harmonic oscillator (3.5) in HPF:

H(ǫ) =
1

2
(−i∇− eA )2 + V +Hrad + ǫσF.
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Whenever ǫ = 0, the ground state of H(0) is degenerate at any coupling. In this case

(F, e−tH(0)G) = et lim
ε→0

∑

σ

∫
dxE

x,σ
[
e−

R t

0
V (Bs)ds(J0F (ξ0), e

−iAεNtJtG(ξt))
]

= et
∑

σ

∫
dxE

x
[
e−

R t
0

V (Bs)ds(J0F (x, σ), e−iAJtG(Bt, σ))
]
,

where A = A E(⊕3
µ=1

∫ t

0
jsλ(· − Bs)dB

µ
s ). We show, however, that the ground state of

H(ǫ) becomes unique for arbitrary values of coupling constants as soon as ǫ 6= 0. Since

the fermion harmonic oscillator σF is identical to −σ1, the off-diagonal part of H(ǫ)

is the non-zero constant −ǫ. Then we have the functional integral representation of

e−tH(ǫ) with the exponent Xt(0) in (4.35) replaced by

−ieA +

∫ t

0

log ǫdNs.

Thus

(F, e−tH(ǫ)G) = et
∑

σ

∫
dxE

x,σ[ǫNte−
R t
0 V (Bs)ds(J0F (ξ0), e

−ieAJtG(ξt))].

Take the unitary operator θ = e−i(π/2)N . In [Hir00a] it was seen that Tt := J∗
0 θ

−1e−iAθJt

is positivity improving. This implies

Corollary 6.1 θ−1eH(ǫ)θ is positivity improving for ǫ > 0 and, in particular, the

ground state of H(ǫ), ǫ 6= 0, is unique whenever it exists.

Proof: Note that H(ǫ) and H(−ǫ) are isomorphic, therefore we only take ǫ > 0. By

a direct computation and the definition of Tt, we have

(F, θ−1e−tH(ǫ)θG)

= et
∑

σ

∫
dxE

x
[
e−

R t

0
V (Bs)ds ×

× ((F (x, σ), TtG(Bt, σ)) cosh ǫt+ (F (x, σ), TtG(Bt,−σ)) sinh ǫt)
]
.

Then for non-zero 0 ≤ F,G ∈ L2(R3 × Z2 × Q) we see that the right-hand side above

is strictly positive, i.e., (F, θ−1e−tH(ǫ)G) > 0. This means that e−tH(ǫ) is positivity

improving. The uniqueness of the ground state follows by an application of the Perron-

Frobenius theorem [GJ68, Gro72]. qed
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The translation invariant version of the model is given by

H(ǫ, P ) :=
1

2
(P − Pf − eA (0))2 +Hrad + ǫσF.

The ground state of H(0, P ) is degenerate, whenever it exists, however in this case too

the degeneracy is broken. By Theorem 5.2, the functional integral representation of

e−tH(ǫ,P ) is given by

(Ψ, e−tH(ǫ,P )Φ) = et
∑

σ∈Z2

E
0,σ
[
ǫNteiP ·Bt(J0Φ(σ), e−iAJte

−iPf ·BtΨ(σt))
]
. (6.1)

If P = 0, the phase eiP ·Bt vanishes. Then, since e−iPf ·Bt is positivity preserving in Q-

representation, similarly to Corollary 6.1 we see that for P = 0 and ǫ > 0, θ−1e−tH(ǫ,0)θ

is positivity improving. This yields

Corollary 6.2 Let P = 0 and ǫ 6= 0. Then θ−1e−tH(ǫ,0)θ is positivity improving and

the ground state of H(ǫ, 0) is unique, whenever it exists.

Remark 6.3 The spin-boson model is defined by

HSB = σ1 ⊗ 1 + 1 ⊗Hf + ασ3 ⊗ φ(f), α ∈ R,

on C
2 ⊗ F(L2(R3)), where Hf is the free field Hamiltonian of F(L2(R3)) and φ(f) is

the field operator labeled by f ∈ L2(R3). We can also construct the functional integral

representation of e−tHSB by making use of the Z2-valued jump process σt. The functional

integral can then be used to prove uniqueness of the ground state whenever it exists

[Spo89, Hik99, Hik01, HH07].

7 Appendix: Itô formula for Lévy processes

In this appendix we recall and discuss some basic facts on Poisson processes and related

Itô formulas to make this paper sufficiently self-contained. A general reference on this

subject is [IW81, DV07].

Let (S,Σ, PP) be a complete probability space with a right-continuous increasing

family of sub-σ-fields (Σt)t≥0, where each Σt contains all PP-null sets. Also, let (X ,BX )

be a measurable space and ̟ the set of Z+∪{∞}-valued measures on (X ,BX ). Denote

by B̟ the smallest σ-field on ̟ such that ̟ ∋ µ 7→ µ(B), B ∈ BX , are measurable.

We define a class of measure-valued random variables.
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Definition 7.1 The (̟,B̟)-valued random variable N on (S,Σ, PP) is a Poisson

random measure on (X ,BX ) whenever the conditions below are satisfied:

(1) P (N(A) = n) = e−Λ(A)Λ(A)n/n!, A ∈ BX , where Λ(A) := EP[N(A)],

(2) if A1, ..., An ∈ BX are pairwise disjoint, then N(A1), ..., N(An) are independent.

Λ(A) is called the intensity of N(A), and EP[e−αN(A)] = eΛ(A)(e−α−1) holds.

Fix a measurable space (M,BM). By an M-valued point function p we mean a

map p : D(p) → M, where the domain D(p) is a countable subset of (0,∞). Define

the counting measure Np(dtdm) on the measure space ((0,∞)×M,B(0,∞) ×BM) by

Np(t, U) := Np((0, t] × U) = #{s ∈ D(p) | s ∈ (0, t], p(s) ∈ U}, t > 0, U ∈ BM,

where B(0,∞) is the Borel σ-field on (0,∞). Let Π(M) denote the set of all point

functions on M, and BΠ(M) be the smallest σ-field on Π(M) with respect to which

p 7−→ Np(t, U), t > 0, U ∈ BM, are measurable.

Definition 7.2 A (Π(M),BΠ(M))-valued random variable p on (S,Σ, PP) is called an

M-valued point process on (S,Σ, PP).

The point process p is called a stationary point process if and only if p(·) and p(s + ·)
have the same law for all s ≥ 0, with D(p(s+ ·)) = {t ∈ (0,∞) | s+ t ∈ D(p)}.

Definition 7.3 An M-valued point process p on (S,Σ, PP) is called a Poisson point

process if and only if the counting measure Np(dtdm) is a Poisson random measure on

((0,∞) ×M,B(0,∞) × BM).

It is known that a Poisson point process p is stationary if and only if its intensity

measure is of the form

EP[Np(dtdm)] = dtn(dm) (7.1)

for some measure n on (M,BM). An M-valued point process p on (S,Σ, PP) is called

(Σt)-adapted if for every t > 0 and U ∈ BM, Np(t, U) is Σt measurable for all t > 0.

It is called σ-finite if there exists Un ∈ BM, n = 1, 2, ..., such that Un ↑ M and

EP[Np(t, Un)] <∞, for all t > 0 and n = 1, 2, ... Let p be a (Σt)-adapted, σ-finite point

process. When EP[Np(t, U)] < ∞, ∀t > 0, there exists a natural integrable increasing

process (N̂p(t, U))t≥0 on (S,Σ, PP) such that

Np(t, U) − N̂p(t, U) := Ñp(t, U)

is a martingale. N̂p(t, U) is called the compensator of point process p.
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Definition 7.4 An M-valued point process p on (S,Σ, PP) is called a (Σt)-Poisson

point process if it is an (Σt)-adapted, σ-finite Poisson point process such that the

increments

{Np(t+ h, U) −Np(t, U) : h > 0, U ∈ BM}

are independent of Σt.

Let p be a (Σt)-Poisson point process. Then if t 7→ EP[Np(t, U)] is continuous, it holds

that N̂p(t, U) = EP[Np(t, U)]. In particular, a stationary (Σt)-Poisson point process has

the compensator N̂p(t, U) = tn(U), where n is that of (7.1), and for a disjoint family

of Ui in Σ, i = 1, ..., N ,

EP

[
e−

PN
i=1 αiNp((s,t]×Ui)

]
= exp

(
(t− s)

N∑

i=1

(e−αi − 1)n(Ui)

)
.

We give an example.

Example 7.5 Poisson point processes can be constructed through d-dimensional Lévy

processes. Let (ηt)t≥0 be an R
d-valued stationary Lévy process on probability space

(S,Σ, P ) with the natural filtration Σt = σ(ηs, s ≤ t). Define the jump process p(s) =

p(s, τ) = ηs(τ) − ηs−(τ) for each τ ∈ S. Let D(p) = {s ∈ (0,∞) | p(s) 6= 0}. Then

p : D(p) → R
d \ {0}, s 7→ p(s), is an R

d \ {0}-valued (Σt)-Poisson point process and

P (Np(t, U) = n) = (ν(U)t)ne−ν(U)t/n! holds, where ν(U) is the Lévy measure given by

ν(U) = EP[Np(1, U)] for U ∈ BRd\{0}. Moreover, its compensator is N̂p(t, U) = tν(U).

Fix a stationary (Σt)-Poisson point process p on (S,Σ, PP) with values in M. In

Section 3 we set (Ω,BΩ, PΩ) := (W×S,BW ×Σ, P 0
W ⊗P ) and ω := w×τ ∈W×S = Ω.

Let Π be the smallest σ-field on [0,∞)×M×Ω such that all g having the properties

below are measurable:

(1) for each t > 0, (m,ω) 7→ g(t,m, ω) is BM × Ωt measurable,

(2) for each (m,ω), t 7→ g(t,m, ω) is left continuous.

Definition 7.6 We call a Π-measurable function h : [0,∞) × M × Ω → R (Ωt)-

predictable and denote their set by Ωpred.
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Write

F :=

{
f ∈ Ωpred |

∫ t+

0

∫

M

|f(s,m, ω)|Np(dsdm) <∞ for t > 0, a.e. ω

}
,

F
2 :=

{
f ∈ Ωpred | EΩ

[∫ t

0

∫

M

|f(s,m, ω)|2N̂p(dsdm)

]
<∞ for t > 0

}

and

F
2,loc :=

{
f ∈ Ωpred | ∃ τn (Ωt)−stopping times : τn ↑ ∞ and 1[0,τn](t)f(t,m, ω) ∈ F

2
}
.

Let f i(t, ω) and gi(s, ω) be adapted with respect to (Ωt), EΩ[
∫ t

0
|f i(s, ·)|2ds] < ∞ and

gi(·, ω) ∈ L1
loc(R) for a.e. ω ∈ Ω. Furthermore, take hi

1 ∈ F and hi
2 ∈ F

2,loc. Define the

semi-martingale Xt = (X1
t , ..., X

d
t ) on (Ω,BΩ, PΩ) by

X i
t =

∫ t

0

f i(s, ω)dBi
s +

∫ t

0

gi(s, ω)ds (7.2)

+

∫ t+

0

∫

M

hi
1(s,m, ω)Np(dsdm) +

∫ t+

0

∫

M

hi
2(s,m, ω)Ñp(dsdm).

Here Ñp(dsdm) = Np(dsdm) − dsn(dm).

Proposition 7.7 Let F ∈ C2(Rd) and Xt = (X1
t , ..., X

d
t ) be given by (7.2). Suppose

hi
1 ∈ F, hj

2 ∈ F
2,loc, and hi

1h
j
2 = 0 for i, j = 1, ..., d. Then F (Xt) is a semimartingale

and the following Itô formula holds:

dF (Xt) =

d∑

i=1

3∑

µ=1

∫ t

0

∂F (Xs)

∂xi
f i

µ(s, ω)dBµ
s

+

d∑

i=1

∫ t

0

∂F (Xs)

∂xi
gi(s, ω)ds+

1

2

d∑

i,j=1

∫ t

0

∂2F (Xs)

∂xi∂xj
f i(s, ω)f j(s, ω)ds

+

∫ t+

0

∫

M

(F (Xs− + h1(s,m, ω)) − F (Xs−))Np(dsdm)

+

∫ t+

0

∫

M

(F (Xs− + h2(s,m, ω)) − F (Xs−)) Ñp(dsdm)

+

∫ t

0

∫

M

(
F (Xs + h2(s,m, ω)) − F (Xs) −

d∑

i=1

hi
2(s,m, ω)

∂F (Xs)

∂xi

)
N̂p(dsdm),

where N̂p(dsdm) = dsn(dm).
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Proof: See, e.g., [IW81, Theorem 5.1]. qed

Write (7.2) as dX i = f idBi + gidt+
∫
M
hi

1dN +
∫
M
hi

2dÑ in concise notation. Let

d = 1, B1
t = Bt and

dZ = uZdt+ vZdB +

∫

M

fZdN +

∫

X

gZdÑ,

dY = uY dt+ vY dB +

∫

M

fY dN +

∫

X

gY dÑ

with fZgZ = 0, fZgY = 0, fY gY = 0 and fY gZ = 0. Then by Proposition 7.7 we have

the product rule

d(ZY ) = ZsuY ds+ ZsvY dBs +

∫

M

Zs−fYNp(dsdm) +

∫

M

Zs−gY Ñp(dsdm)

+YsuZds+ Y (s)vZdBs +

∫

M

Ys−fZNp(dsdm) +

∫

M

Y (s−)gZÑp(dsdm)

+vZvY ds+

∫

M

(fZfY + gZgY )Np(dsdm).

This formula is written as d(ZY ) = dZ · Y + Z · dY + dZ · dY in the concise notation.

Suppose n(M) = 1 and set Nt := Np((0, t] × M) and dNt :=
∫
M
Np(dtdm) as

mentioned in Section 3.2. Then the compensator of p is given by N̂p(t,M) = t and

EΩ[e−αNt ] = et(e−α−1). Moreover,

EΩ

[∫ t+

0

∫

M

f(s, ω,m)Np(dsdm)

]
= EΩ

[∫ t

0

∫

M

f(s, ω,m)dsn(dm)

]
.

Hence we have for f = f(s, ω) independent of m ∈ M,

EΩ

[∫ t+

0

f(s, ω)dNs

]
= EΩ

[∫ t

0

f(s, ω)ds

]
. (7.3)

Furthermore, Proposition 7.7 gives

Proposition 7.8 Suppose hi ∈ F, i = 1, ..., d, are independent of m ∈ M. Let dX i =

f i
µdB

µ + gidt+ hidN , i = 1, ..., d, and F ∈ C2(Rd). Then

dF (Xt) =
d∑

i=1

3∑

µ=1

∫ t

0

∂F (Xs)

∂xi

f i
µ(s, ω)dBµ

s

+

d∑

i=1

∫ t

0

∂F (Xs)

∂xi
gi(s, ω)ds+

1

2

d∑

i,j=1

∫ t

0

∂2F (Xs)

∂x2
i ∂xj

f i(s, ω)f j(s, ω)ds

+

∫ t+

0

(F (Xs− + h(s, ω)) − F (Xs−)) dNs.
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Henri Poincaré 1 (2000), 443–459, and A remark on the paper: “On the existence of ground
states for Hamiltonians”, mp-arc 06-146 (2006).

[GJ68] J. Glimm and A. Jaffe, The λ(φ4)2 quantum field theory without cutoffs I, Phys. Rev. 176

(1968), 1945–1951.

[GLL01] M. Griesemer, E. Lieb and M. Loss, Ground states in non-relativistic quantum electrody-
namics, Invent. Math. 145 (2001), 557–595.

[Gro72] L. Gross, Existence and uniqueness of physical ground states, J. Funct. Anal. 10 (1972),
52–109.
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