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Equations are derived that relate the vertical hydrodynamic force on two- and three-
dimensional structures that are floating in a fluid of infinite depth to the far-field
dipole coefficient in the velocity potential. By an application of Green’s theorem to the
radiation or scattering potential and a suitable test potential, the heave added mass, the
heave damping and the vertical exciting force are shown to be expressible in terms of
the dipole coefficient in the relevant potential. The results add to the known reciprocity
relations, which relate quantities such as the damping and the exciting force to the
amplitude of the far-field radiated wave. The expressions are valid at all frequencies,
and their high- and low-frequency asymptotics are investigated.
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1. Introduction
It is well known (Newman 1977) that, when a structure makes small oscillations

at angular frequency ω in a fluid with a free surface, the part of the hydrodynamic
force on the body that is in phase with its velocity, the damping, is related to the
amplitude of the radiated wave and is non-negative. This is one of many reciprocity
relations that have been found that relate near-field and far-field quantities associated
with the radiation and scattering of waves by a floating structure, and the known
results are summarized in Linton & McIver (2001). No similar relationship is known
for the part of the force on a body that is in phase with the acceleration, the
added mass, although Kotik & Mangulis (1962) have shown that this is related to
an integral of the damping over all frequencies, via the Kramers–Kronig relations. The
Kramers–Kronig relations were also used by Greenhow (1986) to obtain simple high-
and low-frequency relationships between the added mass and damping.

The first aim of this work is to show, by the application of Green’s theorem
to the heave radiation potential and a suitable test potential, that, when a structure
makes small oscillations in the vertical direction in a fluid of infinite depth, the total
hydrodynamic force it experiences, which is made up of both the heave added mass
and the heave damping, is related to the far-field dipole coefficient in the velocity
potential. The method used follows that given in McIver & McIver (2006, 2007) to
generate necessary conditions for the existence of motion trapped modes. The resulting
expression for the heave force is valid at any frequency and is an extension of the
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result derived by Newman (1977), who showed that the force on a body that moves
in an unbounded fluid with no free surface is related to the dipole moment in the
far field. Far-field representations are given for the vertical force on both two- and
three-dimensional structures, and the method is then extended to show that the vertical
exciting force on a fixed structure that scatters an incident wave can be written in
terms of the coefficient of the far-field vertical dipole in the scattering potential.

Although the expressions for the vertical forces are valid at all frequencies, in
general the far-field dipole coefficient needs to be evaluated numerically for any
particular structure. This is fairly straightforward at low or moderate frequencies,
for structures like a floating semicircular cylinder (Ursell 1949) or a hemisphere
(Havelock 1955), where the potential can be written in terms of a multipole expansion
everywhere in the fluid. However, numerical calculations are more difficult at high
frequencies, and Leppington (1973) developed a method based on matched asymptotic
expansions to obtain a high-frequency approximation to the heave potential. His work
requires the fluid to be split into a number of regions around the structure and the
potential to be expanded differently in each region. This makes it difficult to evaluate
the force on the structure by direct integration of the pressure over the body, as the
body typically extends into more than one region and so there is not a single form
for the potential that can be used. The relationship between the total force and the
far-field dipole coefficient that is derived in this work has the advantage that the force
is written in terms of the potential in a single region.

Many authors have studied the low-frequency approximation to the hydrodynamic
forces on a structure, and much of the work that has been done is summarized in
McIver (1994). The method of matched asymptotic expansions may be used in a
straightforward way at low frequencies to determine the asymptotic expansion of the
force on a structure by direct integration of the potential, as typically the structure
is contained within a single region in a fluid and so only one form of the potential
is used. However, it will be shown that the expressions for the vertical force that
are derived in this work may be combined with the results from direct integration to
obtain further terms in the asymptotic expansion of the far-field dipole coefficient at
low frequencies.

The results obtained in this work and the other reciprocity relations summarized in
Linton & McIver (2001) are based on the assumption of small-amplitude motion and
use linear theory. However, results also exist (Maruo 1960; Newman 1967) that relate
the second-order drift force and vertical moment on a structure to integrals that involve
the far-field wave amplitude. More recently, Sclavounos (2012) derived expressions for
the fully nonlinear wave loading on a structure in terms of the time derivative of the
fluid impulse.

2. The vertical force coefficient
For simplicity, the theory is given in detail for a single two-dimensional surface-

piercing structure that is symmetric in x and makes small vertical oscillations with
angular frequency ω about its equilibrium position, as illustrated in figure 1. The
results for an asymmetric structure, a multi-hulled structure and a three-dimensional
structure are presented, but, as the derivation is essentially the same, the details are
not given. In addition, expressions are given for the vertical exciting force on two- and
three-dimensional structures that are held fixed in waves.

Coordinate axes are chosen so that the z-axis points vertically upwards, the mean
free surface (FS) coincides with the line z = 0 and the structure intersects the surface
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FIGURE 1. Definition sketch.

at x=±a. Two-dimensional polar coordinates (r, θ) are defined such that

x= r sin θ, z=−r cos θ. (2.1)

The water is assumed to be inviscid and incompressible and the motion irrotational,
so the velocity may be written as the gradient of a potential that satisfies Laplace’s
equation. The motion of the structure and the fluid is assumed to be sufficiently small
that linear theory may be used (Newman 1977), and so it is possible to consider a
body that oscillates at a single frequency in one mode of motion. Vertical oscillations
are governed by the heave radiation potential Re[φ(x, z) e−iωt

], which satisfies

∇
2φ = 0 in the fluid, (2.2)

and the boundary condition

∂φ

∂n
= nz on S, (2.3)

where S is the structure surface, ∂/∂n represents the derivative in the direction of the
inward normal to S and nz is the component of the inward normal to the body in the
z-direction. On the mean free surface, φ satisfies the condition

Kφ −
∂φ

∂z
= 0 on FS, (2.4)

where K = ω2/g and g is the acceleration due to gravity. The potential represents
outward propagating waves as x→±∞ and decays with depth. The boundary value
problem for φ is assumed to possess a unique solution. This has been established for
various classes of single-body structures, but non-uniqueness is known to occur for
certain multi-hulled two-dimensional structures and three-dimensional structures that
possess moon pools. A review of some of the known results on uniqueness and the
existence of trapped modes is available in Kuznetsov, Maz’ja & Vainberg (2002).

Ursell (1968) showed that outside a semicircle that is centred on the mean free
surface and contains the structure, φ may be written as

φ = ap0G(x, z)+
∞∑

n=1

a2n+1pnφn(r, θ), (2.5)

where G is the potential due to a wave source at the origin, given by

G=−
∞

0

ekz cos kx

k − K
dk (2.6)
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(the integral is indented below the pole at k = K). The potentials

φn =
cos(2nθ)

r2n
+

K

2n− 1
cos((2n− 1)θ)

r2n−1
, n= 1, 2, . . . , (2.7)

are the symmetric wave-free potentials that decay as r → ∞. As the structure
is symmetric about the z-axis and oscillates in the vertical direction, there is no
contribution to φ from any antisymmetric terms. The coefficients {pn} depend on the
geometry of the structure and the wave frequency, and in general must be solved for
numerically. The first of these, p0, measures the amplitude of the wave radiated to
infinity. By writing the source potential in terms of the exponential integral and using
the large-argument expansion of this function (Abramowitz & Stegun 1965), it may be
shown that

φ =−πiap0 eKz+iK|x|
+

(ap0

K
+ Ka3p1

) cos θ
r
+ O

(
1
r2

)
as r→∞. (2.8)

For what follows, it is important to note that the dipole coefficient in φ at large depths
does not depend just on the coefficient of the first wave-free potential in (2.5); there is
also a contribution from the coefficient of the wave source.

By putting n = 0,−1,−2, . . . in (2.7), a second set of wave-free potentials are
generated, which satisfy (2.2) and (2.4) but grow as r→∞. The first potential in this
set is given by

φ0 = 1− Kr cos θ = 1+ Kz, (2.9)

and this has the property that

∂φ0

∂n
= Knz (2.10)

on any structure. Following McIver & McIver (2006), an application of Green’s
theorem to φ and φ0 is made in the fluid region that is bounded by a closing surface
as r→∞, and gives ∫

∂D

[
φ
∂φ0

∂n
− φ0

∂φ

∂n

]
dS= 0, (2.11)

where ∂D is the total boundary of the region and ∂/∂n is the derivative in the outward
normal direction to the fluid. As both φ and φ0 satisfy the free surface condition (2.4),
the only contributions to this integral come from the body surface S and the closing
surface at infinity. From (2.3)–(2.10) the contribution from the surface of the body is
given by ∫

S

[
φ
∂φ0

∂n
− φ0

∂φ

∂n

]
dS= K

∫
S
φ nz dS−

∫
S
(1+ Kz)nz dS. (2.12)

The function ψ = z+ Kz2/2 satisfies ∇2ψ = K everywhere, and so the second integral
in (2.12) may be evaluated explicitly by an application of the divergence theorem to
∇ψ in the region contained within the body. As nz is defined to be the z-component of
the normal that points into the body, (2.12) simplifies to∫

S

[
φ
∂φ0

∂n
− φ0

∂φ

∂n

]
dS= K

∫
S
φ nz dS+ KA0 − L0, (2.13)
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where L0 is the water-plane length and A0 is the cross-sectional area of the portion of
the body below this line. For a single structure that intersects the mean free surface at
the two points x=±a only, L0 = 2a.

From (2.9), φ0 = O(r) as r→∞ and ∂φ0/∂r = O(1), and so there are possible
contributions to (2.11) from the interactions between φ0 and any term that is O(1/r)
or larger in φ on the closing surface at infinity. Therefore, it is necessary to calculate
the form of these contributions over a large surface and then let the surface size tend
to infinity. It does not matter what the precise shape of the surface is, and so it is
sensible to choose it to be a large rectangle when considering the interaction between
φ0 and the wave-like term in φ and a large semicircle of radius R when considering
the interaction between φ0 and the dipole in φ.

The propagating wave potential φw is defined by

φw = eKz+iK|x|. (2.14)

Evaluation of the contribution to the integral in (2.11) from the interaction between φw

and φ0 on any line x= L> 0, −∞< z< 0, gives∫ 0

−∞

[
φw
∂φ0

∂x
− φ0

∂φw

∂x

]
x=L

dz=−iKeiKL

∫ 0

−∞

(1+ Kz) eKz dz= 0, (2.15)

after integration by parts. A similar argument shows that there is no contribution
to (2.11) from the interaction between φw and φ0 on any line x = −L < 0 and, as
φw decays exponentially as z→−∞ while φ0 grows only algebraically, there is no
contribution to this integral from a closing line at large depths.

The contribution to the integral in (2.11) from the interaction between the dipole
potential

φd =
cos θ

r
(2.16)

and φ0 over the surface r = R, R→∞, is given by

lim
R→∞

[∫ π/2
−π/2

(
φd
∂φ0

∂r
− φ0

∂φd

∂r

)
R dθ

]
= lim

R→∞

[∫ π/2
−π/2

(
cos θ

R
(−K cos θ)− (1− KR cos θ)

(
−

cos θ
R2

))
R dθ

]
= lim

R→∞

[
−Kπ+ O

(
1
R

)]
=−Kπ. (2.17)

A combination of (2.8), (2.15) and (2.17) shows that the contribution to (2.11) from
the closing surface at infinity S∞ is given by∫

S∞

[
φ
∂φ0

∂n
− φ0

∂φ

∂n

]
dS=−πa[p0 + (Ka)2 p1]. (2.18)

Substitution of (2.13) and (2.18) into (2.11) gives, after some rearrangement,

F2 =
a33

ρA0
+

ib33

ωρA0
=

1
A0

∫
S
φnz dS=

L0

KA0
− 1+

πap0

KA0
+
πKa3p1

A0
. (2.19)

The complex quantity F2 is the total non-dimensional heave force on the structure, and
(2.19) shows that it may be written in terms of the complex amplitude of the radiated
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wave, the coefficient of the first decaying wave-free potential, the wavenumber K and
some of the geometric parameters of the body. The real part of F2, a33/ρA0, is the non-
dimensional added mass, and the imaginary part, b33/ωρA0, is the non-dimensional
damping, where ρ is the fluid density and the notation used follows that given in
Linton & McIver (2001). The coefficients p0 and p1 depend on the wavenumber K and
the geometry of the structure, and in general are complex and solved for numerically.

The damping is known to be expressible in terms of the magnitude of the radiated
wave amplitude, and the precise relationship may be obtained by an application of
Green’s theorem to φ and its complex conjugate φ. With the notation used in this
paper, this reduces to

Im
[∫

S
φnz dS

]
=

1
2i

∫
S
(φ − φ)nz dS= π2a2

|p0|
2 . (2.20)

Substitution of (2.20) into the imaginary part of (2.19) shows, after some
rearrangement, that Im[p1] may be written in terms of p0 for any structure as

Im[p1] =
π

Ka
|p0|

2
−

1

(Ka)2
Im[p0]. (2.21)

For some structures, such as the semicircular cylinder, the heave potential may
be expressed in terms of a multipole expansion at all points in the fluid. The
multipole coefficients in general satisfy an infinite system of equations, which must
be solved numerically. Direct integration of the potential over such a body leads to
the added mass and damping being expressed as infinite sums over all the multipole
coefficients. In this case, (2.19) provides a numerical check on the results, which may
be particularly useful at high frequencies where numerical calculations are not so easy
to make. In addition, the expression in (2.21) may be used to provide a numerical
check on the relationship between the first two coefficients in the expansion.

The analysis was performed for a two-dimensional symmetric structure that
intersects the free surface of an infinite-depth fluid at two points only. It is
straightforward to show that the symmetry requirement is not necessary, because,
although the far-field expression for the heave radiation potential for an asymmetric
structure includes a horizontal wave dipole and antisymmetric wave-free potentials in
addition to the symmetric potentials in (2.5), these extra terms do not contribute to the
far-field integral in (2.11). The expression (2.19) also holds for the total vertical force
on a multi-body structure that moves as a single entity. In this case, the parameter
a is chosen to be a length scale associated with the structure, L0 is the sum of the
water-plane lengths associated with each body and A0 is the corresponding sum of the
cross-sectional areas. However, the determination of the coefficients p0 and p1 in (2.19)
requires the far-field expansion of the heave potential in terms of potentials that have
a single singular point. Although this is possible for a multi-body structure, it may be
more convenient to express the heave potential in terms of separate sets of singularities
with singular points inside each body before performing the analysis.

A similar analysis may be performed if the body is submerged, but, although (2.5) is
a valid representation of the heave potential for a symmetric body outside a semicircle
centred on the free surface and that contains the structure, it is more convenient to
express the potential in terms of a submerged vertical wave dipole and submerged
wave-free potentials, all with singular points inside the body. The analysis may also
be performed if the water has finite depth, but, in this case, the force on the structure
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is given in terms of a limit of an integral of the potential over the sea bed after
cancellation is made with contributions from the closing surfaces as x→±∞.

The far-field representation of the heave potential for an axisymmetric surface-
piercing structure in three dimensions and infinite depth is given by

φ = a2q0

∞

0

kekzJ0(kr sin θ)
k − K

dk +
∞∑

n=1

a2n+2qn

[
P2n(cos θ)

r2n+1
+

K

2n

P2n−1(cos θ)
r2n

]
,

(2.22)

where J0 is the zero-order Bessel function, Pn(cos θ) are the Legendre polynomials and
the coefficients {qn} depend on the geometry of the structure and the wave frequency.
The z-axis is chosen as in the two-dimensional case and r and θ are now two
of the spherical polar coordinates, defined by r = (x2

+ y2
+ z2)

1/2 and z = −r cos θ .
The parameter a is chosen to be the radius of the largest circle with which the
structure intersects the free surface. A similar analysis to that performed for the two-
dimensional structure shows that the total non-dimensional heave force on the structure
is given by

F3 =
a33

ρV0
+

ib33

ωρV0
=

1
V0

∫
S
φnz dS=

W0

KV0
− 1+

2πa2q0

KV0
+
πKa4q1

V0
, (2.23)

where V0 is the volume of the part of the structure contained in z < 0 and W0 is its
water-plane area. For an axisymmetric structure that intersects the mean free surface in
only one circle, W0 = πa2. As in the two-dimensional case, (2.23) may be shown to be
valid for a non-axisymmetric structure, where a2q0 and a4q1 are the coefficients of the
axisymmetric source and the first axisymmetric wave-free potential, respectively, in the
far-field representation of φ.

The expressions in (2.19) and (2.23) are valid for all frequencies, although the
coefficients themselves depend on frequency. They are extensions of the result derived
by Newman (1977), which states that the force on a body that moves in an unbounded
fluid with no free surface is related to the dipole moment in the far field. A similar
procedure may be used to obtain expressions for the vertical exciting force on a
structure that is held fixed in an incident wave field. In this case, the scattering
potential φs has zero normal derivative on the structure, and so the expressions for the
two- and three-dimensional vertical exciting forces, X2 and X3, just contain the terms
that involve the coefficients in the far-field expansion of φs, namely

X2 =
a

A0

∫
S
φsnz dS=

πap′0
KA0
+
πKa3p′1

A0
(2.24)

and

X3 =
a

V0

∫
S
φsnz dS=

2πa2q′0
KV0

+
πKa4q′1

V0
. (2.25)

Here the incident wave is assumed to propagate in the positive x-direction, so φs can
be written as

φs = eiKx+Kz
+ φD, (2.26)

where φD is the part of φs that remains once the incident wave has been subtracted
out. The parameters {p′0, a2p′1} and {aq′0, a3q′1} are the coefficients of the wave source
and the first wave-free potential in the symmetric or axisymmetric component of φD.
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Expressions (2.24) and (2.25) may also be used to determine the force on a fixed
structure due to a sloshing trapped mode (if one exists), in which case φs represents
the trapped mode potential and the coefficient of the wave-like term, p′0 or q′0, is
automatically zero. This last expression was derived by FitzGerald & McIver (2010)
and then used to generate structures that support passive trapped modes.

In general it is only possible to evaluate the coefficients in the expansion of
the potential numerically, but information about their behaviour at high and low
frequencies may be obtained from the method of matched asymptotic expansions
(Leppington 1973). This method requires the fluid domain to be split into a number
of separate regions and the potential to be expanded differently in each region
and then matched in an appropriate way. In order to determine the force on the
structure directly, it is necessary to integrate the potential over the whole body. This is
complicated by the fact that the body may be contained within more than one region
and so care must be taken when deciding which expansion for the potential should
be used. The advantage of the formulae in (2.19) and (2.23)–(2.25) is that they only
require the coefficients in the expansion of the potential in the far field.

Leppington (1973) showed that, if a single heaving two-dimensional body intersects
the free surface at right angles with a non-zero radius of curvature, then p0 =

O(1/ (Ka)2) and Ka p1 = O(1) as Ka→∞. So from (2.19) the term involving p0

does not contribute to the leading-order high-frequency terms in the heave force for
such a body. The expansion of Ka p1 to O(1/Ka) comes from the solution of the first
two boundary value problems, which arise when a Taylor series expansion of the free
surface condition (2.4) is made in powers of 1/Ka. It may be shown that

Ka p1 = p∞ +
1

Ka

[
−

2
π
−

1
πa

∫
FS

(
∂φ∞

∂z

)2

dx

]
+ O

(
1

(Ka)2

)
as Ka→∞, (2.27)

where φ∞ is the infinite-frequency heave potential, which satisfies (2.3), is zero on the
free surface and has the far-field expansion

φ∞ = a2p∞
cos θ

r
as r→∞. (2.28)

(The representation of the O(1/Ka) term in (2.27) in terms of φ∞ is obtained from an
application of Green’s theorem to φ∞ − z and the second potential in the Taylor series
expansion.) Substitution of (2.27) into (2.19) gives

F2 =
πa2p∞

A0
− 1−

1
KA0

∫
FS

(
∂φ∞

∂z

)2

dx+ O

(
1

(Ka)2

)
as Ka→∞, (2.29)

which agrees with the result of Rhodes-Robinson (1970), who calculated the high-
frequency asymptotics of the force on a cylinder in finite depth by direct integration.

Several authors have worked on the calculation of hydrodynamic forces at low
frequencies and much of this is summarized in McIver (1994). In this limit, the
dominant term in the expansion of the heave potential in the far field is the wave
source. More precisely, in two dimensions, p0 = O(1) and (Ka)2 p1 = o(1) as Ka→ 0.
However, the heave added mass for a two-dimensional surface-piercing structure in
fluid of infinite depth has a logarithmic singularity at Ka = 0. McIver showed that
it is possible to obtain an expansion of the heave force on a structure, accurate to
O(1), by just knowing the leading-order term in p0 as Ka→ 0. Thus (2.19) provides
a mechanism by which the first correction to the dipole coefficient at low frequency
may be determined, without having to solve a higher-order problem in the matched
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asymptotic procedure. In particular, Ursell (1964) show that the non-dimensional heave
force on a two-dimensional semicircular cylinder is given by

F2 =
8
π2

(
− ln Ka+

3
2
− 2 ln 2− γ

)
+

8i
π
+ o(1) as Ka→ 0, (2.30)

where γ is Euler’s constant. Substitution of (2.30) into (2.19) shows, after some
rearrangement, that the coefficient of the far-field dipole for the semicircular cylinder
is given by

p0 + (Ka)2 p1 =−
2
π
+ Ka

[
−

4 ln Ka

π2
+

1
2
+

6
π2
−

8 ln 2
π2
−

4γ
π2
+

4i
π

]
+ o(Ka)

as Ka→ 0. (2.31)

As p0 = O(1) and (Ka)2 p1 = o(1) as Ka→ 0, the leading-order term in this expression
gives p0 = −2/π, which is consistent with the leading-order amplitude of the radiated
wave obtained from the method of matched asymptotic expansions. The next term on
the right-hand side of (2.31) potentially contributes to both the correction term in p0

and the leading-order term in (Ka)2 p1.

3. Conclusion
In this work, expressions for the vertical hydrodynamic forces on a floating structure,

in terms of the dipole coefficient in the expansion of the potential in the far field,
have been derived. The method used relies on the existence of the harmonic potential
φ0, which satisfies both the free surface boundary condition (2.4) and the condition
∂φ0/∂n∝ nz on any structure. Unfortunately, this means that a similar approach cannot
be used to determine expressions for the horizontal forces and moments on a structure.
In two dimensions, the lowest growing antisymmetric wave-free potential that satisfies
the free surface boundary condition is

φa = x(1+ Kz), (3.1)

but this does not in general satisfy ∂φa/∂n ∝ nx on a structure and so cannot be used
in an application of Green’s theorem to obtain the horizontal force on an arbitrary
structure.

The resulting expression for the vertical heave force was investigated at high and
low frequencies. In particular, it was shown that at low frequencies the far-field dipole
coefficient in the potential, accurate to O(Ka), may be obtained without the need to
solve for it directly to that order.
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