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SEMI-CLASSICAL LIMIT OF WAVE FUNCTIONS

A. TRUMAN AND H. Z. ZHAO

(Communicated by James Glimm)

Abstract. We study in one dimension the semi-classical limit of the exact
eigenfunction ΨhE(N,h) of the Hamiltonian H = − 1

2
h2∆ + V (x), for a poten-

tial V being analytic, bounded below and lim|x|→∞ V (x) = +∞. The main

result of this paper is that, for any given E > minx∈R1 V (x) with two turning

points, the exact L2 normalized eigenfunction |ΨhE(N,h)(q)|
2 converges to the

classical probability density, and the momentum distribution |Ψ̂h
E(N,h)

(p)|2
converges to the classical momentum density in the sense of distribution, as
h → 0 and N → ∞ with (N + 1

2
)h = 1

π

∫
V (x)<E

√
2(E − V (x))dx fixed. In

this paper we only consider the harmonic oscillator Hamiltonian. By studying
the semi-classical limit of the Wigner’s quasi-probability density and using the
generating function of the Laguerre polynomials, we give a complete mathe-
matical proof of the Correspondence Principle.

1. Introduction

Consider the Schrödinger operator in R1

H = −1
2
h2∆ + V (x)(1)

with V (x) analytic, bounded below and lim|x|→∞ V (x) = +∞. Then by the limit
point criteria,H is a self-adjoint operator with discrete spectrum {E(N, h)}N=0,1,···,
E(N, h)→ +∞ as N →∞ with corresponding orthonormal eigenfunctions Ψh

E(N,h)

∈ L2 for any fixed h > 0 (see [6]). It is a basic question to ask what is the semi-
classical limit of |Ψh

E(N,h)(q)|2 as h→ 0, N → +∞ ([5], [2], [1], [4]). We consider the
small h and high quantum number limit of |Ψh

E(N,h)(q)|2 as h→ 0, N →∞ but with
(N + 1

2 )h remaining a constant, namely

(N +
1
2

)h = F (E) =
1
π

∫
V (x)<E

√
2(E − V (x))dx

which means E(N, h) ∼ E for an arbitrary constant E > minV (x). For the
momentum distribution, we consider

Ψ̂h
E(N,h)(p) = (2πh)−

1
2

∫
e−

i
h pqΨh

E(N,h)(q)dq,(2)
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and what is the semi-classical limit of |Ψ̂h
E(N,h)(p)|2 as h → 0, N → ∞ but with

(N + 1
2 )h = F (E)?

For an L2 eigenfunction Ψ of the Hamiltonian H , define Wigner’s quasi-
probability density by

Wh
Ψ(q, p) =

1
2π

∫
e−iηpΨ∗(q − 1

2
hη)Ψ(q +

1
2
hη)dη.(3)

Then it is well known that∫
W h

Ψ(q, p)dp = |Ψ(q)|2,
∫
Wh

Ψ(q, p)dq = |Ψ̂(p)|2.(4)

W h
Ψ is the quantum mechanical analogue of a simultaneous probability distribution.

Of course, because [q, p] = ih, such a distribution can only exist in the limit as
h→ 0. This is reflected in the fact that if h > 0, in general

Wh
Ψ(q, p) 6≥ 0.(5)

It is straightforward to show that

FWh
Ψ(β, α) =

∫
ei(αp+βq)Wh

Ψ(q, p)dqdp

=
1

2π

∫
ei(−ηp+αp+βq)Ψ∗(q − 1

2
hη)Ψ(q +

1
2
hη)dηdqdp

=
∫
δ(η − α)eiβqΨ∗(q − 1

2
hη)Ψ(q +

1
2
hη)dηdq

=
∫

eiβqΨ∗(q − 1
2
hα)Ψ(q +

1
2
hα)dq.

(6)

In order to study the semi-classical limits of |Ψh
E(N,h)(q)|2 and |Ψ̂h

E(N,h)(p)|2, by
(4), we consider the corresponding Wigner quasi-probability density in the limit as
h→ 0, N → ∞ with (N + 1

2 )h = F (E). To shed light on this question, in Section
2, we consider the harmonic oscillator Hamiltonian in detail. Its eigenvalues and
eigenfunctions are well known. Here we give a complete mathematical proof of the
Correspondence Principle in quantum mechanics (see [4], [2]). Some of the ideas
for the proof appeared very briefly in [8]. We don’t study the general case in this
paper as the proof is lengthy and completely different. For this we need to use the
WKB-Langer asymptotic solution. The key is our recent progress on solving a long
standing problem that the WKB-Langer semi-classical solution is close to the exact
L2 eigenfunction in L2 ([9]). We will publish the proof of the general case in our
future publication.

In Section 3, we give some numerical simulations to illustrate the semi-classical
limit results.

2. Harmonic oscillator Hamiltonian

Consider the harmonic oscillator Hamiltonian

H = −1
2
h2∆ +

1
2
x2.(7)

Recall that the N -th exact eigenfunction of the harmonic oscillator Hamiltonian
(7) associated with the N -th eigenvalue E(N, h) = (N + 1

2 )h is given by

Ψh
E(N,h)(x) = ANHN (

x√
h

)e−
x2
2h , N = 0, 1, 2, · · · ,(8)
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and HN is the N -th order Hermite polynomial HN (ξ) = eξ
2
(− d

dξ )Ne−ξ
2
, where

AN = (2NN !
√
πh)−

1
2 are the normalization constants.

Let S be the Schwartz space of rapidly decreasing functions in R1 and S′ be the
space of tempered distributions with weak topology. Then it is well known that
Ψh
E(N,h) ∈ S for any N and h.
It is not obvious at all what the limit of Ψh

E(N,h) is as h → 0, N → +∞ when
Nh remains a constant. To investigate this, we consider the Fourier transform of
Wigner’s quasi-probability density.

Lemma 1. Let Ψh
E(N,h) be the N-th eigenfunction of (7). Then

FWh
Ψh
E(N,h)

(β, α) = exp{−|θ|
2

4
}L0

N(
|θ|2
2

),(9)

where θ = h
1
2β + ih

1
2α and L0

N is the N -th Laguerre polynomial

L0
N(z) = ez(

d

dz
)N (e−zzN ), N = 0, 1, 2, · · · .

Proof. Substituting (8) into (6), we obtain

FW h
ΨhE(N,h)

(β, α)

=
1

2NN !
√
πh

∫
eiβqHN (

q − 1
2hα√
h

)e−
(q− 1

2hα)2

2h HN (
q + 1

2hα√
h

)e−
(q+ 1

2hα)2

2h dq.
(10)

Set

F (t) =
∞∑
N=0

tNFWh
Ψh
E(N,h)

(β, α)

=
∞∑
N=0

tN

2NN !
√
πh

∫
eiβq−

1
h (q2+ 1

4h
2α2)HN (

q − 1
2hα√
h

)HN (
q + 1

2hα√
h

)dq.

(11)

But from the Mehler’s kernel formula for |t| < 1, (x, y) ∈ R2,
∞∑
N=0

tN

2NN !
√
π
HN (

x√
h

)HN (
y√
h

)e−
(x2+y2)

2h

=(πh(1− t2))−
1
2 exp{4xyt− (1 + t2)(x2 + y2)

2(1− t2)h
}.

(12)

Changing the order of summation and integration in (11) and using (12), we obtain

F (t) =(πh(1 − t2))−
1
2

∫
exp{iβq +

4(q2 − 1
4h

2α2)t− (1 + t2)(2q2 + 1
2h

2α2)
2(1− t2)h

}dq

=(πh(1 − t2))−
1
2

∫
exp{iβq − 2(1− t)

(1 + t)h
q2

2
− 1

4
hα2 1 + t

1− t}dq

=
(1 + t)

1
2

(1 − t) 1
2

(1− t2)−
1
2 exp{−1

4
hβ2 1 + t

1− t −
1
4
hα2 1 + t

1− t}

=
1

1− t exp{−1
4

(1 +
2t

1− t )(hβ
2 + hα2)}.
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This gives

F (t) =
1

1− t exp{− zt

1− t} exp{−1
4

(hβ2 + hα2)}.(13)

Here z = |θ|2
2 = 1

2 (hα2 + hβ2) and θ = h
1
2β + ih

1
2α. Since 1

1−t exp{− zt
1−t} is the

generating function for Laguerre polynomials, comparing this and (13), we obtain
(9).

Note that exp{− |θ|
2

4 }L0
N( |θ|

2

2 ) in (9) is in Schwartz space S.

Lemma 2. For any given E > 0, and each (q, p) ∈ R2, the Wigner’s quasi-
probability density of the harmonic oscillator Hamiltonian H has the semi-classical
limit

lim
N→+∞
h→0
Nh=E

Wh
ΨhE(N,h)

(q, p) =
1

2π
δ(
p2

2
+
q2

2
− E),(14)

in S ′.

Proof. We use the well-known result that, for ν = 0, 1, 2, · · · ,

lim
N→∞

N−νLνN (
z

N
) = z−

ν
2 Jν(2z

1
2 )

uniformly for bounded z ([7]). We set ν = 0 and z = E(β2 +α2)/2 and use Bessel’s
integral representation for J0, for each (β, α) ∈ R2

lim
N→+∞
h→0
Nh=E

FWh
Ψh
E(N,h)

(β, α) = lim
N→∞

L0
N(
E(β2 + α2)

2N
) = J0(

√
2E(β2 + α2)),

which is from Bessel’s integral ([10, p. 357])

lim
N→+∞
h→0
Nh=E

FWh
ΨhE(N,h)

(β, α) =
1
π

∫ π

0

cos(
√

2E(β2 + α2) sin θ)dθ.

First observe that

∫
ei(αp+βq)δ(

p2

2
+
q2

2
− E)dqdp =

∫
ei(β,α)(q,p)δ(

p2

2
+
q2

2
− E)dqdp

=F(δ(
p2

2
+
q2

2
− E))(β, α)

=
∫

ei
√
β2+α2

√
q2+p2 sin θδ(

p2

2
+
q2

2
− E)dqdp.
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Here (π2 − θ) is the angle between (β, α) and (q, p). Setting r2 = p2 + q2 and
changing the integral to polar coordinates give

F(δ(
p2

2
+
q2

2
− E))(β, α) =

∫ ∞
0

∫ 2π

0

reir
√
β2+α2 sin θδ(

r2

2
− E)dθdr

=
∫ 2π

0

∫ ∞
0

eir
√
β2+α2 sin θδ(

r2

2
− E)d(

r2

2
)dθ

=
∫ 2π

0

ei
√

2E
√
β2+α2 sin θdθ

=2
∫ π

0

cos{
√

2E
√
β2 + α2 sin θ}dθ

=2π lim
N→+∞
h→0
Nh=E

FWh
ΨhE(N,h)

(β, α),

(15)

pointwise. Then taking the inverse Fourier transform F∗,

W h
Ψh
E(N,h)

(q, p) =F∗(FWh
Ψh
E(N,h)

)(q, p)

→ 1
2π
F∗(F(δ(

p2

2
+
q2

2
− E))(β, α))

=
1

2π
δ(
p2

2
+
q2

2
− E)(β, α),

in S ′. The above convergence follows from the fact that F∗ : S′ → S′ is continuous
with weak topology in S ′.

The following theorem is the main result of this section.

Theorem 3. For any given E > 0, the exact eigenfunction (8) and the correspond-
ing momentum wave function have the following semi-classical limits:

lim
N→+∞
h→0
Nh=E

|Ψh
E(N,h)(q)|2 =

1

π
√

2E − q2
χ 1

2 q
2<E(16)

and

lim
N→+∞
h→0
Nh=E

|Ψ̂h
E(N,h)(p)|2 =

1
π
√

2E − p2
χ 1

2p
2<E ,(17)

in S ′.

Proof. From Lemma 2 for each λ ∈ R,

lim
N→+∞
h→0
Nh=E

∫
eiλpWh

ΨhE(N,h)
(q, p)dp =

1
2π

∫
eiλpδ(

1
2
p2 +

1
2
q2 − E)dp

=
1

2π

∫
1
p

eiλpδ(
1
2
p2 +

1
2
q2 − E)d(

1
2
p2)

=
1

2π
1√

2E − q2

(
eiλ
√

2E−q2
+ e−iλ

√
2E−q2

)
χ 1

2 q
2<E ,
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Figure 1. Probability densities
for finding a quantum particle and
a classical particle

Figure 2. Semi-classical limit of
the wave function in the sense of
distribution, convergence of

the integration

in S ′. Set λ = 0; then

lim
N→+∞
h→0
Nh=E

|Ψh
E(N,h)(q)|2 = lim

N→+∞
h→0
Nh=E

∫
Wh

ΨhE(N,h)
(q, p)dp =

1
π
√

2E − q2
χ 1

2 q
2<E ,

in S ′. Similarly we can prove (17).

3. Numerical simulation

In the last section, we demonstrate some simple numerical simulations of the
semi-classical limit of the wave function produced by using Mathematica. We
consider the harmonic oscillator studied analytically in Section 2. Here we take
N = 40, h = 1/40 and E = 1. In Figure 1, the quantum probability density
|Ψh

N(x)|2 is oscillatory and has N zeros. The classical probability density curve
which is nonoscillatory and nonzero lies in the center of the quantum curve. But
the quantum curve does not approach the classical curve no matter how big an N
one uses. Therefore, we consider the integral

IhN,ε(x) =
1
2ε

∫ x+ε

x−ε
|Ψh

N(y)|2dy.

However, as is shown in Figure 2, for N = 40, h = 1/40, E = 1, ε = 0.1, the curve
is very close to the corresponding classical one, i.e.

Jε(x) =
1
2ε

∫ x+ε

x−ε

1

π
√

2(E − 1
2y

2)
dy.

This captures the essence of the convergence result in distribution sense obtained
herein, i.e. IhN,ε(x)→ Jε(x) as N →∞, h→ 0 with Nh = E.
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