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We discuss the behavior of partially wetting liquids on a rotating cylinder using
a model that takes into account the effects of gravity, viscosity, rotation, surface
tension, and wettability. Such a system can be considered as a prototype for many
other systems where the interplay of spatial heterogeneity and a lateral driving
force in the proximity of a first- or second-order phase transition results in intri-
cate behavior. So does a partially wetting drop on a rotating cylinder undergo a
depinning transition as the rotation speed is increased, whereas for ideally wetting
liquids, the behavior only changes quantitatively. We analyze the bifurcations that
occur when the rotation speed is increased for several values of the equilibrium
contact angle of the partially wetting liquids. This allows us to discuss how the
entire bifurcation structure and the flow behavior it encodes change with changing
wettability. We employ various numerical continuation techniques that allow us
to track stable/unstable steady and time-periodic film and drop thickness profiles.
We support our findings by time-dependent numerical simulations and asymptotic
analyses of steady and time-periodic profiles for large rotation numbers. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4959890]

I. INTRODUCTION

Moffatt1 first studied film flow on a rotating cylinder to answer the question, “How much honey
can be kept on a breakfast knife, while rotating it about its long axis?” and similar closely related
questions regarding a number of industrial coating and printing processes where liquid films on
rotating cylinders play an important role. These include paper production, paint-application, spit-
roasting, molten glass technology, and even chocolate manufacturing (see the review by Ruschak2).
The ability to control technological processes in these and other applications depends on our under-
standing of the limits that have to be imposed on the amount of liquid or on the rotation speed to
ensure that the liquid remains on the cylinder.

Furthermore, Moffatt provided a long-wave model3 in the overdamped limit (neglecting inertia)
that incorporates gravity and viscosity effects but neglects surface tension.1 At about the same
time, Pukhnachov developed a model that additionally includes surface tension effects.4 Various
further extensions were derived that incorporate higher-order terms related to gravity, inertial, and
centrifugal effects. For a more detailed account, see Noakes et al.5 and Kelmanson.6 Note that all
these models implicitly assume that the liquid ideally wets the cylinder, i.e., they do not incorporate
terms that account for wettability.
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The equation introduced by Pukhnachov4 and later studied, e.g., in Hinch and Kelmanson7 and
Karabut,8 was amended by Thiele9 who introduced a Derjaguin (or disjoining) pressure term.3,10

This allows for a study of the influence of wettability on the drop and film behavior on a rotating
cylinder — an influence that becomes particularly important for small cylinders and thin films/small
droplets. Furthermore, Ref. 9 introduced an alternative scaling that allows for a straightforward
study of the influence of the rotation speed of the cylinder that represents the most important experi-
mental control parameter. The governing long-wave evolution equation for the film thickness profile
can then be presented in a form that highlights the analogy between the behavior of films and drops
of liquid on a rotating horizontal cylinder and on inclined substrates with regular one-dimensional
wettability patterns, i.e., with periodic modulations of the equilibrium contact angle (and sometimes
also the precursor film height).11–14

A central result of Ref. 9 is that the analogy holds, i.e., the film flow and drop motion on the
exterior or interior surface of a rotating cylinder on the one hand and on a heterogeneous substrate
with lateral driving force on the other hand are rather similar. This implies that the bifurcation
character of many of the occurring transitions between qualitatively different behaviors of films and
drops is similar and the corresponding results can be transferred between the systems. In particular,
it was found that for partially wetting drops on a rotating cylinder, there exists a counterpart of
the depinning transition and related dynamics described before for drops on heterogeneous sub-
strates.12,15,16 A depinning transition occurs when a driving force reaches a critical value where
a steady structure (e.g., a drop) that is pinned by a heterogeneity (e.g., a less wettable patch or
spatially varying gravity) starts to move. This similarity proposes that the rotating cylinder can serve
as a model for a more general class of hydrodynamic (and other) depinning processes — a model
system that naturally has periodic boundary conditions (BCs) facilitating its analysis. This is impor-
tant, in particular, when comparing them to the open BCs in models for film deposition at moving
contact lines where the transition from the deposition of a homogeneous film to the deposition of
line patterns17–19 can be interpreted as a depinning transition (for a detailed recent discussion of a
number of such systems, see the end of Sec. III of Thiele20 and Sec. IV of Köpf et al.21).

Ref. 9 mentioned in passing that the sequence of qualitative transitions encountered for drops
of partially wetting liquids when increasing the rotation speed is not present for ideally wetting
liquids. There, the behavior only changes quantitatively with increasing the rotation speed: pendent
drops are smeared out into a film in a smooth process, and surface waves may appear but no depin-
ning transition can occur. This poses the question how the entire rotation speed-related bifurcation
behavior changes when increasing the wettability of the liquid, i.e., decreasing the equilibrium con-
tact angle. A particularly intriguing question is how the global bifurcation related to the depinning
of partially wetting drops is eliminated when decreasing the contact angle to small values.

The importance of the interplay of wettability and lateral driving brings the system as well
into the context of dynamic wetting transitions that occur for drops sliding down an incline and for
films drawn out of a bath.22–25 Depending on the particular wetting energy (or binding potential),
the equilibrium wetting transition26,27 is a first- or second-order phase transition where above the
critical value of temperature (or the critical value of another control parameter), a homogeneous
phase dominates (flat film) and below the critical value the liquid volume separates into regions of
large film height (drops) and small film height (precursor film). At the dynamic wetting transition,
a thick film is drawn out of a finite contact angle meniscus when a lateral driving force passes a
critical value,23,25 in other words, the driving can shift the wetting transition.

The laid out spectrum of related effects indicates that the drop and film flow on a rotating
cylinder is not only interesting by itself but should be seen as a model system not only for drops on
heterogeneous substrates but, in general, also for many more systems where (i) spatial heterogeneity
and (ii) lateral driving force interact in the proximity of a first- or second-order phase transition in
situations involving a conserved order parameter field. Therefore, a profound study of the rotating
cylinder system can inform as well the investigation of many other systems. We will come back to
this point later on.

In the present contribution, we study the transition behavior that occurs in the rotating cylinder
model of Ref. 9 with a special emphasis on the transition in the bifurcation behavior when moving
from a partially wetting case to the completely wetting case. Besides the rotation speed of the
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cylinder, our main control parameter is the equilibrium contact angle. We begin with a completion
of the investigation of steady film and drop profiles as their complete bifurcation picture is needed
to understand the time-periodic depinned free-surface profiles (e.g., co-rotating droplets) and their
emergence from the steady profiles. To obtain these solutions, we employ different numerical
continuation techniques28,29 (that allow us to track stable and unstable steady and time-periodic
states) as well as direct numerical simulations.

The manuscript is organized as follows: in Sec. II, we discuss the model, our numerical ap-
proaches, and the physically relevant parameter range. The steady-state profiles are discussed in
Sec. III and an additional analysis of steady states without rotation is shown in Appendix A. The
complete picture including branches of time-periodic solutions is studied in Sec. IV. The results
of two accompanying asymptotic analyses are found in Appendix B. In particular, Appendices B 1
and B 2 analyze steady-state solutions without rotation and solutions in the limit of large rotation
number, respectively. Finally, the concluding remarks are given in Sec. V.

II. THE MODEL AND COMPUTATIONAL METHODS

A. The governing equation

We consider a partially wetting liquid of density ρ and dynamic viscosity η on a cylinder
of radius R that rotates about its axis at angular velocity ω, as illustrated in Fig. 1. We assume
that there are no variations in the direction along the cylinder axis, i.e., in practice, we consider
a two-dimensional situation. Gravity g acts in the vertical direction. The air-liquid surface tension
coefficient is denoted by σ. We denote the liquid film thickness (measured along the radial direc-
tion) by h(θ, t), where t is time and θ is the angle measured from the upper vertical position on the
cylinder in a clockwise direction.

The evolution equation for h(θ, t) is derived employing a long-wave approximation that is valid
in the limit ϵ → 0, where ϵ = h̄/R is the ratio between the mean film thickness, h̄, and the radius
of the cylinder. Also, it is necessary to assume slow variations in the film thickness in the angular
direction and small contact angles. With time scale 3ηR4/σh̄3, film thickness scale h̄, and the angle
θ measured in radians, the non-dimensionalized time-evolution equation is the partial differential
equation (PDE),9

∂th = −∂θ
�
h3∂θ

�
∂2
θh + h − B cos θ + Π(h)� +Ωh

	
, (1)

where B andΩ are the Bond and rotation numbers defined by

FIG. 1. Sketch of a drop of a partially wetting liquid coexisting with a thin wetting layer on a rotating cylinder.
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B =
R2ρg

ϵσ
, Ω =

ηωR
ϵ3σ

, (2)

respectively. Π(h) is the Derjaguin (disjoining) pressure10,30,31 that here combines long-range attrac-
tion and short-range repulsion in the form of power laws,32,33

Π(h) = H
h3

(
1 − b

h3

)
, (3)

where H is a non-dimensional Hamaker constant. We obtain adequate values of H and b for this
form of Π(h) by relating them to the (non-dimensional) thickness of the equilibrium wetting layer
h0 and the static macroscopic equilibrium contact angle β0,

b = h3
0, H = −5

3
β2

0 h2
0. (4)

Note that β0 is the angle in the long-wave scaling, i.e., the small physical equilibrium contact angle,
βeq = ϵ β0 corresponds to the long-wave equilibrium contact angle β0 of O(1).

The system is 2π-periodic in θ, and the scaling fixes the non-dimensional mean film thickness
to be 1. Consequently, to leading order in ϵ , the volume of the film per unit length of the cylinder
becomes

 2π
0 h(θ, t) dθ = 2π.

Note that the employed scaling introduced in Ref. 9 allows one, in contrast to scalings used
elsewhere in the literature, to directly relate individual dimensionless parameters to important phys-
ical parameters. Namely, the rotation number Ω is proportional to the main experimental control
parameter, the angular velocity of the cylinder, that does not enter any other parameter or scale. The
ratio of gravity and surface tension enters only the Bond number B (and the overall time scale).
The wettability properties control the dimensionless numbers contained in the Derjaguin pressure,
Eq. (3). Therefore, the scaling allows one to clearly identify transitions of behavior due to changes
in the rotation speed or due to changes in the wetting behavior.

B. Numerical methods

We use three different numerical approaches [(i)-(iii)] to analyze this system.
(i) With the first approach, we determine steady thickness profiles (steady-state solutions) em-

ploying continuation (or path following) techniques.29,34 By setting the time derivative in Eq. (1)
to zero, we obtain a fourth-order ordinary differential equation (ODE) for the steady film thickness
profile h(θ),

− ∂θ
�
h3∂θ

�
∂2
θh + h − B cos θ + Π(h)� +Ωh

	
= 0. (5)

We then integrate this equation once and use the substitutions u1 = h, u2 = ∂θh, u3 = ∂2
θh, and u4 = θ

to transform the equation into an autonomous system of four first-order ODEs,




∂θu1 = u2,

∂θu2 = u3,

∂θu3 = −u2 − B sin(u4) − Π′(u1) u2 +
c −Ωu1

u3
1

,

∂θu4 = 1,

(6)

where c is the integration constant that represents the flux. Equations (6) with periodic BCs for
u1, u2, u3 and an initial condition for u4 are solved numerically by continuation using the contin-
uation and bifurcation software package Auto07p.28,35 In the context of thin film equations, a
similar approach is taken for sliding drops,33,36 drawn films,37 self-similar solutions related to film
rupture,38 and for steady drops in heterogeneous systems under lateral driving.15 A review is given
by Dijkstra et al.29 and selected tutorials can be obtained at Thiele et al.39

(ii) Another way of looking at the problem is by treating PDE (1) as an infinite-dimensional
system of ODEs. Then, steady states and time-periodic states of the PDE can be obtained as fixed
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points and periodic orbits of finite-dimensional systems of ODEs that approximate the infinite-
dimensional one. The time-periodic solutions correspond to film-thickness profiles of surface waves
or, more importantly, of drops that rotate at their own speed with the cylinder (perform a stick-slip
motion). Here, we take advantage of the periodicity and express the solution in the form of the

Fourier series with time-dependent coefficients, i.e., h(θ, t) =
∞

k=−∞
ĥk(t) eikθ. Equation (1) can be

rewritten as a system of ODEs for the Fourier coefficients, ĥk, k ∈ Z,

dĥk

dt
= Fk(ĥ j), (7)

where Fk is a nonlinear function of all the Fourier modes ĥ j, j ∈ Z. In practice, we truncate the
number of the Fourier modes by restricting −N ≤ k ≤ N and solve the finite-dimensional system,
where N is a large enough integer. Alternatively, finite differences may be used for the spatial
discretization, for instance, for settings without periodic BCs.21 The parameter space of the obtained
finite-dimensional ODEs may then be explored with standard continuation techniques.29,34 Here we
employ Auto07p.28,35 The time-periodic solutions are obtained by first detecting Hopf-bifurcation
(HB) points on the branches of steady drop profiles and then switching at these points to branches
of time-periodic solutions that bifurcate at the Hopf bifurcations. We note that the time period
is found as part of the solution, and we do not impose any relation between this period and the
period of cylinder rotation. Earlier, the technique based on obtaining a dynamical system for the
Fourier coefficients was applied to the continuation of spiral waves in reaction-diffusion systems.40

The continuation of Fourier amplitudes can also be employed to follow steady and time-periodic
solutions of certain integro-differential equations as recently done in the context of dynamical den-
sity functional theory (DDFT) for coarsening41 and transport processes42 of interacting particles in
nanopores. The Acknowledgement sketches the recent history of the application of the technique.

(iii) The third approach is to directly integrate the PDE, Eq. (1), in time to obtain time-
dependent solutions. We implement a Fourier pseudo-spectral method where spatial derivatives
are computed spectrally and time differentiation is performed using a second-order implicit dis-
cretization. The resulting nonlinear system is solved by Newton’s method at each time step until
convergence is achieved. In this way, we obtain the time evolution for given initial conditions and
approach steady and time-periodic states (or other more complicated behavior, such as solutions
that are quasi-periodic in time). Note, however, that only stable solutions can persist for long time
and can be captured by the time-integration method. Unstable solutions are the important transient
states that will die out in finite time. They can be reliably captured by continuation techniques that
are therefore indispensable if a full understanding of the drop and film hydrodynamics shall be
achieved which is encoded in the bifurcation structure of the problem.

We characterize steady-state and time-periodic thickness profiles by the L2-norm and the
time-averaged L2-norm of the difference between the thickness profile and the flat film solution,

∥δh(θ)∥ ≡


1
2π

 2π

0
(h(θ) − 1)2dθ (8)

and

∥δh(θ, t)∥ ≡


1
2πT

 T

0

 2π

0
(h(θ, t) − 1)2dθdt, (9)

respectively. Here, T denotes the time period.
We note that, to ensure accuracy of the results presented in our study, for each of the calcu-

lations, we double the number of Fourier modes until convergence is achieved and the results do
not change on the scale of the corresponding figure. Besides, we also implement a zero-padding
technique to remove aliasing errors. In general, we find that taking N = 64 is sufficient to ensure
accuracy of the computations.



082102-6 Lin et al. Phys. Fluids 28, 082102 (2016)

C. Parameters

We give a brief overview of the parameters used in Ref. 9, since here we investigate how
wettability influences the basic depinning behavior discussed there. Estimates for realistic Bond
and rotation numbers are based on two liquids typically studied in the literature: (i) water at 25 ◦C
with σ = 0.072 N/m, η = 0.001 kg/ms and ρ = 1000 kg/m3 as in Reisfeld et al.43 and a silicone
oil with σ = 0.021 N/m, η = 1 kg/ms, and ρ = 1200 kg/m3 as in Evans et al.44 As experimentally
feasible configurations, we assume angular rotation velocities ω = 0.1–10 s−1, cylinders of radii
R = 10−3–10−2 m, and smallness ratios ε = 0.01–0.1.

For ω = 1 s−1, the smallness ratio ε = 0.1, and the cylinder radius of R = 10−3 m, we find
for case (i) B = 1.36 and Ω = 0.014, whereas for case (ii) B = 5.61 and Ω = 47.6. Increasing the
cylinder radius to R = 10−2 m increases all the Bond numbers by a factor 102 and all the rota-
tion numbers by a factor 10, whereas decreasing the smallness ratio to ε = 10−2 increases all the
Bond numbers by a factor 10 and all the rotation numbers by a factor 103. Therefore, focusing
on cylinder diameters in the millimeter range, we mainly investigate B ≤ 10, although the struc-
ture of steady-state solutions for higher Bond numbers is discussed. The rotation number can be
widely varied, although we find that for B = O(1), the interesting range for the rotation number is
Ω = O(1). For instance, with B = 1, one finds that depinning occurs atΩ ≈ 1.68.

D. The aims of the present study

The preliminary work in Ref. 9 introduced the model incorporating wettability and studied a
single partially wetting case at the equilibrium contact angle β0 = 2 that is rather large in the long-
wave scaling. In particular, bifurcation diagrams were discussed for steady profiles as functions
of the Bond number and for steady pinned states and time-periodic depinned drops as functions
of the rotation number. One particular depinning transition — the Saddle-Node-Infinite-PERiod
(or SNIPER) bifurcation45 — was introduced. This was contrasted with some basic results for the
completely wetting case (β0 = 0). As the focus of Ref. 9 was on the main depinning transition,
they only employed continuation to obtain branches of steady drops and film solutions directly
connected to the stable pendent drop solution at low rotation speed or to the film solution at large
rotation speed. In the case without rotation, the focus was on single-drop solutions. In consequence,
the results of Ref. 9 represent only a first glimpse at the system and turn out to be rather incomplete.
We show here that the complete bifurcation diagrams are much richer even in the case without rota-
tion, not to speak of the case with driving where we now discuss several branches of time-periodic
solutions.

The present work investigates both the steady and time-periodic states in more detail. First,
this shall result in a deeper understanding of the case with β0 = 2 studied in Ref. 9. The second
and more important part of the present study analyzes how the bifurcation behavior (the depinning
transition) changes as the wettability is changed. In other words, we investigate how the complex
bifurcation structure found at large contact angles emerges from the rather trivial behavior at zero
contact angle. This is done through the consideration of several intermediate cases with 0 < β0 < 2.

The present detailed study of the depinning transition and its transformations shall also estab-
lish the present system, the hydrodynamic system of a rotating cylinder covered by a partially
wetting liquid, as a reference system for depinning transitions in other hydrodynamic systems, more
general soft matter systems and beyond. Such systems are characterized by a spatial heterogeneity
(here, the inhomogeneity in the action of gravity along the cylinder circumference), a lateral driving
(here, the rotation of the cylinder), and a cohesive force resulting in coherent structures (here,
partial wettability resulting in coherent drops). A weakening of the cohesive force (here, increasing
wettability, i.e., approaching the wetting transition) will change the depinning transition in all such
systems and the present study shall reveal possible corresponding pathways in the system behavior.

Throughout this study, we focus on positive values of the rotation number and the Bond num-
ber, but we may also exploit the fact that all the obtained bifurcation diagrams are symmetric about
the respective zero values of these two parameters, since a reflection in Ω corresponds to turning
the cylinder in the anti-clockwise direction and a reflection in B stands for reversing the direction of



082102-7 Lin et al. Phys. Fluids 28, 082102 (2016)

gravity. Therefore, it is perfectly acceptable to reflect solution branches at the axes of the Bond and
rotation numbers, providing a useful technique for reducing the number of computations needed to
obtain a full set of solution branches through path following. We also fix the thickness of the wetting
layer to be h0 = 0.1 when exploring the other parameters.

III. STEADY-STATE FILM AND DROP PROFILES

A. Steady states in the partially wetting case

First, we consider steady drop and film solutions on the resting cylinder, i.e., at Ω = 0, for
the two particular values β0 = 1 and 2 of the equilibrium contact angle that correspond to partial
wetting. Changing the Bond number, B, we obtain families of steady-state solutions as displayed
in Fig. 2(a). One observes that the layout of the branches (the bifurcation structure) is very similar
in the two cases, only the size of the structure is smaller for smaller β0. Without gravity (B = 0)
there are only two solutions: an unstable flat film (the L2-norm, defined by Eq. (8), is zero) and
a stable drop solution (the L2-norm is slightly smaller than one) that is invariant with respect to
translation in θ as for B = 0 the system is homogeneous. Once B > 0, only two positions survive
and two individual branches emerge from the drop solution at B = 0 that correspond to unstable
drops sitting symmetrically on top of the cylinder (smaller L2-norm) and to stable pendent drops

FIG. 2. (a) Branches of steady drop solutions on a horizontal cylinder without rotation (Ω= 0) for various equilibrium contact
angles β0 characterized by their L2-norm as functions of the Bond number. The dashed vertical line corresponds to B = 1,
and the thickness profiles h(θ) corresponding to points (ai)–(aiii) at β0= 2 are shown in panel (c) with the inset giving the
profiles on a cylinder assuming a radius R = 10. (b) Branches of steady drop solutions on a horizontal rotating cylinder for
β0= 2 as functions of the rotation number Ω for various Bond numbers B as given in the legend. The dashed vertical line
corresponds to Ω= 1, and the thickness profiles corresponding to points (bi)–(biii) at B = 1 are shown in panel (d) with the
inset giving the profiles on a cylinder assuming a radius R = 10. The curves in panels (a) and (b) agree with Figs. 2 and 4 of
Ref. 9, respectively. However, here they are calculated with numerical methods (i) and (ii) (see Sec. II B) that perfectly agree
on the presented scale. This also serves as a validation of the novel method (ii).
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hanging symmetrically beneath the cylinder (larger L2-norm), respectively. The unstable flat film
also becomes modulated for B > 0. In consequence, for small B, three steady profiles exist which
correspond to different distributions of the liquid on the cylinder. The three profiles on the dashed
vertical line corresponding to points (ai)–(aiii) in Fig. 2(a) (β0 = 2 and B = 1) can be found in
Fig. 3 of Ref. 9 and are also shown in Fig. 2(c) with the inset giving the profiles on a cylinder
assuming a radius R = 10. Above a critical B = Bsn, only the stable pendent drop remains while the
other two solutions annihilate at Bsn in a saddle-node (SN) bifurcation. Bsn monotonically increases
with the contact angle β0, e.g., it reaches the value B ≈ 43.3 for β0 = 10. We note that a pendent
drop exists at any B in the employed long-wave framework. However, at large B the long-wave
approximation itself becomes invalid. A full hydrodynamic description then shows drops that drip
off the cylinder.46,47

Next, we discuss the changes in the observed steady profiles when the cylinder is rotated. We
increase the rotation number Ω from zero and obtain solution branches as shown in Fig. 2(b) for
various Bond numbers and β0 = 2. First, we consider the case B = 1 (solid black lines) and note
that although one finds 3 solutions for Ω = 0 as expected from the crossings of the dashed line and
the β0 = 2 curves in Fig. 2(a), a close inspection shows that the solutions of the smallest L2-norms
do actually not correspond to each other. This mismatch that was already pointed out in Ref. 9
indicates that the branch structures in Fig. 2 are not complete (see the discussion in Sec. II D). It will
be completed below after discussing Fig. 2(b). The vertical dashed line in Fig. 2(b) corresponds to
Ω = 1 and the profiles (bi)–(biii) for B = 1 are shown in Fig. 2(d).

Increasing Ω from zero, the stable pendent drop (top branch in Fig. 2(b)) is shifted towards
the left-hand side of the cylinder, i.e., towards larger θ. Furthermore, the drop widens marginally,
thereby decreasing its L2-norm. This branch annihilates with the closest unstable branch (drops on
top of the cylinder) in an SN bifurcation at Ωsn ≈ 1.68 where a depinning transition occurs.9 For
Ω > Ωsn the drop overcomes the downward pull of gravity, due to the frictional forces exerted by
the rotating cylinder. As a result, the solution becomes time-periodic and the drops move around the
cylinder with a position-dependent velocity. For space-time plots, see Fig. 7 of Ref. 9.

Close to the depinning transition, the difference in the time scales of slow and fast phases
diverges and the drop motion strongly resembles stick-slip motion as also discussed in the context
of drop motion on heterogeneous substrates.15 The square-root dependence of the frequency 1/T of
the drop motion with time period T on the driving Ω −Ωsn indicates that at Ωsn one has a SNIPER
bifurcation.

The mismatch observed above indicates that at Ω = 0 Figs. 2(a) and 2(b) miss at least a
steady solution with an L2-norm of 0.5 and 0.3, respectively. The starting point of our present
analysis is a continuation of the steady profiles that are not consistent between the figures in the
respective required parameter. Note that this alone does not necessarily provide a complete set of
solutions since it is possible that further solutions exist that are not connected in this way to the
already known solutions. Therefore, we also perform two-parameter continuations of the loci of
the observed SN bifurcations (fold continuation), starting at several values of B and continually
check the consistency between the figures. Once all the figures are consistent, all the steady solution
branches should be present in the studied range of parameters.

First, we expand in Fig. 3(a) the results of Fig. 2(b) for intermediate values B = 1.25, 1.5,
and 2 and notice that there exists a rather complex structure involving multiple solutions in an
intermediate Ω-range: for B = 1.25 there are three separate curves that for B = 1.5 merge into 2
curves and then for B = 2 into a single-loop structure.

To investigate the reconnections and the related additional branches, we continue the loci of all
encountered SN bifurcations in the (B,Ω)-plane. This includes codimension-two bifurcations where
pairs of SN bifurcations are created/annihilated. The three observed processes are a hysteresis bifur-
cation, the destruction/creation of an isola of solutions, and a necking bifurcation (cf. e.g., Thiele
et al.48). The resulting full fold-tracking diagram shown in Fig. 4(a) with a zoom into the most
relevant region in Fig. 4(b) determines the folds that exist for any given Bond number. For example,
at B = 1, eleven folds at particular Ω are found, yet, Fig. 2(b) only displayed three. Selecting the
“new” folds, one may again employ continuation in Ω to obtain the complete bifurcation diagram of
steady profiles in Fig. 3(b).
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FIG. 3. (a) Extension of Fig. 2(b) for intermediate Bond numbers displaying the complex structure of the branches that
involve several SN bifurcations. (b) Extension of Fig. 2(b) for B = 1 and β0= 2, representing the steady solutions already
present in Fig. 2 as dashed lines (stable/unstable single drops and films) and the additionally determined solutions as the solid
lines (unstable double drops) and dotted-dashed lines (unstable triple drops). Saddle-node bifurcations (folds) are marked
with solid circles with colors corresponding to the respective fold-continuation curves in Fig. 4. Profiles for solutions on the
vertical thin dashed line that corresponds to Ω= 0.767 are shown in Fig. 5.

We observe that around Ω = 0.8, there exists a “figure-eight” isola of solutions. What makes
these solutions particularly interesting is that they are not related to any equilibrium solutions
that may exist at Ω = 0 for otherwise the same parameters. In particular, the solutions correspond
to unstable triple-drop/hump solutions, that for B = 1 and β0 = 2 do not exist without rotation,
i.e., without non-equilibrium driving. In other words, a finite driving brings into existence solutions
expected at other parameter values. Typical single-, double-, and triple-drop profiles located on
the vertical dotted line in Fig. 3(b) are illustrated in Fig. 5. As expected, all the profiles are off
center, i.e., rotation drags profiles towards the left-hand side of the cylinder. Although all double-
and triple-drop solutions are unstable, their understanding is crucial for the understanding of the
behavior of the hydrodynamic system: they provide the phase space of the system with a rich
structure that allows for complex dynamical states (see Sec. IV).

The remaining part of the new structure in Fig. 3(b) intersects Ω = 0 four times, with the
L2-norms ∥δh∥ ≈ 0.30, 0.62 and a double intersection at 0.59. This indicates that an entire sys-
tem of branches is missing in Fig. 2(b) showing the equilibrium case. The solution with the
L2-norm 0.30 is the solution missing in Fig. 2(b). As the additionally encountered branches cross
Ω = 0, also the system of equilibrium profiles needs completion. This is achieved through continua-
tion in B atΩ = 0.

All the resulting solutions corresponding to unstable double-drop solutions are included in
Fig. 6 as solid black lines. The profiles indicated at B = 1 by the vertical dotted line and marked by

FIG. 4. Shown are the loci of saddle-node bifurcations in the (B,Ω)-plane for β0= 2. Panel (a) gives a complete view while
panel (b) gives a zoom into the region where most folds are located. The vertical thin dotted line indicates the case B = 1 that
is consistent with Fig. 3(b) showing eleven folds with corresponding line colors.
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FIG. 5. Steady drop profiles on a horizontal cylinder for Ω= 0.767, β0= 2 and B = 1, i.e., at the loci indicated by the
vertical thin dashed line in Fig. 3(b). The individual panels give (a) single-, (b) double-, and (c) triple-drop solutions, with
the L2-norms ∥δh∥ as given in the legends. The insets show the profiles on a cylinder assuming a radius R = 10.

(i)–(iv) are displayed in Fig. 7. As they also correspond to the Ω = 0 states in Fig. 3(b), we deduce
that the central line in Fig. 6 is actually a double branch since in Fig. 3(b) two branches meet at
Ω = 0, with the L2-norm of 0.59. As these are the only branches in Fig. 3(b) which do not have zero
slope at Ω = 0, they correspond to the two mirror images with respect to θ = π of an asymmetric
solution [profiles (ii) and (iii) in Fig. 7]. We name these branches a1 and a2 (where “a” refers to
“asymmetric”). They emerge at pitchfork bifurcations from the other branches that correspond to
drop and hole (or nucleation) solutions that are themselves symmetric with respect to reflection
at θ = π. We name them du, dl, nu, and nl (where “d” and “n” refer to “drop” and “nucleation,”
respectively, and “u” and “l” refer to respective upper and lower solutions), see Fig. 6. Figure 7
gives examples for du and nu solutions, see profiles (i) and (iv), respectively. For the du and nu
solutions shown in Fig. 7, there is one large drop on top of the cylinder and another smaller one
underneath. In contrast, the dl and nl branches consist of profiles where two holes are on top and
underneath of the cylinder, respectively (not shown).

Note that the unstable double-drop solutions exist at larger Bond numbers than the unstable
single-drop solutions and may, therefore, influence the dynamics up to larger values of B. Yet, as
before, above a critical value (B ≈ 1.749), only the stable pendent drop remains.

To understand why Fig. 6 has the two double-drop solutions at Ω = 0 and B = 0 that give rise to
the entire double-drop branch structure at B > 0 even without driving, we consider in Appendix A 1
the case Ω = 0, B = 0 in an extended parameter space. Also, Appendix A 2 gives some further
details of the behavior of the double-drop solutions of Fig. 6.

B. Transition to the completely wetting case

The rich solution structure at equilibrium (Ω = 0) and, in consequence, out of equilibrium
(Ω > 0) is mainly due to partial wettability. This implies that most of this structure has to disappear
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FIG. 6. Branches of steady profiles for β0= 2. The L2-norms are given as functions of the Bond number B. The dashed
lines represent single-drop solutions also present in Fig. 2(a) while the solid lines give the bifurcation structure of unstable
double-drop solutions. There we distinguish symmetric drop (du, dl) and nucleation or hole (nu, nl) and asymmetric (a1,
a2) solutions. Subscripts “u” and “l” refer to the respective upper and lower solution. The profiles at B = 1 (indicated by the
vertical dotted line and marked by (i)–(iv)) are displayed in Fig. 7. We also note that only the branch that corresponds to
pendent drop solutions is stable (the branch with the largest L2-norms). All the other branches are unstable.

when wettability is increased, i.e., when the equilibrium contact angle β0 is decreased. Before we
move on to the full bifurcation structure including time-periodic thickness profiles, here, we briefly
emphasize the contrasting structure of steady profiles found for completely wetting liquids, when
β0 approaches zero. As observed in Fig. 2(a), for a resting horizontal cylinder without rotation, the
critical Bond number Bsn, where the two unstable drop solutions annihilate, i.e., where a qualitative
transition occurs, decreases with β0. In parallel, the modulated film transforms into a pendent drop
that is at β0 = 0 the only solution for any non-zero Bond number.

For a completely wetting liquid, there exists no force beside gravity that favors drops as
opposed to a flat film. Gravity can still produce pendent drops. However, for non-zero Bond num-
bers at Ω = 0, the model, Eq. (1), does not have continuous 2π-periodic steady-state solutions, but

FIG. 7. Selected profiles of steady unstable double-drop solutions on a horizontal cylinder, without rotation (Ω= 0), at B = 1
and β0= 2 corresponding in Fig. 6 to the crossing points of the vertical dotted line and the solid lines (with the labels (i)–(iv)).
They present examples of profiles from branches du, a1, a2, and nu, respectively. The symmetries are discussed in the main
text.
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FIG. 8. Shown are branches of steady states for different Bond numbers B (as given in the legends) as functions of the
rotation number Ω for equilibrium contact angles (a) β0= 1 and (b) β0= 0.1.

only solutions with a finite support, i.e., pendent drops on a dry substrate. They can be studied
employing a weak formulation. See Appendix B 1 and Refs. 43 and 44 for further details.

Then for Ω > 0, continuous 2π-periodic steady solutions exist as the lateral driving creates
a dynamic wetting layer. Increasing Ω, the droplets change monotonically, and the rotation shifts
them towards the left and smears them out at the same time. Figure 8(a) gives for various B the main
branch structure as a function of Ω for a partially wetting liquid of a smaller contact angle β0 = 1
while Fig. 8(b) gives this structure close to complete wetting at β0 = 0.1.

From Fig. 2(b) to Fig. 8(a), and further to Fig. 8(b), one observes a clear transition towards a
much simpler branch structure as the contact angle β0 decreases. Actually, all complex aspects of
branch patterns discussed at Figs. 2(b) and 3 disappear resulting, e.g., at β0 = 0.1, in a rather simple
branch of steady solutions with a monotonically decreasing L2-norm. In particular, as the contact
angle is decreased, all the SN bifurcations occurring for various values of the rotation and Bond
numbers (cf., Fig. 4) are eliminated in various codimension-two bifurcations. Thereby, the promi-
nent SN bifurcation, that at β0 = 2 is related to the SNIPER bifurcation, is the bifurcation structure
that exists for the largest range of β0. It is a particularly intriguing question what happens to the
SNIPER bifurcation and the emerging branch of time-periodic solutions (stick-slipping drops) when
the wettability increases, i.e., β0 decreases. This is studied in Sec. IV.

The case of the smallest considered contact angle β0 = 0.1 is already close to the complete
wetting case. Selected steady drop profiles that correspond to the solution branch for B = 1 in
Fig. 8(b) are displayed in Fig. 9(a). For increasing Ω, the driving drags the liquid along the surface
of the cylinder, resulting in a steady drop whose center of mass moves towards a larger θ. How-
ever, as wettability is large, the adhesion force that keeps the drop together is weak and the drop

FIG. 9. (a) Steady film-thickness profiles for the approximate case of complete wetting (β0= 0.1) with B = 1 for several
rotation numbers. (b) The maximum (blue solid line) and minimum (red dashed line) of the steady film thickness showing
that the profile tends to a flat film with increasing Ω.
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can now deform strongly. The drop becomes shallow as indicated by the monotonically decreas-
ing/increasing maximum/minimum values of its profile, as shown in Fig. 9(b). Finally, at large Ω, it
approaches a flat-film solution. In other words, the drop does not survive as a “coherent structure”
due to the attenuated influence of partial wettability. We notice that the drops flatten and smear
out well before their maxima reach θ = 3π/2 (the left-hand-side of the cylinder), where gravity
becomes tangential to the cylinder surface.

IV. BRANCHES OF TIME-PERIODIC FLOW STATES

To better understand the behavior of the system, one also needs to obtain the branches of
unsteady flows, i.e., time-periodic film and drop profiles as, e.g., co-rotating drops on the cylinder
or surface waves. Another point to clarify is how the time-periodic states emerge from the already
discussed branches of steady profiles. Ref. 9 only considered the large contact angle case β0 = 2 and
obtained a single time-periodic solution branch for Ω > Ωsn using direct numerical time integration.
This method allows one to establish that the main depinning transition for the partially wetting drop
on a rotating cylinder is a SNIPER bifurcation similar to the case of a drop on a heterogeneous
substrate.15 However, as the direct numerical simulation follows the evolution in time starting from
an initial condition, it does not allow for a determination of unstable steady or time-periodic states.
As these are needed to develop a full understanding of the involved qualitative transitions, in the
current study, we obtain both the stable and unstable states via numerical continuation as outlined
above in Sec. II. In what follows, we fix the Bond number, B = 1, and investigate the changes of the
bifurcation diagram when the equilibrium contact angle β0 varies.

A. The case of a large contact angle (β0 = 2)

We start with the case of a “large” contact angle (β0 = 2). The complete bifurcation diagram
is presented in Fig. 10 where panel (a) gives the solution measure ∥δh∥, defined by the L2-norm
in Eq. (8) for steady-state profiles and by the time-averaged L2-norm in Eq. (9) for time-periodic
flow states, as a function of the rotation number over the full range, while panel (b) presents a zoom
into the region of small values of Ω. Steady-state solution branches are shown as (blue) solid lines
while the time-periodic solution branches are given as (red) dashed lines. In this figure and in the
figures that follow, stable/unstable branches of steady-state solutions are indicated by “S” and “U,”
respectively, and stable/unstable branches of time-periodic solutions are indicated by “s” and “u,”
respectively. Furthermore, the loci of Hopf bifurcations (HBs), homoclinic bifurcations (HCs), and

FIG. 10. The complete bifurcation diagrams for β0= 2 and B = 1 giving the solution measure ∥δh∥ in dependence on the
rotation number Ω. It includes the steady profiles (blue solid lines) and time-periodic profiles (red dashed lines). The HBs are
indicated by circles, the HCs are indicated by squares, and the SNIPER is indicated by a star. (a) The complete bifurcation
diagram. (b) A zoom of panel (a) into the small-Ω region where most of the bifurcation structure is located. The stabilities of
the states are discussed in the main text.
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SNIPER bifurcations are indicated by circles, squares, and stars, respectively. In total, there exist
four HBs, two HCs, one SNIPER, and five time-periodic solution branches.

It is found that steady-state solutions exist for all rotation numbers. In particular, for large
enough Ω, the solution measure of the steady-state solution decreases as Ω increases, and we find
that the solution approaches the uniform coating state h ≡ 1. See Appendix B 2 a for further details.
Besides, below [above] the value Ω ≈ 16.4 at which the rightmost HB exists, the modulated-film
steady-state solutions are linearly stable [unstable]. At this HB, a branch of unstable time-periodic
solutions emerges subcritically. As can be seen in Fig. 10(a), the solution measure of the time-
periodic solution increases asΩ decreases and the branch terminates at another HB atΩ ≈ 1.37.

The only branch of stable time-periodic solutions emerges in a SNIPER at the SN of the
steady-state branch at Ωsn ≈ 1.68. This SNIPER was found using numerical time integration in
Ref. 9. In the limit Ω → ∞ along this branch, the solution is equivalent to a drop solution at zero
Bond number that co-rotates with the cylinder. A corresponding detailed asymptotic analysis is
presented in Appendix B 2 b. We note that there is one more branch of time-periodic solutions that
is not connected to any of the branches of steady-state solutions. It has an SN at Ω ≈ 5.64, and both
the upper and lower parts of this branch extend to infinitely large values of Ω. In the limit Ω → ∞
along the upper and lower parts of this branch, the solutions are equivalent to double-drop solutions
at zero Bond number that co-rotate with the cylinder. We note that both the upper and lower parts of
this branch are linearly unstable.

The bifurcation diagram in Fig. 10(a) suggests that extended ranges of multistability exist,
i.e., depending on initial conditions, time simulations will show different long-time solutions
at a given rotation number. For 1.68 < Ω < 16.4, the stable long-time solution may either be
a small-amplitude steady profile or a large-amplitude time-periodic profile. For Ω > 16.4, the
small-amplitude steady profile is unstable and only the large-amplitude time-periodic profile re-
mains as an attractor. Figure 11 shows as an example the two stable long-time states for Ω = 10.
The large-amplitude time-periodic profile is shown in the contour-plot in panel (a), while the
small-amplitude steady profile is shown in panel (b).

We also note that at each of the HB points at Ω ≈ 0.31 and at Ω ≈ 0.54, a short branch of
unstable time-periodic states emerges that terminates in an HC on a branch of steady profiles.

B. The case of a medium contact angle (β0 = 1)

We next investigate the case of a “medium” contact angle (β0 = 1). The complete bifurcation
diagram is presented in Fig. 12(a). It is found that there exist six HBs and one HC. The rightmost HB
is at Ω ≈ 38.7 and the other five HBs are clustered around Ω ≈ 0.8. Figure 12(b) shows a zoom of
this region. Similar to the diagram for β0 = 2, steady profiles exist for all rotation numbers. At the
HB atΩ ≈ 38.7, a branch of unstable time-periodic solutions emerges subcritically. As can be seen in

FIG. 11. An example of multistability: two solutions that are stable at the identical parameter values, Ω= 10, β0= 2, and
B = 1. Panel (a) shows the space-time contour plot of the stable time-periodic profile, while panel (b) shows the stable steady
profile.
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FIG. 12. (a) The complete bifurcation diagram for β0= 1 and B = 1 giving the solution measure ∥δh∥ in dependence on the
rotation number Ω. It includes the steady and time-periodic states. (b) A zoom of panel (a) into the small-Ω region where
most of the bifurcation structure is located. (c) A plot of the period over the logarithm of Ω−Ωhc for the time-periodic branch
originating atΩ≈ 0.74 in panel (b). (d) A schematic representation showing the connection of the four HBs atΩ≈ 0.78, 0.80,
0.81, and 0.85 in panel (b). The HBs are indicated by circles. There exist two time-periodic branches, one of them connects
HBs at 0.78 and 0.81, and the other one connects HBs at 0.80 and 0.85. In addition, on each of the time-periodic branches,
there exist torus bifurcations that are indicated by filled circles. We expect that there exists a branch of quasi-periodic solutions
that connects the two torus bifurcations. This hypothetic branch is schematically represented by the black dotted-dashed line,
but has not been actually computed while all the other branches and all the bifurcations have been computed.

Fig. 12(a), the solution measure of the time-periodic solution increases asΩ decreases and the branch
turns back towards larger Ω at a saddle-node bifurcation (at Ω ≈ 2.5) where its stability changes. As
Ω increases again, the solution measure of this stable solution increases as well. In the limitΩ → ∞,
the solution is equivalent to a drop solution at zero Bond number that co-rotates with the cylinder.

Next, we analyze the solutions in the range of smaller Ω. For 0 ≤ Ω < 0.64, there exits only
one solution for each rotation number that is a stable steady-state solution. As Ω increases, the
solution measure of this solution decreases until it reaches an SN at Ω ≈ 0.73 where the branch
becomes unstable and turns back towards smaller Ω. See, e.g., Fig. 12(b). Following the branch
with decreasing ∥δh∥, one passes another SN at Ω ≈ 0.64, a second eigenmode becomes unstable,
and the branch turns again towards larger Ω. Continuing towards larger Ω, one crosses 5 HBs
(at Ω ≈ 0.74, 0.78, 0.80, 0.81, and 0.85). In this region, the steady-state solution is stable only
for 0.74 < Ω < 0.78 and for 0.85 < Ω < 38.4. At each HB, a branch of time-periodic solutions
emerges. The one that starts supercritically at the first HB at Ω ≈ 0.74 is stable and reconnects
at Ωhc ≈ 0.66 in a homoclinic global bifurcation to the unstable part of the steady-state branch
between the two SNs. This classification as a homoclinic bifurcation is supported by Fig. 12(c),
where Ω −Ωhc is plotted against the temporal period in a log-linear plot. The figure shows that the
period diverges logarithmically as Ω −Ωhc approaches zero. This is the signature of a homoclinic
bifurcation45 and is also a common scenario for systems where depinning occurs.12,18,21,49

The HBs at Ω ≈ 0.78 and 0.81 are connected by one time-periodic branch and the HBs at
Ω ≈ 0.80 and 0.85 are connected by another time-periodic branch that in part overlaps with the first
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one. But since the solution measures ∥δh∥ of these time-periodic solutions and the steady-state solu-
tions are very similar to each other for the values of Ω in this range, the branches are almost indis-
tinguishable in Fig. 12(b). To illustrate the connections, a schematic representation of this region is
shown in Fig. 12(d) where also the stabilities are indicated. In addition, on the two time-periodic
branches, we detect that the stability of the time-periodic solutions changes, which is an indica-
tion of torus bifurcations, at Ω ≈ 0.802 and 0.805, respectively. The fact that the time-periodic
solutions undergo torus bifurcations at these values of Ω is supported by the observation that at
these points there exist pairs of complex-conjugate Floquet multipliers crossing the unit circle.
Namely, at Ω ≈ 0.802 and 0.805, we find that the multipliers 0.545 ± 0.838 i and 0.155 ± 0.988i,
respectively, cross the unit circle. Therefore, from each of these points, there emanates a branch
of quasi-periodic solutions, and we conjecture that these points are actually connected by a sin-
gle branch of quasi-periodic solutions. However, with the current continuation tools, we are not
able to continue solutions on this solution branch. We, therefore, draw schematically a (black)
dotted-dashed line in Fig. 12(d) to connect the two torus bifurcations to indicate the existence of
such a hypothetical branch of stable quasi-periodic solutions that has not actually been computed by
continuation.

With the information presented above, we conclude that the time-periodic solutions are stable
in the ranges 0.78 < Ω < 0.802 and 0.805 < Ω < 0.85, which is also verified using numerical time
integration of Eq. (1). We choose Ω = 0.79 as an example. The initial condition is the state of
homogeneous coating, h(x,0) = 1, and the L2-norm of the solution, ∥δh∥, is extracted in the range
400 < t < 500, to study the long-time behavior. Figure 13(a) shows the L2-norm of the solution,
∥δh∥, versus t and Figure 13(b) shows d

dt
(∥δh∥2) versus ∥δh∥2. It clearly indicates that the solution

evolves to a time-periodic solution.
However, in the range 0.802 < Ω < 0.805, i.e., between the two torus bifurcations, no stable

steady profiles or single-frequency time-periodic solutions exist. Therefore, it is likely that the

FIG. 13. Results of the numerical time integration of Eq. (1) for β0= 1, B = 1 and Ω= 0.79 (panels (a) and (b)), Ω= 0.804
(panels (c) and (d)). Panels (a) and (c) show the time evolution of the L2-norm, ∥δh∥, for Ω= 0.79 and 0.804, respectively,
and panels (b) and (d) show the corresponding curves in the phase plane (∥δh∥2,d(∥δh∥2)/dt).
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attractor corresponds either to a double-frequency time-periodic state or a multi-frequency solu-
tion (if further bifurcations of the double-frequency time-periodic state occur in this very small Ω
range). With identical initial conditions as before, at Ω = 0.804 a numerical time simulation gives
the trajectory presented in Figs. 13(c) and 13(d) (the L2-norm of the solution is extracted in the
range 100 < t < 200). The results indicate a double-frequency time-periodic state consistent with
the hypothesis formulated above. Therefore, we expect that the hypothetical (black) dotted-dashed
branch in Fig. 12(d) joining the two torus bifurcations is a quasi-periodic solution branch that is at
least in part of thisΩ-range linearly stable.

C. Transition from a large (β0 = 2) to a medium (β0 = 1) contact angle

After having analyzed the diagrams for large and medium contact angles, we next study the
transitions in between. Comparing the diagrams for β0 = 2 in Fig. 10(a) and β0 = 1 in Fig. 12(a),
one notices that the two time-periodic branches for β0 = 2, where one is the unstable branch con-
necting the two HBs and the other is the stable branch that emerges in the SNIPER bifurcation,
have at β0 = 1 somehow merged into one branch that emanates from the HB at Ω ≈ 38.7. One
should also note that, as a consequence, when a putative hydrodynamic experiment is performed,
the observed sequence of behaviors is very different when Ω is continuously increased for β0 = 2
and for β0 = 1. For liquids with the large contact angle (β0 = 2), a pendent droplet directly evolves
into a large-amplitude time-periodic state that represents a droplet co-rotating with the cylinder,
while for liquids with the medium contact angle (β0 = 1), a pendent droplet first changes into a
steady uniform coating film before eventually changing into a large-amplitude time-periodic wave
for sufficiently large values ofΩ.

In what follows, we will see that the transitions of branches and bifurcations are rather compli-
cated and involve several steps. We focus on the main transitions and show how the bifurcation
diagram changes when β0 is varied and, in particular, how the SNIPER bifurcation disappears.

The bifurcation diagram for β0 = 1.4 is shown in Fig. 14, and Fig. 15 shows zooms into the
small-Ω regions of the bifurcation diagrams for β0 = 1.348, 1.343, 1.34, and 1.3 illustrating how
the SNIPER bifurcation disappears as β0 decreases. The steady-state branch is shown as (blue) solid
line. The various time-periodic branches are shown as (red) dashed, (green) thick solid, (brown)
thick dashed, and (black) dotted-dashed lines.

Comparing the cases of β0 = 2 in Fig. 10 and of β0 = 1.4 in Fig. 14, we notice that in both
cases, the time-periodic branch emerges from the rightmost HB (at Ω ≈ 16.4 and 26.3 for β0 = 2
and 1.4, respectively) and terminates at another HB. However, this structure changes at smaller
β0. As shown in Fig. 15(a) for β0 = 1.348, there appear two additional HCs at Ω ≈ 0.94 and 0.97.
The time-periodic branch emerging from the rightmost HB now terminates at the HC at Ω ≈ 0.97

FIG. 14. (a) The complete bifurcation diagram for β0= 1.4 and B = 1 giving the solution measure ∥δh∥ in dependence on the
rotation number Ω. The steady-state branch is shown by the (blue) solid line. The various time-periodic branches are shown
by the (red) dashed and (green) thick solid lines. Panel (b) shows a zoom of panel (a) into the small-Ω region (0.4 ≤Ω ≤ 1.5)
where most of the bifurcation structures are located. The filled black circles on the (green) thick solid line of time-periodic
solutions indicate torus bifurcations, and the solutions on the part of the branch between these points are stable.



082102-18 Lin et al. Phys. Fluids 28, 082102 (2016)

FIG. 15. The zoom-ins of the bifurcation diagrams in the small-Ω regions showing how the branches/bifurcations evolve
with decreasing β0. (a) β0= 1.348; (b) β0= 1.343; (c) β0= 1.34; (d) β0= 1.3. The steady-state branch is shown by the (blue)
solid line. The various time-periodic branches are shown by the (red) dashed, (green) thick solid, (brown) thick dashed, and
(black) dotted-dashed lines. The filled black circles on the (green) thick solid lines of time-periodic solutions indicate torus
bifurcations. As the figure aims at illustrating the various reconnections, the branch stabilities are not indicated. They can in
part be deduced from Figs. 14 and 18.

and, correspondingly, the HB at Ω = 1.05 terminates at the HC at Ω ≈ 0.94. We note that all the
remaining structures are the same between β0 = 1.4 and 1.348. There is one steady-state branch and
two more time-periodic branches, where one emerges in a SNIPER bifurcation and the other one
connects two HBs.

Going further down in β0, at β0 = 1.343 there appear two more HCs (at Ω ≈ 0.915 and 0.925)
that are connected by a new time-periodic branch, (brown) thick dashed line in Fig. 15(b). This new
branch has again disappeared at β = 1.34 (Fig. 15(c)). Then, at β0 = 1.3 as shown in Fig. 15(d), the
time-periodic branch emerging from the rightmost HB and the time-periodic branch emerging in a
SNIPER bifurcation now merge into one single branch. As a consequence, the SNIPER bifurcation
and one HC bifurcation disappear.

To analyze in more detail how the branches/bifurcations appear and disappear, we perform
continuations on the SNIPER and HC bifurcations to see how they evolve as β0 varies. First,
we focus on the SN that for β0 = 2 is located at Ω ≈ 1.68 and perform a two-parameter fold-
continuation in Ω and β0 for decreasing β0. The results are the (black) solid line in Fig. 16.
Each of its points represents the location of an SN at the corresponding β0. Next, we take a
time-periodic solution for β0 = 2 that is very close to the SNIPER bifurcation and perform a similar
two-parameter continuation at a fixed temporal period (here at 1000). The result is the (blue) dashed
line in Fig. 16 that itself folds back and forth several times. We note that the upper part of the
line for β0 ≥ 1.338 (about Ω ≈ 1.06) actually coincides with the SN branch indicating that we are
indeed tracking the SNIPER bifurcation. At β0 = 1.338, the dashed line folds back towards larger
β0 indicating that (i) for β0 > 1.338, there exist a SNIPER and a homoclinic bifurcation, (ii) the two
global bifurcations approach each other as β0 decreases, and (iii) annihilate each other at (or very
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FIG. 16. Numerical two-parameter continuation in the plane spanned by the contact angle, β0, and the rotation number, Ω.
Shown are (i) the loci of the saddle-node bifurcation that at β0= 2 “hosts” the SNIPER bifurcation by the (black) solid line and
(ii) the loci of time-periodic solutions very close to the global bifurcation by the (blue) dashed line. Here, the temporal period
is fixed to equal 1000. (Red) circles, (green) squares, and (black) stars correspond to period-1000 time-periodic solutions at
β0= 1.34, 1.343, and 1.348, respectively.

near to) the SN about β0 ≈ 1.338 thereby joining the two branches of time-periodic solutions. Or
seeing the process as occurring for increasing β0: the time-periodic solution branch that emerges
from the HB at Ω ≈ 38.7 in Fig. 12(a) approaches the branch of unstable steady solutions when
increasing β0 and hits it finally at β0 ≈ 1.338 at (or very close to) the SN. The time-periodic branch
splits and the two ends are glued to the steady branch as a SNIPER and an HC. Similar transitions
have been analyzed in the context of line formation in Langmuir-Blodgett transfer described via
an amended Cahn-Hilliard equation.21 Another glimpse at Fig. 16 indicates that this is not the full
picture as the dashed line that represents the homoclinic bifurcation undergoes another three folds
indicating several annihilation and creation events of pairs of homoclinic bifurcations and even the
emergence of entire new branches. Following the dashed line further down to β0 = 1, we find that it
then corresponds to the single HC described above in Sec. IV B.

With the obtained information, we are now able to describe how the branches change. For
β0 > 1.3485, there exists a SNIPER bifurcation and there are no HCs. With decreasing β0, at
β0 ≈ 1.3485, one of the time-periodic branches touches the unstable part of the steady-state branch
and splits into two branches. Each of the branches then terminates at the steady-state branch in
an HC, see, e.g., the case of β0 = 1.348 in Fig. 15(a). At β0 ≈ 1.3447, one of the time-periodic
branches touches again the unstable part of the steady-state branch that generates two more HCs
that are connected by a new time-periodic branch, see, e.g., the case of β0 = 1.343 in Fig. 15(b).
This new branch disappears at β0 ≈ 1.3415 when the two HCs annihilate each other. Finally, at
β0 ≈ 1.338, one of the HCs and the SNIPER annihilate each other and the two corresponding
time-periodic branches join together, see, e.g., the case of β0 = 1.3 in Fig. 15(d).

D. Transition from a medium (β0 = 1) to a small (β0 ≪ 1) contact angle

As the rich structure of time-periodic states is also related to partial wettability, it has to
simplify and ultimately disappear with decreasing the equilibrium contact angle β0, similar to the
changes observed for branches of steady states discussed in Sec. III B. We have found that, as β0
decreases, only the rightmost HB and the corresponding time-periodic branch survive. The location
of the HB and the whole time-periodic branch move towards larger Ω as β0 decreases. In fact, as
explained in Appendix B 2, asymptotically one can show that there is always a HB located at large
enough Ω for all non-zero β0. Furthermore, we find that the location of the HB approaches infinity
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FIG. 17. (a) Time-periodic branches for different values of β0. The horizontal axis is the modified rotation numberΩβ0 given
by Eq. (10). (b) Locations of the numerically computed HBs (circles) and the corresponding asymptotic prediction (blue solid
line) and locations of the numerically found SNs (red dotted-dashed line) on the time-periodic branch in dependence on β0.

as β0 approaches zero and the scaling is given by Eq. (B40). As a result, we define the modified
rotation number as

Ωβ0 =

√
5h0β0Ω

9
. (10)

Figure 17(a) shows the time-periodic branch for different values of β0 with Ωβ0 as the horizontal
axis. For each β0, the HB is located where the respective branch starts. One can see that all the
HBs are located close to Ωβ0 = 1, meaning that the scaling result obtained by the asymptotic anal-
ysis is in an excellent agreement with the numerical results. Besides, one can observe that the
time-periodic branches are subcritical for β0 = 1 and 0.5, i.e., initially the branch turns towards
smaller values of Ωβ0 before turning back towards larger values of Ωβ0 in an SN. However, as β0

gets smaller, the HB where the time-periodic branch emerges becomes supercritical, see, e.g., the
curves for β0 = 0.1 and 0.01. Then, the branch turns at first towards larger values of Ωβ0, before
it undergoes two SNs. This implies that another range of multistability exists. For example, for
β0 = 0.1 and β0 = 0.01 in Fig. 17(a) in the range 1 . Ωβ0 . 1.1, there exist two stable and one
unstable time-periodic states. Depending on the initial condition, the long-time solution may be
either a large-amplitude droplet co-rotating with the cylinder or a small-amplitude surface wave
co-rotating with the cylinder.

In Fig. 17(b), we show the location of the numerically found HBs (circles) for various values
of β0 and the corresponding asymptotic predictions ((blue) solid line), Eq. (B40). One can see that
the two match very well indicating that the approximation provided by the asymptotic analysis is
excellent and the location of the HB indeed scales as β−1

0 as β0 approaches zero. On the other hand,
we show as a (red) dotted-dashed line the location of the numerically found SN on the time-periodic
branch. It is found that the scaling of the SN is also β−1

0 . As a result, we conclude that the whole
time-periodic branch moves towards Ω = ∞ as β0 decreases to 0, and the scaling is β−1

0 . That is, in
the limiting case β0 = 0, which corresponds to complete wetting, the time-periodic branch should
disappear and there exists only the steady-state branch. See also the discussion in Appendix B 2 b.

E. Other interesting phenomena

As shown in Secs. IV A–IV D, the transitions between the bifurcation diagrams involve several
reconnections of branches and bifurcations. What we have explained so far is only part of the story.
In fact, there exist some more complicated structures including, e.g., the appearance of the torus
bifurcations mentioned in Sec. IV B and several codimension-two bifurcations involving two HBs
that occur when varying β0. We are not able to provide all the details of these, but we would like to
point out a very interesting case occurring, e.g., for β0 = 1.5.
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FIG. 18. (a) The zoom-in of the bifurcation diagram for β0= 1.5 and B = 1. The graph style is the same as in Fig. 14. The
filled black circles on the (green) thick solid line of time-periodic solutions indicate torus bifurcations, and the solutions
on the part of the branch between these points are stable. (b) A schematic representation showing the connection of the
time-periodic solution branch that shows tilted snaking and the time-periodic solution branch emerging from the HB. ((c),
(d)) Space-time contour plot and time evolution of the L2-norm, ∥δh∥, of the solution at the tilted snaking time-periodic
solution branch at Ω= 1.145.

Figure 18(a) shows a zoom of the bifurcation diagram for β0 = 1.5 and B = 1. The steady-state
branch is shown as the (blue) solid line and the time-periodic branches are shown as the (green)
thick and (red) dashed lines to distinguish two different branches. In this figure, there exist three
HBs and one HC. The time-periodic branch shown as the (red) dashed line is the one that emerges
at the rightmost HB at large Ω outside the figure range. An interesting observation is that it actually
terminates on another unstable time-periodic branch shown by the (green) thick line that itself ends
nearby subcritically at an HB on the (blue) solid line representing the branch of steady states.
A schematic representation of the connections is shown in panel (b) of the figure. We find that
the (red) dashed time-periodic branch approaches the (green) thick branch along a tilted snaking
path with its time-period approaching infinity. One of the solutions on the (red) dashed branch at
Ω = 1.145 is presented in panels (c) and (d) showing the space-time contour plot and the time
evolution of its L2-norm, respectively. The time period for this solution is approximately 20.8468.
The solution profile corresponds to a pendent drop that continuously oscillates in time (small
wiggles). This small-amplitude “background oscillation” is interrupted by a temporally localized
large-amplitude oscillation about t = 10. The branch seems to approach the global bifurcation in a
snaking manner with an ever decreasing amplitude of “wiggling” in the bifurcation diagram. Each
time the branch has completed one wiggle of the snake in Fig. 18(a), one more of the “background
oscillations” is added and the period increases by a fixed value (not shown). We expect that as the
(red) dashed branch advances towards the bifurcation, the number of the wiggles approaches infin-
ity and the period of the solution diverges. We also note that the solution profiles on the approached
(green) thick branch correspond to single-frequency oscillations similar to the small-amplitude
“background oscillations.”
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V. CONCLUSION

We have analyzed the behavior of a partially wetting liquid on a rotating cylinder using
the long-wave model introduced in Ref. 9 as the governing equation. This model, in addition to
accounting for the effects of gravity, viscosity, rotation, and surface tension, includes the effect of
wettability via the introduction of a Derjaguin (or disjoining) pressure term. Here, we have extended
the preliminary results of Ref. 9 that was mainly concerned with the main depinning transition
in two ways. We have shown that the complete bifurcation diagrams that describe continuous
and discontinuous transitions between different steady and time-periodic thickness profiles and
accompanying flow states are much richer than anticipated. This applies even to the case without
rotation, not to speak of the case with driving where we have now discussed several branches of
time-periodic solutions.

First, this has resulted in a deeper understanding of the specific case at large contact angle stud-
ied in Ref. 9. Second, and more importantly, we have analyzed how the bifurcation behavior (the
depinning transition in particular) changes as the wettability is changed. In other words, we have
investigated how the complex bifurcation structure found at large contact angles transforms into
the much simpler behavior at zero contact angle. The calculations have been performed employing
three approaches, namely, on the one hand, different numerical continuation techniques that have
allowed us to track stable and unstable steady and time-periodic states as well as, on the other hand,
direct numerical simulations.

At equilibrium, the transition between the complete and partial wetting cases corresponds to a
phase transition called the wetting transition.27 A lateral driving force, like the one related to the
rotation of the cylinder, brings the system permanently out of equilibrium and may cause a dynamic
wetting transition. For instance, a thick film may be drawn out of a finite contact angle meniscus
above a critical lateral driving23,25 or an array of drops sliding down an incline may transform
into a film.36 Placed within this wider context, the main purpose of the present study has been to
investigate the interplay of depinning and wetting transitions for a specific well-defined system. In
particular, we have analyzed in detail how the depinning behavior changes when the wettability of
the liquid is increased [decreased], i.e., when the equilibrium contact angle is decreased [increased].
With this aim, we have determined bifurcation diagrams with the rotation number as the main
control parameter for various values of the equilibrium contact angle.

As only a picture that contains all stable and unstable steady film and drop states and their rela-
tions allows one to understand the emerging complex dynamics, we have first completed the bifur-
cation diagrams of steady profiles for β0 = 2 that before9 were limited to a subset of the branches of
steady-state solutions. In particular, we have discussed additional branches that represent unstable
symmetric and asymmetric double-drop and double-hole (nucleation) solutions. Furthermore, we
have shown that although triple-drop solutions do not exist on a resting cylinder (i.e., at equilibrium)
at the chosen parameters, the non-equilibrium driving can bring them into existence when the
cylinder is rotated.

In the second part, we have employed numerical continuation techniques to also determine
all the branches of time-periodic solutions for various selected values of the contact angle. The
completed bifurcation diagrams have allowed us to discuss how the global SNIPER bifurcation
related to depinning of partially wetting drops disappears through a number of transitions when
the contact angle is decreased towards small values. However, instead of the hoped-for simple
scenario, where one branch of time-periodic solutions emerges from two separate ones when two
global bifurcations collide on a branch of unstable steady solutions, we have encountered a rather
intricate sequence of codimension-two bifurcations involving a dance of homoclinic bifurcations in
the parameter plane, and a branch of tilted snaking of time-periodic solutions. This implies that the
behavior is even more complicated than the behavior of the line deposition process described in
Ref. 21 that may also be seen as a depinning process, as discussed in Refs. 17 and 18. It remains
an interesting question how the described behavior is amended when further physical effects such
as inertia and/or higher-order terms are incorporated, e.g., along the lines of Refs. 5 and 6, or
if one goes beyond the long-wave (small physical contact angle) case and uses a full Stokes7 or
Navier-Stokes description incorporating wettability.
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In addition to the numerical investigation, we have performed asymptotic analyses of steady-
state solutions for zero rotation number and small contact angle, and of steady-state and time-
periodic solutions for large rotation speeds, and found excellent agreement with the numerical re-
sults. We have also corroborated our findings by full time-dependent simulations of the underlying
model.

The presented hydrodynamic system of a droplet on a rotating cylinder has been considered as
a prototype for other depinning transitions in hydrodynamic systems, more general soft matter sys-
tems and beyond. These systems are characterized by an interplay of imposed spatial heterogeneity,
a lateral driving force and a cohesive force resulting in coherent structures. As a weakening of the
cohesive force will result in a first- or second-order phase transition (e.g., the wetting transition for
the present system), the depinning transition will dramatically change its character in the proximity
of the phase transition. However, our study has shown that the bifurcation behavior in the specific
system studied is actually richer (more complicated) than expected. On the one hand, this implies
that the particular system of the rotating cylinder merits further studies and, on the other hand, it
indicates that the quest for a simple though physically realistic model system is still open.
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APPENDIX A: ANALYSIS OF STEADY DROPS ATΩ = 0

1. Drops at B = 0 on an extended domain

In this appendix, we briefly consider the case Ω = 0, B = 0 in an extended parameter space,
to understand why Fig. 6 has to have at Ω = 0 and B = 0 the two unstable double-drop solutions
that give rise to the entire branch structure at B > 0 even without driving. This will also allow us
to understand why unstable triple-drop solutions may appear at finite Ω. In particular, we continue
n-drop solutions for n = 1,2,3, . . . in the domain size L. The result for β0 = 2 is given in Fig. 19
where the vertical dotted line indicates L = 2π that is the normally fixed value for our system
in the chosen scaling. The three intersections correspond to the three non-trivial steady thickness
profiles at B = 0 in Fig. 6, one single-drop and two double-drop profiles. This is a result of the
subcritical character of the primary bifurcation in Fig. 19 that also explains why part of the solutions
correspond to unstable nucleation (or hole) solutions (see discussions in Refs. 48 and 50).

There are no intersections of the vertical line with the unstable solution branches for n ≥ 3
(three drops and above) and, therefore, there are no “equilibrium” solutions at Ω = 0 with more than
two drops. However, as triple-drop solutions exist at equilibrium at parameters not very far away
from the considered system (at L ≈ 8 in Fig. 19), the non-equilibrium driving can bring them into
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FIG. 19. The bifurcation diagram for contact angle β0= 2 for the simplified system without gravity (B = 0) and without
rotation (Ω= 0) but for an extended domain size L that is employed as the control parameter. The dotted vertical line indicates
the value L = 2π that corresponds to our system in the chosen scaling. The various curves represent n-drop solutions upon
the cylinder. The three crossings of branches and the vertical line represent one stable single-drop solution and two unstable
double-drop solutions, which is consistent with the number of solution seen in Fig. 6 for B = 0.

existence also at L = 2π, i.e., the circumference of the cylinder in our scaling. Here, this occurs
for B = 1 between Ω ≈ 0.68 and 0.95 (Figs. 3(b) and 5). This observation might be relevant for a
number of other systems.

2. Changes in steady double-drop profiles with increasing bond number

In this appendix, we give some further details of the behavior of the double-drop solutions in
Fig. 6.

We consider the left-shifted asymmetric drop profiles on the central a1 branch and describe
the changes in the drop profiles as B varies. For any of the values of B shown, the right-shifted
asymmetric drop on the a2 branch is obtained by considering the mirror image about θ = π. For
B > 1 (Fig. 20(a)), the drop underneath the cylinder decreases in height and volume, while the
larger drop on top of the cylinder increases its volume as liquid is transferred. Simultaneously, the
short film between the drops decreases in length, because the volume of the larger drop increases
but its height decreases. At B ≈ 1.748, the gap between the drops disappears, the solution becomes
symmetric, and a1 and a2 terminate on nu in a symmetry-breaking pitchfork bifurcation slightly
before nu and du annihilate in the saddle-node bifurcation at B ≈ 1.749. Moving on a1 from B = 1
in the opposite direction (Fig. 20(b)), we observe that the drop beneath the cylinder increases in
height and volume, while the larger drop on top becomes smaller. The sizes of the gaps between the
drops remain nearly the same, but the drops shift. At B = 0.19 the solution itself has recovered the
mirror symmetry at θ = π and the branches a1 and a2 end in a pitchfork bifurcation on dl.

The steady profiles on the symmetric branches dl and nl (Fig. 6) show two drops of equal height
arranged in a symmetric way about θ = π that are positioned on the sides of the cylinder, i.e., the
holes are on top and underneath. The steady-state solution with the larger L2-norm (on dl) features
at B = 0 a flat film underneath the cylinder separating the drops, while the edges of the drops meet
above the cylinder (Fig. 20(c)). Following this branch of steady-state solutions first along dl then
along nl to the solution of smaller L2-norm at B = 0, the norm monotonically decreases since the
separating flat film shrinks and the drops decrease in height. Selected profiles on the other symmet-
ric branches du and nu (Fig. 6) are given in Fig. 20(d). At B = 0 on du (∥δh∥ ≈ 0.57), there exist
two identical drops on top and underneath the cylinder while the earlier discussed dl is the same
solution shifted by π/2. They only start to differ once gravity is turned on, i.e., for B ≥ 0. Moving
along du for increasing B, liquid is transferred to the drop on top and the films between the drops
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FIG. 20. Shown are selected double-drop profiles at various Bond numbers on the different branches in Fig. 6 for Ω= 0 and
β0= 2. Panel (a) gives profiles along the asymmetric branch a1 between B = 1 and the pitchfork bifurcation at B ≈ 1.748.
The profiles on a2 are obtained as mirror images about θ = π. Panel (b) gives profiles along a1 between B = 0.19 and B = 1.
Panel (c) shows profiles along the symmetric branches dl and nl. The order of the legend corresponds to the order of solutions
if one were to follow the branch. Panel (d) gives profiles along the symmetric branches du and nu. Thereby, label (i) gives the
solution with ∥δh∥ ≈ 0.57 at B = 0, then labels increase as one travels along the branches, until label (v) gives the solution
with ∥δh∥ ≈ 0.46 at B = 0.

shrink until at B ≈ 1.749 du annihilates with nu in a saddle-node bifurcation. Returning on nu, for
decreasing B, the fluid transfers back to the drop beneath the cylinder and the drops reach again
equal heights at B = 0, where they correspond to standard nucleation solutions (cf., subcritical part
of n = 3 branch at L = 2π in Fig. 19).

APPENDIX B: ASYMPTOTIC ANALYSIS FOR SPECIAL CASES

In Appendices B 1 and B 2, we analyze solutions in the limits of vanishing and infinite rotation
numbers, respectively.

1. Steady-state solutions without rotation

The equation for the steady-state solutions whenΩ = 0 is given by

∂θ
�
h3∂θ

�
∂2
θh + h − B cos θ + Π(h)�	 = 0. (B1)

The equation can be integrated once, and the constant of integration can be removed because it
represents the flux that is zero. We obtain

∂θ
�
∂2
θh + h − B cos θ + Π(h)� = 0. (B2)

Integrating the equation again, we have

∂2
θh + h − B cos θ + Π(h) = c, (B3)

where c = 1 + 1
2π

 2π
0 Π(h) dθ is a constant.
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For partially wetting liquids, β0 , 0, we have numerically found that there exists a finite num-
ber of distinct (in the sense that the solutions are not obtained from each other by a shift in θ)
non-trivial solutions (e.g., three non-trivial solutions for β0 = 2 and B = 0 as shown in Figs. 6 and
19), in addition to the trivial solution, h0 ≡ 1. Multiple non-trivial solutions exist up to a certain
critical Bond number. Beyond the critical value (e.g., B ≈ 1.68 for β0 = 2), only the symmetric
pendent drop solution exits.

On the other hand, for completely wetting liquids, the general solution of Eq. (B3) can be
written in the form

hc = 1 +
B
2
(1 + θ sin θ) + A0 sin θ + A1 cos θ, (B4)

where A0 and A1 are constants. If B = 0, we obtain an infinite number of 2π-periodic solutions.
However, for a non-zero B, hc is not a smooth 2π-periodic function. That is, for a non-zero Bond
number, no classical solution exists.43,44 We, therefore, consider a weak formulation. Our numerical
results indicate that as β0 → 0, a solution of Eq. (B3) approaches a shape with a compact support.
This can be see in Fig. 21(a), where steady pendent drop solutions are shown for various values of
β0. We note that such compactly supported weak solutions were also found in heated-film systems
as “dissipative compactons.”51 Self-similar compactly supported solutions were studied52–55 and the
stability was analyzed by Laugesen and Pugh.56

We see that there exists a thin precursor layer for partially wetting liquids and the thickness
of the thin layer decreases to zero as β0 approaches zero. The fact that the precursor can go
continuously to zero can be realized by a scaling argument. If β0 is fixed, then in the asymp-
totic limit h0 → 0, using the asymptotic expansion in h0, i.e., h = h0 f0 + h2

0 f1 + · · · , we find that
the leading-order equation requires f0 = 1, i.e., there exists a precursor film of thickness h0 (plus
higher-order corrections). On the other hand, if we assume that h0 is small but fixed and consider
the asymptotic limit β0 → 0, we find that an appropriate scaling for the precursor thickness hp is
hp ∝ β1/3

0 . Then, we find that in Eq. (B3) c = O(1) when β0 → 0 and the leading-order balance

gives the precursor film of thickness hp =
(

5
3(c+B cos θ)

)1/6
h5/6

0 β1/3
0 + o(β1/3

0 ).
As a result, we use the following ansatz of a compactly supported weak solution for the

analytical expression of the asymptotic solution of completely wetting liquids:57

hw(θ) =



c0 +
B
2
(θ − π) sin θ + c1 cos θ, θ ∈ (π − α,π + α),

0, θ < (π − α,π + α),
(B5)

where c0, c1, and α are constants that should ensure that the solution hw satisfies the continuity and
integral conditions,

FIG. 21. (a) Steady-state solutions for partially wetting liquids at B = 2 for various values of β0. Note that the solution at
β0= 0 is a weak solution given by Eq. (B5). (b) Steady-state solutions for completely wetting liquids, β0= 0, for various
values of B.
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hw(θ = π ± α) = ∂θhw(θ = π ± α) = 0,
1

2π

 2π

0
hw dθ = 1. (B6)

Note also that for a purely macroscopic theory, i.e., without any disjoining pressure, weak
solutions of partially wetting liquids can also be found by requiring ∂θhw(θ = π ± α) = ±βe, where
βe is the macroscopic equilibrium contact angle. For completely wetting liquids, βe = 0 and we
obtain that the unknown constants c0, c1, and α should satisfy

α2

sin α
+ α cos α − 2 sin α =

2π
B
, (B7)

c0 =
B
2

(
cos α +

α

sin α

)
, (B8)

c1 =
B
2

(
1 +

α cos α
sin α

)
. (B9)

Equations (B7)-(B9) can be solved numerically to obtain the constants of the asymptotic
solution given by Eq. (B5). The steady-state solutions for various Bond numbers are shown in
Fig. 21(b). It is found that with decreasing B, the compact support of the solution becomes larger
and the height of the central peak decreases. Besides, it can be shown that, in the limit B → 0, we
have hw = 1 − cos θ.

2. Limit of large rotation number

a. Steady-state solutions

In the limit when Ω goes to infinity, it is appropriate to define the small parameter ε = 1/Ω and
rescale the time variable as t = ετ. Equation (1) can then be rewritten as

∂τh = −∂θh − ε ∂θ
�
h3∂θ

�
∂2
θh + h − B cos(θ) + Π(h)�	 . (B10)

As suggested by numerical experiments, the L2-norm of the steady-state solutions, as defined in
Eq. (8), approaches zero and, therefore, the solutions approach the flat-film state. Hence, we expand
the steady-state solution using the following ansatz:

hs(θ) = 1 + εh1(θ) + ε2h2(θ) + · · ·. (B11)

Substituting the expansion into the equation for steady states, we can easily find the terms in the
expansion. In particular, we find

h1(θ) = −B sin(θ), h2(θ) = −3B2

2
cos(2θ) + Π′(1)B cos(θ), (B12)

where we use the prime to denote the derivative of Π with respect to h.
Next, we analyze the linear stability of the steady-state solution. Assuming that the solution

is the steady state with a small perturbation, i.e., h(θ, τ) = hs(θ) + δη(θ, τ), δ ≪ 1, we obtain the
following linearized equation:

ητ = −ηx + εL [η], (B13)

where

L [η] = −∂θ �h3
s∂θ[∂2

θη + (1 + Π′(hs))η] + 3h2
s∂θ[∂2

θhs + hs − B cos(θ) + Π(hs)]η	 . (B14)

Assuming that η = eλτg(θ), we have

λg = −∂θg + εL [g]. (B15)

By substituting the expansion (B11) in (B14), we can find

L [η] = L1[η] + εL2[η] + · · ·, (B16)

where

L1[η] = −∂θ{∂3
θη + (1 + Π′(1))∂θη + 3 sin(θ)η}, (B17)
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L2[η] = −∂θ{[6Bh1 sin(θ) + (3 + 3Π′(1) + Π′′(1))∂θh1 + ∂3
θh1]η

+ (3 + 3Π′(1) + Π′′(1))∂θh1∂θη + 3h1∂
3
θη}, (B18)

etc., We then expand λ and g in power series in ε, i.e., λ = λ0 + ελ1 + · · · and g = g0 + εg1 + · · · ,
and substitute in (B15). As a result, we obtain at the nth order,

n
i=0

λign−i = −∂θgn +
n
i=1

Li[gn−i]. (B19)

At leading order, we have

λ0g0 = −∂θg0, (B20)

and we obtain countably infinite number of solutions,

gk0 (θ) = e−λ
k
0 θ, λk

0 = ik, k = 0, ±1, ±2, . . . . (B21)

We note that for each k, we can select an arbitrary amplitude for gk0 , and we select it to be unity for
convenience. At next order, we obtain the equation

∂θg
k
1 + λk

0g
k
1 = L1[gk0 ] − λk

1g
k
0 . (B22)

Denoting the operator on the left-hand side by M k, i.e., M k[ f ] ≡ ∂θ f + λk
0 f , it is easy to verify

that gk0 is the basis for the null space of the adjoint operator M k∗, defined by

M k∗[ f ] ≡ −∂θ f + λk
0 f , (B23)

where the overline denotes complex conjugation. Then, the Fredholm alternative solvability condi-
tion for the equation for gk1 requires that the inner product of the right-hand side of Eq. (B22) and gk0
should vanish, which gives that

λk
1 =

⟨L1[gk0 ], gk0 ⟩
⟨gk0 , gk0 ⟩

= (Π′(1) + 1)k2 − k4, k = 0, ±1, ±2, . . . . (B24)

Note that if

Π
′(1) > 0, (B25)

then at least for k = ±1, we obtain λk
1 > 0. Otherwise, all the λk

1’s are non-positive. Thus, if condi-
tion (B25) is satisfied, at least two eigenvalues (the ones corresponding to k = ±1) have positive real
parts (assuming that ε is sufficiently small). In such a case, the steady solution is unstable. For the
disjoining pressure given by Eq. (3),

Π
′(1) = −3H(1 − 2b). (B26)

Then, condition (B25) is satisfied if H > 0 and b > 1/2 (which is an unphysical case), or H < 0 and
b < 1/2. We note that our numerical findings agree with these theoretical conclusions. Namely, for a
negative H and sufficiently small b, we found in Sec. IV that on the branch of steady-state solutions
there exists a subcritical Hopf bifurcation as Ω increases, and the steady solution becomes unstable.
However, there exists a stable time-periodic solution. The analysis of such time-periodic solutions is
given in Appendix B 2 b.

We would also like to point out that for completely wetting liquids, when H = 0, we find that
λk

1 = 0 for k = ±1 and λk
1 < 0 for |k | > 1. Hence, the stability cannot be determined at this order

and higher-order terms are need to clarify the stability of the steady-state solutions for large values
ofΩ.

Equation (B19) for n = 2 is

∂θg
k
2 + λk

0g
k
2 = L1[gk1 ] +L2[gk0 ] − λk

1g
k
1 − λk

2g
k
0 . (B27)

Then, the Fredholm alternative solvability condition implies that

λk
2 =

⟨L1[gk1 ] +L2[gk0 ] − λk
1g

k
1 , g

k
0 ⟩

⟨gk0 , gk0 ⟩
, k = 0, ±1, ±2, . . . . (B28)
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For k = ±1 (note that it is sufficient to consider k = 1 since λ−1
n = λ1

n ), we find

λ1
2 =

⟨L1[g1
1] +L2[g1

0], g1
0⟩

⟨g1
0, g

1
0⟩

. (B29)

By solving (B22), we can find that

g1
1(θ) = −3iBe−2iθ + C1e−iθ, (B30)

where C1 is an arbitrary constant. Next, substituting the expressions for g1
0 and g1

1 in (B29), we find

λ1
2 = −

15
2

B2i. (B31)

Since λ±1
2 are purely imaginary, we need to find the next order term.

Equation (B19) for n = 3 is

∂θg
k
3 + λk

0g
k
3 = L1[gk2 ] +L2[gk1 ] +L3[gk0 ] − λk

1g
k
2 − λk

2g
k
1 − λk

3g
k
0 . (B32)

Then, the Fredholm alternative solvability condition implies that

λk
3 =

⟨L1[gk2 ] +L2[gk2 ] +L3[gk0 ] − λk
1g

k
2 − λk

2g
k
1 , g

k
0 ⟩

⟨gk0 , gk0 ⟩
, k = 0, ±1, ±2, . . . . (B33)

By solving (B27) for k = 1, we can find that g1
2(θ). (Since the expression that we obtain is quite

lengthy, we omit it here.) Next, substituting the expressions for g1
0, g1

1, and g1
2 in (B33) with k = 1,

we find

λ1
3 = B2


−81 +

57
2
Π
′(1) + 6B2

Π
′′(1) + 1

4
Π
′′′(1)


, (B34)

which for H = 0 becomes

λ1
3 = −81B2. (B35)

This means that for completely wetting liquids and sufficiently large Ω, Re(λk) < 0 for k =
±1,±2, . . ., i.e., the steady solution hs(θ) is stable. Therefore, the behavior at large rotation numbers
for completely wetting and partially wetting liquids is completely different — for completely wett-
ing liquids small-amplitude steady solutions are stable, whereas for even slightly non-wetting liq-
uids, such steady solutions are unstable and, instead, stable large-amplitude time-periodic solutions
emerge (see Appendix B 2 b for the analysis of such time-periodic solutions).

For a general partially wetting liquid, we find

Re(λ1) = εΠ′(1) + ε3B2

−81 +

57
2
Π
′(1) + 6B2

Π
′′(1) + 1

4
Π
′′′(1)


+O(ε4), (B36)

which allows to estimate the value of the angular velocity Ω at which the steady-state solution
loses stability and a time-periodic solution emerges. Indeed, using (B36), we find that the condition
Re(λ1) = 0 implies that the Hopf bifurcation occurs at

ε ≈ 1
B


Π′(1)�

81 − 57
2 Π

′(1) − 6B2Π′′(1) − 1
4Π
′′′(1)� (B37)

(which is consistent with the assumption that ε ≪ 1 when Π′(1) ≪ 1 and/or B ≫ 1). Since ε =
1/Ω, condition (B37) is equivalent to

Ω ≈ B

 �
81 − 57

2 Π
′(1) − 6B2Π′′(1) − 1

4Π
′′′(1)�

Π′(1) . (B38)

For the disjoining pressure given by (3), this condition becomes

Ω ≈ B


54 + 19H − 2Hb
−2H(1 − 2b) . (B39)
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Considering the small-contact-angle limit, β0 ≪ 1, and using that H = − 5
3 β

2
0h2

0, we obtain the
following scaling for the Hopf bifurcation point:

Ω ≈ 9B
√

5h0
β−1

0 . (B40)

We note, however, that this condition corresponds to the case when the first two terms in the
asymptotic expansion for λ1 become of the same order, i.e., the asymptotic expansion strictly speak-
ing breaks down. Therefore, for a more rigorous analysis, the case β0 = O(ε) should be treated
separately, although it would lead to the same condition (B40).

b. Time-periodic solutions

To look for time-periodic solutions, we first impose a co-moving frame by defining ξ = θ − τ.
Equation (B10) is rewritten as

∂τh = −ε ∂ξ

h3∂ξ


∂2
ξh + h − B cos(ξ + τ) + Π(h) . (B41)

Assuming that h(ξ, τ) = H0(ξ, τ) + εH1(ξ, τ) + · · · , at leading order, we have

∂τH0 = 0. (B42)

That is, H0(ξ, τ) = φ0(ξ) for some function φ0. Periodicity and the mean film thickness condition
require that φ0 is 2π-periodic and that

 2π
0 φ0(x)dx = 2π, respectively. At next order, we obtain

∂τH1 = −∂ξ

H3

0∂ξ

∂2
ξH0 + H0 − B cos(ξ + τ) + Π(H0)


. (B43)

Integration with respect to τ over [0,2π] gives

∂ξ

H3

0∂ξ

∂2
ξH0 + H0 + Π(H0)


= 0. (B44)

By integrating this equation with respect to ξ, we find

H3
0∂ξ


∂2
ξH0 + H0 + Π(H0)


= c2, (B45)

where c2 is a constant. One more integration, after dividing by H3
0 , implies that c2 should be zero.

Therefore, we obtain

∂ξ

∂2
ξH0 + H0 + Π(H0)


= 0, (B46)

which after one more integration implies

∂2
ξH0 + H0 + Π(H0) = c, (B47)

where c is a constant. By integrating the latter equation once again and using the fact that the mean
thickness is 1, we actually find that c = 1 + 1

2π

 2π
0 Π(H0)dξ. Note that Eq. (B47) is exactly the

same as Eq. (B3) for B = 0. That is, in the limit of a large rotation number, the solution at leading
order is a steady solution of zero Bond number co-rotating with the cylinder.

As discussed in Sec. III A, for partially wetting liquids there exist three non-trivial large-
amplitude solutions at zero Bond number. These are the solutions that can co-rotates with the
cylinder at large rotation number. For completely wetting liquids at zero Bond number, on the other
hand, there exist infinitely many solutions given by Eq. (B4) with B = 0. However, we will show in
the following that only the trivial solution H0 ≡ 1 exists at large rotation number. For this, we need
to go to higher orders.

From Eqs. (B43) and (B47), we find that

H1 = B∂ξ
�
H3

0 cos(ξ + τ)� + φ1(ξ), (B48)

where φ1 is of zero mean. To determine φ1, we consider the equation at next order,

∂τH2 = −∂ξ

H3

0∂ξ

∂2
ξH1 + H1


+ 3BH2

0 sin(ξ + τ)H1


. (B49)
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Integration with respect to τ over [0,2π] gives

∂ξ

H3

0∂ξ

∂2
ξφ1 + φ1


= ∂ξ


3
2

B2H5
0


. (B50)

We denote the linear operator on the left-hand side by K and find that its adjoint operator is

K ∗[g] = ∂3
ξ

�
H3

0∂ξg
	
+ ∂ξ

�
H3

0∂ξg
	
. (B51)

It can be easily shown that
 sin ξ

H3
0

dξ and
 cos ξ

H3
0

dξ are in the null space of K . Then, by the

Fredholm alternative solvability condition, the right-hand side of Eq. (B50) should be orthogonal to
these two functions. This leads to 2π

0
H2

0 sin ξ dξ =
 2π

0
H2

0 cos ξ dξ = 0. (B52)

For a completely wetting liquid, the general form of H0 is H0 = 1 + A0 sin(ξ) + A1 cos(ξ). It can be
easily seen that the latter integral conditions imply that A0 = A1 = 0. Therefore, H0 ≡ 1. That is, for
completely wetting liquids, there do not exist large-amplitude time-periodic solutions. Moreover,
we find that for a completely wetting liquid

H1 = −B sin(ξ + τ) = −B sin(θ), (B53)

i.e., H1 is in fact time-independent and is exactly the same as the order ε term in the expansion
of a small-amplitude steady solution, see Eq. (B12). In fact, it can be shown that at all the orders
the Hk’s are time-independent, and we recover the small-amplitude steady solution discussed in
Appendix B 2 a. We conclude that for the completely wetting case, time-periodic solutions do not
exist for large values ofΩ, which is consistent with our numerical observations in Sec. IV C.
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